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Abstract— The design of distributed algorithms is central
to the study of multiagent systems control. In this paper, we
consider a class of combinatorial cost-minimization problems
and propose a framework for designing distributed algorithms
with a priori performance guarantees that are near-optimal.
We approach this problem from a game-theoretic perspective,
assigning agents cost functions such that the equilibrium
efficiency (price of anarchy) is optimized. Once agents’ cost
functions have been specified, any algorithm capable of com-
puting a Nash equilibrium of the system inherits a performance
guarantee matching the price of anarchy. Towards this goal, we
formulate the problem of computing the price of anarchy as
a tractable linear program. We then present a framework for
designing agents’ local cost functions in order to optimize for
the worst-case equilibrium efficiency. Finally, we investigate the
implications of our findings when this framework is applied to
systems with convex, nondecreasing costs.

I. INTRODUCTION

The study of multiagent systems control has become more
popular in recent years, with the advent of a variety of
technologies that promise to change the way we interact with
our surroundings and significantly improve our quality of
life. In the near future, we envision fleets of autonomous
driverless cars and unmanned aerial vehicles that will allow
the transportation and shipping industries to reduce their cost
and environmental impact dramatically [1]. As an alternative
example, advances in the distributed control of the power grid
and transportation networks could potentially make our lives
more affordable and comfortable, and extend the expected
lifespan of existing infrastructure [2]–[4]. These and many
other industries will benefit from advancements in our ability
to control multiagent systems [5]–[7].

One of the main challenges of controlling multiagent
systems is in the design of control algorithms that can
generate decision-making rules for the agents of the system.
We seek algorithms that give rise to the desired global
behaviour, and that do so reliably and within the system’s
constraints. In order to satisfy these requirements, it is often
impractical for a central controller to communicate with
and steer every individual agent in the network. Instead, we
use distributed protocols, which would more easily satisfy a
system’s scalability, communication bandwidth, and privacy
requirements.
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Game theory provides an alternative approach to the
problem of distributed system design [8]. Although game
theory originated as a discipline in economics, it has quickly
taken a foothold in the study of multiagent systems, as
methodologies for the design of distributed protocols are
readily available that have provable performance guarantees
on the emergent system behaviour. Similar approaches have
been applied to a wide range of design problems including
communication network design [9], [10], demand/response
balancing [4], optimal power generation [11], and social
influence [12].

In the game-theoretic approach, a given optimization prob-
lem is solved in a distributed fashion by posing the problem
as a game. This approach, as proposed in [13], [14], can be
summarized in two steps. First, the system designer assigns
local cost functions to the agents in the system, then the
agents’ decision-making rules are formulated such that the
overall system is driven to the desired equilibria. If, after
these two steps, the equilibrium allocations optimize (or
are provably close to) the system-level objective, the end
result of this game-theoretic procedure is an efficient and
distributed solver for the original optimization problem.

We seek to establish a framework that enables system
designers to develop distributed algorithms that promote
provably near-optimal system behaviour that is agnostic to
the system’s structure. Our work leverages recent results in
[15] where the authors make significant headway towards
achieving this objective by providing methodologies for
tightly (exactly) calculating the worst-case performance of
equilibria for a specified class of games. This is done by
posing the problem of calculating the so-called price of
anarchy as a linear program, and then providing a tractable
solution to the problem of finding the decision-making rules
that maximize the performance of the game, using the price
of anarchy as a metric. While the results in [15] are limited
to the class of welfare maximization problems, in this paper,
we consider cost-minimization objectives.

