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Abstract We study temperature-aware scheduling problems under the model introduced in [Chrobak
et al., AAIM 2008], where unit-length jobs of given heat contributions and common release dates
are to be scheduled on a set of parallel identical processors. We consider three optimization criteria:
makespan, maximum temperature and (weighted) average temperature. On the positive side, we present
polynomial time approximation algorithms for the minimization of the makespan and the maximum
temperature, as well as, optimal polynomial time algorithms for minimizing the average temperature
and the weighted average temperature. On the negative side, we prove that there is no an approximation
algorithm of absolute ratio 4

3 − ε for the problem of minimizing the makespan for any ε > 0, unless
P = NP.

1 Introduction

The exponential increase in the processing power of recent (micro)processors has led to an analogous
increase in the energy consumption of computing systems of any kind, from compact mobile devices
to large scale data centers. This has also led to vast heat emissions and high temperatures affecting
the processors’ performance and reliability. Moreover, high temperatures reduce the lifetime of chips
and may permanently damage the processors. For this reason, manufacturers have set appropriate
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temperature thresholds for their processors and use cooling systems to control the temperature below
these thresholds. However, the energy consumption and heat emission of these cooling systems have
to be added to that of the whole system.

The issues of energy and thermal management in the (micro)processor and system design levels date
back to the first computer systems. During the last few years these issues have been also addressed
at the operating system’s level, generating new interesting questions. In this context the operating
system has to decide the order in which the jobs should be scheduled so that the system’s temperature
(and/or energy consumption) remains as low as possible, while at the same time some standard user
or system oriented criterion (e.g., makespan, response time, throughput, etc) is optimized. Clearly,
the minimization of the temperature and the optimization of the scheduling criteria are typically in
conflict, and several models have been proposed in the literature in order to analyze such conflicts and
trade-offs. A first model is based on the speed-scaling technique for energy saving and the Newton’s law
of cooling; see for example [5,4] as well as recent reviews on speed scaling in [15,1,2]. In another model
proposed in [18], a thermal RC circuit is utilized to capture the temperature profile of a processor.

In this work, we adopt the simplified model for cooling and thermal management introduced by
Chrobak et al. [9], who were motivated by [17]. In particular, they consider a set of unit-length jobs
(corresponding to slices of the processes to be scheduled), each one with a given heat contribution, and
model the thermal behavior of the system as follows: if a job of heat contribution h is executed on a
processor within a time interval [t− 1, t), t ∈ N, and the temperature of the processor at time t− 1 is
Θ, then the processor’s temperature at time t is Θ+h

2 . Although in practice the heat contribution of
the executed jobs and the cooling effect are spread over time [19], the authors in [9] consider the above
simplified discrete model in which the heat contribution of the job to be executed is first added to the
current temperature and then this sum is halved, in order to take into account the cooling effect.

In [9], the authors study the problem of scheduling a set of unit-length jobs with release dates
and deadlines on a single processor so as to maximize the throughput, i.e., the number of jobs that
meet their deadlines, without exceeding a given temperature threshold θ at any time t ∈ N. Extending
the well-known three-field notation for scheduling problems [13], this problem is denoted as 1|ri, pi =
1, hi, θ|

∑
Ui. They prove that this problem is NP-hard even for the special case when all jobs are

released at time 0 and their deadlines are equal, i.e., 1|pi = 1, hi, θ|
∑
Ui. Furthermore, in the presence

of release dates and deadlines it is shown that a family of reasonable list scheduling algorithms, including
the coolest first and earliest deadline first algorithms, have a competitive ratio of at most two. This result
implies also an approximation factor of two for the off-line problem. In the negative side, they also
give an instance that shows that there is no deterministic on-line algorithm with competitive ratio less
than two.

The same model has been also adopted by Birks et al. in [7,6,8] where online algorithms for several
generalizations of the throughput maximization problem have been studied. In fact, in [7] the cooling
effect is generalized by multiplying the temperature by 1/c, where c > 1, instead of one half. In [6]
the weighted throughput objective is considered, while in [8] the jobs have equal (non-unit) processing
times.

Our problems and results. Under the thermal model of Chrobak et al. [9], we initiate the study
of scheduling a set J = {J1, J2, . . . , Jn} of n jobs on a system of m identical processors, unlike the
previous works that study only single processor systems. All jobs have common release dates and
unit processing times, and for each one of them we are given a heat contribution hi, 1 ≤ i ≤ n. Let
hmax = max{hi, Ji ∈ J} be the maximum heat contribution among all jobs. We consider each job Ji
executed in a time interval [t − 1, t), t ∈ N, which we call slot t, on some processor. By Θjt we denote
the temperature of processor j at time t. As in [9], if we start executing job Ji at time t − 1, then

Θjt =
Θjt−1+hi

2 . The initial temperature of each processor (the ambient temperature) is considered to



On Multiprocessor Temperature-Aware Scheduling Problems 3

be zero, i.e., Θj0 = 0. In what follows, we simplify the notation by using Θt instead of Θjt , when the
processor is specified by the context. We consider two natural variants of the above model:

The threshold thermal model. In this model, a given threshold θ on the temperature of the processors
cannot be violated at any time t ∈ N. This is the case with the throughput maximization problems
studied in [9,7,6,8]. It is clear that, for a given instance in this model, a feasible schedule may exist
only if hi ≤ 2 · θ for each job Ji. By normalizing the values of hi’s and θ we can assume w.l.o.g. that
0 < hi ≤ 2 and θ = 1, as in [9]. Moreover, if a processor at time t−1 has temperature Θt−1 and it holds

that Θt−1+hi
2 > 1, for every job Ji that has not yet been scheduled, then this processor will remain idle

for the slot [t − 1, t) and its temperature at time t will be reduced by half, i.e., Θt−1

2 . Note also that
once a processor has executed some job(s), its temperature will never become exactly zero. Therefore,
in this model, a feasible instance cannot contain more than m jobs of heat contributions equal to 2,
as there are m slots with Θ0 = 0 (the first slots in each one of the m available processors). Under this
model we study the makespan minimization problem, that is P |pi = 1, hi, θ|Cmax.

