
Verifying and timing
concurrent instruments

Dominic Orchard

thanks to Sam Aaron for some of these slides & inspiration

A talk about…

• Verification
• Analysis

• Programming
• Music
• Outreach
• Education

1

Sonic Pi
π)))

Demo #1
play, sleep, loops, iteration

sleep 1

sleep 0.5

play :C

play :E

play :G

play :F

play :A

play :C

play :G

play :B

play :D

Real
Time

 Δa + Δb + Δc + 1

 Δc

 Δa

 Δb

Statement
Duration

 Δa

 Δa + Δb

 Δa + Δb + Δc

 Δd
 Δa + Δb + Δc + 1 + Δd

 Δa + Δb + Δc + 1 + Δd + Δe

 Δa + Δb + Δc + 1 + Δd + Δe + Δf

 Δa + Δb + Δc + 1 + Δd + Δe + Δf + 0.5

 Δa + Δb + Δc + 1 + Δd + Δe + Δf + 0.5 + Δf

 Δa + Δb + Δc + 1 + Δd + Δe + Δf + 0.5 + Δf + Δg

 Δe

 Δf

 Δg

 Δh

 Δi
 Δa + Δb + Δc + 1 + Δd + Δe + Δf + 0.5 + Δf + Δg + Δh

sleep 1

sleep 0.5

play :C

play :E

play :G

play :F

play :A

play :C

play :G

play :B

play :D

Real
Time

Scheduled
Time

0

0

0

1

1

1

1.5

1.5

1.5

Virtual
 Time

 1

 Δc

 Δa

 Δb

Statement
Duration

 0 + Δa

 0 + Δa + Δb

 0 + Δa + Δb + Δc

 Δd
 1 + Δd

 1 + Δd + Δe

 1 + Δd + Δe + Δf 1

0.5

0.5

0.5

1.5

1.5

1.5

 1.5

 1.5 + Δg

 1.5 + Δg + Δh

2

2

2

 Δe

 Δf

 Δg

 Δh

 Δi
 1.5 + Δg + Δh + Δi 1.5

A formal semantics for sleep

• Abstract interpretation “time system”

• Denotational semantics (via monads)

• Prove “time safety” = prove semantics
sound wrt. time system

“Temporal semantics for a live coding language”!

Aaron, Orchard, Blackwell, FARM 2014

Simplified Sonic Pi v2.0 syntax

sleep 1

sleep 0.5

play :C

play :E

play :G

play :F

play :A

play :C

play :G

play :B

play :D

Real
Time

Scheduled
Time

0

0

0

1

1

1

1.5

1.5

1.5

Virtual
 Time

 1

 Δc

 Δa

 Δb

Statement
Duration

 0 + Δa

 0 + Δa + Δb

 0 + Δa + Δb + Δc

 Δd
 1 + Δd

 1 + Δd + Δe

 1 + Δd + Δe + Δf 1

0.5

0.5

0.5

1.5

1.5

1.5

 1.5

 1.5 + Δg

 1.5 + Δg + Δh

2

2

2

 Δe

 Δf

 Δg

 Δh

 Δi
 1.5 + Δg + Δh + Δi 1.5

Figure 6. Timing behaviour of Sonic Pi v2.0 including virtual and
scheduled time with a scheduleAheadTime of 0.5.

value is added to the current virtual time for all asynchronously
scheduled effects. Provided that the addition of the jitter time and
the execution time between calls to sleep never exceeds this value,
the temporal expectations of the system are met.

It is possible that a computation preceding a sleep can over-
run; that is, run longer than the sleep time. Thus, the programming
model is not suitable for realtime systems requiring hard deadlines
but sleep instead provides a soft deadline (in the terminology of
Hansson and Jonsson [HJ94]). However, if a given thread falls be-
hind, the user receives explicit timing warnings (described further
in Section 6). Finally, if the thread falls further behind by a user-
specifiable amount of time then Sonic Pi will stop that thread by
throwing a time exception. This therefore not only provides essen-
tial information to users about the temporal behaviour of the pro-
gram but also serves as a safety mechanism against a common class
of errors such as placing an isolated call to play within a loop with
no calls sleep. In such cases, the thread will no longer permanently
sit in a tight loop consuming all resources, but will self-terminate
allowing any other threads to continue executing normally.

3.1 Examples

Figure 7 shows four similar programs which each have different
internal behaviours for sleep, illustrating its semantics. We use
the function kernelSleep, which is not a standard part of the
Sonic Pi language, as a placeholder to represent a computation
lasting a particular length of time (as specified by the parameter
to kernelSleep). The first three example programs take 3s to
execute and the last takes 4s to execute, with the behaviours:

(a) 3s – sleeps for 1s then sleeps for 2s (two sleeps performed);
(b) 3s – performs a computation lasting 1s, ignores the first sleep

since its minimum duration has been reached, and then sleeps
for 2s (one sleep performed);

(c) 3s – performs a computation lasting 2s, which means that the
first sleep is ignored, and the second sleep waits for only 1s
to reach its minimum duration (half a sleep performed);

(d) 4s – performs a computation lasting 2s, thus the first sleep
is ignored, then performs a computation lasting 2s, thus the
second sleep is ignored (no sleeps performed).

sleep 1

sleep 2

(a) Two sleeps

kernelSleep 1

sleep 1

sleep 2

(b) One sleep

kernelSleep 2

sleep 1

sleep 2

(c) Half a sleep

kernelSleep 2

sleep 1

kernelSleep 2

sleep 2

(d) No sleeps

Figure 7. Example programs with different sleep behaviours

4. A time system for Sonic Pi

From our experiences, we’ve found that the programming model
of Sonic Pi, particularly its temporal model, is easy to understand
by even complete beginners, including children. By a few simple
examples it is easy to demonstrate the temporal semantics, using
sounds as output, without having to appeal to any meta-theory;
Sonic Pi attains the goal of being a good first language.

In this section, we approach the programming model of Sonic Pi
from a more theoretical angle, in order to develop a specification of
our programming model that can be reused for other applications
and languages outside of the Sonic Pi context. From our model
we prove a number of core properties of Sonic Pi as well. It is in
no way necessary for programmers of Sonic Pi to understand this
theory, but the contribution here is useful for future language design
and implementation research.

Firstly, we define an abstract specification of virtual time and ac-
tual elapsed time in a simple core subset of Sonic Pi (Section 4.1).
This gives an abstract, axiomatic model of the semantics which we
call a time system. This model is made more concrete by providing
a denotational-style, monadic semantics in the next section (Sec-
tion 5), introducing the temporal monad. We prove the monadic
model sound with respect to the initial axiomatic specification, up
to small permutations in time delay (Section 5.3).

Terminology and notation We refer to sequences of statements as
programs. Throughout, P , Q range over programs, and s, t range
over times (usually in seconds).

A core fragment of Sonic Pi In the rest of this paper, we model
a core subset of the Sonic Pi v2.0 language with the following
grammar, where P are programs, S statements, and E expressions:

P ::= P ;S | ;
S ::= E | v = E

E ::= sleep R>0 | Ai | v

where A

i represents operations (actions) in Sonic Pi other than
sleep, e.g., some Aj is the play operation. We use this to abstract
over operations in the language which do not modify virtual time.

By the above definition, programs P are a “snoc”-list (i.e., el-
ements are “consed” onto the end, not front as is standard for
inductively-defined lists) where ; is the empty list. Equivalently, se-
quential composition of statements is syntactically left-associated.
This structure aids later proofs since it allows inductive reasoning
on a statement of a program and its preceding program, which is
key to accurately modelling sleep.

Statements S may be expressions on their own, or may have
(pure) bindings to variables. Throughout we consider the first case
of S as a degenerate case of the second where the variable is
irrelevant i.e., = E where denotes a wildcard variable.

We’ll add the previously seen kernelSleep operation to the
core subset here, which blocks the current computation for the time
specified by its parameter, i.e., it has the semantics of POSIX sleep.
This operation is not available in the actual language, but it is useful
for examples and contrasting with sleep.

This core subset is a zero-order language, in the sense that we do
not include the definition or calling of user-defined functions; nor

do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time

As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P]

t

and the virtual time which is
advanced by sleep statements which we write as [P]

v

. Both these
abstract functions return time values, thus, [�]

v

, [�]
t

2 R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [�]v and [�]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [�]
v

can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

We therefore overload [�]
v

to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[�]

v

for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ⇡ on
actual times, where:

8s, t. s ⇡ t ⌘ |(s� t)| 6 ✏ (1)

for some value of ✏ which is the maximum negligible time value
with respect to the application at hand. For example, if ✏ = 0.1
then 3 ⇡ 3.05 ⇡ 2.92.

In the case of Sonic Pi, we mitigate any ✏-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ✏,
which are limited to a very small part of the model. Crucially,
these ✏ time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]

v

⇡ [sleep t]
t

and thus [sleep t]
t

⇡ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [�]
t

can be (partially) spec-
ified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

In the case of Ai = kernelSleep, then [kernelSleep t]
t

= t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]
t

⇡ 2

where P = kernelSleep 2, [P]
v

= 0, t = 1, and
[P]

t

= 2, thus ([P]
v

+ t) < [P]
t

– [kernelSleep 1; sleep 2]
t

⇡ 2

where P = kernelSleep 1, [P]
v

= 0, t = 2, and
[P]

t

= 1, thus ([P]
v

+ t) > [P]
t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [�]

t

and virtual time [�]
v

in the case for
sleep. In this case, the definition of [�]

t

is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [�]

v

. Instead, the actual time of a sleep

depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P]

t

. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [�]
v

and [�]
t

provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P]
t

> [P]
v

.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

•
P = ;. Trivial since [;]

v

= 0 by Definition 1.
•
P = (P 0; v = E), split on E

E = sleep t

(a) by Definition 1, [P 0; sleep t]
v

= [P 0]
v

+ t.
(b) by Definition 2, [P 0; sleep t]

t

= ([P 0]
v

+t) max [P 0]
t

.
(c) by (b) (([P 0]

v

+ t) max [P 0]
t

) > [P 0]
v

+ t

) by (a) and (c) then [P 0; sleep t]
t

> [P 0
sleep t]

v

otherwise E = A

i

(a) by Definition 1, [P 0; v = A

i]
v

= [P 0]
v

(b) by Definition 2, [P 0; v = A

i]
t

= [P 0]
t

+ [Ai]
t

(c) by inductive hypothesis [P 0]
t

> [P 0]
v

.
(d) since [�]

t

2 R>0, by monotonicity and (c) [P 0]
t

+
[A1]

t

> [P 0]
v

.
) by (a), (b), (d) then [P 0; v = A

i]
t

> [P 0; v = A

i]
v

.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [�]

t

and [�]
v

given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprograms A, B, C where [A]
v

= [B]
v

=
[C]

v

= 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]
t

6 s1 and
[B]

t

6 s2 then [P]
t

= s1 + s2 + [C]
t

.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.

do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time

As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P]

t

and the virtual time which is
advanced by sleep statements which we write as [P]

v

. Both these
abstract functions return time values, thus, [�]

v

, [�]
t

2 R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [�]v and [�]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [�]
v

can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

We therefore overload [�]
v

to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[�]

v

for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ⇡ on
actual times, where:

8s, t. s ⇡ t ⌘ |(s� t)| 6 ✏ (1)

for some value of ✏ which is the maximum negligible time value
with respect to the application at hand. For example, if ✏ = 0.1
then 3 ⇡ 3.05 ⇡ 2.92.

