
A Note on Multiprocessor Speed Scaling
with Precedence Constraints

Evripidis Bampis
Sorbonne Universités
UPMC Univ. Paris 06

UMR 7606, LIP6
F-75005, Paris, France

Evripidis.Bampis@lip6.fr

Dimitrios Letsios
Sorbonne Universités
UPMC Univ. Paris 06

UMR 7606, LIP6
F-75005, Paris, France

Dimitrios.Letsios@lip6.fr

Giorgio Lucarelli
Sorbonne Universités
UPMC Univ. Paris 06

UMR 7606, LIP6
F-75005, Paris, France

Giorgio.Lucarelli@lip6.fr

ABSTRACT
We consider the problem of scheduling a set of jobs, under
precedence constraints, on a set of speed scalable parallel
processors. The goal is to minimize the makespan of the
schedule, i.e. the time at which the last job finishes its
execution, without violating a given energy budget. This
situation finds applications in computer devices whose life-
time depends on a limited battery efficiency. In order to
handle the energy consumption we use the energy model
introduced in [Yao et al., FOCS’95], which captures the
intuitive idea that the higher is the processor’s speed the
higher is the energy consumption. We propose a (2 − 1

m
)-

approximation algorithm improving the best known poly-
log(m)-approximation algorithm for the problem [Pruhs et
al., TOCS 2008], where m is the number of the processors.
We also extend the simple idea used for the above problem,
in order to propose a generalized framework that finds ap-
plications to other scheduling problems in the speed scaling
setting.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and problem complex-
ity]: Sequencing and scheduling

Keywords
Speed scaling; Scheduling; Approximation algorithms; Con-
vex programming

1. INTRODUCTION
Due to the increasing use of computing devices and the

need of more computing power in computer centers and of
more autonomy in personal/mobile devices, the energy con-
sumption in computer systems has become an important
issue today. One standard way to handle the energy con-
sumption is through the dynamic scaling of the voltage and
the frequency of a processor, which is known as the speed
scaling mechanism. According to the cube-root rule for the
CMOS devices, if a processor runs at speed s then the power
needed is P (s) = s3. However, recent experiments showed
that the exponent is in practise smaller [10] (e.g., the expo-
nent is equal to 1.11 for Intel PXA 270, 1.62 for Pentium
M770 and 1.66 for a TCP offload engine). So, we can de-
scribe the power as P (s) = sα, where α > 1 is a small
constant that depends on the processor. The energy con-
sumption is the power integrated over time. Intuitively, the
speed scaling mechanism captures the idea that the higher

is the processor’s speed the higher is the energy consump-
tion. The algorithmic study of the speed scaling mechanism
is initiated by Yao et al. [11] in 1995. Since then, there is a
series of works in the speed scaling setting (see the surveys
[1, 2]).

A classical objective in scheduling is the minimization of
the makespan, i.e., the time at which the last job finishes
its execution. Unfortunately, makespan minimization and
energy minimization are conflicting objectives. One of the
ways to take into account the bicriteria nature of speed scal-
ing problems is by adopting a budget approach where a fixed
budget of energy is given and the only objective is the min-
imization of the makespan (see for example [3, 7]). This is
a quite natural assumption in our setting where the energy
of a battery may be assumed to be fixed.

In this context, Pruhs et al. considered in [7] the prob-
lem of scheduling a set of jobs on a set of speed scalable
parallel processors subject to precedence constraints among
the jobs. The goal is to minimize the makespan of the
schedule without exceeding a given energy budget. The ap-
proach in [7] is based on constant power schedules, which are
schedules that keep the total power of all processors con-
stant over time. Based on this property and by performing
a binary search to determine the value of the power, they
transform the problem to the classical problem of minimiz-
ing the makespan for scheduling a set of jobs with prece-
dence constraints on related parallel processors, in which
each processor runs at a single predefined speed. Using
the known O(logm)-approximation algorithm for the lat-
ter problem presented in [4, 5], they give an approximation

algorithm of ratio O(log1+2/αm) for the speed scaling prob-
lem with precedence constraints, where m is the number of
the processors.