The optimization thermal model. In this model, no explicit threshold on the processors’ temperature is
given. The lack of such a threshold is counterbalanced by studying the problems of minimizing the
maximum and average temperature of a schedule. For any instance in this model, any schedule of
length at least d nme is feasible, independently of the range of the jobs’ heat contributions. However,
the optimum value of our objectives depends on the time available to execute the given set of jobs: the
maximum or average temperature of a schedule of length equal to d nme is, clearly, greater than that of a
schedule of longer length, where we are allowed to introduce idle slots. In what follows, we are interested
in minimizing these two objective functions with respect to a given schedule length (makespan or
deadline) of d ≥ d nme. Such a schedule will contain md − n idle slots and we can consider them as
executing md−n fictitious jobs of heat contribution equal to zero. This length d is part of our problems’
instances, denotes the time available to complete the execution of all the jobs and represents the need
to complete them within a given time at the price of higher temperatures. Thus, in both problems we
consider under this model (minimizing the maximum and the average temperature) we are accounting
the temperatures at the end of any of the md slots available on the m processors. The problems
of minimizing the maximum and average temperature we consider under this model are denoted by
P |pi = 1, hi, d|Θmax (where Θmax = max{Θjt , 1 ≤ t ≤ d, 1 ≤ j ≤ m}) and P |pi = 1, hi, d|

∑
Θjt (where

1 ≤ t ≤ d, 1 ≤ j ≤ m), respectively.

The complexity of our problems is strongly related to the complexity of the throughput maxi-
mization problem studied in [9]. It is already mentioned in [9], that the NP-hardness of the max-
imum throughput problem of scheduling jobs with common release dates and deadlines on a sin-
gle processor 1|pi = 1, hi, θ|

∑
Ui implies the NP-hardness of our makespan minimization problem

1|pi = 1, hi, θ|Cmax. In fact, the decision version of the latter problem asks for the existence of a feasi-
ble schedule where all jobs complete their execution by some given deadline d. Moreover, the decision
version of the maximum temperature problem on a single processor 1|pi = 1, hi, d|Θmax asks for the
existence of a schedule where all jobs complete their execution by some given deadline d without ex-
ceeding a given temperature threshold θ. Therefore, the same reduction gives NP-hardness for both
makespan and maximum temperature minimization problems. The NP-hardness for our problems on
an arbitrary number of parallel processors follows trivially.

Given these NP-hardness results, in this paper we focus on approximation algorithms and inap-
proximability results for the above mentioned problems, under the threshold and optimization thermal
models for the case of multiple processors. We start in Section 2 with the problem P |pi = 1, hi, θ|Cmax
of minimizing the schedule length (makespan) in the threshold thermal model. We first prove that this
problem cannot be approximated within an absolute ratio less than 4/3. Then we present a generic
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algorithm of approximation ratio 2ρ, where ρ is the approximation ratio of an algorithm A for the
classical makespan problem on parallel machines, used as a subroutine in our algorithm. This leads
to a (2 + ε)-approximation ratio within a running time that is polynomial in n but exponential in
1/ε for m processors (by using the known PTAS’s for minimizing makespan), and a 2-approximation
ratio for a single processor, within O(n log n) time. If in the place of algorithm A we use the stan-
dard LPT (4

3 −
1

3m )-approximation algorithm, we are able to give a tighter analysis, improving the
2ρ-approximation ratio to 7

3 −
1

3m , while the overall running time is O(n log n). Then in Sections 3 and
4, we move to the optimization thermal model. In Section 3, we study the problem P |pi = 1, hi, d|Θmax
of minimizing the maximum temperature of a schedule, and we give a 4/3 approximation algorithm. In
Section 4, we prove that the problem P |pi = 1, hi, d|

∑
Θjt of minimizing the average temperature of a

schedule, as well as a time-dependent weighted version of this problem are both solvable in polynomial
time. We conclude in Section 5.

2 Makespan Minimization

In this section we study the approximability of makespan minimization under the threshold thermal
model, that is, P |pi = 1, hi, θ|Cmax.

We start with a negative result on the approximability of our problem. The proof of the next
theorem is along the same lines with the NP-hardness reduction for the throughput maximization
problem under the same model [9].

Theorem 1 There is no polynomial time algorithm achieving an absolute approximation ratio better than

4/3 for the minimum makespan problem P |pi = 1, hi, θ|Cmax, unless P = NP.

Proof We give a reduction from Numerical 3-Dimensional Matching (N3DM) where we are given three
sets A,B,C of n integers each and an integer β, and the question is whether A∪B∪C can be partitioned
into n disjoint triples (a, b, c) ∈ A×B ×C such that each triple contains exactly one integer from each
of A, B, C, and a+ b+ c = β for each triple. W.l.o.g., we assume that

∑
x∈A∪B∪C x = βn and x ≤ β

for each x ∈ A ∪B ∪ C. The N3DM problem is known to be NP-complete (see [11]).
Given an instance I of N3DM, we construct an instance I ′ of P |pi = 1, hi, θ|Cmax consisting of n

processors and 3n jobs, one for each integer in A∪B∪C. Considering the function f(x) = 1
25

(
1 + x

8β

)
,

we set h(a) = 8f(a) + 1 for each a ∈ A, h(b) = 4f(b) + 1 for each b ∈ B and h(c) = 2f(c) + 1 for each
c ∈ C.

The reduction works by showing that it is hard to decide whether the optimal schedule is of length
three or not.

Claim There is a N3DM for instance I if and only if there is a feasible schedule for the instance I ′ of
P |pi = 1, hi, θ|Cmax of length three.