In the case of Sonic Pi, we mitigate any ✏-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ✏,
which are limited to a very small part of the model. Crucially,
these ✏ time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]

v

⇡ [sleep t]
t

and thus [sleep t]
t

⇡ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [�]
t

can be (partially) spec-
ified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

In the case of Ai = kernelSleep, then [kernelSleep t]
t

= t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]
t

⇡ 2

where P = kernelSleep 2, [P]
v

= 0, t = 1, and
[P]

t

= 2, thus ([P]
v

+ t) < [P]
t

– [kernelSleep 1; sleep 2]
t

⇡ 2

where P = kernelSleep 1, [P]
v

= 0, t = 2, and
[P]

t

= 1, thus ([P]
v

+ t) > [P]
t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [�]

t

and virtual time [�]
v

in the case for
sleep. In this case, the definition of [�]

t

is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [�]

v

. Instead, the actual time of a sleep

depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P]

t

. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [�]
v

and [�]
t

provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P]
t

> [P]
v

.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

•
P = ;. Trivial since [;]

v

= 0 by Definition 1.
•
P = (P 0; v = E), split on E

E = sleep t

(a) by Definition 1, [P 0; sleep t]
v

= [P 0]
v

+ t.
(b) by Definition 2, [P 0; sleep t]

t

= ([P 0]
v

+t) max [P 0]
t

.
(c) by (b) (([P 0]

v

+ t) max [P 0]
t

) > [P 0]
v

+ t

) by (a) and (c) then [P 0; sleep t]
t

> [P 0
sleep t]

v

otherwise E = A

i

(a) by Definition 1, [P 0; v = A

i]
v

= [P 0]
v

(b) by Definition 2, [P 0; v = A

i]
t

= [P 0]
t

+ [Ai]
t

(c) by inductive hypothesis [P 0]
t

> [P 0]
v

.
(d) since [�]

t

2 R>0, by monotonicity and (c) [P 0]
t

+
[A1]

t

> [P 0]
v

.
) by (a), (b), (d) then [P 0; v = A

i]
t

> [P 0; v = A

i]
v

.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [�]

t

and [�]
v

given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprograms A, B, C where [A]
v

= [B]
v

=
[C]

v

= 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]
t

6 s1 and
[B]

t

6 s2 then [P]
t

= s1 + s2 + [C]
t

.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.

do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time

As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P]

t

and the virtual time which is
advanced by sleep statements which we write as [P]

v

. Both these
abstract functions return time values, thus, [�]

v

, [�]
t

2 R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [�]v and [�]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [�]
v

can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

We therefore overload [�]
v

to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[�]

v

for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ⇡ on
actual times, where:

8s, t. s ⇡ t ⌘ |(s� t)| 6 ✏ (1)

for some value of ✏ which is the maximum negligible time value
with respect to the application at hand. For example, if ✏ = 0.1
then 3 ⇡ 3.05 ⇡ 2.92.

In the case of Sonic Pi, we mitigate any ✏-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ✏,
which are limited to a very small part of the model. Crucially,
these ✏ time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]

v

⇡ [sleep t]
t

and thus [sleep t]
t

⇡ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [�]
t

can be (partially) spec-
ified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

In the case of Ai = kernelSleep, then [kernelSleep t]
t

= t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]
t

⇡ 2

where P = kernelSleep 2, [P]
v

= 0, t = 1, and
[P]

t

= 2, thus ([P]
v

+ t) < [P]
t

– [kernelSleep 1; sleep 2]
t

⇡ 2

where P = kernelSleep 1, [P]
v

= 0, t = 2, and
[P]

t

= 1, thus ([P]
v

+ t) > [P]
t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [�]

t

and virtual time [�]
v

in the case for
sleep. In this case, the definition of [�]

t

is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [�]

v

. Instead, the actual time of a sleep

depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P]

t

. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [�]
v

and [�]
t

provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P]
t

> [P]
v

.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

•
P = ;. Trivial since [;]

v

= 0 by Definition 1.
•
P = (P 0; v = E), split on E

E = sleep t

(a) by Definition 1, [P 0; sleep t]
v

= [P 0]
v

+ t.
(b) by Definition 2, [P 0; sleep t]

t

= ([P 0]
v

+t) max [P 0]
t

.
(c) by (b) (([P 0]

v

+ t) max [P 0]
t

) > [P 0]
v

+ t

) by (a) and (c) then [P 0; sleep t]
t

> [P 0
sleep t]

v

otherwise E = A

i

(a) by Definition 1, [P 0; v = A

i]
v

= [P 0]
v

(b) by Definition 2, [P 0; v = A

i]
t

= [P 0]
t

+ [Ai]
t

(c) by inductive hypothesis [P 0]
t

> [P 0]
v

.
(d) since [�]

t

2 R>0, by monotonicity and (c) [P 0]
t

+
[A1]

t

> [P 0]
v

.
) by (a), (b), (d) then [P 0; v = A

i]
t

> [P 0; v = A

i]
v

.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [�]

t

and [�]
v

given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprograms A, B, C where [A]
v

= [B]
v

=
[C]

v

= 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]
t

6 s1 and
[B]

t

6 s2 then [P]
t

= s1 + s2 + [C]
t

.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.

Time system

do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time

As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P]

t

and the virtual time which is
advanced by sleep statements which we write as [P]

v

. Both these
abstract functions return time values, thus, [�]

v

, [�]
t

2 R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [�]v and [�]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [�]
v

can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

We therefore overload [�]
v

to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[�]

v

for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ⇡ on
actual times, where:

8s, t. s ⇡ t ⌘ |(s� t)| 6 ✏ (1)

for some value of ✏ which is the maximum negligible time value
with respect to the application at hand. For example, if ✏ = 0.1
then 3 ⇡ 3.05 ⇡ 2.92.

In the case of Sonic Pi, we mitigate any ✏-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ✏,
which are limited to a very small part of the model. Crucially,
these ✏ time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]

v

⇡ [sleep t]
t

and thus [sleep t]
t

⇡ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [�]
t

can be (partially) spec-
ified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

In the case of Ai = kernelSleep, then [kernelSleep t]
t

= t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]
t

⇡ 2

where P = kernelSleep 2, [P]
v

= 0, t = 1, and
[P]

t

= 2, thus ([P]
v

+ t) < [P]
t

– [kernelSleep 1; sleep 2]
t

⇡ 2

where P = kernelSleep 1, [P]
v

= 0, t = 2, and
[P]

t

= 1, thus ([P]
v

+ t) > [P]
t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [�]

t

and virtual time [�]
v

in the case for
sleep. In this case, the definition of [�]

t

is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [�]

v

. Instead, the actual time of a sleep

depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P]

t

. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [�]
v

and [�]
t

provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P]
t

> [P]
v

.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

•
P = ;. Trivial since [;]

v

= 0 by Definition 1.
•
P = (P 0; v = E), split on E

E = sleep t

(a) by Definition 1, [P 0; sleep t]
v

= [P 0]
v

+ t.
(b) by Definition 2, [P 0; sleep t]

t

= ([P 0]
v

+t) max [P 0]
t

.
(c) by (b) (([P 0]

v

+ t) max [P 0]
t

) > [P 0]
v

+ t

) by (a) and (c) then [P 0; sleep t]
t

> [P 0
sleep t]

v

otherwise E = A

i

(a) by Definition 1, [P 0; v = A

i]
v

= [P 0]
v

(b) by Definition 2, [P 0; v = A

i]
t

= [P 0]
t

+ [Ai]
t

(c) by inductive hypothesis [P 0]
t

> [P 0]
v

.
(d) since [�]

t

2 R>0, by monotonicity and (c) [P 0]
t

+
[A1]

t

> [P 0]
v

.
) by (a), (b), (d) then [P 0; v = A

i]
t

> [P 0; v = A

i]
v

.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [�]

t

and [�]
v

given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprograms A, B, C where [A]
v

= [B]
v

=
[C]

v

= 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]
t

6 s1 and
[B]

t

6 s2 then [P]
t

= s1 + s2 + [C]
t

.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.

do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time

As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P]

t

and the virtual time which is
advanced by sleep statements which we write as [P]

v

. Both these
abstract functions return time values, thus, [�]

v

, [�]
t

2 R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [�]v and [�]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [�]
v

can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

We therefore overload [�]
v

to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[�]

v

for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ⇡ on
actual times, where:

8s, t. s ⇡ t ⌘ |(s� t)| 6 ✏ (1)

for some value of ✏ which is the maximum negligible time value
with respect to the application at hand. For example, if ✏ = 0.1
then 3 ⇡ 3.05 ⇡ 2.92.

In the case of Sonic Pi, we mitigate any ✏-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ✏,
which are limited to a very small part of the model. Crucially,
these ✏ time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]

v

⇡ [sleep t]
t

and thus [sleep t]
t

⇡ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [�]
t

can be (partially) spec-
ified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

In the case of Ai = kernelSleep, then [kernelSleep t]
t

= t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]
t

⇡ 2

where P = kernelSleep 2, [P]
v

= 0, t = 1, and
[P]

t

= 2, thus ([P]
v

+ t) < [P]
t

– [kernelSleep 1; sleep 2]
t

⇡ 2

where P = kernelSleep 1, [P]
v

= 0, t = 2, and
[P]

t

= 1, thus ([P]
v

+ t) > [P]
t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [�]

t

and virtual time [�]
v

in the case for
sleep. In this case, the definition of [�]

t

is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [�]

v

. Instead, the actual time of a sleep

depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P]

t

. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [�]
v

and [�]
t

provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P]
t

> [P]
v

.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

•
P = ;. Trivial since [;]

v

= 0 by Definition 1.
•
P = (P 0; v = E), split on E

E = sleep t

(a) by Definition 1, [P 0; sleep t]
v

= [P 0]
v

+ t.
(b) by Definition 2, [P 0; sleep t]

t

= ([P 0]
v

+t) max [P 0]
t

.
(c) by (b) (([P 0]

v

+ t) max [P 0]
t

) > [P 0]
v

+ t

) by (a) and (c) then [P 0; sleep t]
t

> [P 0
sleep t]

v

otherwise E = A

i

(a) by Definition 1, [P 0; v = A

i]
v

= [P 0]
v

(b) by Definition 2, [P 0; v = A

i]
t

= [P 0]
t

+ [Ai]
t

(c) by inductive hypothesis [P 0]
t

> [P 0]
v

.
(d) since [�]

t

2 R>0, by monotonicity and (c) [P 0]
t

+
[A1]

t

> [P 0]
v

.
) by (a), (b), (d) then [P 0; v = A

i]
t

> [P 0; v = A

i]
v

.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [�]

t

and [�]
v

given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprograms A, B, C where [A]
v

= [B]
v

=
[C]

v

= 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]
t

6 s1 and
[B]

t

6 s2 then [P]
t

= s1 + s2 + [C]
t

.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.

e.g. P; sleep 2 where [P]t = 1, [P]v = 0
[P; sleep 2]t = (0 + 2) max 1 = 2∴
[P; sleep 2]v = 2

[—]t : actual time[—]v : virtual time

do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time

As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P]

t

and the virtual time which is
advanced by sleep statements which we write as [P]

v

. Both these
abstract functions return time values, thus, [�]

v

, [�]
t

2 R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [�]v and [�]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [�]
v

can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

We therefore overload [�]
v

to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[�]

v

for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ⇡ on
actual times, where:

8s, t. s ⇡ t ⌘ |(s� t)| 6 ✏ (1)

for some value of ✏ which is the maximum negligible time value
with respect to the application at hand. For example, if ✏ = 0.1
then 3 ⇡ 3.05 ⇡ 2.92.

In the case of Sonic Pi, we mitigate any ✏-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ✏,
which are limited to a very small part of the model. Crucially,
these ✏ time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]

v

⇡ [sleep t]
t

and thus [sleep t]
t

⇡ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [�]
t

can be (partially) spec-
ified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

In the case of Ai = kernelSleep, then [kernelSleep t]
t

= t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]
t

⇡ 2

where P = kernelSleep 2, [P]
v

= 0, t = 1, and
[P]

t

= 2, thus ([P]
v

+ t) < [P]
t

– [kernelSleep 1; sleep 2]
t

⇡ 2

where P = kernelSleep 1, [P]
v

= 0, t = 2, and
[P]

t

= 1, thus ([P]
v

+ t) > [P]
t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [�]

t

and virtual time [�]
v

in the case for
sleep. In this case, the definition of [�]

t

is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [�]

v

. Instead, the actual time of a sleep

depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P]

t

. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [�]
v

and [�]
t

provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P]
t

> [P]
v

.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

•
P = ;. Trivial since [;]

v

= 0 by Definition 1.
•
P = (P 0; v = E), split on E

E = sleep t

(a) by Definition 1, [P 0; sleep t]
v

= [P 0]
v

+ t.
(b) by Definition 2, [P 0; sleep t]

t

= ([P 0]
v

+t) max [P 0]
t

.
(c) by (b) (([P 0]

v

+ t) max [P 0]
t

) > [P 0]
v

+ t

) by (a) and (c) then [P 0; sleep t]
t

> [P 0
sleep t]

v

otherwise E = A

i

(a) by Definition 1, [P 0; v = A

i]
v

= [P 0]
v

(b) by Definition 2, [P 0; v = A

i]
t

= [P 0]
t

+ [Ai]
t

(c) by inductive hypothesis [P 0]
t

> [P 0]
v

.
(d) since [�]

t

2 R>0, by monotonicity and (c) [P 0]
t

+
[A1]

t

> [P 0]
v

.
) by (a), (b), (d) then [P 0; v = A

i]
t

> [P 0; v = A

i]
v

.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [�]

t

and [�]
v

given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprograms A, B, C where [A]
v

= [B]
v

=
[C]

v

= 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]
t

6 s1 and
[B]

t

6 s2 then [P]
t

= s1 + s2 + [C]
t

.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.

do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time

As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P]

t

and the virtual time which is
advanced by sleep statements which we write as [P]

v

. Both these
abstract functions return time values, thus, [�]

v

, [�]
t

2 R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [�]v and [�]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [�]
v

can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

We therefore overload [�]
v

to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[�]

v

for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ⇡ on
actual times, where:

8s, t. s ⇡ t ⌘ |(s� t)| 6 ✏ (1)

for some value of ✏ which is the maximum negligible time value
with respect to the application at hand. For example, if ✏ = 0.1
then 3 ⇡ 3.05 ⇡ 2.92.