Note that, when the energy consumption is not taken into
account, the speed scaling problem reduces to the classi-
cal makespan minimization scheduling problem on identical
parallel processors with precedence constraints, in which all
processors run at the same predefined constant speed which
is NP-hard. Graham [6] proved that the simple list schedul-
ing algorithm is a (2 − 1

m
)-approximation algorithm for it.

On the negative side, Svensson [9] showed that it is NP-
hard to improve upon the approximation ratio obtained by
Graham, assuming a new variant of the unique games con-
jecture.

A natural question arising here is whether it is possi-
ble to reduce the gap between the approximability of the
scheduling problems on parallel processors with and with-



out speed scaling. In this note, we propose a simple (2 −
1
m

)-approximation algorithm for the speed scaling problem
with precedence constraints, matching the approximation
ratio for the classical setting. In fact, we even general-
ize the problem studied in [7] by taking into account that
each job is available for execution after a given release date.
For the more general problem, our algorithm becomes 2-
approximate. Our approach is based on several ingredients
of Graham’s algorithm for the corresponding classical prob-
lem with precedence constraints and release dates. Initially,
using the lower bounds for the optimal solution used by Gra-
ham, we give a convex programming relaxation for the speed
scaling problem. By solving this convex program, we define
a speed, and hence a processing time, for each job. As these
processing times respect the energy budget, we transform
our problem to the classical problem without speed scaling
and we use the list scheduling algorithm to obtain a feasible
schedule.

Interestingly, the idea of using the lower bounds used for
the classical setting in order to obtain a convex programming
relaxation for the speed scaling setting can be also applied
in other speed scaling problems and directly pass the ap-
proximation ratios from the classical to the speed scaling
environment. In this note, we propose a generalized frame-
work and a characterization of such scheduling problems and
we present applications of our method for shop scheduling
environments in the speed scaling setting.

Organization of the Paper.
In Section 2 we present the (2 − 1

m
)-approximation algo-

rithm for the speed scaling problem with precedence con-
straints on multiprocessors, improving the best known poly-
log(m)-approximation algorithm for this problem [7]. Based
on the approach that we used for this problem, we pro-
pose in Section 3 a general framework that can directly pass
the approximation ratios from a classical problem (without
caring about the energy consumption) to the correspond-
ing speed scaling problem, and we present the ingredients
needed for this transformation. Then, in Section 3.1 we give
an application of our framework to a well-known problem in
scheduling, namely the open shop problem. We conclude in
Section 4.

2. PRECEDENCE CONSTRAINTS
In this section, we consider the makespan minimization

problem of scheduling a set of jobs, with release dates and
precedence constraints among them, on parallel speed scal-
able processors subject to a budget of energy and we present
a 2-approximation algorithm. Henceforth, we denote this
problem as PRECS and the corresponding classical problem
without speed scaling as PREC. In the case where there are
no release dates, our algorithm is (2− 1

m
)-approximate.

Problem Statement and Notation.
In the PRECS problem, we are given a set of jobs J =
{1, 2, . . . , n} which have to be scheduled on m speed scalable
parallel processors. Each job j ∈ J is characterized by an
amount of work wj and a release date rj . We do not allow
preemptions of the jobs which means that, for a given job
j ∈ J , we must choose a single processor on which j will
be executed without any interruption. There are precedence
constraints among the jobs. Specifically, if the job j precedes

the job j′, then j′ cannot start until j is completed. In
this case, we call j a predecessor of j′. Our objective is
to find a feasible schedule with minimum completion time
(makespan) so that the energy consumption is not greater
than a given energy budget E.

The precedence constraints are represented in the form of
a directed acyclic graph G = (V,A). The set of vertices V
contains one vertex for each job and the arc (j, j′) belongs
to the set of arcs A if and only if the job j is constrained to
precede the job j′. We denote by C the set of all the paths
(or chains) in G. Note that these paths are not necessarily
maximal. This means that there may exist paths that are
completely included in other paths. For a path c ∈ C, we
denote by J (c) the set of jobs which appear in c and by
r(c) the release date of the first job in the path. Given the
processing times of the jobs, the length of a path c ∈ C is
the sum of the processing times of the jobs in c.