Proof (⇒) Assume that there is a solution for N3DM. For the i-th triple (ai, bi, ci), 1 ≤ i ≤ n, in this
solution, we schedule in the i-th processor the jobs corresponding to ai, bi and ci in the first, second
and third slots, respectively. For the temperatures, Θai , Θbi , Θci , of the i-th processor after each one of
those executions we have

Θai = 8f(ai)+1
2 ≤ 8f(β)+1

2 =
8
25 (1+ β

8β )+1

2 = 34
50 ≤ 1

Θbi = 8f(ai)+1
4 + 4f(bi)+1

2 = 3
4 + 2

(
1
25

(
1 + ai

8β

)
+ 1

25

(
1 + bi

8β

))
≤ 3

4 + 4
25 + β

100β = 92
100 ≤ 1

Θci = 8f(ai)+1
8 + 4f(bi)+1

4 + 2f(ci)+1
2 = 7

8 + 1
25

(
1 + ai

8β

)
+ 1

25

(
1 + bi

8β

)
+ 1

25

(
1 + ci

8β

)
= 7

8 + 3
25 + β

200β = 1
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and hence there is a feasible schedule of length three.
(⇐) Assume, now, that there is a feasible schedule of length three. In this schedule there are exactly

three jobs in each processor, since there are 3n jobs in total.
If a job corresponding to an integer a ∈ A is scheduled to the second slot of a processor, then the

temperature threshold θ = 1 is violated after the third slot of this processor. Indeed the temperature
at this slot will be at least

2f(0)+1
8 + 8f(0)+1

4 + 2f(0)+1
2 = 7

8 + 1
25

(
1 + 0

8β

) (
2
8 + 8

4 + 2
2

)
= 201

200 > 1.

In a similar way, we can show that a job corresponding to an integer a ∈ A cannot be scheduled to the
third slot of a processor:

2f(0)+1
8 + 2f(0)+1

4 + 8f(0)+1
2 = 7

8 + 1
25

(
1 + 0

8β

) (
2
8 + 2

4 + 8
2

)
= 213

200 > 1.

Hence, each of the n jobs corresponding to one of the n integers a ∈ A is scheduled to the first slot of
a processor. Moreover, we can show that a job corresponding to an integer b ∈ B cannot be scheduled
to the third slot of a processor:

8f(0)+1
8 + 2f(0)+1

4 + 4f(0)+1
2 = 7

8 + 1
25

(
1 + 0

8β

) (
8
8 + 2

4 + 4
2

)
= 203

200 > 1.

In all, in each processor exactly three jobs are scheduled: a job a ∈ A in the first slot, a job b ∈ B in
the second slot, and a job c ∈ C in the third slot. Therefore, the jobs of a processor correspond to a
feasible triple for N3DM.

To finish our proof, we have to show that each triple sums up to β. If this does not hold then there
is a triple (a, b, c) for which a+ b+ c > β, since

∑
x∈A∪B∪C x = βn. The temperature of the third slot

of the processor in which the corresponding jobs to this triple are scheduled is

8f(a)+1
8 + 4f(b)+1

4 + 2f(c)+1
2 = 7

8 + 1
25

(
3 + a+b+c

8β

)
> 7

8 + 1
25

(
3 + β

8β

)
= 1,

which is a contradiction that there is a feasible schedule. ut

This completes the proof of Theorem 1 since an approximation ratio better than 4/3 would be able to
decide the N3DM problem. ut

Note that the result of Theorem 1 allows the possibility of an asymptotic PTAS or even an additive
constant approximation ratio.

In what follows in this section, we present an approximation algorithm for the minimum makespan
problem. Note that, in order to respect the temperature threshold, a schedule may have to contain
idle slots. To argue about the number of idle slots that are needed before the execution of each job,
we will introduce first an appropriate partition of the set of jobs according to their heat contribution.
In particular, for each integer k ≥ 0, we can argue separately for jobs whose heat contribution belongs
to the interval (2 − 1

2k−1 , 2 − 1
2k

]; recall that hi ≤ 2, for 1 ≤ i ≤ n. Moreover, the interval to which a
job of heat contribution hi belongs to is indexed by ki, that is

ki = max{k ∈ N | hi > 2− 1
2k−1 }

Our algorithm and its analysis are based on the following proposition for the structure of any
feasible schedule.

Proposition 1

(i) Let J ′ be the set of jobs of heat contribution hi > 1; |J ′| = n′. Any feasible schedule can be transformed

into another feasible one of at most the same length where exactly min{n′,m} jobs in J ′ are executed in the
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first slot of the processors.

(ii) Any schedule where every Ji is executed right after ki consecutive idle slots is feasible.

(iii) In an optimal schedule, if a job Jj is executed before a job Ji on the same processor, where hj , hi > 1,

then there are at least ki−1 slots between Jj and Ji, which are either idle or execute jobs of heat contribution

at most one.

Proof

(i) Consider a feasible schedule that has less than min{n′,m} jobs in J ′ executed in the first slot of the
processors.

Assume, first, that in this schedule there is a processor, p, in which a job Ji ∈ J \ J ′ is executed in
its first slot and there is at least one job of J ′ executed in p. Let Jj ∈ J ′ be the earliest of these jobs
which is executed in slot s > 1. By swapping the jobs Ji and Jj , the temperature Θ′s of processor p
after slot s is decreased. Indeed, let Θs be the temperature of processor p after slot s and Θ′ be the

contribution of jobs executed in slots 2, 3, . . . , s − 1 to Θs, that is Θs = hi
2s + Θ′ +

hj
2 . After the swap

it holds that Θ′s =
hj
2s + Θ′ + hi

2 < Θs, since hi < hj . Thus, the temperature of any slot s′ ≥ s in p is
decreased. Moreover, by assumption, each slot s′, 2 ≤ s′ ≤ s−1, of p executes a job in J \J ′. Hence, no
new idle slots are required for these jobs, although the temperature before their execution is increased.
Therefore, the new schedule is feasible and it has the same length.