A. Problem Formulation

In this paper, we consider cost-minimization games with
agents N = [n] = {1, . . . , n}, and m resources in the set
R = {r1, . . . , rm}. Every resource r is associated with an
anonymous local cost function cr(·) : N → R. We consider
anonymous local cost functions of the form cr(j) = vr ·c(j)
for any 1≤j≤n, where vr≥0 is the relative value associated
with resource r, and c(·) : N → R>0 is the system’s base
cost function. We normalize this cost function such that
c(1) = 1.
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Each agent i ∈ N selects an allocation ai from the
corresponding action set Ai ⊆ 2R, and the tuple a =
(a1, . . . , an) contains the selections of all the agents. The
system cost of allocation a ∈ A = A1 × · · · × An is,

C(a) =
∑
r∈R

cr(|a|r) =
∑
r∈R

vrc(|a|r), (1)

where |a|r = |{i ∈ N s.t. r ∈ ai}| is the number of agents
selecting resource r in allocation a. We are interested in the
allocation, aopt, that minimizes the system cost, i.e.,

aopt = argmin
a∈A

C(a). (2)

Ideally, we would design a distributed solution to (2). Un-
fortunately, finding aopt is an intractable (NP-hard) problem,
in general. Therefore, we settle for developing distributed and
tractable algorithms that find approximate solutions, and with
guarantees on the approximation ratio, using the game design
approach. The system designer is free to assign agents’ cost
functions, Ji(·) : A → R. In order to preserve the distributed
nature of the system, an agent cost function Ji should only
depend on the information that is locally available to agent
i. We use the following model for the cost of allocation a to
a given agent i ∈ N ,

Ji(a) =
∑
r∈ai

vrc(|a|r) · f(|a|r), (3)

where we refer to f(·) : N → R≥0 as the distribution rule.
The distribution rule represents the proportion of vrc(|a|r)
that every agent selecting r experiences, and it is the only
system parameter that the system designer can modify1. We
underline that, although we formalize the player cost function
as (3), there are no constraints on the distribution rule f(·).

We represent the above game with the tuple G =
(R, {vr}r∈R, N, {Ai}i∈N , f). In order to simplify the nota-
tion, we omit the subscripts for the value and action sets.

We can now define the notion of Nash equilibrium in cost
minimization games,

Definition 1 (Nash equilibrium). A given allocation ane ∈ A
is a pure Nash equilibrium of the cost-minimization game G
if Ji(ane) ≤ Ji(ai, a

ne
−i) for all allocations ai ∈ Ai and all

agents i ∈ N . a−i denotes all the entries in the tuple a
except ai, i.e. a−i = (a1, . . . , ai−1, ai+1, . . . , an).

The goal of this paper is to find the distribution rule f with
which the multiagent system performs near-optimally for a
class of games Gf = {(R, {vr}, N, {Ai}, f)}. Note that
specifying a distribution rule f(·) results in a well-defined
game for any resource set R, resource valuation {vr}, and
action set {Ai}, hence providing the desired scalability. The
performance of a distribution rule f will be measured using
the so-called price of anarchy, which is defined as,

PoA(f) = sup
G∈Gf

maxa∈NE(G) C(a)

mina∈A C(a)
≥ 1, (4)

where NE(G) is the set of all Nash equilibria of the game

1More general forms of the agent cost function exist that are nonanony-
mous, but recent results (e.g. [16, Thm. 2]) suggest that these perform just
as poorly in the worst-case as anonymous cost functions.

G2. While the system cost C(·) in the above also depends
on the game G, we do not explicitly indicate this for ease
of presentation. A price of anarchy close to 1 is desirable as
the worst-case equilibrium efficiency nears optimality.

The price of anarchy is an approximation ratio for the
worst-case performance of any algorithm capable of cal-
culating Nash equilibria. In general, the computation of
Nash equilibria is a PLS complete problem, but they can be
computed in polynomial time for certain classes of games,
see [17] for an illustration.

B. Our Contributions

The objectives of this paper are two-fold. First, we intend
to develop a tractable method for tightly computing the price
of anarchy within the class of problems considered. Second,
we wish to design agents’ cost functions of the form (3) such
that the price of anarchy is minimized, i.e. we wish to find
f∗ such that,

f∗ = argmin
f∈Rn

PoA(f). (5)

This paper is inspired by the results in [15], in which
a linear program solution to the optimization of price of
anarchy in welfare maximization games is presented. Though
we focus on cost-minimization games in this work, many of
our results extend from that paper.