Algorithm’s Ingredients.
Let us consider first the problem PREC in which the jobs

have fixed processing times. That is, each job j ∈ J is
characterized by a processing time pj instead of an amount
of work wj . Next, we present two well-known lower bounds
on the value C∗ of any optimal solution for PREC and an
approximation algorithm which is upper bounded by 2 times
the maximum of these linear bounds.

In the best case, there is no idle period in the schedule
and all the processors complete together. Therefore,

C∗ ≥ 1

m

∑
j∈J

pj

Because of the precedence constraints, for every c ∈ C, we
have that

C∗ ≥ r(c) +
∑

j∈J (c)

pj

For PREC, Graham [6] proposed the well-known list schedul-
ing algorithm which follows.

Algorithm 1

1: Every time that a processor i becomes available, sched-
ule on i a released job for which all the predecessors have
been completed.

Theorem 1. [6] Let C be the makespan of the schedule
produced by Algorithm 1 for PREC. Then,

C ≤ 2 ·max

 1

m

∑
j∈J

pj ,max
c∈C

r(c) +
∑

j∈J (c)

pj




The Algorithm.
Now, we turn back our attention to PRECS . Note that,

in an optimal schedule for this problem, each job j ∈ J is
executed with a constant speed sj due to the convexity of the
speed-to-power function. Given this speed we can compute
its processing time pj =

wj
sj

and its energy consumption

Ej = wjs
α−1
j =

wαj

pα−1
j

.

Based on this, we present a convex programming relax-
ation for PRECS . We introduce a variable y for the makespan



and a variable xj for each job j ∈ J which corresponds to the
processing time of j. The objective is to minimize y. Given
the lower bounds that we described previously for PREC, we
add two linear constraints that relate the processing times
of the jobs with the makespan, as well as, a constraint which
ensures that the energy budget is not exceeded. So, we ob-
tain the following convex program, denoted as CP .

min y

y ≥ 1

m

∑
j∈J

xj (1)

y ≥ r(c) +
∑

j∈J (c)

xj c ∈ C (2)

∑
j∈J

wαj

xα−1
j

≤ E (3)

xj ≥ 0 j ∈ J

This convex program has an exponential number of con-
straints as the number of paths may be exponential to the
size of the instance. However, we will consider for the mo-
ment that we can get an optimal solution of it, and we ex-
plain later how we can solve it in polynomial time through
a transformation to another convex program of polynomial
size. Based on CP , we propose the following algorithm for
PRECS .

Algorithm 2

1: Solve the convex program CP .
2: Let ~xCP be the vector of the processing times of jobs

obtained by CP .
3: Apply Algorithm 1 as if the jobs have processing times
~xCP to create a feasible schedule for PRECS .

Theorem 2. Algorithm 2 achieves an approximation ra-
tio of 2 for PRECS.

Proof. Consider an instance of PRECS , and let SOL
and OPT be the value of our algorithm’s solution and of an
optimal solution, respectively. Given a vector of processing
times ~x which corresponds to a feasible solution of the con-
vex program, we denote by CP (~x) the corresponding value
of the convex program, i.e. the minimum possible value of y
with respect to ~x. Furthermore, let ~xCP be the values of the
variables in the optimal solution of the convex program pro-
duced by the Algorithm 2 and ~xOPT be the processing times
of the jobs in an optimal solution of the problem PRECS .
Clearly, CP (~xCP ) is the value of the optimal solution of the
convex relaxation. We have that

SOL ≤ ρ · CP (~xCP ) ≤ ρ · CP (~xOPT ) ≤ ρ ·OPT

The first inequality comes from the fact that ρ = 2 multi-
plied by the maximum of the lower bounds for PREC is an
upper bound on the makespan of the schedule produced by
Algorithm 1, i.e., Theorem 1. The second inequality holds
because ~xCP is an optimal solution of the convex relaxation
and ~xOPT corresponds to just a feasible one for CP . Finally,
the third inequality is based on the fact that the convex
program is a relaxation of the speed scaling problem. The
theorem follows.