If there is not such a processor, then let Ji ∈ J \ J ′ be a job executed in the first slot of some
processor p and Jj ∈ J ′ be a job executed in s-th, s > 1, slot of processor q. By swapping the jobs
Ji and Jj the temperature of any slot s′ ≥ s of processor q is decreased as hi < hj . Moreover, by
assumption, the processor p contains only jobs in J \ J ′, and, as in the previous case, no new idle slots
are required for these jobs. Therefore, after the swap we get a feasible schedule of the same length.

(ii) Consider a schedule that is feasible up until the execution of the job preceding Ji. Let x be the
number of idle slots before the execution of job Ji and let Θ be the temperature of the processor
before the first of these x slots. Since the schedule is feasible before Ji, we have that Θ ≤ 1. The

temperature will become Θ
2x , after the last idle slot, and

Θ
2x+hi

2 after the execution of job Ji. For such

a schedule to be feasible we need that
Θ
2x+hi

2 ≤ 1, that is, 2x ≥ Θ
2−hi . Since hi ≤ 2ki+1−1

2ki
, it follows

that Θ
2−hi ≤

1

2− 2ki+1−1

2ki

= 2ki . This means that with at least ki idle slots, feasibility is ensured.

(iii) Let Θt be the temperature of the processor before executing Jj . Next, after the execution of Jj

we have Θt+1 =
Θt+hj

2 . Then, after x slots (idles or executing jobs of heat contribution h ≤ 1) we

get a temperature Θt+x+1 ≥ Θt+hj
2 · 1

2x . In order for Ji to be executed in the next slot, it should

hold that Θt+x+1 + hi ≤ 2, that is 2x ≥ Θt+hj
2(2−hi) . Since, Θt ≥ 0, hj > 1 and hi >

2ki−1
2ki−1 we get

2x ≥ Θt+hj
2(2−hi) >

1

2(2− 2ki−1

2ki−1 )
= 1

2

2ki−1

= 2ki−2, that is x ≥ ki − 1. ut

In what follows we consider instances with n > m, for otherwise the problem becomes trivial. By
Proposition 1(i), we also assume that the number of jobs of heat contribution hi > 1 is greater than m.
If this is not the case, all jobs can be executed without any idle slot before them and the length of an
optimal schedule is exactly d nme. We consider the jobs in non-increasing order of their heat contribu-
tions, i.e., h1 ≥ h2 ≥ . . . ≥ hn, and we define A = {J1, J2, . . . , Jm} and B = {Jm+1, Jm+2, . . . , Jn}. Our
algorithm schedules first the jobs in A to the first slot of each processor. Each one of the jobs in B is
scheduled by leaving before its execution exactly ki idle slots, according to the Proposition 1(ii). In this
way, our problem, for the jobs in B, is transformed to an instance of the classical makespan problem
on parallel machines, P ||Cmax, where the processing time of each job is pi = ki+1, that is, ki idle slots
plus its original unit processing time. Then, these jobs are scheduled using any known approximation
algorithm A for P ||Cmax.
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¿From now on we fix an instance of our problem and we denote by SOL the length of the schedule
S provided by Algorithm MAX C and by OPT the length of an optimal schedule S∗ for our original
scheduling problem.

Algorithm MAX C

1: Sort the jobs in non-increasing order of their heat contributions: h1 ≥ h2 ≥ ... ≥ hn;
2: Let A = {J1, J2, . . . , Jm}, and B = {Jm+1, Jm+2, . . . , Jn};
3: Schedule each job Ji ∈ A to the first slot of processor i;
4: Run an algorithm A for P ||Cmax on instance I+B ;

For the presentation and the analysis of our algorithm, we denote by IB and I+B the instances of
P ||Cmax consisting only of jobs in B with processing times pi = ki and pi = ki + 1, respectively, for
each Ji ∈ B. For an instance I of P ||Cmax, we denote by S(I) the schedule found by an algorithm A
and by C(I) the length of this schedule. In a similar way, we denote by S∗(I) and C∗(I) an optimal
schedule for P ||Cmax and the length of this optimal schedule, respectively.

Clearly, SOL = 1 + C(I+B ). To analyze our Algorithm MAX C, we need a lower bound on the
optimal makespan. To derive this bound we will utilize an optimal schedule S∗(IB). Note that for jobs
with hi ∈ (0, 1], ki = 0, hence the schedule S∗(IB) involves only jobs for which hi > 1.

Lemma 1 For the optimal makespan it holds that

OPT ≥ max{ n
m
, 1 + C∗(IB)}

Proof The first bound on the optimal makespan follows trivially by considering all jobs requiring a
single slot for their execution.

For the second bound, let A∗, |A∗| = m, be the set of jobs executed in the first slot of the m

processors in an optimal solution and B∗ = J \A∗.
Consider, first, an auxiliary schedule of length OPT−, identical to the optimal apart from the fact

that each job in B∗ ∩A has been replaced by a different job in A∗ ∩B. Observe that in this schedule,
the jobs executed in the first slot of the processors remain A∗ while the jobs executed in the remaining
slots are the jobs in B. Since each job in B has smaller or equal heat contribution than any job in A,
it follows that OPT ≥ OPT−.

Consider, next, the schedule S∗(IB). For this schedule it holds that, OPT− ≥ 1 + C∗(IB), since
by Proposition 1(i),(iii) each job in B requires at least ki slots to be executed; recall that we consider
instances where the number of jobs of heat contribution hi > 1 is greater than m and that jobs in B

with hi ≤ 1, and hence ki = 0, do not appear in the schedule S∗(IB). ut

It is well-known that the P ||Cmax problem is strongly NP-hard and a series of constant approxi-
mation algorithms and PTASs have been proposed. Our main result in this section is that in step 4 of
Algorithm MAX C we can use any algorithm A for P ||Cmax to obtain twice the approximation ratio
of A for our problem.

Theorem 2 Algorithm MAX C achieves a 2ρ approximation ratio for P |pi = 1, hi, θ|Cmax, where ρ is the

approximation ratio of the algorithm A for P ||Cmax.