In the case of Sonic Pi, we mitigate any ✏-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ✏,
which are limited to a very small part of the model. Crucially,
these ✏ time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]

v

⇡ [sleep t]
t

and thus [sleep t]
t

⇡ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [�]
t

can be (partially) spec-
ified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

In the case of Ai = kernelSleep, then [kernelSleep t]
t

= t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]
t

⇡ 2

where P = kernelSleep 2, [P]
v

= 0, t = 1, and
[P]

t

= 2, thus ([P]
v

+ t) < [P]
t

– [kernelSleep 1; sleep 2]
t

⇡ 2

where P = kernelSleep 1, [P]
v

= 0, t = 2, and
[P]

t

= 1, thus ([P]
v

+ t) > [P]
t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [�]

t

and virtual time [�]
v

in the case for
sleep. In this case, the definition of [�]

t

is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [�]

v

. Instead, the actual time of a sleep

depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P]

t

. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [�]
v

and [�]
t

provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P]
t

> [P]
v

.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

•
P = ;. Trivial since [;]

v

= 0 by Definition 1.
•
P = (P 0; v = E), split on E

E = sleep t

(a) by Definition 1, [P 0; sleep t]
v

= [P 0]
v

+ t.
(b) by Definition 2, [P 0; sleep t]

t

= ([P 0]
v

+t) max [P 0]
t

.
(c) by (b) (([P 0]

v

+ t) max [P 0]
t

) > [P 0]
v

+ t

) by (a) and (c) then [P 0; sleep t]
t

> [P 0
sleep t]

v

otherwise E = A

i

(a) by Definition 1, [P 0; v = A

i]
v

= [P 0]
v

(b) by Definition 2, [P 0; v = A

i]
t

= [P 0]
t

+ [Ai]
t

(c) by inductive hypothesis [P 0]
t

> [P 0]
v

.
(d) since [�]

t

2 R>0, by monotonicity and (c) [P 0]
t

+
[A1]

t

> [P 0]
v

.
) by (a), (b), (d) then [P 0; v = A

i]
t

> [P 0; v = A

i]
v

.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [�]

t

and [�]
v

given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprograms A, B, C where [A]
v

= [B]
v

=
[C]

v

= 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]
t

6 s1 and
[B]

t

6 s2 then [P]
t

= s1 + s2 + [C]
t

.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.

do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time

As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P]

t

and the virtual time which is
advanced by sleep statements which we write as [P]

v

. Both these
abstract functions return time values, thus, [�]

v

, [�]
t

2 R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [�]v and [�]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [�]
v

can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

We therefore overload [�]
v

to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[�]

v

for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ⇡ on
actual times, where:

8s, t. s ⇡ t ⌘ |(s� t)| 6 ✏ (1)

for some value of ✏ which is the maximum negligible time value
with respect to the application at hand. For example, if ✏ = 0.1
then 3 ⇡ 3.05 ⇡ 2.92.

In the case of Sonic Pi, we mitigate any ✏-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ✏,
which are limited to a very small part of the model. Crucially,
these ✏ time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]

v

⇡ [sleep t]
t

and thus [sleep t]
t

⇡ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [�]
t

can be (partially) spec-
ified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

In the case of Ai = kernelSleep, then [kernelSleep t]
t

= t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]
t

⇡ 2

where P = kernelSleep 2, [P]
v

= 0, t = 1, and
[P]

t

= 2, thus ([P]
v

+ t) < [P]
t

– [kernelSleep 1; sleep 2]
t

⇡ 2

where P = kernelSleep 1, [P]
v

= 0, t = 2, and
[P]

t

= 1, thus ([P]
v

+ t) > [P]
t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [�]

t

and virtual time [�]
v

in the case for
sleep. In this case, the definition of [�]

t

is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [�]

v

. Instead, the actual time of a sleep

depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P]

t

. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [�]
v

and [�]
t

provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P]
t

> [P]
v

.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

•
P = ;. Trivial since [;]

v

= 0 by Definition 1.
•
P = (P 0; v = E), split on E

E = sleep t

(a) by Definition 1, [P 0; sleep t]
v

= [P 0]
v

+ t.
(b) by Definition 2, [P 0; sleep t]

t

= ([P 0]
v

+t) max [P 0]
t

.
(c) by (b) (([P 0]

v

+ t) max [P 0]
t

) > [P 0]
v

+ t

) by (a) and (c) then [P 0; sleep t]
t

> [P 0
sleep t]

v

otherwise E = A

i

(a) by Definition 1, [P 0; v = A

i]
v

= [P 0]
v

(b) by Definition 2, [P 0; v = A

i]
t

= [P 0]
t

+ [Ai]
t

(c) by inductive hypothesis [P 0]
t

> [P 0]
v

.
(d) since [�]

t

2 R>0, by monotonicity and (c) [P 0]
t

+
[A1]

t

> [P 0]
v

.
) by (a), (b), (d) then [P 0; v = A

i]
t

> [P 0; v = A

i]
v

.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [�]

t

and [�]
v

given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprograms A, B, C where [A]
v

= [B]
v

=
[C]

v

= 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]
t

6 s1 and
[B]

t

6 s2 then [P]
t

= s1 + s2 + [C]
t

.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.

Time system

do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time

As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P]

t

and the virtual time which is
advanced by sleep statements which we write as [P]

v

. Both these
abstract functions return time values, thus, [�]

v

, [�]
t

2 R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [�]v and [�]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [�]
v

can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

We therefore overload [�]
v

to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[�]

v

for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ⇡ on
actual times, where:

8s, t. s ⇡ t ⌘ |(s� t)| 6 ✏ (1)

for some value of ✏ which is the maximum negligible time value
with respect to the application at hand. For example, if ✏ = 0.1
then 3 ⇡ 3.05 ⇡ 2.92.

In the case of Sonic Pi, we mitigate any ✏-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ✏,
which are limited to a very small part of the model. Crucially,
these ✏ time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]

v

⇡ [sleep t]
t

and thus [sleep t]
t

⇡ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [�]
t

can be (partially) spec-
ified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

In the case of Ai = kernelSleep, then [kernelSleep t]
t

= t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]
t

⇡ 2

where P = kernelSleep 2, [P]
v

= 0, t = 1, and
[P]

t

= 2, thus ([P]
v

+ t) < [P]
t

– [kernelSleep 1; sleep 2]
t

⇡ 2

where P = kernelSleep 1, [P]
v

= 0, t = 2, and
[P]

t

= 1, thus ([P]
v

+ t) > [P]
t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [�]

t

and virtual time [�]
v

in the case for
sleep. In this case, the definition of [�]

t

is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [�]

v

. Instead, the actual time of a sleep

depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P]

t

. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [�]
v

and [�]
t

provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P]
t

> [P]
v

.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

•
P = ;. Trivial since [;]

v

= 0 by Definition 1.
•
P = (P 0; v = E), split on E

E = sleep t

(a) by Definition 1, [P 0; sleep t]
v

= [P 0]
v

+ t.
(b) by Definition 2, [P 0; sleep t]

t

= ([P 0]
v

+t) max [P 0]
t

.
(c) by (b) (([P 0]

v

+ t) max [P 0]
t

) > [P 0]
v

+ t

) by (a) and (c) then [P 0; sleep t]
t

> [P 0
sleep t]

v

otherwise E = A

i

(a) by Definition 1, [P 0; v = A

i]
v

= [P 0]
v

(b) by Definition 2, [P 0; v = A

i]
t

= [P 0]
t

+ [Ai]
t

(c) by inductive hypothesis [P 0]
t

> [P 0]
v

.
(d) since [�]

t

2 R>0, by monotonicity and (c) [P 0]
t

+
[A1]

t

> [P 0]
v

.
) by (a), (b), (d) then [P 0; v = A

i]
t

> [P 0; v = A

i]
v

.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [�]

t

and [�]
v

given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprograms A, B, C where [A]
v

= [B]
v

=
[C]

v

= 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]
t

6 s1 and
[B]

t

6 s2 then [P]
t

= s1 + s2 + [C]
t

.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.

do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time

As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P]

t

and the virtual time which is
advanced by sleep statements which we write as [P]

v

. Both these
abstract functions return time values, thus, [�]

v

, [�]
t

2 R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [�]v and [�]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [�]
v

can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

We therefore overload [�]
v

to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[�]

v

for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ⇡ on
actual times, where:

8s, t. s ⇡ t ⌘ |(s� t)| 6 ✏ (1)

for some value of ✏ which is the maximum negligible time value
with respect to the application at hand. For example, if ✏ = 0.1
then 3 ⇡ 3.05 ⇡ 2.92.

In the case of Sonic Pi, we mitigate any ✏-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ✏,
which are limited to a very small part of the model. Crucially,
these ✏ time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]

v

⇡ [sleep t]
t

and thus [sleep t]
t

⇡ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [�]
t

can be (partially) spec-
ified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

In the case of Ai = kernelSleep, then [kernelSleep t]
t

= t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]
t

⇡ 2

where P = kernelSleep 2, [P]
v

= 0, t = 1, and
[P]

t

= 2, thus ([P]
v

+ t) < [P]
t

– [kernelSleep 1; sleep 2]
t

⇡ 2

where P = kernelSleep 1, [P]
v

= 0, t = 2, and
[P]

t

= 1, thus ([P]
v

+ t) > [P]
t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [�]

t

and virtual time [�]
v

in the case for
sleep. In this case, the definition of [�]

t

is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [�]

v

. Instead, the actual time of a sleep

depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P]

t

. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [�]
v

and [�]
t

provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P]
t

> [P]
v

.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

•
P = ;. Trivial since [;]

v

= 0 by Definition 1.
•
P = (P 0; v = E), split on E

E = sleep t

(a) by Definition 1, [P 0; sleep t]
v

= [P 0]
v

+ t.
(b) by Definition 2, [P 0; sleep t]

t

= ([P 0]
v

+t) max [P 0]
t

.
(c) by (b) (([P 0]

v

+ t) max [P 0]
t

) > [P 0]
v

+ t

) by (a) and (c) then [P 0; sleep t]
t

> [P 0
sleep t]

v

otherwise E = A

i

(a) by Definition 1, [P 0; v = A

i]
v

= [P 0]
v

(b) by Definition 2, [P 0; v = A

i]
t

= [P 0]
t

+ [Ai]
t

(c) by inductive hypothesis [P 0]
t

> [P 0]
v

.
(d) since [�]

t

2 R>0, by monotonicity and (c) [P 0]
t

+
[A1]

t

> [P 0]
v

.
) by (a), (b), (d) then [P 0; v = A

i]
t

> [P 0; v = A

i]
v

.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [�]

t

and [�]
v

given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprograms A, B, C where [A]
v

= [B]
v

=
[C]

v

= 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]
t

6 s1 and
[B]

t

6 s2 then [P]
t

= s1 + s2 + [C]
t

.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.

e.g. P; sleep 1 where [P]t = 2, [P]v = 0
[P; sleep 1]t = (0 + 1) max 2 = 2∴
[P; sleep 1]v =1

[—]t : actual time[—]v : virtual time

do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time

As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P]

t

and the virtual time which is
advanced by sleep statements which we write as [P]

v

. Both these
abstract functions return time values, thus, [�]

v

, [�]
t

2 R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [�]v and [�]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [�]
v

can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

We therefore overload [�]
v

to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[�]

v

for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ⇡ on
actual times, where:

8s, t. s ⇡ t ⌘ |(s� t)| 6 ✏ (1)

for some value of ✏ which is the maximum negligible time value
with respect to the application at hand. For example, if ✏ = 0.1
then 3 ⇡ 3.05 ⇡ 2.92.