When the jobs have no release dates our result can be
slightly improved and we obtain a (2 − 1

m
)-approximation

algorithm by using the same lower bounds. In this case,
when the jobs have fixed processing times, Algorithm 1 is
(2− 1

m
)-approximate w.r.t. these lower bounds.

Corollary 1. Algorithm 2 achieves an approximation
ratio of 2 − 1

m
for PRECS when all jobs have the same

release date.

An Equivalent Polynomial Size Convex Program.
As mentioned before, CP has an exponential number of

constraints. In order to deal with this, we propose an equiv-
alent convex programming relaxation. Let yj be a variable
indicating the completion time of job j ∈ J . We replace the
constraints (2) of CP with the following constraints, and we
obtain a new convex program CP ′.

yj ≤ y j ∈ J (4)

rj + xj ≤ yj j ∈ J (5)

yj + xj′ ≤ yj′ (j, j′) ∈ A (6)

yj ≥ 0 j ∈ J

Next, we prove that the two convex programs are equiv-
alent. Hence, there exists a polynomial 2-approximation al-
gorithm for PRECS .

Lemma 1. The two convex programs are equivalent.

Proof. Assume that we are given a feasible solution (x̃j , ỹ)
for CP . We will show that there exists a feasible solu-
tion for CP ′ of the same cost. The variables xj and y
have equal values in both solutions. So, the constraints (1)
and (3) are satisfied. For a given job j ∈ J , we denote
by C(j) the set of paths that have the job j as a right
extremity. We set the value of the variable yj equal to

ỹj = maxc∈C(j)

{
r(c) +

∑
j′∈J (c) x̃j′

}
. It remains to show

that the constraints (4), (5) and (6) are satisfied. By con-
sidering the path c ∈ C(j) that contains only the job j on
our definition of ỹj , the constraints (5) are satisfied. More-
over, assume that (j, j′) ∈ A. Based on our definition,
let ỹj = r(c) +

∑
j′′∈J (c) x̃j′′ , for some path c. Then, as

r(c) = r(c ∪ {j′}),

ỹj′ ≥ r(c ∪ {j′}) +
∑

j′′∈J (c∪{j′})

x̃j′′ = yj + xj′

and the constraints (6) are also satisfied. Given our defi-
nition of ỹj and the fact that the solution (x̃j , ỹ) satisfies
the constraints (2), we conclude that the solution (x̃j , ỹj , ỹ)
satisfies the constraints (4) and it is indeed feasible for CP ′.

To the other direction, assume that we have a feasible
solution (x̃j , ỹj , ỹ) for CP ′. Then, we claim that the solution
(x̃j , ỹ) is feasible for CP . The constraints (1) and (3) are
satisfied directly. Next, consider any path c ∈ C and assume
that it contains the jobs j(1), j(2), . . . , j(k) in this order. We
have that

r(c) +
∑

j∈J (c)

x̃j = rj(1) +

k−1∑
`=1

x̃j(`+1)

≤ rj(1) +

k−1∑
`=1

(ỹj(`+1) − ỹj(`)) ≤ ỹj(k) ≤ y



where the inequalities follow from the constraints (6), (5)
and (4), respectively.

3. A GENERALIZED FRAMEWORK
In this section, we present a generalized method for ob-

taining approximation algorithms for speed scaling problems
in which the objective function is the minimization of e.g.
the makespan and there is a given budget of energy which
must not be exceeded. The main assumption is that the en-
ergy consumption of any optimal schedule can be expressed
as a convex function E(~x) of the vector of the processing
times ~x of the jobs (or operations). This assumption is true
if a processor satisfies the standard speed-to-power function
P (s) = sα, where α > 1 is a constant, because each job
(or operation) is executed with a constant speed due to the
convexity of P (s).

Consider a classical makespan minimization problem Π
in which the jobs have fixed processing times. We denote
by ΠS the speed scaling variant of the problem where each
job (or operation) has an amount of work instead of a fixed
processing time, the processors’ speed can be varied, the
objective remains the same and we are given a budget of
energy which must not be exceeded. In order to apply our
method, we need the following ingredients.