Proof A ρ-approximation algorithm A implies that
C(I+

B)

C∗(I+
B)
≤ ρ. Hence, SOL = 1 + C(I+B ) ≤

1 + ρ · C∗(I+B ).
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To obtain an upper bound to C∗(I+B ) we start from the schedule S∗(IB). The processing times of
jobs in the latter schedule are reduced by one with respect to the former one, and the jobs in B with
h ≤ 1 do not appear in schedule S∗(IB). Let B′ ⊆ B be this set of jobs.

We transform the schedule S∗(IB) to a new schedule S′(I+B ) in two successive steps: (i) we increase
the processing time of jobs in B \ B′ from ki to ki + 1, and (ii) we introduce the jobs in B′ with
unit processing time, at the end of the resulting schedule in a first-fit manner. Clearly, for the length,
C′(I+B ), of this new schedule it holds that C∗(I+B ) ≤ C′(I+B ) as both of them refer to the same instance
I+B . Let us now bound C′(I+B ) in terms of C∗(IB).

If C′(I+B ) ≤ 2C∗(IB), then SOL
OPT ≤

1+2ρC∗(IB)
1+C∗(IB) ≤ 2ρ, since ρ ≥ 1.

If C′(I+B ) > 2C∗(IB), then we consider the construction of S′(I+B ) and we argue about the completion
time of a critical processor in S∗(IB), i.e., the processor that finishes last. By step (i), the length of
schedule S∗(IB) increases at most twice, since each job in B \B′ has processing time at least one and
this is increased by 1. As C′(I+B ) > 2C∗(IB), in the last slot of S′(I+B ) all non-idle processors execute
jobs of B′. By step (ii), all but the last time slots of S′(I+B ) are busy. Hence, the critical processor
in S∗(IB) finishes in S′(I+B ) the earliest at time C′(I+B ) − 1. Moreover, this processor is assigned the
minimum total increase at the end of the transformation, since it finishes last in S∗(IB). As the total
increase of the processing times from S∗(IB) to S′(I+B ) is n−m, it follows that the length of the critical
processor increases at most by n−m

m . Hence, C′(I+B )−1 ≤ C∗(IB) + n−m
m , that is C′(I+B ) ≤ C∗(IB) + n

m .

Thus, by Lemma 1 we get SOL
OPT ≤

1+ρ(C∗(IB)+ n
m )

max{ nm ,1+C∗(IB)} ≤
1+ρC∗(IB)
1+C∗(IB) +

ρ nm
n
m
≤ 2ρ. ut

For the case of a single processor the 1||Cmax problem is trivially polynomial, whereas for multiple
processors there are well known PTAS’s, e.g., [14,3]. Hence the main implication of Theorem 2 is:

Corollary 1 For any ε > 0, there is a (2 + ε)-approximation algorithm for P |pi = 1, hi, θ|Cmax. For the

case of a single processor, there is an algorithm that achieves an approximation ratio of 2.

To obtain the ratio of 2 + ε, as stated above, one needs to use a PTAS for the classical makespan
problem in step 4 of Algorithm MAX C, resulting in a running time that is exponential in 1/ε. To
achieve more practical running times, we can investigate the use of other algorithms for step 4. In
particular, if the standard Longest Processing Time (LPT) algorithm is used, then Theorem 2 leads
to a 2(4

3 −
1

3m ) approximation ratio within O(n log n) time. Recall that the LPT algorithm greedily
assigns the next job (in non-increasing order of their processing times) to the first available processor
[12]. In the next theorem we are able to improve this ratio to 7/3, based on an LPT oriented analysis
of Algorithm MAX C.

Theorem 3 Algorithm MAX C using the LPT rule in step 4 achieves an approximation ratio of 7
3 −

1
3m

for P |pi = 1, hi, θ|Cmax within O(n log n) time.

Proof Our proof follows the standard analysis given in [12], for the classical multiprocessor scheduling
problem. For the lower bound on the length of an optimal schedule we use Lemma 1 and the fact that

C∗(IB) ≥
∑n
i=m+1 ki
m . Hence, OPT ≥ max{ nm , 1 +

∑n
i=m+1 ki
m }, and by the standard average argument

we get

OPT ≥ m+
∑n
i=m+1 ki+n
2m = 1 +

∑n
i=m+1(ki+1)

2m .

To upper bound the length SOL of the schedule S returned by Algorithm MAX C we consider the
job J` which finishes last in S. Clearly ` > m, for otherwise there are at most m jobs to be scheduled
and the problem becomes trivial.

The job J` will start being executed not later than 1 +
∑n
i=m+1,j 6=`(ki+1)

m , and hence, it holds that
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SOL ≤ 1 +
∑n
i=m+1,j 6=`(ki+1)

m + (k` + 1) = 1 +
∑n
i=m+1(ki+1)

m +
(
1− 1

m

)
(k` + 1).

Thus, we get SOL ≤ 2OPT − 1 +
(
1− 1

m

)
(k` + 1).

If k` ≤ OPT/3, then the theorem follows directly.
If k` > OPT/3, then we consider the subinstance, I ′, of the original problem that contains only the

jobs of heat contribution at least h`, i.e., J ′ = {J1, J2, . . . , J`}. Obviously, k1 ≥ k2 ≥ . . . ≥ k` > OPT
3 and

k` ≥ 1, as k` is an integer. Moreover, for the length of an optimal schedule, C∗(I ′), of the subinstance
I ′ it holds that C∗(I ′) ≤ OPT . As ` > m, the lengths of the schedules returned by Algorithm MAX C

for instances I and I ′ are equal, i.e., C(I ′) = SOL. Hence, SOL
OPT ≤

C(I′)
C∗(I′) .

In an optimal schedule of I ′ there are at most three jobs in each processor, for otherwise, if there is
a processor with four assigned jobs, the length of that schedule will be, by Proposition 1(iii), at least
1 + 3k` > OPT , a contradiction. Hence, ` ≤ 3m.

