
Complexity bounds from abstract categorical models

Extended abstract
∗

Dominic Orchard
Imperial College London

Abstract

Common category theory notions are useful for abstracting both semantics and
programs, simplifying definitions and aiding reasoning. We argue that categorical
descriptions can also be used to reason about program complexity. We calcu-
late complexity bounds from the axioms of abstract category theory structures
commonly used in programming and semantics, which imply opportunities for op-
timisation. We study functors and comonads in the context of programming with
(finite) containers. Due to the abstract interface provided by the language of cate-
gory theory, the inferred implicit complexity bounds and subsequent optimisations
they imply are implementation agnostic (machine free).

1 Introduction

Consider the standard higher-order map function on lists, with polymorphic type map :
∀α, β.(α → β) → [α] → [β], where map f applies f to every element of the input list
exactly once to build the result list of the same length, e.g., map (∗2) [1, 2, 3, 4] =
[2, 4, 6, 8]. This behaviour is captured by two axioms map id ≡ id and map (g ◦ f) ≡
map g ◦ map f . In this paper, we show that from just the axioms and parametricity of
map we can infer its lower-bound complexity (over finite inputs). Using the notation
[f]n for the execution time of a unary function f on some input list of size n, the
lower-bound asymptotic complexity of map’s execution time is:

[map f]n ∈ Ω(n[f]1) (1)

i.e., map at least visits each element of the input list, applying f at each. We explain a
generalisation of this result for the class of functors modelling discrete, finite containers
(e.g., lists, arrays, trees, graphs), which might be used for a language semantics or for
structuring programs directly. The above lower bound is not particularly useful on
its own, but can be used to turn program equalities into rewrite rules that make
asymptotic improvements when combined with complexity bounds of other related
functions and equations involving map.

More formally, given an equality f ≡ g between two program fragments f and g,
if [f]n ∈ Ω([g]n) (or [g]n ∈ O([f]n)) then the equality can be oriented as a rewrite rule
from left to right as f g which improves the asymptotic complexity of the program.
Thus this rewrite rule may provide a program optimisation.

Context This work sprang from modelling and optimising numerical algorithms ab-
stracted over the underlying data structures. We study functors since they capture
traversals over a data structure (e.g., transforming every element of an array) [5].
We also study comonads since they generalise a functor’s traversal, capturing local
transformations which may depend on an element and its neighbours [6, 3], e.g., con-
volutions, fluid simulations, and the Game of Life. We briefly introduce this view of

∗Presented at DICE’15. Draft last updated 11th April 2015

1

comonads below. Section 2 and Section 3 then consider optimisations on functor and
comonad operations respectively.

A model of finite containers We abstract finite containers and useful data pro-
cessing operations over them via the following structures:

• a base category of computation C, whose objects we essentially consider to be pro-
gram types and morphisms as (total) functions;

• a functor F : C → C modelling a container data type (by the object mapping) and
element-wise traversal (by the morphism mapping), satisfying the functor axioms:

[F1] Fid ≡ id [F2] F(g ◦ f) ≡ Fg ◦ Ff

• a natural transformation sizeA : FA → N, i.e., for every object x : FA there is a
finite cardinal counting the number of A elements in x;

• a natural transformation ηA : A→ FA modelling constant promotion (e.g., mapping
from a scalar to a vector);

• a comonad structure (F, ε, (−)†) which comprises

– the counit natural transformation εA : FA→ A

– the extension operation, mapping a morphism f : FA → B to morphism
f † : FA→ FB satisfying the axioms:

[C1] ε† ≡ id [C2] ε ◦ f † ≡ f [C3] g† ◦ f † ≡ (g ◦ f †)†

Comonads generalise the element traversal of functors by allowing a transformation to
depend not just on a single element, but on an element and its neighbours. Compare
the signatures of morphism mapping and comonadic extension:

f : A→ B

Ff : FA→ FB

g : FA→ B

g† : FA→ FB

On the left, the functor applies the morphism f pointwise, where f computes a B value
from a single A value. On the right, extension applies the morphism g contextwise,
where g computes a B value from possibly multiple A values from the “context”
provided by FA. That is, FA is more than just a container, it is a container with
a notion of context such as a pointer to a particular element. Thus, g can access
more than just a single element, and is therefore described as a context-dependent
computation (see [3]). For example, the kernel function of a Gaussian blur takes the
mean of an element at the current context and its immediate neighbours.

Extension lifts (extends) a morphism f : FA → B modelling a computation lo-
calised to an incoming context FA, to a global operation f † : FA → FB by applying
f at every possible context within the incoming FA value. For the Gaussian blur
example, extension would apply the kernel at every possible index in an array. The
counit operation εA : FA → A defines the notion of a current context, at which there
is an element which is projected out. This acts as the identity for extension (see [C1]).

