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Abstract We study the following energy-efficient scheduling problem. We
are given a set of n jobs which have to be scheduled by a single processor
whose speed can be varied dynamically. Each job Jj is characterized by a
processing requirement (work) pj , a release date rj and a deadline dj . We
are also given a budget of energy E which must not be exceeded and our
objective is to maximize the throughput (i.e. the number of jobs which are
completed on time). We show that the problem can be solved optimally via
dynamic programming in O(n4 log n logP ) time when all jobs have the same
release date, where P is the sum of the processing requirements of the jobs.
For the more general case with agreeable deadlines where the jobs can be
ordered so that, for every i < j, it holds that ri ≤ rj and di ≤ dj , we propose
an optimal dynamic programming algorithm which runs in O(n6 log n logP )
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IBISC, Université d’Evry Val d’Essonne
E-mail: angel@ibisc.fr

Evripidis Bampis
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time. In addition, we consider the weighted case where every job Jj is also
associated with a weight wj and we are interested in maximizing the weighted
throughput (i.e. the total weight of the jobs which are completed on time).
For this case, we show that the problem becomes NP-hard in the ordinary
sense even when all jobs have the same release date and we propose a pseudo-
polynomial time algorithm for agreeable instances.

Keywords Throughput · Speed-Scaling · Scheduling

1 Introduction

The problem of scheduling n jobs with release dates and deadlines on a single
processor that can vary its speed dynamically with the objective of minimizing
the energy consumption has been first studied in the seminal paper by Yao,
Demers and Shenker [14]. In this paper, we consider the problem of maximizing
the throughput without exceeding a given budget of energy.

Formally, we are given a set of n jobs J = {J1, J2, . . . , Jn}, where each job
Jj is characterized by a processing requirement (work) pj , a release date rj and
a deadline dj . W.l.o.g. we suppose that the earliest released job is released at
t = 0. We assume that the jobs have to be executed by a single speed-scalable
processor, i.e. a processor which can vary its speed over time (at a given
time, the processor’s speed can be any non-negative value). The processor can
execute at most one job at each time. We measure the processor’s speed in
units of executed work per unit of time. If s(t) is the speed of the processor
at time t, then the total amount of work executed by the processor during

an interval of time [t, t′) is equal to
∫ t′
t
s(u)du. Moreover, we assume that the

processor’s power consumption is a convex function of its speed. Specifically,
at any time t, the power consumption of the processor is P (t) = s(t)α, where
α > 1 is a constant. Since the power is defined as the rate of change of the
energy consumption, the total energy consumption of the processor during an

interval [t, t′) is
∫ t′
t
s(u)αdu. Note that if the processor runs at a constant speed

s during an interval of time [t, t′), then it executes (t′− t) · s units of work and
it consumes (t′−t) ·sα units of energy. Each job Jj can start being executed at
its release date rj or after. Moreover, we allow preemptions of jobs, i.e. a job
may be executed, suspended and resumed later from the point of suspension.
Given a budget of energy E which must not be exceeded, our objective is to
find a schedule of maximum throughput, where the throughput of a schedule
is defined as the number of jobs which are completed on time, i.e. before their
deadline. Observe that a job is completed on time if it is entirely executed
during the interval [rj , dj). By extending the well-known 3-field notation by
Graham et al. [7], this problem can be denoted as 1|pmtn, rj |

∑
Uj(E).

We also consider the weighted version of the problem where every job Jj
is also associated with a weight wj and the objective is no more the max-
imization of the cardinality of the set of jobs that are completed on time,
but the maximization of the sum of their weights. We denote this problem as
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1|pmtn, rj |
∑
wjUj(E). In what follows, we consider instances of the problem

in which all jobs have the same release date and another important and more
general family of instances, the agreeable instances, in which the jobs can be
ordered so that, for every i < j, it holds that ri ≤ rj and di ≤ dj .