• A set of ` linear bounds on Π’s optimal solution of the
form

C∗ ≥ fk(~p)

for k = 1, 2, . . . , `, where ~p is the vector of processing
times of the jobs and fk(~p) is a linear function of ~p.

• A ρ-approximation algorithm A for Π which always
produces a solution such that C ≤ ρ · max`k=1 fk(~p),
where C is the value of the A’s solution for Π.

Provided the above ingredients, we may obtain a ρ-appro-
ximation algorithm for the speed scaling problem ΠS by
using the algorithm A as a black box. Let us describe in a
general manner our approach.

Our first task consists in constructing a convex program-
ming relaxation CP for ΠS by using the lower bounds of
Π. We introduce a variable y for the makespan and a vec-
tor variable ~x which corresponds to the processing times of
the jobs. The objective is to minimize y. We add linear
constraints of the form y ≥ fk(~x), for k = 1, 2, . . . , `, and
a constraint which ensures that the budget of energy is not
exceeded. So, we obtain the following convex program.

min y

y ≥ fk(~x) ∀1 ≤ k ≤ `
E(~x) ≤ E

~x ≥ 0

Next, we propose the following algorithm for ΠS .

Algorithm 3

1: Solve the convex program CP .
2: Let ~xCP the vector of the processing times obtained.
3: Apply the algorithm A as if the jobs have processing

times ~xCP to create a feasible schedule for ΠS .

The following theorem can be proved using the same ar-
guments as for Theorem 2.

Theorem 3. Algorithm 3 achieves an approximation ra-
tio of ρ for ΠS.

3.1 An Example: Open Shop
In this section, we consider the speed scaling problem of

minimizing the makespan in an open shop environment and
we present a 2-approximation algorithm. We denote this
problem as SHOPS .

Problem Statement.
An instance of SHOPS contains a set of n jobs J =
{1, 2, . . . , n} which have to be scheduled by a set of m par-
allel processors P = {1, 2, . . . ,m}. The job j ∈ J consists
of m operations O1,j , O2,j , . . . , Om,j and the operation Oi,j ,
i ∈ P, has to be entirely executed by the processor i. Eve-
ry operation Oi,j , i ∈ P and j ∈ J , is associated with an
amount of work wi,j ≥ 0. The open shop constraint enforces
that no pair of operations of the same job are executed at
the same time. We do not allow preemptions of operations
which means that each operation has to be executed without
interruptions. Our objective is to find a feasible schedule
with minimum completion time (makespan) whose energy
consumption does not exceed a given budget E.

The study of the open shop problem is motivated by appli-
cations where each task is composed by operations that have
to be executed on special purpose machines, for example ma-
chines for floating point operations or graphics operations,
etc. The open shop constraint is implied by the fact that the
operations of the same task have access to the same physical
resources, and hence they cannot be executed at the same
time.

Algorithm’s Ingredients.
Let us consider the problem SHOP in which each op-

eration Oi,j has a fixed processing time pi,j instead of an
amount of work wi,j . We denote by C∗ the makespan of
an optimal solution for this problem. Next, we give a set of
lower bounds for C∗.

Each processor completes when all the operations assigned
to it are finished. Therefore, for every i ∈ P, we have that

C∗ ≥
n∑
j=1

pi,j

Similarly, a job completes when all its operation are finished.
Hence, because of the open shop constraint, for every j ∈ J
it must hold that

C∗ ≥
m∑
i=1

pi,j

For SHOP, Racsmány1 proposed the well-known list schedul-
ing algorithm which follows.

Algorithm 4

1: Whenever a processor i ∈ P becomes available, sched-
ule on i an operation Oi,j of a job j ∈ J which is not
processed by any other machine at the same time.

1Check [8] for more details.