In the case of Sonic Pi, we mitigate any ✏-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ✏,
which are limited to a very small part of the model. Crucially,
these ✏ time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]

v

⇡ [sleep t]
t

and thus [sleep t]
t

⇡ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [�]
t

can be (partially) spec-
ified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

In the case of Ai = kernelSleep, then [kernelSleep t]
t

= t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]
t

⇡ 2

where P = kernelSleep 2, [P]
v

= 0, t = 1, and
[P]

t

= 2, thus ([P]
v

+ t) < [P]
t

– [kernelSleep 1; sleep 2]
t

⇡ 2

where P = kernelSleep 1, [P]
v

= 0, t = 2, and
[P]

t

= 1, thus ([P]
v

+ t) > [P]
t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [�]

t

and virtual time [�]
v

in the case for
sleep. In this case, the definition of [�]

t

is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [�]

v

. Instead, the actual time of a sleep

depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P]

t

. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [�]
v

and [�]
t

provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P]
t

> [P]
v

.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

•
P = ;. Trivial since [;]

v

= 0 by Definition 1.
•
P = (P 0; v = E), split on E

E = sleep t

(a) by Definition 1, [P 0; sleep t]
v

= [P 0]
v

+ t.
(b) by Definition 2, [P 0; sleep t]

t

= ([P 0]
v

+t) max [P 0]
t

.
(c) by (b) (([P 0]

v

+ t) max [P 0]
t

) > [P 0]
v

+ t

) by (a) and (c) then [P 0; sleep t]
t

> [P 0
sleep t]

v

otherwise E = A

i

(a) by Definition 1, [P 0; v = A

i]
v

= [P 0]
v

(b) by Definition 2, [P 0; v = A

i]
t

= [P 0]
t

+ [Ai]
t

(c) by inductive hypothesis [P 0]
t

> [P 0]
v

.
(d) since [�]

t

2 R>0, by monotonicity and (c) [P 0]
t

+
[A1]

t

> [P 0]
v

.
) by (a), (b), (d) then [P 0; v = A

i]
t

> [P 0; v = A

i]
v

.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [�]

t

and [�]
v

given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprograms A, B, C where [A]
v

= [B]
v

=
[C]

v

= 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]
t

6 s1 and
[B]

t

6 s2 then [P]
t

= s1 + s2 + [C]
t

.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.

Time system

do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time

As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P]

t

and the virtual time which is
advanced by sleep statements which we write as [P]

v

. Both these
abstract functions return time values, thus, [�]

v

, [�]
t

2 R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [�]v and [�]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [�]
v

can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

We therefore overload [�]
v

to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[�]

v

for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ⇡ on
actual times, where:

8s, t. s ⇡ t ⌘ |(s� t)| 6 ✏ (1)

for some value of ✏ which is the maximum negligible time value
with respect to the application at hand. For example, if ✏ = 0.1
then 3 ⇡ 3.05 ⇡ 2.92.

In the case of Sonic Pi, we mitigate any ✏-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ✏,
which are limited to a very small part of the model. Crucially,
these ✏ time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]

v

⇡ [sleep t]
t

and thus [sleep t]
t

⇡ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [�]
t

can be (partially) spec-
ified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

In the case of Ai = kernelSleep, then [kernelSleep t]
t

= t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]
t

⇡ 2

where P = kernelSleep 2, [P]
v

= 0, t = 1, and
[P]

t

= 2, thus ([P]
v

+ t) < [P]
t

– [kernelSleep 1; sleep 2]
t

⇡ 2

where P = kernelSleep 1, [P]
v

= 0, t = 2, and
[P]

t

= 1, thus ([P]
v

+ t) > [P]
t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [�]

t

and virtual time [�]
v

in the case for
sleep. In this case, the definition of [�]

t

is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [�]

v

. Instead, the actual time of a sleep

depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P]

t

. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [�]
v

and [�]
t

provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P]
t

> [P]
v

.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

•
P = ;. Trivial since [;]

v

= 0 by Definition 1.
•
P = (P 0; v = E), split on E

E = sleep t

(a) by Definition 1, [P 0; sleep t]
v

= [P 0]
v

+ t.
(b) by Definition 2, [P 0; sleep t]

t

= ([P 0]
v

+t) max [P 0]
t

.
(c) by (b) (([P 0]

v

+ t) max [P 0]
t

) > [P 0]
v

+ t

) by (a) and (c) then [P 0; sleep t]
t

> [P 0
sleep t]

v

otherwise E = A

i

(a) by Definition 1, [P 0; v = A

i]
v

= [P 0]
v

(b) by Definition 2, [P 0; v = A

i]
t

= [P 0]
t

+ [Ai]
t

(c) by inductive hypothesis [P 0]
t

> [P 0]
v

.
(d) since [�]

t

2 R>0, by monotonicity and (c) [P 0]
t

+
[A1]

t

> [P 0]
v

.
) by (a), (b), (d) then [P 0; v = A

i]
t

> [P 0; v = A

i]
v

.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [�]

t

and [�]
v

given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprograms A, B, C where [A]
v

= [B]
v

=
[C]

v

= 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]
t

6 s1 and
[B]

t

6 s2 then [P]
t

= s1 + s2 + [C]
t

.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.

do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time

As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P]

t

and the virtual time which is
advanced by sleep statements which we write as [P]

v

. Both these
abstract functions return time values, thus, [�]

v

, [�]
t

2 R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [�]v and [�]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [�]
v

can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

We therefore overload [�]
v

to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[�]

v

for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ⇡ on
actual times, where:

8s, t. s ⇡ t ⌘ |(s� t)| 6 ✏ (1)

for some value of ✏ which is the maximum negligible time value
with respect to the application at hand. For example, if ✏ = 0.1
then 3 ⇡ 3.05 ⇡ 2.92.

In the case of Sonic Pi, we mitigate any ✏-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ✏,
which are limited to a very small part of the model. Crucially,
these ✏ time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]

v

⇡ [sleep t]
t

and thus [sleep t]
t

⇡ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [�]
t

can be (partially) spec-
ified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

In the case of Ai = kernelSleep, then [kernelSleep t]
t

= t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]
t

⇡ 2

where P = kernelSleep 2, [P]
v

= 0, t = 1, and
[P]

t

= 2, thus ([P]
v

+ t) < [P]
t

– [kernelSleep 1; sleep 2]
t

⇡ 2

where P = kernelSleep 1, [P]
v

= 0, t = 2, and
[P]

t

= 1, thus ([P]
v

+ t) > [P]
t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [�]

t

and virtual time [�]
v

in the case for
sleep. In this case, the definition of [�]

t

is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [�]

v

. Instead, the actual time of a sleep

depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P]

t

. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [�]
v

and [�]
t

provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P]
t

> [P]
v

.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

•
P = ;. Trivial since [;]

v

= 0 by Definition 1.
•
P = (P 0; v = E), split on E

E = sleep t

(a) by Definition 1, [P 0; sleep t]
v

= [P 0]
v

+ t.
(b) by Definition 2, [P 0; sleep t]

t

= ([P 0]
v

+t) max [P 0]
t

.
(c) by (b) (([P 0]

v

+ t) max [P 0]
t

) > [P 0]
v

+ t

) by (a) and (c) then [P 0; sleep t]
t

> [P 0
sleep t]

v

otherwise E = A

i

(a) by Definition 1, [P 0; v = A

i]
v

= [P 0]
v

(b) by Definition 2, [P 0; v = A

i]
t

= [P 0]
t

+ [Ai]
t

(c) by inductive hypothesis [P 0]
t

> [P 0]
v

.
(d) since [�]

t

2 R>0, by monotonicity and (c) [P 0]
t

+
[A1]

t

> [P 0]
v

.
) by (a), (b), (d) then [P 0; v = A

i]
t

> [P 0; v = A

i]
v

.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [�]

t

and [�]
v

given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprograms A, B, C where [A]
v

= [B]
v

=
[C]

v

= 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]
t

6 s1 and
[B]

t

6 s2 then [P]
t

= s1 + s2 + [C]
t

.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.

do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time

As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P]

t

and the virtual time which is
advanced by sleep statements which we write as [P]

v

. Both these
abstract functions return time values, thus, [�]

v

, [�]
t

2 R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [�]v and [�]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [�]
v

can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

We therefore overload [�]
v

to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[�]

v

for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ⇡ on
actual times, where:

8s, t. s ⇡ t ⌘ |(s� t)| 6 ✏ (1)

for some value of ✏ which is the maximum negligible time value
with respect to the application at hand. For example, if ✏ = 0.1
then 3 ⇡ 3.05 ⇡ 2.92.

In the case of Sonic Pi, we mitigate any ✏-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ✏,
which are limited to a very small part of the model. Crucially,
these ✏ time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]

v

⇡ [sleep t]
t

and thus [sleep t]
t

⇡ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [�]
t

can be (partially) spec-
ified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

In the case of Ai = kernelSleep, then [kernelSleep t]
t

= t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]
t

⇡ 2

where P = kernelSleep 2, [P]
v

= 0, t = 1, and
[P]

t

= 2, thus ([P]
v

+ t) < [P]
t

– [kernelSleep 1; sleep 2]
t

⇡ 2

where P = kernelSleep 1, [P]
v

= 0, t = 2, and
[P]

t

= 1, thus ([P]
v

+ t) > [P]
t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [�]

t

and virtual time [�]
v

in the case for
sleep. In this case, the definition of [�]

t

is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [�]

v

. Instead, the actual time of a sleep

depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P]

t

. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [�]
v

and [�]
t

provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P]
t

> [P]
v

.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

•
P = ;. Trivial since [;]

v

= 0 by Definition 1.
•
P = (P 0; v = E), split on E

E = sleep t

(a) by Definition 1, [P 0; sleep t]
v

= [P 0]
v

+ t.
(b) by Definition 2, [P 0; sleep t]

t

= ([P 0]
v

+t) max [P 0]
t

.
(c) by (b) (([P 0]

v

+ t) max [P 0]
t

) > [P 0]
v

+ t

) by (a) and (c) then [P 0; sleep t]
t

> [P 0
sleep t]

v

otherwise E = A

i

(a) by Definition 1, [P 0; v = A

i]
v

= [P 0]
v

(b) by Definition 2, [P 0; v = A

i]
t

= [P 0]
t

+ [Ai]
t

(c) by inductive hypothesis [P 0]
t

> [P 0]
v

.
(d) since [�]

t

2 R>0, by monotonicity and (c) [P 0]
t

+
[A1]

t

> [P 0]
v

.
) by (a), (b), (d) then [P 0; v = A

i]
t

> [P 0; v = A

i]
v

.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [�]

t

and [�]
v

given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprograms A, B, C where [A]
v

= [B]
v

=
[C]

v

= 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]
t

6 s1 and
[B]

t

6 s2 then [P]
t

= s1 + s2 + [C]
t

.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.

do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time

As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P]

t

and the virtual time which is
advanced by sleep statements which we write as [P]

v

. Both these
abstract functions return time values, thus, [�]

v

, [�]
t

2 R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [�]v and [�]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [�]
v

can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

We therefore overload [�]
v

to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[�]

v

for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ⇡ on
actual times, where:

8s, t. s ⇡ t ⌘ |(s� t)| 6 ✏ (1)

for some value of ✏ which is the maximum negligible time value
with respect to the application at hand. For example, if ✏ = 0.1
then 3 ⇡ 3.05 ⇡ 2.92.

In the case of Sonic Pi, we mitigate any ✏-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ✏,
which are limited to a very small part of the model. Crucially,
these ✏ time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]

v

⇡ [sleep t]
t

and thus [sleep t]
t

⇡ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [�]
t

can be (partially) spec-
ified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

In the case of Ai = kernelSleep, then [kernelSleep t]
t

= t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]
t

⇡ 2

where P = kernelSleep 2, [P]
v

= 0, t = 1, and
[P]

t

= 2, thus ([P]
v

+ t) < [P]
t

– [kernelSleep 1; sleep 2]
t

⇡ 2

where P = kernelSleep 1, [P]
v

= 0, t = 2, and
[P]

t

= 1, thus ([P]
v

+ t) > [P]
t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [�]

t

and virtual time [�]
v

in the case for
sleep. In this case, the definition of [�]

t

is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [�]

v

. Instead, the actual time of a sleep

depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P]

t

. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [�]
v

and [�]
t

provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P]
t

> [P]
v

.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

•
P = ;. Trivial since [;]

v

= 0 by Definition 1.
•
P = (P 0; v = E), split on E

E = sleep t

(a) by Definition 1, [P 0; sleep t]
v

= [P 0]
v

+ t.
(b) by Definition 2, [P 0; sleep t]

t

= ([P 0]
v

+t) max [P 0]
t

.
(c) by (b) (([P 0]

v

+ t) max [P 0]
t

) > [P 0]
v

+ t

) by (a) and (c) then [P 0; sleep t]
t

> [P 0
sleep t]

v

otherwise E = A

i

(a) by Definition 1, [P 0; v = A

i]
v

= [P 0]
v

(b) by Definition 2, [P 0; v = A

i]
t

= [P 0]
t

+ [Ai]
t

(c) by inductive hypothesis [P 0]
t

> [P 0]
v

.
(d) since [�]

t

2 R>0, by monotonicity and (c) [P 0]
t

+
[A1]

t

> [P 0]
v

.
) by (a), (b), (d) then [P 0; v = A

i]
t

> [P 0; v = A

i]
v

.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [�]

t

and [�]
v

given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprograms A, B, C where [A]
v

= [B]
v

=
[C]

v

= 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]
t

6 s1 and
[B]

t

6 s2 then [P]
t

= s1 + s2 + [C]
t

.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.

do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time

As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P]

t

and the virtual time which is
advanced by sleep statements which we write as [P]

v

. Both these
abstract functions return time values, thus, [�]

v

, [�]
t

2 R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [�]v and [�]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [�]
v

can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

We therefore overload [�]
v

to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[�]

v

for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ⇡ on
actual times, where:

8s, t. s ⇡ t ⌘ |(s� t)| 6 ✏ (1)

for some value of ✏ which is the maximum negligible time value
with respect to the application at hand. For example, if ✏ = 0.1
then 3 ⇡ 3.05 ⇡ 2.92.