The main contributions of this paper are the following:
• We demonstrate that the problem of calculating the

exact price of anarchy of a given cost-minimization
game (i.e. solving (4)) can be reformulated as a tractable
linear program (Theorems 1 and 2) with two unknowns
and O(n2) constraints.

• We show that the price of anarchy can be expressed
explicitly as the minimum over O(n2) computations
for special classes of the distribution rule (Corollary 1,
Theorem 4).

• We prove that the problem of finding the distribution
rule that minimizes the price of anarchy (i.e. (5)) is
also a tractable linear program (Theorem 3) with n+1
unknowns and O(n2) constraints.

C. Related Works

Over the past two decades, the characterization of the
price of anarchy has been a research focus in the field of
algorithmic game theory [18], [19]. Several recent advances
have been made towards computing the price of anarchy of
games and finding the optimal distribution rule. A popular
method for lower-bounding the price of anarchy comes
from smoothness arguments, e.g., see [20]. Unfortunately,
this method is limited in its applicability to game design
problems, as lower-bounds coming from smoothness are only
tight for congestion games in which the sum over all agents’
local costs is equal to the system cost (the budget-balanced
constraint). For a formal proof smoothness arguments are
loose for design problems, see [15, Thm. 1].

2To capture all of its dependencies, price of anarchy should be denoted
as PoA(f ;N, c), here we use PoA(f) to simplify the notation.
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Fig. 1. Price of anarchy of the optimal distribution rule f∗ plotted against PoA(fMC) and PoA(fSV). This game comprises n = 20 agents and a cost
function of the form c(j) = jd, d ∈ [1, 2]. The exact prices of anarchy of the distribution rules were calculated using the tractable linear program developed
in Section II. Observe that the optimal distribution rule found using the linear program in Theorem 3 clearly outperforms the two other distribution rules,
especially for cost functions of higher order (i.e. greater d). The left table delineates the relative efficiency of the other distribution rules when compared
to the one found using our framework for varying values of d. The table on the right shows computed values of the three distribution rules when d = 1.2.

The work in [21] provides a lower bound to the per-
formance of a more general class of equilibria, but is
limited to resource-allocation games using the Shapley value
distribution rule (defined in Section I-D) and in which agents
can only have singleton strategies.

A novel distribution rule is presented in [16], and a
lower-bound on its price of anarchy is found. Note that
their results apply to more general notions of cost function
and equilibrium than those considered in this paper. The
authors of [22] complete the proof of tightness for the new
distribution rule by constructing a game with price of anarchy
equal to this lower-bound. In a general setting, it is inefficient
to approach the design of distribution rules by examining
their suitability for specific applications one at a time.

The goal of designing agents’ cost functions that optimize
for effiency metrics including the price of anarchy has
already received much attention. Past application domains
have included resource allocation [23]–[26], set covering
[16], [27], communication networks [28], and congestion
pricing problems [29], [30]. For many of these problems,
the aforementioned Shapley value distribution rule has been
found to be optimal within the assumptions and constraints,
even for nonanonymous setups. However, we are currently
unable to design cost functions that optimize over efficiency
measures in a general context.

Many works have explored the adverse effects of op-
timizing over the price of anarchy on the efficiency of
the equilibria of a game by examining the tradeoffs with
the so-called price of stability (e.g. [22], [24], [31]). Their
results suggest that focusing solely on optimizing the price
of anarchy of a game (i.e. worst-case equilibrium efficiency)
will reduce the efficiency of any equilibria with superior
performance. The analysis of this tradeoff is important for
our framework but is outside the scope of this paper.

D. An illustration of our main result

We begin with a simple example to illustrate the results
in this paper. Consider the problem in which we seek to
coordinate a multiagent system with n = 20 agents, and
convex and nondecreasing cost functions c(j) = jd, d ∈
[1, 2]. For this illustration, we borrow the two most widely

studied distribution rules in the literature, the Shapley value
[24], [26], [28], [32] and marginal contribution [22], [27], in
order to benchmark the relative performance of the optimal
distribution rule found using our proposed framework.