Theorem 4. (Racsmány) Let C be the makespan of the
schedule produced by Algorithm 4 for SHOP. Then,

C ≤ 2 ·max

{
max
i∈P

{∑
j∈J

pi,j

}
,max
j∈J

{∑
i∈P

pi,j

}}

Algorithm.
Let us now describe how we obtain a 2-approximation

algorithm for SHOPS . Initially, we give a convex program-
ming relaxation CP for it. As we described in Section 3, we
introduce a variable xi,j which corresponds to the processing
time of the operation Oi,j and a variable y that corresponds
to the makespan. Then, we construct CP as follows.

min y

y ≥
n∑
j=1

xi,j i ∈ P

y ≥
m∑
i=1

xi,j j ∈ J

m∑
i=1

n∑
j=1

wαi,j

xα−1
i,j

≤ E

xi,j ≥ 0 i ∈ P, j ∈ J

Provided the above convex program, we can apply Algo-
rithm 3 in order to solve SHOPS by using Algorithm 4 as
a black box. Then, Theorems 3 and 4 imply the following
theorem.

Theorem 5. There exists a 2-approximation algorithm
for SHOPS.

4. CONCLUSIONS
We have improved from poly-log(m) to 2− 1

m
the approx-

imation ratio for the multiprocessor speed scaling problem
with precedence constraints where the objective is to mini-
mize the makespan of the schedule subject to a given energy
budget. In fact we have even generalized the problem by
considering that jobs are subject to release dates. Our ap-
proach is much simpler than the previous one and it can
be used to deal with other problems in the speed scaling
setting, like the open shop problem as well as problems on
other shop environments where similar linear lower bounds
on the makespan are known for the classical setting. An
interesting question is whether we can extend this approach
to other scheduling problems and more specifically to other
performance objectives, i.e., for the average completion time
of the jobs. A positive answer to this question could give us
an insight to the difficulty that adds the consideration of the
energy consumption in scheduling problems.

Finally, we note that our approach can be used not only for
power functions of the form P (s) = sα, but for any convex
speed-to-power function, as we just need the property of
convexity.

Acknowledgements
We would like to thank Maxim Sviridenko for our helpful
discussions.

Partially supported by the project ALGONOW, co-fina-
nced by the European Union (European Social Fund - ESF)
and Greek national funds, through the Operational Pro-
gram“Education and Lifelong Learning”, under the program
THALES. Partially supported by the project Mathematical
Programming and Non-linear Combinatorial Optimization
under the program PGMO.

5. REFERENCES
[1] S. Albers. Energy-efficient algorithms.

Communications of the ACM, 53(5):86–96, 2010.

[2] S. Albers. Algorithms for dynamic speed scaling. In
STACS, volume 9 of LIPIcs, pages 1–11. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[3] D. P. Bunde. Power-aware scheduling for makespan
and flow. In SPAA, pages 190–196. ACM, 2006.

[4] C. Chekuri and M. A. Bender. An efficient
approximation algorithm for minimizing makespan on
uniformly related machines. Journal of Algorithms,
41:212–224, 2001.

[5] F. A. Chudak and D. B. Shmoys. Approximation
algorithms for precedence-constrained scheduling
problems on parallel machines that run at different
speeds. Journal of Algorithms, 30(2):323–343, 1999.

[6] R. Graham. Bounds for certain multiprocessor
anomalies. Bell System Technical Journal,
45(9):1563–1581, 1966.

[7] K. Pruhs, R. van Stee, and P. Uthaisombut. Speed
scaling of tasks with precedence constraints. Theory of
Computing Systems, 43:67–80, 2008.

[8] D. B. Shmoys, C. Stein, and J. Wein. Improved
approximation algorithms for shop scheduling
problems. SIAM Journal on Computing,
23(3):617–632, 1994.

[9] O. Svensson. Conditional hardness of precedence
constrained scheduling on identical machines. In
STOC, pages 745–754, 2010.

[10] A. Wierman, L. L. H. Andrew, and A. Tang.
Power-aware speed scaling in processor sharing
systems. In INFOCOM, pages 2007–2015. IEEE, 2009.

[11] F. F. Yao, A. J. Demers, and S. Shenker. A scheduling
model for reduced CPU energy. In FOCS, pages
374–382. IEEE Computer Society, 1995.