The notion of a container can be formalised as parametric data types that contain
only strictly positive occurrences of the parameter type. An alternate characterisation
is that containers comprise a set of shapes, a mapping from shapes to positions, and
a mapping from positions to values [1]. We consider such data types which have
additional monoidal structure on positions (allowing a form of ‘navigation’ through

2

the data type) which characterises these containers as comonads [2]. We consider
those that have a finite set of positions (finite size). We elide the details for brevity,
but example functors/comonads which the reader may call to mind include lists, trees,
and arrays, each paired with a cursor index which points to an element within.

Structured size A final word on notation. The lower-bound complexity of map is
conservative. It assumes the execution time of f is independent of the element sizes in
the input. Consider however nested maps, e.g. map (map (∗2)) [[1, 2, 3], [4, 5], [6, 7]] =
[[2, 4, 6], [8, 10], [12, 14]] where each element in the input list is a list of at least size two.

We thus define a notation for sizes of structured data (structural sizes). A regular
(two-layer, or two-dimensional) structure with size n and elements all of size m has the
size term n[m], equivalent to an overall size nm. An irregular (two-layer) structure
with size n and element size bounded below by m has structural size term n[Ω(m)],
i.e., the size of inner elements has lower bound m.

We thus generalise our lower bound on map to: [map f]n[Ω(m)] ∈ Ω(n[f]m).

2 Functors and promotion

Functors generalise the notion of the list data type along with its map function to ar-
bitrary data types F with an analogous notion of mapping a function over the elements
of a F value. The lower-bound complexity of map (1) applies analogously.

Proposition 1. For any discretely finite container F, the morphism mapping operation
has lower bound complexity [Ff]n[Ω(m)] ∈ Ω(n[f]m).

Proof. (sketch)

1. Naturality of size for the functor F means sizeB ◦ Ff = sizeA for all f : A → B.
Thus, the output size of Ff is that of its input size.

2. By functor law [F1] Fid ≡ id, every element of the FA is visited and has f applied
(thus, e.g. f is not just applied to one element which is then copied n times);

3. Parametericity in A,B of the morphism mapping f : A → B to Ff : FA → FB
implies Ff 6≡ id, since every A must be transformed to a B. Parametricity also
implies we cannot decide the equality f = id, so a constant time implementation
cannot be interposed for map id.

∴ Ff at least applies f to every element of its input, hence [Ff]n[Ω(m)] ∈ Ω(n[f]m).

Promotion The promotion operation ηA : A → FA may, for example, map a value
to a singleton list or lift a value to a constant vector. Since η is natural, it is fully
parametrically polymorphic in its parameter type and therefore cannot deconstruct or
inspect its parameter. The complexity of η is thus independent of its input size, i.e.,

[η]n ∈ O(1) and [η]n ∈ Ω(1) (2)

Furthermore, this means the resulting FA value is of a constant size, created from
copies of the input. The complexity of Ff ◦ ηA is therefore solely dependent on the
complexity of f since only a constant sized container is constructed by η. That is:

∃m > 0. [Ff ◦ η]n ∈ Ω(m[f]n) ∴ [Ff ◦ η]n ∈ Ω([f]n) (3)

3

where [f] is parameterised by input size n since η does not interfere with the input.
The two sides of the naturality axiom for η (Ff ◦ η ≡ η ◦ f) therefore have the same
lower-bound complexities, and the upper-bound complexity of the right-hand side is
completely determined by the complexity of f :

[Ff ◦ η]n ∈ Ω([f]n) [η ◦ f]n ∈ Ω([f]n) ∈ O([f]n) (4)

This does not provide enough information for guaranteeing any asymptotic optimisa-
tion by using naturality as a rewrite. There is however a constant factor improvement
by m (the size of the container created by η) due to (3), and in practice the optimi-
sation Ff ◦ η η ◦ f is prudent. Indeed, this transformation formed the basis for an
optimisation step used in an automatic vectoriser for Haskell [4].

3 Comonads

Recall that the extension operation of a container comonad can be seen as generalising
the traversal provided by its functor (Section 1). We apply similar techniques to the
previous section to infer optimising rewrite rules for extension.

We mainly consider the axiom [C3] g† ◦ f † ≡ (g ◦ f †)† which reassociates exten-
sion. The nested use of extension on the right-hand side suggests the possibility of
a quadratic difference in complexity compared with the left, which has no such nest-
ing. This kind of nesting can easily arise during program construction and can lead to
significant performance issues. Therefore, it would be preferable if it could be automat-
ically eliminated (by a compiler) given a guarantee that it is always an improvement.
We infer the complexity difference between the two sides of [C3] from the comonad
axioms. Firstly, we establish a lower-bound for extension in a similar way to functors.

Proposition 2. For any comonad over a finite container F, extension (−)† has lower-
bound complexity [f †]n ∈ Ω(n[f]1).