Related Work and Contributions

In classical scheduling, throughput maximization has been studied ex-
tensively. In particular, in the problem 1|pmtn, rj |

∑
Uj which is a classical

scheduling problem, we are given a set of jobs J = {J1, J2, . . . , Jn} that have
to be executed by a single processor. Each job Jj is associated with a pro-
cessing time pj , a release date rj and a deadline dj . The objective is to find a
schedule of maximum throughput. This problem is polynomially-time solvable
and the fastest known algorithm for general instances is in O(n4) [3]. When
all the release dates are equal, i.e. the problem 1||

∑
Uj , it can be solved in

O(n log n) time with Moore’s algorithm [12]. Finally, if the jobs have agree-
able deadlines, i.e. the problem 1|pmtn, rj , agreeable|

∑
Uj , then Lawler’s al-

gorithm [10] solves the problem optimally in O(n log n) time. The problem
1|pmtn, rj |

∑
wjUj , where each job is also associated with a weight and the

objective is to maximize the weighted throughput, inNP-hard and there exists
a pseudo-polynomial time algorithm by Lawler [9].

The current state of the art includes some works on variants of the speed
scaling problem with the objective of maximizing the throughput mainly in the
online setting. The first work that considered online throughput maximization
in speed scaling was by Chan et al. [4]. They considered the online problem of
scheduling a set of jobs with release dates and deadlines on a single processor
with an upper bound on its speed and their objective was maximizing the
throughput while minimizing the energy among all schedules of maximum
throughput. For this problem, they presented an algorithm which is O(1)-
competitive with respect to both objectives. Bansal et al. [2] improved the
results in [4] and Lam et al. [8] extended them for multiprocessor environments.

In [6], Chan et al. defined the energy efficiency of a schedule to be the total
amount of work completed on time divided by the total energy usage. Given an
energy efficiency threshold, they considered the problem of finding a schedule
of maximum throughput. They showed that no deterministic algorithm can
have competitive ratio better than O(pmax

pmin
), i.e. the maximum over the min-

imum job processing requirement. However, they obtained a constant-factor
competitive algorithm with energy efficiency augmentation.

Furthermore, Chan et al. [5] studied the problem of minimizing the en-
ergy plus rejection penalties. For a given job, the rejection penalty is the
cost incurred if the job is not completed on time. The authors proposed an
O(1)-competitive algorithm for the case where the speed is unbounded and
they showed that no O(1)-competitive algorithm exists for the case where the
speed is bounded.
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Finally, there exists also a work on speed scaling with the throughput
objective in the offline setting. Li [11] considered the maximum throughput
when there is an upper bound on the processor’s speed and he proposed a
3-approximation greedy algorithm for the throughput and a constant approx-
imation ratio for the energy consumption.

It has to be noticed that, after the conference version of this paper, Angel
et al. [1] proposed an optimal pseudo-polynomial time algorithm solving the
general version of the problem 1|pmtn, rj |

∑
wjUj(E). Moreover, another im-

portant metric for the quality of a schedule is flow time. In speed scaling, the
study of flow time was initiated by Pruhs et al. [13].

This paper is organized as follows. Initially, we present an optimal algo-
rithm for the case where all jobs have the same release date rj = 0, i.e. for the
problem 1||

∑
Uj(E)1. Then, we present an optimal algorithm for the more

general case with agreeable instances, i.e. 1|rj , agreeable|
∑
Uj(E)1. The rea-

son for presenting both algorithms is that the former algorithm is slightly
better than the latter one in terms of worst-case running time. The first al-
gorithm runs in O(n4 log n logP ) time while the running time of the second
one is O(n6 log n logP ). Finally, we consider the even more general case in
which the jobs are associated with weights we are interested in maximizing
the weighted throughput. We show that the problem 1||

∑
wjUj(E) is NP-

hard in the ordinary sense and we propose a pseudo-polynomial time algorithm
for 1|rj , agreeable|

∑
wjUj(E).

2 Initial Remarks

Given that the processor’s speed can be varied, a reasonable distinction of the
scheduling problems that can be considered is the following:

– FS (Fixed Speed): The processor has a fixed speed which implies directly
a processing time for each job. In this case, the scheduler has to decide
which job must be executed at each time. This is the classical scheduling
setting.

– CS (Constant Speed): The processor’s speed is not known in advance but
it can only run at a single speed during the whole time horizon. In this
context, the scheduler has to define a single value of speed at which the
processor will run and the job executed at each time.

– SS (Scalable Speed): The processor’s speed can be varied over the time
and, at each time, the scheduler has to determine not only which job to
run, but the processor’s speed as well.