Algorithm MAX C schedules the jobs of I ′ as follows: the job Ji, 1 ≤ i ≤ m, is scheduled to the
first slot of processor i, the job Jm+i, 1 ≤ i ≤ m, to the (1 + (km+i + 1))-th slot of processor i and job
J2m+i, 1 ≤ i ≤ m, accordingly to the LPT rule.

If m < ` ≤ 2m, then the length of the above schedule is C(I ′) = 1 + (km+1 + 1) = 2 + km+1. By
Lemma 1 it follows that C∗(I ′) ≥ 1 + km+1, since there is a processor executing at least two jobs in

{J1, J2, . . . , Jm+1}. Hence, SOL
OPT ≤

C(I′)
C∗(I′) ≤

2+km+1

1+km+1
≤ 3

2 , as km+1 ≥ k` ≥ 1.

If 2m < ` ≤ 3m, then the Algorithm MAX C schedules in the first processor either the jobs J1 and
Jm+1 or the jobs J1, Jm+1 and J`. In the first case, the job J` starts its execution not later than the
slot 1 + (km+1 + 1), for otherwise J` would have been scheduled by Algorithm MAX C in processor 1,
that is C(I ′) ≤ 1 + (km+1 + 1) + (k` + 1). In the second case, J` is the job that finishes last, that is
C(I ′) = 1 + (km+1 + 1) + (k` + 1). Thus, in both cases it holds that C(I ′) ≤ 3 + km+1 + k`.

For an optimal schedule for I ′, Lemma 1 implies as before that C∗(I ′) ≥ 1 + km+1. Moreover, in
such a schedule there is a processor with at least three jobs, and hence C∗(I ′) ≥ 1 + 2k`. Combining

these two bounds we get C∗(I ′) ≥ 1 + km+1

2 + k`.

Therefore, we get SOL
OPT ≤

C(I′)
C∗(I′) ≤

6+2km+1+2k`
2+km+1+2k`

. This ratio is decreasing with k` and as k` ≥ 1 we

get SOL
OPT ≤

8+2km+1

4+km+1
= 2, and the proof is completed. ut

Note that the
(
4
3 −

1
3m

)
-approximation ratio of the LPT algorithm for the classical makespan

problem on parallel machines is tight. Concerning the tightness of our algorithm, we are able to give
an instance where it achieves a 2-approximation ratio. This instance consists of m(k + 2) jobs: a set
J1 of m jobs of heat contribution hi = 2, a set J2 of m jobs of heat contribution hi = 2− 3

2k+1 , and a

set J3 of mk jobs of heat contribution hi = 1
2(2k−1)

.

An optimal solution for this instance is to schedule the jobs in the following way: every processor
executes a job of J1 in the first slot, k jobs of J3 in slots 2, 3, . . . , k + 1, and a job of J2 in slot k + 2.

The temperature of every processor after slot k + 1 is 1
2k

+ 1
2(2k−1)

· 2
k−1
2k

= 3
2k+1 , and hence a job

of J2 can be executed in slot k + 2. Moreover, as the jobs of J3 have heat contribution hi ≤ 1, this
schedule is feasible. On the other hand, our algorithm schedules in every processor a job of J1 in the
first slot, a job of J2 in the slot k + 2, and k jobs of J3 in slots k + 3, k + 4, · · · , 2k + 2. Therefore, the
ratio achieved by our algorithm is 2k+2

k+2 ' 2.

3 Maximum Temperature Minimization

Now, we turn our attention to the optimization thermal model and to the problem of minimizing the
maximum temperature, i.e., P |pi = 1, hi, d|Θmax. Recall that as we discussed in the Introduction, we
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consider a schedule length d ≥ d nme and that n = m · d, by adding the appropriate number of fictitious
jobs. Recall also that the maximum is taken over the temperatures at the end of any of the md slots
available on the m processors. In the sequel, we will denote by Θ∗max the maximum temperature of an
optimal schedule.

We start with the observation that any algorithm for this problem achieves a 2 approximation
ratio. Indeed, it holds that Θ∗max ≥ hmax/2, no matter how we schedule the job of maximum heat
contribution. It also holds that for any algorithm, Θmax ≤ hmax, with Θmax being the maximum
temperature of the algorithm’s schedule. Therefore, Θmax ≤ 2 ·Θ∗max.

To improve this trivial ratio we propose the Algorithm MAX T below, which is based on the
intuitive idea of alternating the execution of hot and cool jobs.

Algorithm MAX T

1: Sort the jobs in non-increasing order of their heat contributions: h1 ≥ h2 ≥ ... ≥ hn;
2: Using the order of Step 1, schedule the d d

2
em hottest jobs to the odd slots of the processors using Round-Robin;

3: Using the reverse order of Step 1, schedule the b d
2
cm coolest jobs to the even slots of the processors using

Round-Robin;

To elaborate a little more on how the algorithm works, note that processor 1 will be assigned the
job J1, followed by Jn, then followed by Jm+1, and then by Jn−m and this alternation of hot and cool
jobs will continue till the end of the schedule. Similarly processor 2 will be assigned the jobs J2, Jn−1,
Jm+2, Jn−m−1, and so on. The schedule is illustrated further in Table 1.

1 J1 Jn Jm+1 Jn−m J2m+1 ...
2 J2 Jn−1 Jm+2 Jn−m−1 J2m+2 ...
... ... ... ... ... ... ...
m Jm Jn−m+1 J2m Jn−2m+1 J3m ...

Table 1 The schedule produced by Algorithm MAX T.

To analyze the Algorithm MAX T, we start with the proposition below, which is implied by the
Round-Robin scheduling of jobs in Steps 2 and 3 of the algorithm.

Proposition 2 In the schedule returned by Algorithm MAX T:

(i) A job Ji, i ≥ (bd2 c+ 1)m+ 1, is succeeded by the job Jn−i+m+1.