Definition 2 (Distribution rules). The Shapley value, fSV,
and marginal contribution fMC are defined for j ∈ N as,

fSV(j) =
1

j
, (6)

fMC(j) = 1− c(j − 1)

c(j)
. (7)

The Shapley value distribution rule is budget-balanced,
which means that the player and system cost functions
defined in (1) and (3) satisfy C(a) =

∑
i∈N Ji(a). On

the other hand, the marginal contribution distribution rule
ensures Ji(a) = C(a) − C(∅, a−i), where ∅ denotes the
null allocation. While our study is not limited to budget-
balanced distribution rules, there are a number of recent
results suggesting that the Shapley value has optimal price
of anarchy over such rules [24], [26], [28], [32].

In Figure 1, we compare the price of anarchy for the
multiagent system when agents use the optimal distribution
rule (Theorem 3) with the price of anarchy for the Shapley
value and marginal contribution. Using Theorem 4, closed-
form expressions for tightly characterizing the prices of
anarchy for these two distribution rules were found. As
seen in Figure 1, the optimal distribution rule calculated
using our linear program has equal or better price of an-
archy when compared to PoA(fSV) and PoA(fMC), with
significant relative improvement as d increases (i.e. higher
order cost functions). For example, when d = 1.8, the price
of anarchy corresponding to the optimal distribution rule
performs 1.17× better than the Shapley value, and has 1.45×
improvement on the marginal contribution.

II. CHARACTERIZING THE PRICE OF ANARCHY

In this section, we reformulate the problem of finding the
price of anarchy for a given family of games Gf as a linear
program. The program’s solution is proven to be tight. This
result will allow us to also pose the distribution function
design problem as a linear program.



The following assumptions are necessary in order to
ensure that we always have C(aopt) > 0, which ensures that
(4) is well-defined.

Standing Assumptions There is at least one agent i ∈ N
that has action set Ai such that vr > 0, ∀r ∈ ai ∈ Ai. With
slight abuse of notation, we extend the definitions of f and
c for j = 0 and j = n+1, and assign that f(0) = c(0) = 0,
f(n+1) = f(n), and c(n+1) =∞. We note that this does
not change the results, but simplifies the notation.

A parametrization of the various allocations in the game,
borrowed from [33], is central to the development of our
linear program. In order to parametrize the problem, we
define the following sets.

Definition 3. We define the sets I and IR as follows,

I := {(a, x, b) ∈ N3
≥0 s.t. 1 ≤ a+ x+ b ≤ n},

IR := {(a, x, b) ∈ I s.t. a · x · b = 0 or a+ x+ b = n}.

Note that IR contains all points (a, x, b) on the planes
bounding its superset I, i.e., a=0, x=0, b=0, and a+x+b=n.

Theorem 1. Given the family of games
Gf={(R, {vr}, N, {Ai}, f)}, the price of anarchy is,

PoA(f) = 1/C∗,

where C∗ is the solution to the following linear program,

C∗ = min
θ(a,x,b)

∑
a,x,b

1{b+x≥1}c(b+ x)θ(a, x, b) (8)

s.t.
∑
a,x,b

[
af(a+x)c(a+x)−bf(a+x+1)c(a+x+1)

]
θ(a, x, b)≤0∑

a,x,b

1{a+x≥1}c(a+x)θ(a, x, b)= 1

θ(a, x, b) ≥ 0 ∀(a, x, b) ∈ I.

Proof. The first observation is that the game G with worst-
case Nash equilibrium ane and optimal allocation aopt has
the same price of anarchy as the game Ĝ in which every
agent i ∈ N only has action set Ai = {anei , a

opt
i }. We can

therefore reduce the set of games Gf to the set Ĝf and write,

PoA(f) = sup
G∈Ĝf

C(ane)

C(aopt)

s.t. Ji(ane)≤ Ji(aopti , ane−i) ∀i∈N .
By assumption, there is at least one agent in the game
covering a resource with nonzero value, which must mean
that C(ane) > 0. Therefore, without loss of generality, we
can normalize the values such that C(ane) = 1. We also
relax the constraint on the definition of Nash equilibrium,
D∗ = inf