Proof. (Sketch) By [C1] ε† ≡ id it follows that extension is size preserving. That is,
for any f : FA→ B then sizeFB ◦ f † = sizeFA as follows (we abbreviate size to s):

s ◦ f † nat≡ s ◦ F!B ◦ f †
ext≡ s ◦ (!B ◦ f)†

!A≡ s ◦ (!A ◦ ε)†
ext≡ s ◦ F!A ◦ ε†

nat≡ s ◦ ε†
[C1]
≡ s

where the step ext follows from Ff ≡ (f ◦ ε)† (proof not shown), !A is terminality, and
nat is size naturality. Thus the size of the input is the size of the output after extension
([3] has a related proof). Further, [C1] coupled with parametricity of (−)† implies that
f is applied n times, to compute each new B element. ∴ [f †]n ∈ Ω(n[f]1).

Corollary 1. Size preservation for comonads implies [g ◦ f †]n ∈ O([g]n + [f †]n). That
is, the upper-bound complexity of post-composing a morphism g with the extension
f † is the sum of their complexities each parameterised by the input size n since (by
size preservation of extension) g is passed a container of size n.

The bound of Proposition 2 does not provide enough information to orient [C3] rule
as an optimising rewrite rule. However, following similar reasoning, a general upper-
bound can be given, revealing the quadratic difference between the two sides of [C3].

Proposition 3. There exists terms Pn and Qn ≥ 1, parameterised by n, such that:

[f †]n ∈ O(Pn + nQn[f]n) (5)

where Pn accounts for time traversing the container to reach the leaves (the elements)
and Qn accounts for any extraneous applications of f beyond the linear (in n) use.

4

Proof. (sketch) By [C2] ε ◦ f † ≡ f it holds that εN ◦ size†A ≡ sizeA. This means the
size of a container passed to a morphism being extended is the same size as that of
the parameter container at the current context. By [C3], this generalises to every
context, i.e., extension is size preserving at all contexts, by considering a morphism
sum : FN→ N which sums natura number elements in a container. Then [C3] requires:

(sum ◦ size†A)†
[C3]
≡ sum† ◦ size†A

This axiom is violated if size passes larger that n contexts to its parameter function.
Thus, the upper-bound complexity of extension of f is in the order of traversing to

the leaves Pn (a function on n) summed with at least n applications of f (Proposition 2)
to a container of at most size n (by the above size preservation argument).

This upper bound is quite general (with Pn, Qn) but it allows the following result:

Proposition 4. Axiom [C3] can be oriented as (g ◦ f †)† g† ◦ f † guaranteeing an
asymptotic improvement, or not making the complexity worse (if, for example, term
Pn dominates all other terms).

Proof. Following from Corollary 1 and Proposition 3 then:

[g† ◦ f †]n ∈ O(Pn + nQn[g]n + nQn[f]n)

[(g ◦ f †)†]n ∈ O(Pn + nQn([g]n + Pn + nQn[f]n))

∈ O(Pn + nQn[g]n + (nQn)2[f]n + nQnPn)

Note on linearity Linear types could be used to constrain the number of times
extension applies its parameter function, giving a more precise upper bound. For
example, in a language with bounded linear types and size-indexed containers, (−)†

might be embedded with the type signature:

(−)† : !n(!1FmA→ B)→ (FnA→ FnB)

(where !1FmA→ B is equivalent to FA(B) constraining the upper-bound complexity
of extend to [f †]n ∈ O(Pn + n[f]n). This is a reasonable constraint following from the
size preservation property of comonads: we only need to apply f to each element.

Conclusions By simple arguments following from the axioms of categorical struc-
tures, and parametricity, we derived complexity bounds for free, which allowed us to
oriented equalities as rewrite rules that provide optimisations (or do not make things
worse). These complexity bounds are implicit and implementation agnostic. Further
work is to fully formalise the proof sketches here, making use of parametricity theorems
and formal characterisation of containers (such as by Abbott et al. [1]).

Acknowledgments Thanks to Stephen Dolan for many helpful comments, Matthew
Anderson, Michael Gale and Tomas Petricek for discussion, comments by Alan Mycroft
on an early draft, and Marcin Jurdinski for listening to my initial idea on a bus. This
work was partially supported by EPSRC EP/K011715/1.

5

References

[1] M. Abbott, T. Altenkirch, and N. Ghani. Containers: constructing strictly positive types.
Theoretical Computer Science, 342(1):3–27, 2005.

[2] D. Ahman, J. Chapman, and T. Uustalu. When is a container a comonad? Foundations
of Software Science and Computational Structures, pages 74–88, 2012.

[3] D. Orchard and A. Mycroft. A Notation for Comonads. In IFL ’12: Implementation and
Application of Functional Languages, Revised Selected Papers, volume 8241, 2012.

[4] Leaf Petersen, Dominic Orchard, and Neal Glew. Automatic SIMD Vectorization for
Haskell. In Proceedings of the 18th ACM SIGPLAN international conference on Func-
tional programming, pages 25–36. ACM, 2013.

[5] David B Skillicorn. Models for practical parallel computation. International Journal of
Parallel Programming, 20(2):133–158, 1991.

[6] Tarmo Uustalu and Varmo Vene. Comonadic Notions of Computation. Electron. Notes
Theor. Comput. Sci., 203(5):263–284, 2008.

6

	Introduction
	Functors and promotion
	Comonads