In the case of Sonic Pi, we mitigate any ✏-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ✏,
which are limited to a very small part of the model. Crucially,
these ✏ time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]

v

⇡ [sleep t]
t

and thus [sleep t]
t

⇡ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [�]
t

can be (partially) spec-
ified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

In the case of Ai = kernelSleep, then [kernelSleep t]
t

= t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]
t

⇡ 2

where P = kernelSleep 2, [P]
v

= 0, t = 1, and
[P]

t

= 2, thus ([P]
v

+ t) < [P]
t

– [kernelSleep 1; sleep 2]
t

⇡ 2

where P = kernelSleep 1, [P]
v

= 0, t = 2, and
[P]

t

= 1, thus ([P]
v

+ t) > [P]
t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [�]

t

and virtual time [�]
v

in the case for
sleep. In this case, the definition of [�]

t

is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [�]

v

. Instead, the actual time of a sleep

depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P]

t

. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [�]
v

and [�]
t

provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P]
t

> [P]
v

.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

•
P = ;. Trivial since [;]

v

= 0 by Definition 1.
•
P = (P 0; v = E), split on E

E = sleep t

(a) by Definition 1, [P 0; sleep t]
v

= [P 0]
v

+ t.
(b) by Definition 2, [P 0; sleep t]

t

= ([P 0]
v

+t) max [P 0]
t

.
(c) by (b) (([P 0]

v

+ t) max [P 0]
t

) > [P 0]
v

+ t

) by (a) and (c) then [P 0; sleep t]
t

> [P 0
sleep t]

v

otherwise E = A

i

(a) by Definition 1, [P 0; v = A

i]
v

= [P 0]
v

(b) by Definition 2, [P 0; v = A

i]
t

= [P 0]
t

+ [Ai]
t

(c) by inductive hypothesis [P 0]
t

> [P 0]
v

.
(d) since [�]

t

2 R>0, by monotonicity and (c) [P 0]
t

+
[A1]

t

> [P 0]
v

.
) by (a), (b), (d) then [P 0; v = A

i]
t

> [P 0; v = A

i]
v

.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [�]

t

and [�]
v

given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprograms A, B, C where [A]
v

= [B]
v

=
[C]

v

= 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]
t

6 s1 and
[B]

t

6 s2 then [P]
t

= s1 + s2 + [C]
t

.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.

[—]t : actual time[—]v : virtual time

Denotational semantics
• State for virtual time !

• Read only actual time (updated from OS)

Temporal a = (start time, current time) →
 (old vtime → (a, new vtime))

Temporal a = (Time, Time) →
 (VTime → IO (a, VTime))

: Temporal ()

where �̂ represents (forwards, left-to-right) sequential, monadic
composition of denotations in the Temporal monad.

The interpretation of statement sequences is defined:
JP K :: (Env ! Temporal ())! Temporal ()

J;K k = k emptyEnv

JP ;SK k = JP K (�env ! (JSK env)>>= k)

The parameter k is a continuation (taking an environment Env) for
the tail of the right-associated semantics. In the inductive case, the
continuation passed to JP K is the pre-composition of the interpre-
tation of the statement S to the parameter continuation k.

At the top-level, we interpret a closed program to a Temporal ()
value by passing in the trivial continuation returning ():

JP K
top

= runTime (JP K (� ! return ()))

The interpretation of statements maps an environment to a possibly
updated environment, inside of a Temporal computation, defined:

JSK :: Env ! Temporal Env

J = EK env = (JEKenv)>>= (� ! return env)

Jv = EK env = (JEKenv)>>= (�x ! return env [v 7! x])

For both kinds of statement, with and without variable binding, the
expression E is evaluated where JEK :: Env ! Temporal Value .
The result of evaluating E is then monadically composed (via
>>= of the Temporal monad) with a computation returning an
environment. For statements without a binding, the environment
env is returned unmodified; for statements with a binding, the
environment env is extended with a mapping from v to the value x
of the evaluated expression, written here as env [v 7! x].

For expressions, we show just the interpretation of sleep and
variables expressions:

JEK :: Env ! Temporal Value

Jsleep tK env = sleep t

JvK env = return (env v)

Thus, sleep is interpreted in terms of the sleep function (see be-
low), where t is a constant, and variable expressions are interpreted
as a projection from the environment. The concrete interpretation
of other actions in the language, such as play, is ignored here since
they does not relate directly to the temporal semantics.

Interpretation of sleep The sleep operation, used above, pro-
vides the semantics for sleep as:

sleep :: VTime ! Temporal Value
sleep delayT = do nowT time

vT getVirtualTime
let vT 0 = vT + delayT
setVirtualTime vT 0

startT start
let di↵T = di↵Time nowT startT
if (vT 0

< di↵T)
then return ()
else kernelSleep (vT 0 � di↵T)

return NoValue

where NoValue 2 V alue. Thus, sleep proceeds first by getting
the current time nowT, calculating the new virtual time vT’ and
updating the virtual time state. If the new virtual time is less than
the elapsed time diffT then no actual (kernel) sleeping happens.
However, if the new virtual time is ahead of the elapsed time,
then the process waits for the difference such that the elapsed time
equals the virtual time.

Note that in this definition we have introduced an overhead, an
✏ time, arising from the time elapsed between the first statement

nowT time and the kernelSleep operation. The initial time
operation retrieves the current time and is used to calculate the
duration of the preceding program. Any sleeping that happens
however occurs after we have calculated the amount of time to sleep
and after we have decided whether a sleep is needed (all of which
takes some time to compute). Therefore a small ✏ time is introduced
here. We will account for this in the following section.

5.3 Soundness of the temporal monad: time safety

We replay the previous axiomatic specifications on the temporal
behaviour of Sonic Pi programs, and show that the monadic model
is sound with respect to these, i.e., that the model meets this spec-
ification. We call this a time safety property of the language, with
respect to the time system provided by the axiomatic specification.

Definition 1 (recap). Virtual time is specified for statements of
Sonic Pi programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

Lemma 2. [runTime JP K]
v

= [P]
v

, i.e., the virtual time of the
evaluated denotational model matches the virtual time calculated
from the axiomatic model.

Proof. For our model, the proof is straightforward. For the case of
P ;S, we rely on the monotonicity of virtual time: virtual time is
only ever increasing, and is only ever incremented by sleep.

Definition 2 (recap). The actual elapsed time [�]
t

can be (par-
tially) specified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

Lemma 3. [runTime JP K]
t

⇡ [P]
t

, i.e., the actual time of the
evaluated denotational model is approximately equal to actual time
calculated from the axiomatic model.

Proof. The key case is for (P ; sleep t), which we show here. Our
model interprets the evaluation of (P ; sleep t) as:

runTime (JP ; sleep tK (� ! return ()))

which desugars and simplifies as follows:

runTime (JP K (�e ! (Jsleep tK e)>>= � ! return ()))
⌘ runTime (JP K Jsleep tK)
The semantics reassociates statements, thus the interpretation for
P = ((;;S1); ...);Sn is of the form (JS1K �̂ ...(JSnK �̂ Jsleep tK))
(where f �̂ g is monadic forwards composition, i.e., f �̂ g = �x !
(f x) >>= g). Therefore, we can unroll and simplify the semantics
further to get the following IO computation (where JP K0 denotes
the unrolled interpretation of P):

do startT getCurrentTime
(x , vT 0) JP K0 (startT , startT) 0
nowT getCurrentTime
let vT 00 = vT 0 + t
setVirtualTime vT 00

let di↵T = di↵Time nowT startT
if (vT 00

< di↵T) then return ()
else kernelSleep0 (vT 00 � di↵T)

where kernelSleep0 x = threadDelay (round (x ⇤ 1000000)) is
used to simplify the code here (as per the definition of kernelSleep
in Figure 8).

• Paper describes core monadic semantics with Haskell

Time safety

where �̂ represents (forwards, left-to-right) sequential, monadic
composition of denotations in the Temporal monad.

The interpretation of statement sequences is defined:
JP K :: (Env ! Temporal ())! Temporal ()

J;K k = k emptyEnv

JP ;SK k = JP K (�env ! (JSK env)>>= k)

The parameter k is a continuation (taking an environment Env) for
the tail of the right-associated semantics. In the inductive case, the
continuation passed to JP K is the pre-composition of the interpre-
tation of the statement S to the parameter continuation k.

At the top-level, we interpret a closed program to a Temporal ()
value by passing in the trivial continuation returning ():

JP K
top

= runTime (JP K (� ! return ()))

The interpretation of statements maps an environment to a possibly
updated environment, inside of a Temporal computation, defined:

JSK :: Env ! Temporal Env

J = EK env = (JEKenv)>>= (� ! return env)

Jv = EK env = (JEKenv)>>= (�x ! return env [v 7! x])

For both kinds of statement, with and without variable binding, the
expression E is evaluated where JEK :: Env ! Temporal Value .
The result of evaluating E is then monadically composed (via
>>= of the Temporal monad) with a computation returning an
environment. For statements without a binding, the environment
env is returned unmodified; for statements with a binding, the
environment env is extended with a mapping from v to the value x
of the evaluated expression, written here as env [v 7! x].

For expressions, we show just the interpretation of sleep and
variables expressions:

JEK :: Env ! Temporal Value

Jsleep tK env = sleep t

JvK env = return (env v)

Thus, sleep is interpreted in terms of the sleep function (see be-
low), where t is a constant, and variable expressions are interpreted
as a projection from the environment. The concrete interpretation
of other actions in the language, such as play, is ignored here since
they does not relate directly to the temporal semantics.

Interpretation of sleep The sleep operation, used above, pro-
vides the semantics for sleep as:

sleep :: VTime ! Temporal Value
sleep delayT = do nowT time

vT getVirtualTime
let vT 0 = vT + delayT
setVirtualTime vT 0

startT start
let di↵T = di↵Time nowT startT
if (vT 0

< di↵T)
then return ()
else kernelSleep (vT 0 � di↵T)

return NoValue

where NoValue 2 V alue. Thus, sleep proceeds first by getting
the current time nowT, calculating the new virtual time vT’ and
updating the virtual time state. If the new virtual time is less than
the elapsed time diffT then no actual (kernel) sleeping happens.
However, if the new virtual time is ahead of the elapsed time,
then the process waits for the difference such that the elapsed time
equals the virtual time.

Note that in this definition we have introduced an overhead, an
✏ time, arising from the time elapsed between the first statement

nowT time and the kernelSleep operation. The initial time
operation retrieves the current time and is used to calculate the
duration of the preceding program. Any sleeping that happens
however occurs after we have calculated the amount of time to sleep
and after we have decided whether a sleep is needed (all of which
takes some time to compute). Therefore a small ✏ time is introduced
here. We will account for this in the following section.

5.3 Soundness of the temporal monad: time safety

We replay the previous axiomatic specifications on the temporal
behaviour of Sonic Pi programs, and show that the monadic model
is sound with respect to these, i.e., that the model meets this spec-
ification. We call this a time safety property of the language, with
respect to the time system provided by the axiomatic specification.

Definition 1 (recap). Virtual time is specified for statements of
Sonic Pi programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

Lemma 2. [runTime JP K]
v

= [P]
v

, i.e., the virtual time of the
evaluated denotational model matches the virtual time calculated
from the axiomatic model.

Proof. For our model, the proof is straightforward. For the case of
P ;S, we rely on the monotonicity of virtual time: virtual time is
only ever increasing, and is only ever incremented by sleep.

Definition 2 (recap). The actual elapsed time [�]
t

can be (par-
tially) specified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

Lemma 3. [runTime JP K]
t

⇡ [P]
t

, i.e., the actual time of the
evaluated denotational model is approximately equal to actual time
calculated from the axiomatic model.