(ii) A job Ji, m+ 1 ≤ i ≤ dd2 em, is preceded by the job Jn−i+m+1.

The maximum temperature may occur at various points of the schedule of Algorithm MAX T. The
next lemma states that one of these points satisfies a certain property regarding the heat contribution
of the job executed right before.

Lemma 2 In the schedule returned by Algorithm MAX T, the maximum temperature is achieved after the

execution of a job Ji, with i ≤ (bd2 c+ 1)m.

Proof Assume that all the points where the maximum temperature Θmax occurs are after the execution
of a job Ji, with i ≥ (bd2 c+1)m+1. By Proposition 2, such a job is succeeded by a job Ji′ , i

′ = n−i+m+1,
in the schedule returned by Algorithm MAX T. It is easy to check that i > i′, hence hi′ ≥ hi. Let
Θ,Θ′ ≤ Θmax be the temperatures before the execution of Ji and after the execution of Ji′ , respectively.
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Then, Θmax = Θ+hi
2 and hi ≥ Θmax, since Θmax ≥ Θ. Moreover, Θ′ = Θmax+hi′

2 ≥ Θmax, since hi′ ≥ hi.
This implies that Θ′ = Θmax, since Θ′ ≤ Θmax. But this means that the maximum temperature is also
achieved after the execution of job Ji′ , which is a contradiction because

i′ = n− i+m+ 1 ≤ m(d− bd2 c) ≤ m(bd2 c+ 1)

contrary to what we assumed in the beginning of the proof. ut

Lemma 3 For the maximum temperature of an optimal schedule it holds that Θ∗max ≥
hn−i+m+1

4 + hi
2 , for

any i ≥ m+ 1.

Proof Consider a job Ji and let Ji′ be its previous job in the same processor in an optimal schedule
S∗. The jobs executed in the first slot of each processor in S∗ do not have a previous one. To simplify
the presentation of our proof, we assume that they are preceded by hypothetical jobs Jn+j , 1 ≤ j ≤ m.

If i′ ≤ n− i+m+ 1, then Θ∗max ≥
hi′
4 + hi

2 ≥
hn−i+m+1

4 + hi
2 , since hi′ ≥ hn−i+m+1.

If i′ > n − i + m + 1, then let B = {Jn−i+m+2, Jn−i+m+3, . . . , Jn, Jn+1, . . . , Jn+m} and let A be
the set of jobs that precede the jobs J1, J2, . . . , Ji−1 in the optimal schedule. Clearly, |B| = |A| = i− 1,
Ji′ ∈ B and Ji′ /∈ A since Ji′ precedes Ji in S∗.

Therefore, there is a job Jk′ ∈ A such that Jk′ /∈ B, that is k′ < n − i + m + 2. The job Jk′

precedes a job Jk in S∗ and since Jk′ ∈ A it follows, by the definition of the set A, that k < i. Hence,
Θ∗max ≥

hk′
4 + hk

2 ≥
hn−i+m+1

4 + hi
2 , since hk ≥ hi and hk′ ≥ hn−i+m+1. ut

Theorem 4 Algorithm MAX T achieves a 4
3 approximation ratio for P |pi = 1, hi, d|Θmax.

Proof By Lemma 2 the maximum temperature in the schedule, S, obtained by Algorithm MAX T

occurs after the execution of a job Ji, i ≤ (bd2 c + 1)m (the maximum may be achieved in other
timeslots as well).

If 1 ≤ i ≤ m, then the maximum occurs at the first processor and Θmax = h1
2 ≤ Θ∗max and, hence,

the algorithm returns an optimal schedule.
If m + 1 ≤ i ≤ dd2 em then by Proposition 2, the job Ji is preceded in the schedule S by the job

Jn−i+m+1. Let Θ be the temperature before the execution of the job Jn−i+m+1. By Lemma 3, and

since Θ ≤ Θmax, Θmax = Θ
4 + hn−i+m+1

4 + hi
2 ≤

Θmax
4 +Θ∗max. Hence, Θmax ≤ 4

3 ·Θ
∗
max.

Note that if d is odd, then dd2 em = (bd2 c+ 1)m and the analysis of the previous case holds. Hence

the only remaining case is that d is even and dd2 em+ 1 ≤ i ≤ (bd2 c+ 1)m. For this case, let Θ′ ≤ Θmax

be the temperature before the execution of Ji. Then, hi ≥ Θmax, since Θmax = Θ′+hi
2 and Θmax ≥ Θ′.

Thus, there are at least dd2 em+ 1 jobs of heat contribution at least Θmax. Note that, in any schedule,

each processor can execute at most dd2 e jobs without any pair of them scheduled in two consecutive
slots. Hence, in an optimal schedule, there are at least two jobs Jp and Jq, p, q ≤ i, of heat contribution

at least Θmax executed in consecutive slots in the same processor. Therefore, Θ∗max ≥
hp
4 +

hq
2 ≥

Θmax
4 + Θmax

2 = 3
4 ·Θmax, that is Θmax ≤ 4

3 ·Θ
∗
max. ut

For the tightness of the analysis of Algorithm MAX T consider an instance of m processors, mn2

jobs and d = n2; suppose that there are mn hot jobs of heat contribution h = 2 and mn(n − 1) cool
jobs of heat contribution h = ε. We consider n to be sufficiently large and that ε tends to 0. The
algorithm in each processor alternates n hot jobs with n − 1 cool jobs and schedules n(n − 2) + 1
cool jobs at the end. The maximum temperature of the algorithm’s schedule is attained exactly after
the execution of the last hot job on each processor. This job is executed at slot 2n − 1, and thus

Θmax = 2
22n−1 + ε

22n−2 + 2
22n−3 + ε

22n−4 + . . . + ε
22 + 2

21 ' 2
1
2

1− 1
4

= 4
3 . On the other hand, the optimal

solution alternates in each processor a hot job with n−1 cool jobs. The temperature before the execution
of any hot job tends to zero and the maximum temperature is one.
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4 Average Temperature Minimization

In this section, we look at the problem of minimizing the average temperature, P |pi = 1, hi, d|
∑
Θjt ,

instead of the maximum temperature. We will again consider a schedule length d and assume that
the number of jobs is n = md. Contrary to the maximum temperature, we show that minimizing
the average temperature of a schedule is solvable in polynomial time. Our algorithm is based on the
following lemma.