At this point, let us make a remark. Assume that we are provided an optimal
algorithm for a FS scheduling problem, i.e. for a classical scheduling problem.
Then, we can use this algorithm as a black box and binary search in order to
solve the corresponding CS problem. This observation is a key ingredient for
designing our algorithms.

1 There is always an optimal non-preemptive schedule for this problem even if preemptions
are allowed (see Property 1).
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3 Properties of Optimal Schedules

Among the schedules of maximum throughput, we try to find the one of min-
imum energy consumption. Therefore, if we knew by an oracle the set of jobs
J∗, J∗ ⊆ J , which are completed on time in an optimal solution, we would
simply have to apply an optimal algorithm for 1|pmtn, rj , dj |E for the jobs in
J∗ in order to determine a minimum energy schedule of maximum throughput
for our problem. Based on this observation, we can use in our analysis some
properties of an optimal schedule for 1|pmtn, rj , dj |E.

Let t1, t2, . . . , tk be the time points which correspond to all the possible
release dates and deadlines of the jobs. We number the ti values in increasing
order, i.e. t1 < t2 < . . . < tk. The following theorem can be found in [14].

Theorem 1 A feasible schedule for 1|pmtn, rj , dj |E is optimal if and only if
all the following hold:

1. Each job Jj is executed at a constant speed sj.
2. The processor is not idle at any time t such that t ∈ [rj , dj), for all Jj ∈ J .
3. The processor runs at a constant speed during any interval [ti, ti+1), for

1 ≤ i ≤ k − 1.
4. A job Jj is executed during the interval [ti, ti+1), for any 1 ≤ i ≤ k − 1, if

it has been assigned the maximum speed among the speeds of the jobs Jj′

with [ti, ti+1) ⊆ [rj′ , dj′).

Theorem 1 is also satisfied by the optimal schedule of 1|pmtn, rj |
∑
Uj(E)

for the jobs in J∗. Specifically, if we know somehow the subset of jobs executed
in an optimal schedule for 1|pmtn, rj |

∑
Uj(E), then we may construct the

actual optimal schedule by using an optimal algorithm for 1|pmtn, rj , dj |E.

4 Optimal Algorithms

For the problem 1|rj , agreeable|
∑
Uj(E) where the deadlines of the jobs are

agreeable, we propose an optimal algorithm based on dynamic programming.
As mentioned before, among the schedules of maximum throughput, our al-
gorithm constructs a schedule of minimum energy consumption. Next, we de-
scribe our dynamic program and we elaborate on the complexity of our algo-
rithm.

Let FS be the problem of maximizing the throughput when each job has
a fixed processing time, as described in the subsection with the related work.
Next, we consider another problem which we denote as CS. In this problem,
we are given a set of jobs J = {J1, J2, . . . , Jn}, where each job Jj has a
processing requirement pj , a release date rj and a deadline dj , that have to
be executed by a single speed scalable processor. Moreover, we are given a
value of throughput k. The objective is to find the minimum energy schedule
which completes at least k jobs on time and all jobs run with equal speed. For
notational convenience, we denote the problem 1|pmtn, rj |

∑
Uj(E) as SS.
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The inspiration for our dynamic programming for the special case of the
SS where the deadlines are agreeable was the fact that the problem CS can be
solved in polynomial time by repeatedly solving instances of the problem FS.
In fact, if we are given a candidate speed s for the CS problem, we can find a
schedule of maximum throughput w.r.t. to s simply by setting the processing
time of each job Jj equal to

pj
s and applying an optimal algorithm for the

FS problem. So, in order to get an optimal algorithm of the CS problem, it
suffices to establish a lower and upper bound on the speed of the optimal
schedule. A naive choice is smin = 0 and smax =

∑n
j=1 pj/(dmam − rmin).

Note that, rmin and rmax are the minimum and maximum release date among
all jobs, respectively, Similarly, let dmin and dmax be the minimum and the
maximum deadline. Then, it suffices to binary search in [smin, smax] and find
the minimum speed s∗ in which k jobs are completed on time.

The next property comes from the fact that the algorithm in [14] is optimal
for 1|pmtn, rj , dj |E and it is a key ingredient for decomposing our problem
1|rj , agreeable|

∑
Uj(E).