Proof. The key case is for (P ; sleep t), which we show here. Our
model interprets the evaluation of (P ; sleep t) as:

runTime (JP ; sleep tK (� ! return ()))

which desugars and simplifies as follows:

runTime (JP K (�e ! (Jsleep tK e)>>= � ! return ()))
⌘ runTime (JP K Jsleep tK)
The semantics reassociates statements, thus the interpretation for
P = ((;;S1); ...);Sn is of the form (JS1K �̂ ...(JSnK �̂ Jsleep tK))
(where f �̂ g is monadic forwards composition, i.e., f �̂ g = �x !
(f x) >>= g). Therefore, we can unroll and simplify the semantics
further to get the following IO computation (where JP K0 denotes
the unrolled interpretation of P):

do startT getCurrentTime
(x , vT 0) JP K0 (startT , startT) 0
nowT getCurrentTime
let vT 00 = vT 0 + t
setVirtualTime vT 00

let di↵T = di↵Time nowT startT
if (vT 00

< di↵T) then return ()
else kernelSleep0 (vT 00 � di↵T)

where kernelSleep0 x = threadDelay (round (x ⇤ 1000000)) is
used to simplify the code here (as per the definition of kernelSleep
in Figure 8).

• wrt. virtual time

• wrt. actual time (modulo constant sequential overhead)

where �̂ represents (forwards, left-to-right) sequential, monadic
composition of denotations in the Temporal monad.

The interpretation of statement sequences is defined:
JP K :: (Env ! Temporal ())! Temporal ()

J;K k = k emptyEnv

JP ;SK k = JP K (�env ! (JSK env)>>= k)

The parameter k is a continuation (taking an environment Env) for
the tail of the right-associated semantics. In the inductive case, the
continuation passed to JP K is the pre-composition of the interpre-
tation of the statement S to the parameter continuation k.

At the top-level, we interpret a closed program to a Temporal ()
value by passing in the trivial continuation returning ():

JP K
top

= runTime (JP K (� ! return ()))

The interpretation of statements maps an environment to a possibly
updated environment, inside of a Temporal computation, defined:

JSK :: Env ! Temporal Env

J = EK env = (JEKenv)>>= (� ! return env)

Jv = EK env = (JEKenv)>>= (�x ! return env [v 7! x])

For both kinds of statement, with and without variable binding, the
expression E is evaluated where JEK :: Env ! Temporal Value .
The result of evaluating E is then monadically composed (via
>>= of the Temporal monad) with a computation returning an
environment. For statements without a binding, the environment
env is returned unmodified; for statements with a binding, the
environment env is extended with a mapping from v to the value x
of the evaluated expression, written here as env [v 7! x].

For expressions, we show just the interpretation of sleep and
variables expressions:

JEK :: Env ! Temporal Value

Jsleep tK env = sleep t

JvK env = return (env v)

Thus, sleep is interpreted in terms of the sleep function (see be-
low), where t is a constant, and variable expressions are interpreted
as a projection from the environment. The concrete interpretation
of other actions in the language, such as play, is ignored here since
they does not relate directly to the temporal semantics.

Interpretation of sleep The sleep operation, used above, pro-
vides the semantics for sleep as:

sleep :: VTime ! Temporal Value
sleep delayT = do nowT time

vT getVirtualTime
let vT 0 = vT + delayT
setVirtualTime vT 0

startT start
let di↵T = di↵Time nowT startT
if (vT 0

< di↵T)
then return ()
else kernelSleep (vT 0 � di↵T)

return NoValue

where NoValue 2 V alue. Thus, sleep proceeds first by getting
the current time nowT, calculating the new virtual time vT’ and
updating the virtual time state. If the new virtual time is less than
the elapsed time diffT then no actual (kernel) sleeping happens.
However, if the new virtual time is ahead of the elapsed time,
then the process waits for the difference such that the elapsed time
equals the virtual time.

Note that in this definition we have introduced an overhead, an
✏ time, arising from the time elapsed between the first statement

nowT time and the kernelSleep operation. The initial time
operation retrieves the current time and is used to calculate the
duration of the preceding program. Any sleeping that happens
however occurs after we have calculated the amount of time to sleep
and after we have decided whether a sleep is needed (all of which
takes some time to compute). Therefore a small ✏ time is introduced
here. We will account for this in the following section.

5.3 Soundness of the temporal monad: time safety

We replay the previous axiomatic specifications on the temporal
behaviour of Sonic Pi programs, and show that the monadic model
is sound with respect to these, i.e., that the model meets this spec-
ification. We call this a time safety property of the language, with
respect to the time system provided by the axiomatic specification.

Definition 1 (recap). Virtual time is specified for statements of
Sonic Pi programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

Lemma 2. [runTime JP K]
v

= [P]
v

, i.e., the virtual time of the
evaluated denotational model matches the virtual time calculated
from the axiomatic model.

Proof. For our model, the proof is straightforward. For the case of
P ;S, we rely on the monotonicity of virtual time: virtual time is
only ever increasing, and is only ever incremented by sleep.

Definition 2 (recap). The actual elapsed time [�]
t

can be (par-
tially) specified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

Lemma 3. [runTime JP K]
t

⇡ [P]
t

, i.e., the actual time of the
evaluated denotational model is approximately equal to actual time
calculated from the axiomatic model.

Proof. The key case is for (P ; sleep t), which we show here. Our
model interprets the evaluation of (P ; sleep t) as:

runTime (JP ; sleep tK (� ! return ()))

which desugars and simplifies as follows:

runTime (JP K (�e ! (Jsleep tK e)>>= � ! return ()))
⌘ runTime (JP K Jsleep tK)
The semantics reassociates statements, thus the interpretation for
P = ((;;S1); ...);Sn is of the form (JS1K �̂ ...(JSnK �̂ Jsleep tK))
(where f �̂ g is monadic forwards composition, i.e., f �̂ g = �x !
(f x) >>= g). Therefore, we can unroll and simplify the semantics
further to get the following IO computation (where JP K0 denotes
the unrolled interpretation of P):

do startT getCurrentTime
(x , vT 0) JP K0 (startT , startT) 0
nowT getCurrentTime
let vT 00 = vT 0 + t
setVirtualTime vT 00

let di↵T = di↵Time nowT startT
if (vT 00

< di↵T) then return ()
else kernelSleep0 (vT 00 � di↵T)

where kernelSleep0 x = threadDelay (round (x ⇤ 1000000)) is
used to simplify the code here (as per the definition of kernelSleep
in Figure 8).

soundness of the denotational semantics

Demo #2
“live loops”, synchronisation

Two problems

• Thrashing (zero time sleep)

• Deadlock

Preventing thrasing

[P]v ≠ 0

• Perform virtual time analysis

• Ensure that:

• Current system needs extending to concurrent &
higher-order setting

Extended time system

Verifying concurrent instruments

October 20, 2014

[seq]

[P]v = p [E]v = e

[P ; v = E]v = p+ e

[null]

[;]v = 0

[var]

[v]v = 0

[sleep]

[sleep t]v = t

[act]

[A

i

]v = 0

[spawn]

[P]v = t

[spawnN P]v = 0

[loop]

[P]v = t t 6= 0

[loopP]v = 1

Higher order Need to deal with functions. Where in the analysis will we

store information about these functions? Annotate function type. Requires a

type system (but only care about function structure)

[abs]

[�, v : � ` e : ⌧]v = n

[� ` �v.e : �

0�! ⌧]v = n

[app]

[e1 : �

n�! ⌧]v = n1 [e2 : �]v = n2

[e1 e2 : ⌧]v = n1 + n2

(i.e., call by value).

define :fours do |f,t|

f()

sleep (t*1.5)

f()

sleep (t*0.5)

f()

sleep t

f()

sleep t

end

f = lambda do |x| sample :drum_bass_soft end

fours(f, 0.5)

1

Verifying concurrent instruments

October 20, 2014

[seq]

[P]v = p [E]v = e

[P ; v = E]v = p+ e

[null]

[;]v = 0

[var]

[v]v = 0

[sleep]

[sleep t]v = t

[act]

[A

i

]v = 0

[spawn]

[P]v = t

[spawn :nameP]v = 0

[loop]

[P]v = t

[loopP]v = 1

[loop]

[P]v = t t 6= 0

[loopP]v = 1

Higher order Need to deal with functions. Where in the analysis will we

store information about these functions? Annotate function type. Requires a

type system (but only care about function structure)

[abs]

[�, v : � ` e : ⌧]v = n

[� ` �v.e : �

0�! ⌧]v = n

[app]

[e1 : �

n�! ⌧]v = n1 [e2 : �]v = n2

[e1 e2 : ⌧]v = n1 + n2

(i.e., call by value).

define :fours do |f,t|

f()

sleep (t*1.5)

f()

sleep (t*0.5)

f()

sleep t

f()

sleep t

end

f = lambda do |x| sample :drum_bass_soft end

fours(f, 0.5)

1

Verifying concurrent instruments

October 20, 2014

[seq]

[P]v = p [E]v = e

[P ; v = E]v = p+ e

[null]

[;]v = 0

[var]

[v]v = 0

[sleep]

[sleep t]v = t

[act]

[A

i

]v = 0

[spawn]

[P]v = t

[spawn :nameP]v = 0

[loop]

[P]v = t

[loopP]v = 1

iterate

[P]v = t

[n.times P]v = nt

n is constant

[loop]

[P]v = t t 6= 0

[loopP]v = 1

Higher order Need to deal with functions. Where in the analysis will we

store information about these functions? Annotate function type. Requires a

type system (but only care about function structure)

[abs]

[�, v : � ` e : ⌧]v = n

[� ` �v.e : �

0�! ⌧]v = n

[app]

[e1 : �

n�! ⌧]v = n1 [e2 : �]v = n2

[e1 e2 : ⌧]v = n1 + n2

(i.e., call by value).

define :fours do |f,t|

f()

sleep (t*1.5)

f()

sleep (t*0.5)

f()

sleep t

f()

sleep t

1

Verifying concurrent instruments

October 20, 2014

[seq]

[P]v = p [E]v = e

[P ; v = E]v = p+ e

[null]

[;]v = 0

[var]

[v]v = 0

[sleep]

[sleep t]v = t

[act]

[A

i

]v = 0

[spawn]

[P]v = t

[spawn :nameP]v = 0

[loop]

[P]v = t

[loopP]v = 1

iterate

[P]v = t

[n.times P]v = nt

n is constant

[loop]

[P]v = t t 6= 0

[loopP]v = 1

Higher order Need to deal with functions. Where in the analysis will we

store information about these functions? Annotate function type. Requires a

type system (but only care about function structure)

[abs]

[�, v : � ` e : ⌧]v = n

[� ` �v.e : �

0�! ⌧]v = n

[app]

[e1 : �

n�! ⌧]v = n1 [e2 : �]v = n2

[e1 e2 : ⌧]v = n1 + n2

(i.e., call by value).

define :fours do |f,t|

f()

sleep (t*1.5)

f()

sleep (t*0.5)

f()

sleep t

f()

sleep t

1

Verifying concurrent instruments

October 20, 2014

[seq]

[P]v = p [E]v = e

[P ; v = E]v = p+ e

[null]

[;]v = 0

[var]

[v]v = 0

[sleep]

[sleep t]v = t

[act]

[A

i

]v = 0

[spawn]

[P]v = t

[spawn :nameP]v = 0

[loop]

[P]v = t

[loopP]v = 1

iterate

[P]v = t

[n.times P]v = nt

n is constant

[loop]

[P]v = t t > 0

[loopP]v = 1

[cond]

[e1]v = s [e2]v = t

[if g1 then e1 else e2]v = s max t

Higher order Need to deal with functions. Where in the analysis will we

store information about these functions? Annotate function type. Requires a

type system (but only care about function structure)

[abs]

[�, v : � ` e : ⌧]v = n

[� ` �v.e : �

n�! ⌧]v = 0

[app]

[� ` e1 : �

n�! ⌧]v = n1 [� ` e2 : �]v = n2

[� ` e1 e2 : ⌧]v = n+ n1 + n2

(i.e., call by value).

define :fours do |f,t|

f()

sleep (t*1.5)

f()

sleep (t*0.5)

f()

1

Extended time system

Verifying concurrent instruments

October 20, 2014

[seq]

[P]v = p [E]v = e

[P ; v = E]v = p+ e

[null]

[;]v = 0

[var]

[v]v = 0

[sleep]

[sleep t]v = t

[act]

[A

i

]v = 0

[spawn]

[P]v = t

[spawnN P]v = 0

[loop]

[P]v = t t 6= 0

[loopP]v = 1

Higher order Need to deal with functions. Where in the analysis will we

store information about these functions? Annotate function type. Requires a

type system (but only care about function structure)

[abs]

[�, v : � ` e : ⌧]v = n

[� ` �v.e : �

0�! ⌧]v = n

[app]