Lemma 4 In any optimal solution for the average temperature, jobs are scheduled in a coolest first order,

i.e., for any pair of jobs Ji, Jj such that hi > hj scheduled at slots t and t′, respectively, it holds that t′ ≤ t,
regardless of the processor they are assigned to.

Proof Consider the job Ji to be scheduled at slot t of some processor p in a schedule S. The contribution
of job Ji to the temperature of the s-th slot of processor p (with t ≤ s ≤ d), is hi

2s−t+1 , while this job
does not affect the temperature of any other slot in any processor. Hence, the contribution of job Ji
to the objective function,

∑
Θi, of schedule S is∑d

s=t
hi

2s−t+1 = hi ·
∑d−t+1
s=1

1
2s = hi · (1− 1

2d−t+1 ) = hi · 2
d+1−2t

2d+1 .

Therefore, the later job Ji is scheduled, the smaller its contribution to the objective function becomes.
Assume, now, that in an optimal schedule S∗ the job Ji is scheduled at slot t of some processor,

while the job Jj at slot t′ > t in any processor. By swapping the execution of this pair of jobs the

contribution of the job Ji to the objective function decreases by hi · 2
t′−2t

2d+1 and the contribution of job

Jj increases by hj · 2
t′−2t

2d+1 . As hi > hj , it follows that the resulting schedule contradicts the optimality
of the schedule S∗ and this completes the proof of the lemma. ut

The previous lemma leads directly to the next simple algorithm.

Algorithm AVR T

1: Sort the jobs in non-decreasing order of their heat contributions: h1 ≤ h2 ≤ ... ≤ hn;
2: According to this order schedule the jobs to processors using Round-Robin;

Algorithm AVR T finds a schedule in O(n log n) time. The optimality of this schedule follows
directly by the Round-Robin scheduling of the jobs in non-decreasing order of their heat contributions
and Lemma 4.

Theorem 5 An optimal schedule for the problem P |pi = 1, hi, d|
∑
Θjt of minimizing the average tempera-

ture can be found in polynomial time.

4.1 Weighted Average Temperature Minimization

In what follows, we consider a time-dependent weighted version of average temperature minimization.
In particular, we consider each slot of every processor to be associated with a given positive weight
wt, 1 ≤ t ≤ d, and our problem is denoted as P |pi = 1, hi, d|

∑
wjtΘ

j
t . The weights wt could represent

the interest of the system manager to keep its processors/computers cool during specific time periods
of peak loads. This leads to some special, but more practical cases, of our formulation where the
weights of some slots (e.g., the slot corresponding to some given time t in all processors, or an interval
of consecutive slots for some processor) could be considered equal. Moreover, our analysis allows the
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weight of the t-th slot of processor j to depend on the processor too and we denote this by wjt , 1 ≤ t ≤ d,
1 ≤ j ≤ m.

Similarly with the un-weighted case, we consider a job Ji of heat contribution hi scheduled in the
t-th slot of processor j in a schedule S. The contribution of this job to the weighted temperature of the
s-th slot of processor j, with t ≤ s ≤ d, is wjs · hi

2s−t+1 , and this job does not affect the temperature of
any other slot in any processor. Hence, the contribution of job Ji to the total weighted temperature of

the schedule S is
∑d
s=t w

j
s · hi

2s−t+1 = hi ·
∑d
s

wjs
2s−t+1 . Clearly, the quantity cjt =

∑d
s

wjs
2s−t+1 is a constant

that depends only on the slot t of processor j and not on the job executed in this slot.
Based on this, we transform our problem to a weighted bipartite matching problem and we prove

the next theorem.

Theorem 6 The problem P |pi = 1, hi, d|
∑
wjtΘ

j
t of minimizing the weighted average temperature is poly-

nomially solvable.

Proof We transform the problem to a weighted bipartite matching problem. Consider a complete bi-
partite graph G = (V,U ;E) where the vertices in V correspond to the n jobs and the vertices in U to
the m · d slots available in all processors. We set the weight of the edge between a job Ji and the slot t
of processor j to be equal to hi · cjt . Hence, the weight of this edge represents the contribution of job
Ji to the objective function, if it is scheduled in slot t of processor j. A perfect matching in the graph
G corresponds to a feasible schedule and the weight of such a matching to the value of the objective
function for this schedule. Therefore, a minimum weight perfect matching corresponds to an optimal
solution for our problem. Such a matching can be found in polynomial time (see for example [10]). ut

5 Conclusions

We have provided algorithms as well as negative results for various optimization criteria in scheduling
under thermal management models. There are many interesting open questions remaining. The most
important is to improve the approximation ratio both for the problem of minimizing the makespan and
for minimizing the maximum temperature. Also it would be interesting to generalize our results in the
case where the cooling effect is different than one half, as in [7,6,8]. Towards a different direction, one
can also consider other objectives under the threshold thermal model, in line with the objectives that
have been studied in the more traditional models of job scheduling. Resolving these questions seems
technically more challenging than the classic scheduling problems due to the different nature of the
constraints that are introduced by temperature management models. Note that scheduling problems
under the threshold thermal model can be seen as scheduling problems with sequence-dependent setup
times; such a setup time for a job corresponds to the idle slots required to respect the temperature
threshold. In scheduling problems with setup times (see for example [16]), the setup time of a job
usually depends only on the job itself and the previous job in the schedule. However, in our case, the
number of idle slots, required before executing a job, depends on all the jobs scheduled before as well
as on their order. Hence existing results from the literature cannot be applied.

Acknowledgment. We would like to thank the two anonymous referees for their thorough and valuable
comments.
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