Property 1 There is always an optimal schedule for 1|pmtn, rj , dj |E in which
the jobs are executed according to the edf (Earliest Deadline First) policy.
In the case where the jobs have agreeable deadlines, the jobs are executed
without preemptions.

In what follows, we assume that the jobs J1, J2, . . . , Jn are sorted according
to the edf order, i.e. d1 ≤ d2 ≤ . . . ≤ dn.

4.1 Equal Release Dates

Now, we present our dynamic algorithm for the problem 1||
∑
wjUj(E) in

which all jobs have the same release date at t = 0.
Before giving the formal definition of our algorithm, we give an intuitive

explanation on how it works. Since we want a minimum energy schedule among
all schedules of maximum throughput, our algorithm does not execute any of
the jobs which are not completed on time. Let J∗ ⊆ J be the set of jobs
which are completed on time by the algorithm. Then, the optimal schedule for
1||
∑
wjUj(E) is a minimum energy schedule for the jobs in J∗.

It has to be noticed that a schedule of a processor whose speed is varied
can be represented as a 2-dimensional diagram where the horizontal axis cor-
responds to the time horizon and the vertical axis corresponds to the speed.
Then, by Theorem 1, a minimum energy schedule for the jobs in J∗ is a down-
ward staircase as depicted in the following Figure 1.

In the above figure which corresponds to an optimal solution for our prob-
lem, we assume that u jobs are executed in total and that job Jk is the last
job which is completed on time. The energy consumption of this schedule is
denoted as E(k, u). It is possible that all jobs are executed with the same
speed but this case can be treated easily. So, we assume for the moment that
there is at least a couple of jobs which are executed with different speeds.
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speed

time

0 dj dk

{J1, J2, . . . , Jj}

{Jj+1, Jj+2, . . . , Jk}
` jobs

u− ` jobs

E(k, u)

E(j, `) B(dj , dk, u− `)

Fig. 1 Illustration of an optimal solution when jobs have common release date

By Theorem 1, the optimal schedule is a downward staircase and every
step starts and ends in one of the points t1, t2, . . . , tk. Another important con-
sequence of Theorem 1 is that, for any step between dj and dk, only jobs in the
set {Jj+1, Jj+2, . . . , Jk} are allowed to be executed during [dj , dk). Moreover,
none of these jobs is executed before dj or after dk. Therefore, if we knew
somehow that [dj , dk) is the last step of the optimal schedule and that exactly
u − ` jobs are executed during this step, then we could decompose the prob-
lem into the sub-problems E(j, `) and B(dj , dk, u− `), where B(dj , dk, u− `)
is the minimum energy consumption for scheduling exactly u− ` jobs among
{Jj+1, Jj+2, . . . , Jk} with the same speed during the time interval [dj , dk). This
latter problem is a CS problem which we know how to solve in polynomial time.
Our dynamic programming algorithm is based on this decomposition scheme.

We, now, describe formally our algorithm. For a subset of jobs S ⊆ J , a
schedule which involves only the jobs in S will be called a S-schedule.

Definition 1 Let J(k) = {Jj | j ≤ k} be the set of the first k jobs according
to the edf order. For 1 ≤ u ≤ |J(k)|, we define E(k, u) as the minimum
energy consumption of an S-schedule such that |S| = u and S ⊆ J(k). If such
a schedule does not exist, i.e. when u > |J(k)|, then E(k, u) := +∞.

Definition 2 We define B(t′, t, `) as the minimum energy consumption of an
S-schedule such that |S| = `, S ⊆ {Jj | t′ < dj ≤ t} and such that all these
jobs are scheduled only within the interval [t′, t], and with a constant common
speed. If such a schedule does not exist, then B(t′, t, `) := +∞.

Given an energy budget E, the maximum number of jobs that can be
scheduled without exceeding this budget is given by max{u | E(n, u) ≤ E}.

Proposition 1 B(dj , dk, `) can be computed in O(n log n logP ) time, for any
j, k, `, with P =

∑
i pi.