[e1 : �

n�! ⌧]v = n1 [e2 : �]v = n2

[e1 e2 : ⌧]v = n1 + n2

(i.e., call by value).

define :fours do |f,t|

f()

sleep (t*1.5)

f()

sleep (t*0.5)

f()

sleep t

f()

sleep t

end

f = lambda do |x| sample :drum_bass_soft end

fours(f, 0.5)

1

Verifying concurrent instruments

October 20, 2014

[seq]

[P]v = p [E]v = e

[P ; v = E]v = p+ e

[null]

[;]v = 0

[var]

[v]v = 0

[sleep]

[sleep t]v = t

[act]

[A

i

]v = 0

[spawn]

[P]v = t

[spawn :nameP]v = 0

[loop]

[P]v = t

[loopP]v = 1

[loop]

[P]v = t t 6= 0

[loopP]v = 1

Higher order Need to deal with functions. Where in the analysis will we

store information about these functions? Annotate function type. Requires a

type system (but only care about function structure)

[abs]

[�, v : � ` e : ⌧]v = n

[� ` �v.e : �

0�! ⌧]v = n

[app]

[e1 : �

n�! ⌧]v = n1 [e2 : �]v = n2

[e1 e2 : ⌧]v = n1 + n2

(i.e., call by value).

define :fours do |f,t|

f()

sleep (t*1.5)

f()

sleep (t*0.5)

f()

sleep t

f()

sleep t

end

f = lambda do |x| sample :drum_bass_soft end

fours(f, 0.5)

1

Verifying concurrent instruments

October 20, 2014

[seq]

[P]v = p [E]v = e

[P ; v = E]v = p+ e

[null]

[;]v = 0

[var]

[v]v = 0

[sleep]

[sleep t]v = t

[act]

[A

i

]v = 0

[spawn]

[P]v = t

[spawn :nameP]v = 0

[loop]

[P]v = t

[loopP]v = 1

iterate

[P]v = t

[n.times P]v = nt

n is constant

[loop]

[P]v = t t 6= 0

[loopP]v = 1

Higher order Need to deal with functions. Where in the analysis will we

store information about these functions? Annotate function type. Requires a

type system (but only care about function structure)

[abs]

[�, v : � ` e : ⌧]v = n

[� ` �v.e : �

0�! ⌧]v = n

[app]

[e1 : �

n�! ⌧]v = n1 [e2 : �]v = n2

[e1 e2 : ⌧]v = n1 + n2

(i.e., call by value).

define :fours do |f,t|

f()

sleep (t*1.5)

f()

sleep (t*0.5)

f()

sleep t

f()

sleep t

1

Verifying concurrent instruments

October 20, 2014

[seq]

[P]v = p [E]v = e

[P ; v = E]v = p+ e

[null]

[;]v = 0

[var]

[v]v = 0

[sleep]

[sleep t]v = t

[act]

[A

i

]v = 0

[spawn]

[P]v = t

[spawn :nameP]v = 0

[loop]

[P]v = t

[loopP]v = 1

iterate

[P]v = t

[n.times P]v = nt

n is constant

[loop]

[P]v = t t > 0

[loopP]v = 1

Higher order Need to deal with functions. Where in the analysis will we

store information about these functions? Annotate function type. Requires a

type system (but only care about function structure)

[abs]

[�, v : � ` e : ⌧]v = n

[� ` �v.e : �

0�! ⌧]v = n

[app]

[e1 : �

n�! ⌧]v = n1 [e2 : �]v = n2

[e1 e2 : ⌧]v = n1 + n2

(i.e., call by value).

define :fours do |f,t|

f()

sleep (t*1.5)

f()

sleep (t*0.5)

f()

sleep t

f()

sleep t

1

Verifying concurrent instruments

October 20, 2014

[seq]

[P]v = p [E]v = e

[P ; v = E]v = p+ e

[null]

[;]v = 0

[var]

[v]v = 0

[sleep]

[sleep t]v = t

[act]

[A

i

]v = 0

[spawn]

[P]v = t

[spawn :nameP]v = 0

[loop]

[P]v = t

[loopP]v = 1

iterate

[P]v = t

[n.times P]v = nt

n is constant

[loop]

[P]v = t t > 0

[loopP]v = 1

[cond]

[e1]v = s [e2]v = t

[if g1 then e1 else e2]v = s max t

Higher order Need to deal with functions. Where in the analysis will we

store information about these functions? Annotate function type. Requires a

type system (but only care about function structure)

[abs]

[�, v : � ` e : ⌧]v = n

[� ` �v.e : �

n�! ⌧]v = 0

[app]

[� ` e1 : �

n�! ⌧]v = n1 [� ` e2 : �]v = n2

[� ` e1 e2 : ⌧]v = n+ n1 + n2

(i.e., call by value).

define :fours do |f,t|

f()

sleep (t*1.5)

f()

sleep (t*0.5)

f()

1

Higher-order time system

• Need to associate (virtual) times to functions

Verifying concurrent instruments

October 20, 2014

[seq]

[P]v = p [E]v = e

[P ; v = E]v = p+ e

[null]

[;]v = 0

[var]

[v]v = 0

[sleep]

[sleep t]v = t

[act]

[A

i

]v = 0

[spawn]

[P]v = t

[spawn :nameP]v = 0

[loop]

[P]v = t

[loopP]v = 1

iterate

[P]v = t

[n.times P]v = nt

n is constant

[loop]

[P]v = t t > 0

[loopP]v = 1

Higher order Need to deal with functions. Where in the analysis will we

store information about these functions? Annotate function type. Requires a

type system (but only care about function structure)

[abs]

[�, v : � ` e : ⌧]v = n

[� ` �v.e : �

n�! ⌧]v = 0

[app]

[� ` e1 : �

n�! ⌧]v = n1 [� ` e2 : �]v = n2

[� ` e1 e2 : ⌧]v = n+ n1 + n2

(i.e., call by value).

define :fours do |f,t|

f()

sleep (t*1.5)

f()

sleep (t*0.5)

f()

sleep t

f()

sleep t

1

Verifying concurrent instruments

October 20, 2014

[seq]

[P]v = p [E]v = e

[P ; v = E]v = p+ e

[null]

[;]v = 0

[var]

[v]v = 0

[sleep]

[sleep t]v = t

[act]

[A

i

]v = 0

[spawn]

[P]v = t

[spawn :nameP]v = 0

[loop]

[P]v = t

[loopP]v = 1

iterate

[P]v = t

[n.times P]v = nt

n is constant

[loop]

[P]v = t t > 0

[loopP]v = 1

Higher order Need to deal with functions. Where in the analysis will we

store information about these functions? Annotate function type. Requires a

type system (but only care about function structure)

[abs]

[�, v : � ` e : ⌧]v = n

[� ` �v.e : �

n�! ⌧]v = 0

[app]

[� ` e1 : �

n�! ⌧]v = n1 [� ` e2 : �]v = n2

[� ` e1 e2 : ⌧]v = n+ n1 + n2

(i.e., call by value).

define :fours do |f,t|

f()

sleep (t*1.5)

f()

sleep (t*0.5)

f()

sleep t

f()

sleep t

1

• Has the shape of traditional effect system

Γ, x : σ ⊢ e : !, F
Γ ⊢ λx . e : σ → !, ∅F

abs
Γ ⊢ e1 : σ → !, G

Γ ⊢ e1 e2 : !, F ⊔ G ⊔ H

F Γ ⊢ e2 : σ, H
app

Higher-order & dependent
sleep t

f()

sleep t

end

f = lambda do |x| sample :drum_bass_soft end

fours(f, 0.5)

Sometimes we need to have something dependent:

[app]

[e1 : (x : �)

f(x)���! ⌧]v = n1 [e2 : �]v = n2

[e1 e2 : ⌧]v = f(e2) + n1 + n2

In practise, can get most of this with analysis (constant propagation, and k-CFA

style approach to call sites).

cue n : n⇤![•]

sync n : np?[•]

Problems:

• Thrashing, i.e., Zero sleeps (solution, time system, like an e↵ect system)

• Deadlock (solution, session types, restrict occurences of sync and cue).

For example:

live_loop do

sync :B

cue :A

P

end

live_loop do

sync :A

cue :B

Q

end

A session based system would assign:

(?B.!A.P) ⇤ ||(?A.!B.Q)⇤

Is this really session types (cue is a broadcast).

•

2

• Time may depend on parameters:

define :foo do |t|!
 sleep t!
 …!
end

• If implicit, dependent-type style formulation not necessary

• IDE feedback on analysis to aid programming, e.g.,

Other benefits…

play :C4!
sleep 0.5!
play :es4!
sleep 0.25!
play :g4!
sleep 0.15!
play :as4!
sleep 0.5!
play :ds4!
sleep 0.125!
play :c5

How
long is
this so

far?

0.5
!
0.75
!
0.90
!
1.40
!
1.525

Preventing deadlocks

• Session-type style analysis

• cue ~ send
• sync ~ receive

cue :n : n! sync :n : n?

• Duality => compatibility => no deadlock

Cue/sync session types

live_loop :foo do!
 sync :B!
 cue :A!
 play :C3!
 sleep 1.0!
end

live_loop :bar do!
 sync :A!
 cue :B!
 play :E4!
 sleep 0.5!
end

: A?.B!.0 : B?.A!.0

B?.A!.0 ≠ dual(A?.B!.0)

• Here, incompatibility => deadlock

Cue/sync session types

live_loop :foo do!
 cue :A!
 sync :B!
 play :C3!
 sleep 1.0!
end

live_loop :bar do!
 cue :B!
 sync :A!
 play :E4!
 sleep 0.5!
end

: A!.B?.0 : B!.A?.0

A!.B?.0 ≠ dual(B!.A?.0)

• But this time there is no deadlock

Cue/sync session types

A!.B?.0 ≠ dual(B!.A?.0)
• cue is asynchronous

• use sub-typing on sessions

A!.P <: P.A!

∴ A!.B?.0 <: B?.A!.0!

B?.A!.0 = dual(B!.A?.0)

Putting it together

• Virtual time and sessions as effects

A session based system would assign:

(?B.!A.P) ⇤ ||(?A.!B.Q)⇤

Is this really session types (cue is a broadcast).

•

cue :A

sync :B

cue :B

sync :A

Does not lead to deadlock. Session type is:

!A.?B.P)||(!B.?A.P)

Make sends asynchronous. Use subtyping:

!A.P <: P.!A

(hm, but want to be able to do arbitrary commutes of these kind of things, so

maybe some kind of type equality would be better).

Make an e↵ect solution wth e↵ects and sessions (but as e↵ects).

: �

(!A.?B),n������! ⌧

Every ’sync’ gets a copy of the channel (multi-cast to this) sync :B sync :B

¡- second will pause.

Non-statically determinable sleeps Random numbers in a sleep.

1 Together

� ` e : ⌧ | vtime, session

[seq]

� ` P | s, S � ` e : ⌧ | t, T
� ` P ; v = e | s+ t, S.T

[null]

� ` ; | 0, 0
[var]

v : ⌧ 2 �

� ` v : ⌧ | 0, 0

[sleep]

� ` sleep t | t, 0
[act]

� ` A

i | 0, 0

[sync]

� ` sync n | 0, n!
[cue]

� ` cue n | 0, n?

[spawn]

� ` P | t, S
spawn :nameP | 0, S

[loop]

� ` P | t, S t > 0

� ` loopP | 1, µp.(S.p)

3

A session based system would assign:

(?B.!A.P) ⇤ ||(?A.!B.Q)⇤

Is this really session types (cue is a broadcast).

•

cue :A

sync :B

cue :B

sync :A

Does not lead to deadlock. Session type is:

!A.?B.P)||(!B.?A.P)

Make sends asynchronous. Use subtyping:

!A.P <: P.!A

(hm, but want to be able to do arbitrary commutes of these kind of things, so

maybe some kind of type equality would be better).

Make an e↵ect solution wth e↵ects and sessions (but as e↵ects).

: �

(!A.?B),n������! ⌧

Every ’sync’ gets a copy of the channel (multi-cast to this) sync :B sync :B

¡- second will pause.

Non-statically determinable sleeps Random numbers in a sleep.

1 Together

� ` e : ⌧ | vtime, session

⌧

t,S��! ⌧

[seq]

� ` P | s, S � ` e : ⌧ | t, T
� ` P ; v = e | s+ t, S.T

[null]

� ` ; | 0, 0
[var]

v : ⌧ 2 �

� ` v : ⌧ | 0, 0

[sleep]

� ` sleep t | t, 0
[act]

� ` A

i | 0, 0

[sync]

� ` sync n | 0, n!
[cue]

� ` cue n | 0, n?