G∈Ĝf
C(aopt)

s.t.
∑
i∈N

Ji(a
ne) ≤

∑
i∈N

Ji(a
opt
i , ane−i), C(a

ne) = 1,

where PoA(f) = 1/D∗. We know that D∗ ≤ C∗ because
of the relaxation, but we show in Lemma 1 (found in the
Appendix) that D∗ ≥ C∗ which implies equality. We now
show that any game can be posed under the parametrization
θ(a, x, b) ∈ R, (a, x, b) ∈ I. For every triplet (a, x, b) ∈

I, we assign to θ(a, x, b) the sum over the values of all
resources r ∈ R for which exactly x agents have r ∈ ane

and r ∈ aopt, exactly a agents have r ∈ ane and r /∈ aopt, and
exactly b agents have r /∈ ane and r ∈ aopt. The parametrized
version of the problem appears as follows,

D∗ = inf
θ(a,x,b)

∑
a,x,b

1{b+x≥1}c(b+x)θ(a, x, b)

s.t.
∑
a,x,b

[af(a+x)c(a+x)−bf(a+x+1)c(a+x+1)]θ(a, x, b)≤ 0,∑
a,x,b

1{a+x≥1}c(a+x)θ(a, x, b)= 1,

θ(a, x, b)≥ 0 ∀(a, x, b) ∈ I.
The infimum must be attained because when a + x is
greater than zero,

∑
a,x,b 1{a+x≥1}c(a + x)θ(a, x, b) = 1,

and when a+x is zero, θ(0, 0, b) must be bounded because,∑
b∈N bf(1)c(1)θ(0, 0, b) ≥ 0 and, because C(aopt) ≤

C(ane) = 1. This is in fact a linear program of the form,
C∗ = min

y
c>y

s.t. e>y ≤ 0, d>y − 1 = 0, − y ≤ 0.
where y is a column vector of all (n+ 1)(n+ 2)(n+ 3)/6
unkowns represented by θ(a, x, b), ∀(a, x, b) ∈ I.

We note that, given a cost function c and a distribution
rule f , the above linear program returns the price of anarchy
as well as the worst-case equilibrium and optimal allocation,
encoded in θ(a, x, b). By rewriting the linear program in its
Lagrangian dual, and by exploiting the problem structure to
reduce the number of constraints, we reformulate the primal
as a linear program that has O(n2) constraints and only two
unknowns.

Theorem 2 (The dual reformulation). For the family of
games Gf , the price of anarchy is 1/C∗, where C∗ is the
solution of the following program,

C∗ = max
λ∈R≥0,µ∈R

µ

s.t. 1{b+x≥1}c(b+ x)− µ1{a+x≥1}c(a+ x)

+ λ
[
af(a+x)c(a+x)− bf(a+x+1)c(a+x+1)

]
≥ 0

∀(a, x, b) ∈ IR.

Proof. We set up the Lagrangian function L(λ, µ, ν, a, x, b),
with Lagrange multipliers λ ∈ R≥0, ν ∈ RI≥0, µ ∈ R, and
define the dual function g(λ, µ, ν) as,

g(λ, µ, ν) = inf
a,x,b

L(λ, µ, ν, a, x, b)

= µ+ inf
a,x,b

∑
a,x,b

(
1{b+x≥1}c(b+ x) + λe(a, x, b)

− µ1{a+x≥1}c(a+ x)− νa,x,b
)
θ(a, x, b),

=


µ if 1{b+x≥1}c(b+ x) + λe(a, x, b)

−µ1{a+x≥1}c(a+ x) = νa,x,b ≥ 0

−∞ otherwise.
where e(a, x, b) = af(a+x)c(a+x) − bf(a+x+1)c(a+x+1)



for all (a, x, b) ∈ I. The dual problem is,
max
λ≥0,µ

µ s.t. 1{b+x≥1}c(b+ x)− µ1{a+x≥1}c(a+ x)

+ λe(a, x, b) ≥ 0,∀(a, x, b) ∈ I
We know that we have strong duality because the primal
problem is linear. After defining the changes of variables
j = a+ x and l = b+ x, the constraint can be written as,
µc(j) ≤ c(l) + λ[(j − x)f(j)c(j)− f(j + 1)c(j + 1)(l − x)]

= c(l) + λ
[
jf(j)c(j)− lf(j + 1)c(j + 1)

+ x[f(j + 1)c(j + 1)− f(j)c(j)]
]
.