Proof In order to compute B(dj , dk, `), we consider the set of jobs {Ji | dj <
di ≤ dk}. For each job in this set, we modify its release date to dj . Since we
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want the minimum energy consumption and there is only one speed, we search
the minimum speed such that there are exactly ` jobs scheduled. Moreover, we
schedule an integer volume of jobs, then the speed is necessarily h/(dk − dj)
for some h = 0, . . . , P . This minimum speed can be found by performing
a binary search on the value of h in the interval [0, P ]. Once the value of
h is chosen, the processing time of a job Ji is ti = pi × (dk − dj)/h, and
we compute the maximum number m of jobs which can be scheduled using
Moore’s algorithm [12] in time O(n log n). If m < ` (resp. m > `) the value h
must be increased (resp. decreased). ut

Proposition 2 It holds that

E(k, u) = min
0≤j≤k
0≤`≤u

{E(j, `) +B(dj , dk, u− `)}.

Proof Let S be an optimal schedule associated with E(k, u). We can assume
that this schedule satisfies the properties of Theorem 1 and Property 1. Clearly,
by Definition 1, E[0, 0] = 0 which corresponds to the empty schedule and
E[0, u] = +∞, for every u > 0, because it is not possible to schedule u > 0
number of jobs when there are no jobs available.

If Jk /∈ S, then E(k, u) = E(k − 1, u). If Jk ∈ S, then there are two cases
to consider. The first case is when all the jobs in S are scheduled at the same
speed. This case is equivalent to the CS problem, and one has E(k, u) :=
B(0, dk, u).

The second case is when the schedule S has at least two different speeds.
Let Cj be the completion time of job Jj in the schedule S. Let t = minj{Cj |
all the jobs scheduled after Jj (at least one job) are executed with the same
speed} = Cj∗ . Necessarily, job Jj∗ is executed with a different speed. This
means that at time Cj∗ the processor is changing its speed, and using Prop-
erty 3 of Theorem 1 we can deduce that Cj∗ = dj∗ . Now we consider the
subschedule S1 obtained from S by considering only the tasks executed during
the interval [0, dj∗). Let us assume that there are `∗ tasks in this subschedule.
Then, necessarily the energy consumption of S1 is equal to E(j∗, `∗), otherwise
by replacing S1 with a better subschedule with energy consumption E(j∗, `∗)
we could obtain a better schedule than S. Now we consider the subschedule
S2 obtained from S by considering only the tasks executed from time dj∗ until
the end of the schedule. In a similar way, the energy consumption of S2 is
equal to B(dj∗ , dk, u− `∗). Notice that since the jobs involved in E(j, `) have
a deadline smaller or equal to dj , whereas the jobs involved in B(dj , dk, u− l)
have a deadline greater than dj , those sets of jobs are always distinct, and
therefore the schedule associated with E(j, `) +B(dj , dk, u− `) is always fea-
sible. ut

Theorem 2 The problem 1||
∑
Uj(E) can be solved in O(n4 log n logP ) time.

Proof We use a dynamic program based on Proposition 2, with E(0, u) = +∞,
∀u > 0. The maximum throughput is equal to max{u | E(n, u) ≤ E}. The
number of values B(dj , dk, `) is O(n3). They can be precomputed with a total
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running time O(n4 log n logP ), using Proposition 1. The number of values
E(k, u) is O(n2), and the complexity to calculate each E(k, u) value is O(n2)
(we have to look for O(n2) values for j, ` and we assume that the previous
E(., .) values have already been computed). Thus the overall complexity is
O(n4 log n logP ). ut

4.2 Agreeable Instances

Definition 3 We define Ek(t, u) as the minimum energy consumption of an
S-schedule, such that |S| = u, S ⊆ J(k, t) = {Jj | j ≤ k, rj < t} and such that
all these jobs are executed within the interval [rmin, t]. If such a schedule does
not exist, then Ek(t, u) = +∞.

Definition 4 We define A(t′, t, `, j, k) as the minimum energy consumption of
a S-schedule such that |S| = `, S ⊆ {Jj , . . . , Jk}, and such that all these jobs
are scheduled within the interval [t′, t], and with a constant common speed.

Proposition 3 A(t′, t, `, j, k) can be computed in O(n log n logP ) time, for
any t′, t, `, j, k.

Proof In order to compute A(t′, t, `, j, k), we change the release date of job Ji
to t′ if ri < t′, and the deadline of job Ji to t if di > t. The set {Jj , . . . Jk}
still has agreeable deadlines. Then we proceed as in the proof of Proposition 1
using a binary search over the interval [0, smax], with smax = P/(t− t′). Note
that in this case, we use Lawler’s algorithm in [10]. ut

Proposition 4 It holds that

Ek(t, u) = min
0≤`≤u

rmin≤t′≤t
0≤j<k

{
Ej(t

′, `) +A(t′, t, u− `, j + 1, k)

}
.