[spawn]

� ` P | t, S
spawn :nameP | 0, S

[loop]

� ` P | t, S t > 0

� ` loopP | 1, µp.(S.p)

3

Putting it together

A session based system would assign:

(?B.!A.P) ⇤ ||(?A.!B.Q)⇤

Is this really session types (cue is a broadcast).

•

cue :A

sync :B

cue :B

sync :A

Does not lead to deadlock. Session type is:

!A.?B.P)||(!B.?A.P)

Make sends asynchronous. Use subtyping:

!A.P <: P.!A

(hm, but want to be able to do arbitrary commutes of these kind of things, so

maybe some kind of type equality would be better).

Make an e↵ect solution wth e↵ects and sessions (but as e↵ects).

: �

(!A.?B),n������! ⌧

Every ’sync’ gets a copy of the channel (multi-cast to this) sync :B sync :B

¡- second will pause.

Non-statically determinable sleeps Random numbers in a sleep.

1 Together

[seq]

� ` P | s, S � ` e : ⌧ | t, T
� ` P ; v = e | s+ t, S.T

[null]

� ` ; | 0, 0
[var]

v : ⌧ 2 �

� ` v : ⌧ | 0, 0

[sleep]

� ` sleep t | t, 0
[act]

� ` A

i | 0, 0

[sync]

� ` sync n | 0, n!
[cue]

� ` cue n | 0, n?

[spawn]

� ` P | t, S
spawn :nameP | 0, S

[loop]

� ` P | t, S t > 0

� ` loopP | 1, µp.S

3

A session based system would assign:

(?B.!A.P) ⇤ ||(?A.!B.Q)⇤

Is this really session types (cue is a broadcast).

•

cue :A

sync :B

cue :B

sync :A

Does not lead to deadlock. Session type is:

!A.?B.P)||(!B.?A.P)

Make sends asynchronous. Use subtyping:

!A.P <: P.!A

(hm, but want to be able to do arbitrary commutes of these kind of things, so

maybe some kind of type equality would be better).

Make an e↵ect solution wth e↵ects and sessions (but as e↵ects).

: �

(!A.?B),n������! ⌧

Every ’sync’ gets a copy of the channel (multi-cast to this) sync :B sync :B

¡- second will pause.

Non-statically determinable sleeps Random numbers in a sleep.

1 Together

[seq]

� ` P | s, S � ` e : ⌧ | t, T
� ` P ; v = e | s+ t, S.T

[null]

� ` ; | 0, 0
[var]

v : ⌧ 2 �

� ` v : ⌧ | 0, 0

[sleep]

� ` sleep t | t, 0
[act]

� ` A

i | 0, 0

[sync]

� ` sync n | 0, n!
[cue]

� ` cue n | 0, n?

[spawn]

� ` P | t, S
spawn :nameP | 0, S

[loop]

� ` P | t, S t > 0

� ` loopP | 1, µp.S

3

A session based system would assign:

(?B.!A.P) ⇤ ||(?A.!B.Q)⇤

Is this really session types (cue is a broadcast).

•

cue :A

sync :B

cue :B

sync :A

Does not lead to deadlock. Session type is:

!A.?B.P)||(!B.?A.P)

Make sends asynchronous. Use subtyping:

!A.P <: P.!A

(hm, but want to be able to do arbitrary commutes of these kind of things, so

maybe some kind of type equality would be better).

Make an e↵ect solution wth e↵ects and sessions (but as e↵ects).

: �

(!A.?B),n������! ⌧

Every ’sync’ gets a copy of the channel (multi-cast to this) sync :B sync :B

¡- second will pause.

Non-statically determinable sleeps Random numbers in a sleep.

1 Together

[seq]

� ` P | s, S � ` e : ⌧ | t, T
� ` P ; v = e | s+ t, S.T

[null]

� ` ; | 0, 0
[var]

v : ⌧ 2 �

� ` v : ⌧ | 0, 0

[sleep]

� ` sleep t | t, 0
[act]

� ` A

i | 0, 0

[sync]

� ` sync n | 0, n!
[cue]

� ` cue n | 0, n?

[spawn]

� ` P | t, S
spawn :nameP | 0, S

[loop]

� ` P | t, S t > 0

� ` loopP | 1, µp.S

3

iterate

� ` P | t, S
n.times P | nt, µp.S

n is constant

[cond]

� ` e1 : ⌧ | s, S �e2 : ⌧ | t, T
if g1 then e1 else e2 : ⌧ | s max t, S + T

[abs]

�, x : � ` e : ⌧ | n(x), S(x)

� ` �x.e : (x : �)

n(x),S(x)������! ⌧ | 0, 0
[app]

� ` e1 : (x : �)

n(x),S(x)������! ⌧ | n1, S1 � ` e2 : � | n2, S2

[� ` e1 e2 : ⌧ | n(x) + n1 + n2, S1.S2.S(x)]v

[app]

[e1 : (x : �)

f(x)���! ⌧]v = n1 [e2 : �]v = n2

[e1 e2 : ⌧]v = f(e2) + n1 + n2

4

iterate

� ` P | t, S
n.times P | nt, µp.(S.p)

n is constant

[cond]

� ` e1 : ⌧ | s, S �e2 : ⌧ | t, T
if g1 then e1 else e2 : ⌧ | s max t, S + T

[abs]

�, x : � ` e : ⌧ | n(x), S(x)

� ` �x.e : (x : �)

n(x),S(x)������! ⌧ | 0, 0
[app]

� ` e1 : (x : �)

n(x),S(x)������! ⌧ | n1, S1 � ` e2 : � | n2, S2

� ` e1 e2 : ⌧ | n(e2) + n1 + n2, S1.S2.S(e2)

[app]

[e1 : (x : �)

f(x)���! ⌧]v = n1 [e2 : �]v = n2

[e1 e2 : ⌧]v = f(e2) + n1 + n2

4

A session based system would assign:

(?B.!A.P) ⇤ ||(?A.!B.Q)⇤

Is this really session types (cue is a broadcast).

•

cue :A

sync :B

cue :B

sync :A

Does not lead to deadlock. Session type is:

!A.?B.P)||(!B.?A.P)

Make sends asynchronous. Use subtyping:

!A.P <: P.!A

(hm, but want to be able to do arbitrary commutes of these kind of things, so

maybe some kind of type equality would be better).

Make an e↵ect solution wth e↵ects and sessions (but as e↵ects).

: �

(!A.?B),n������! ⌧

Every ’sync’ gets a copy of the channel (multi-cast to this) sync :B sync :B

¡- second will pause.

Non-statically determinable sleeps Random numbers in a sleep.

1 Together

[seq]

� ` P | s, S � ` e : ⌧ | t, T
� ` P ; v = e | s+ t, S.T

[null]

� ` ; | 0, 0
[var]

v : ⌧ 2 �

� ` v : ⌧ | 0, 0

[sleep]

� ` sleep t | t, 0
[act]

� ` A

i | 0, 0

[sync]

� ` sync n | 0, n!
[cue]

� ` cue n | 0, n?

[spawn]

� ` P | t, S
spawn :nameP | 0, S

[loop]

� ` P | t, S t > 0

� ` loopP | 1, µp.(S.p)

3

Putting it together (2)
iterate

� ` P | t, S
n.times P | nt, µp.S

n is constant

[cond]

� ` e1 : ⌧ | s, S �e2 : ⌧ | t, T
if g1 then e1 else e2 : ⌧ | s max t, S + T

[abs]

�, x : � ` e : ⌧ | n(x), S(x)

� ` �x.e : (x : �)

n(x),S(x)������! ⌧ | 0, 0
[app]

� ` e1 : (x : �)

n(x),S(x)������! ⌧ | n1, S1 � ` e2 : � | n2, S2

[� ` e1 e2 : ⌧ | n(x) + n1 + n2, S1.S2.S(x)]v

[app]

[e1 : (x : �)

f(x)���! ⌧]v = n1 [e2 : �]v = n2

[e1 e2 : ⌧]v = f(e2) + n1 + n2

4

iterate

� ` P | t, S
n.times P | nt, µp.S

n is constant

[cond]

� ` e1 : ⌧ | s, S �e2 : ⌧ | t, T
if g1 then e1 else e2 : ⌧ | s max t, S + T

[abs]

�, x : � ` e : ⌧ | n(x), S(x)

� ` �x.e : (x : �)

n(x),S(x)������! ⌧ | 0, 0
[app]

� ` e1 : (x : �)

n(x),S(x)������! ⌧ | n1, S1 � ` e2 : � | n2, S2

� ` e1 e2 : ⌧ | n(e2) + n1 + n2, S1.S2.S(e2)

[app]

[e1 : (x : �)

f(x)���! ⌧]v = n1 [e2 : �]v = n2

[e1 e2 : ⌧]v = f(e2) + n1 + n2

4

do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time

As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P]

t

and the virtual time which is
advanced by sleep statements which we write as [P]

v

. Both these
abstract functions return time values, thus, [�]

v

, [�]
t

2 R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [�]v and [�]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [�]
v

can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:
[P ; v = E]

v

= [P]
v

+ [E]
v

[sleep t]
v

= t [v]
v

= 0
[;]

v

= 0 [Ai]
v

= 0

We therefore overload [�]
v

to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[�]

v

for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ⇡ on
actual times, where:

8s, t. s ⇡ t ⌘ |(s� t)| 6 ✏ (1)

for some value of ✏ which is the maximum negligible time value
with respect to the application at hand. For example, if ✏ = 0.1
then 3 ⇡ 3.05 ⇡ 2.92.

In the case of Sonic Pi, we mitigate any ✏-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ✏,
which are limited to a very small part of the model. Crucially,
these ✏ time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]

v

⇡ [sleep t]
t

and thus [sleep t]
t

⇡ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [�]
t

can be (partially) spec-
ified at the level of programs by the following equations:

[;]
t

⇡ 0

[P ; sleep t]
t

⇡ ([P]
v

+ t) max [P]
t

[P ; v = A

i]
t

⇡ [P]
t

+ [Ai]
t

In the case of Ai = kernelSleep, then [kernelSleep t]
t

= t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]
t

⇡ 2

where P = kernelSleep 2, [P]
v

= 0, t = 1, and
[P]

t

= 2, thus ([P]
v

+ t) < [P]
t

– [kernelSleep 1; sleep 2]
t

⇡ 2

where P = kernelSleep 1, [P]
v

= 0, t = 2, and
[P]

t

= 1, thus ([P]
v

+ t) > [P]
t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [�]

t

and virtual time [�]
v

in the case for
sleep. In this case, the definition of [�]

t

is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [�]

v

. Instead, the actual time of a sleep

depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P]

t

. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [�]
v

and [�]
t

provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P]
t

> [P]
v

.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

•
P = ;. Trivial since [;]

v

= 0 by Definition 1.
•
P = (P 0; v = E), split on E

E = sleep t

(a) by Definition 1, [P 0; sleep t]
v

= [P 0]
v

+ t.
(b) by Definition 2, [P 0; sleep t]

t

= ([P 0]
v

+t) max [P 0]
t

.
(c) by (b) (([P 0]

v

+ t) max [P 0]
t

) > [P 0]
v

+ t

) by (a) and (c) then [P 0; sleep t]
t

> [P 0
sleep t]

v

otherwise E = A

i

(a) by Definition 1, [P 0; v = A

i]
v

= [P 0]
v

(b) by Definition 2, [P 0; v = A

i]
t

= [P 0]
t

+ [Ai]
t

(c) by inductive hypothesis [P 0]
t

> [P 0]
v

.
(d) since [�]

t

2 R>0, by monotonicity and (c) [P 0]
t

+
[A1]

t

> [P 0]
v

.
) by (a), (b), (d) then [P 0; v = A

i]
t

> [P 0; v = A

i]
v

.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [�]

t

and [�]
v

given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprograms A, B, C where [A]
v

= [B]
v

=
[C]

v

= 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]
t

6 s1 and
[B]

t

6 s2 then [P]
t

= s1 + s2 + [C]
t

.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.

[—]t : actual time

Time safety - extending

Time safety - extending

[Q]t ≈ if [P’]t ≤ [Q’]t
 then [P’]t ⨉ ⎡[Q’]t / [P’]t)⎤
 else [P’]t

[P | Q]t P = cue :A; P’
Q = sync :A; Q’

where

• Complicated multiple (non-leading) cues/syncs

• In practice, one sync/cue per looped thread is fine!

• Auto cue on live_loop!
• Optional sync at head

Challenges - “liveness”

• Responsive analysis

• Update AST with changed code, rather than complete re-
analyse

• Online analysis? (during typing)

• Programming with music is really fun!

• Great for education!

• Interesting verification challenges for music!

• Need fast analysis for live-programming

Conclusions

http://sonic-pi.net/
@fib_crisis