When j and l are held constant, if f(j)c(j) is decreasing, we
want x to be as big as possible to tighten the constraint on
µ. Due to the same reasoning, if f(j)c(j) is nondecreasing,
we want x to be as small as possible for constant j and l.
The value of x is constrained by x ≥ 0, x ≥ j + l − n,
x ≤ l,x ≤ j, and x ≤ j + l − 1. Thus,

x =

{
min{j, l} if f(j + 1)c(j + 1) < f(j)c(j)

max{0, j + l − n} if f(j + 1)c(j + 1) ≥ f(j)c(j).
We now show that for all possible j and l, (a, x, b) resides
in the set IR.

1) When f(j)c(j) is decreasing, x = j when j ≤ l which
implies that a = 0, and x = l when j > l implying that
b = 0. In both cases, a ·x · b = 0, and so (a, x, b) ∈ IR.

2) When f(j)c(j) is nondecreasing, x = 0 when j+l ≤ n,
and when j + l > n, setting x = j + l− n implies that
a+b+x = n. These cases are included in a·x·b = 0, and
a+ x+ b = n, respectively. Therefore, (a, x, b) ∈ IR.

According to the previous theorem’s proof, there is po-
tential for simplification if we examine f(j)w(j) that are
nondecreasing and decreasing, separately. The following
corollary demonstrates that the (dual) linear program can
be rewritten with exactly n2 constraints, and no more than
2 unknowns for nondecreasing f(j)w(j). A similar result
exists for decreasing f(j)w(j), but is left out for brevity.

Corollary 1. Consider the family of games Gf .
i) If f(j)c(j) is nondecreasing for all j ∈ N , the dual

program further simplifies such that, for PoA = 1/C∗,

C∗ = max
λ∈R≥0,µ∈R

µ

s.t. µc(j) ≤ c(l)+λ
[
jf(j)c(j)−lf(j+1)c(j+1)

]
∀j, l ∈ [0, n], 1 ≤ j + l ≤ n,

µc(j) ≤ c(l)+λ
[
(n−l)f(j)c(j)−(n−j)f(j+1)c(j+1)

]
,

∀j, l ∈ [0, n], j + l > n.

ii) Additionally, if f(j) ≤ 1
j f(1)c(1)maxl∈N

l
c(l) , ∀j ∈ N ,

λ∗ =
1

f(1)c(1)
min
l∈N

c(l)

l
.

Proof. i) From the proof of Theorem 2, we know that x = 0
when 1 ≤ j + l ≤ n, j, l ∈ [0, n]. This gives,

µc(j) ≤ c(l) + λ[jf(j)c(j)− lf(j + 1)c(j + 1)].

We know from the same proof that when j + l > n, j, l ∈
[0, n], then x = j + l − n = n− a− b, i.e.,

µc(j) ≤ c(l)+λ[(n−l)f(j)c(j)−(n−j)f(j+1)c(j+1)].
ii) We begin by observing that the constraints on the dual
program corresponding to j = 0 are,

λ ≤ c(l)

l

1

f(1)c(1)
, ∀l ∈ N,

since j + l = l ≤ n, and part i) of this corollary. We denote
the strictest of these bounds on λ as,

λ∗ =
1

f(1)c(1)
min
l∈N

c(l)

l
.

When l = 0, the constraint in part i) simplifies to µ ≤
λjf(j). The rest of this proof amounts to showing that
the maximum value of µ is at λ∗. We consider the cases
1 ≤ j + l ≤ n and j + l > n separately.