Proof Let S be an optimal schedule associated with Ek(t, u). We can assume
that this schedule satisfies the properties of Theorem 1 and Property 1. Let
E′ be the right hand side of the equation.

If Jk /∈ S, then Ek(t, u) = Ek−1(t, u). In that case, t′ = t, j = k − 1 and
` = u in the above expression. If Jk ∈ S, then there are two cases to consider.
The first case is when the optimal schedule S has one speed. In that case
t′ = rmin, ` = 0, j = 0 in the above expression. This case is equivalent to the
CS problem. We now consider the second case when the optimal schedule S
has at least two speeds. We split the schedule S into two subschedules S1 and
S2 (see the Figure 2).

There exists t′ with rmin < t′ < t, such that all the jobs scheduled after t′

are scheduled with a common speed, and this is the subschedule S2. Let j + 1
be the job which is scheduled after date t in S. We can suppose that each
job in S which release date is before the release date of job j + 1 are entirely
scheduled before t′. If it is not the case, then there is a job i < j + 1 which
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speed

time

0 t′ t

{J1, J2, . . . , Jj}

{Jj+1, Jj+2, . . . , Jk}
` jobs

u− ` jobs

Ek(t, u)

Ej(t′, `) A(t′, t, u− `, j + 1, k)

Fig. 2 Illustration of the decomposition in Proposition 4

is scheduled after j + 1 and we have a contradiction since we only consider
edf schedule. Otherwise there is a job i < j+ 1 which is not entirely executed
before t′ and we have a preemption of the job i which contradicts Property 1.
Thus we have S1 ⊆ {1, . . . , j} and S2 ⊆ {j + 1, . . . , k}.

The restriction S1 of S to [0, t′) is a schedule that meets all constraints
related to Ej(t

′, `). Hence its cost is greater than Ej(t
′, `). Similarly, the re-

striction S2 of S to [t′, t) is a schedule that meets all constraints related to
A(t′, t, u−`, j+1, k). Hence its cost is greater than A(t′, t, u−`, j+1, k). Thus,
Ek(t, u) ≥ Ej(t′, `) +A(t′, t, u− `, j + 1, k). ut

Theorem 3 The problem 1|rj , agreeable|
∑
Uj(E) can be solved in

O(n6 log n logP ) time.

Proof We use a dynamic program based on Proposition 4. Notice that the
important dates are included in the set T = {rj | 1 ≤ j ≤ n}∪{dj | 1 ≤ j ≤ n}.
This comes from Property 1 and Theorem 1, i.e. the changes of speed of the
processor occur only at some release date or some deadline. Therefore we can
always assume that t′, t ∈ T . Notice also that |T | = O(n).

We define E0(t, 0) = 0 ∀t ∈ T , and E0(t, u) = +∞ ∀u > 0, t ∈ T . The
maximum throughput is equal to max{u | En(dmax, u) ≤ E}.

The number of values A(t′, t, `, j, k) is O(n5). They can be precomputed
with a total processing time O(n6 log n logP ), using Proposition 3. The num-
ber of values Ek(t, u) is O(n3). To compute each value, we have to look for
the O(n3) cases (for each value of t′, j, `). In each case, we pick up two values
which are already computed. Thus the Ek(t, u) values are computed in O(n6)
time. The overall complexity is O(n6 log n logP ). ut

4.3 Weighted Throughput

Next we consider the weighted version of our problem, i.e.
1|pmtn, rj |

∑
j wjUj(E). In this version a job Jj is defined by its re-

lease date rj , its deadline dj , its amount of work pj and its weight wj . We
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want to maximize the total weight of the jobs scheduled subject to E. We
first show that the problem is NP-hard even in the case where all the jobs
are released at the same time and have equal deadlines. Then, we present a
pseudo-polynomial algorithm for the case where the deadlines are agreeable.

Theorem 4 The problem 1||
∑
j wjUj(E) is NP-hard.

Proof In order to establish the NP-hardness of 1||
∑
j wjUj(E), we present a

reduction from the Knapsack problem which is known to be NP-hard. In an
instance of the Knapsack problem we are given a set I of n items. Each item
i ∈ I has a value vi and a capacity ci. Moreover, we are given a capacity C,
which is the capacity of the knapsack, and a value V . In the decision version
of the problem we ask whether there exists a subset I ′ ⊆ I of the items of
total value not less than V , i.e.

∑
i∈I′ vi ≥ V , whose capacity does not exceed

the capacity of a knapsack, i.e.
∑
i∈I′ ci ≤ C.

Given an instance of the Knapsack problem, we construct an instance of
1||
∑
j wjUj(E) as follows. For each item i, 1 ≤ i ≤ n, we introduce a job Ji

with ri = 0, di = 1, wi = vi and pi = ci. Moreover, we set the budget of energy
equal to E = Cα.

We claim that the instance of the Knapsack problem is feasible iff there
is a feasible schedule for 1||

∑
j wjUj(E) of total weighted throughput not less

than V .

Assume that the instance of the Knapsack is feasible. Therefore, there
exists a subset of items I ′ such that

∑
i∈I′ vi ≥ V and

∑
i∈I′ ci ≤ C. Then we

can schedule the jobs in I ′ with constant speed
∑
i∈I′ ci during [0, 1]. Their

total energy consumption of this schedule is no more that Cα since the instance
of the Knapsack is feasible. Moreover, their total weight is no less than V .

For the opposite direction of our claim, assume there is a feasible schedule
for 1||

∑
j wjUj(E) of total weighted throughput not less than V . Let J ′ be the

jobs which are completed on time in this schedule. Clearly, due to the convexity
of the speed-to-power function, the schedule that executes the jobs in J ′ with
constant speed during the whole interval [0, 1] is also feasible. Since the latter
schedule is feasible, we have that

∑
j∈J′ pj ≤ C. Moreover,

∑
j∈J′ wj ≥ V .

Therefore, the items which correspond to the jobs in J ′ form a feasible solution
for the Knapsack. ut

In this part, we propose a pseudo-polynomial time algorithm based on a
dynamic programming algorithm for the Knapsack problem.

Definition 5 We redefine Ek(t, w) to be the minimum energy consumption
of a S-schedule, with S ⊆ J(k, t) = {Jj | j ≤ k, rj < t}, such that all the jobs
in S are scheduled within the interval [rmin, t] and such that the sum of their
weight is at least w. If such a schedule does not exist, then Ek(t, w) = +∞.

We redefine A(t′, t, w, j, k) to be the minimum energy consumption of a
S-schedule such that S ⊆ {Jj , . . . , Jk}, w(S) ≥ w and such that these jobs are
scheduled within the interval [t′, t], and with a constant common speed.
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Proposition 5 A(t′, t, w, j, k) can be computed in O(nW logP ) time, where
W is the sum of weights of the jobs.

Proof The proof is similar to Proposition 3. In this case, we use Lawler’s
algorithm in [9]. ut

Proposition 6 It holds that

Ek(t, w) = min
0≤`≤w

rmin≤t′≤t
0≤j<k

{
Ej(t

′, `) +A(t′, t, w − `, j + 1, k)

}
.

Proof The proof is similar to Proposition 4. ut

Theorem 5 The problem 1|rj , agreeable|
∑
j wjUj(E) can be solved in

O(n5W 2 logP ) time.

Proof We use a dynamic program based on Proposition 5, with E0(t, 0) = 0
∀t ∈ T and E0(t, w) = +∞ ∀w > 0, t ∈ T . The maximum weighted
throughput is obtained with max{w | En(dmax, w) ≤ E}. The number of
values A(t′, t, `, j, k) is O(n4W ). They can be precomputed and finally it takes
O(n5W 2 logP ) time. The number of values Ek(t, u) is O(n2W ). To compute
each value, we have to look for the O(n2W ) cases (for each value of t′, j, `).
In each case, we pick up two values which are already computed. Thus the
Ek(t, u) values are computed in O(n4W 2) time. Thus the overall complexity
is O(n5W 2 logP ). ut

5 Future Work

While the throughput maximization problem is polynomially-time solvable for
agreeable deadlines its complexity remains open for general instances. This is
a challenging open question for future research.
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