Case 1 ≤ j + l ≤ n: Here we show that the constraints
corresponding to j > 0 and l = 0 are stricter on µ for λ ≤ λ∗
than any other constraints, i.e.,

λjf(j) ≤ c(l)

c(j)
+

λ

c(j)
[jf(j)c(j)− lf(j + 1)c(j + 1)],

whis is equivalent to showing that,
c(l)

c(j)
− λ

c(j)
[lf(j + 1)c(j + 1)] ≥ 0.

When j ≥ l > 0 and since f(j)c(j) is nondecreasing, f(j+
1)c(j + 1) ≥ f(j)c(j) ≥ f(l)c(l), which supports the first
inequality in,

c(l)

c(j)
− λ

c(j)
[lf(j + 1)c(j + 1)] (9)

≥ 1

c(j)
(c(l)− λlf(l)c(l)) = f(l)c(l)

c(j)
(

1

f(l)
− λl) (10)

≥ f(l)c(l)

c(j)
(λ∗ − λ)l, (11)

where the last inequality holds due to the requirement that
f(l) ≤ 1

l f(1)c(1)maxk∈N
k
c(k) = 1

lλ∗ . If l > j > 0, then
l ≥ j + 1 and f(l)c(l) ≥ f(j + 1)c(j + 1), and the first
inequality follows in the reasoning,

c(l)

c(j)
− λ

c(j)
[lf(j + 1)c(j + 1)]

≥ f(j + 1)c(j + 1)

c(j)

(
1

f(l)
− λl

)
≥ f(l)c(l)

c(j)
(λ∗ − λ)l,

where the second inequality follows due to the same reason-
ing as above. As λ∗ ≥ λ, and since f and c are nonnegative,
it follows that f(l)c(l)c(j) (λ∗−λ)l ≥ 0 and f(l)c(l)

c(j) (λ∗−λ)l ≥ 0.
Case j + l > n: Similar to the above, we must show that,

λjf(j) ≤ c(l)

c(j)
+

λ

c(j)
[(n−l)f(j)c(j)−(n−j)f(j+1)c(j+1)],

where the slope on the right-hand side is negative. This can
be shown once again using the requirement that f(l) ≤
1
λ∗l , j + l − n > 0, and the requirement that f(j)c(j) is
nondecreasing for all j ∈ N .

Note that if the requirements for Corollary 1 ii) are met,
then the value of µ∗ is determined by the strictest constraint
at λ = λ∗. The expression for the price of anarchy can



therefore be written explicitly as PoA = 1/C∗, where C∗ is
the minimum over the constraints, i.e.

C∗=min


min

1≤j+l≤n

c(l)

c(j)
+λ∗

[
jf(j)−lf(j+1)

c(j+1)

c(j)

]
min
j+l>n

c(l)

c(j)
+λ∗

[
(n−l)f(j)c(j)− . . .

. . .−(n−j)f(j+1) c(j+1)
c(j)

]
,

where j 6= 0 and j, l ∈ [0, n].

III. OPTIMIZING THE PRICE OF ANARCHY

We have developed a linear program for calculating the
exact price of anarchy of a game given the number of players
n, the cost function c and the distribution rule f . In this
section, we develop a framework that selects the optimal
cost distribution rule for minimizing the price of anarchy.
We show that this framework can also be posed as a linear
program.

Theorem 3. Given the cost function c and set F of permis-
sible distribution rules, the optimal distribution rule

f∗ = argmin
f∈F

PoA(f),

is in fact the solution to the following linear program

f∗ ∈ argmax
f∈F,µ∈R

µ

s.t. 1{b+x≥1}c(b+x)−µ1{a+x≥1}c(a+x)+af(a+x)c(a+x)
−bf(a+x+1)c(a+x+1) ≥ 0,∀(a, x, b) ∈ IR, (12)

and the optimal price of anarchy is

PoA(f∗) =
1

µ∗
,

where µ∗ is the corresponding result in (12).

Proof. For the proof that argminf∈F PoA(f) is attained,
meaning that the problem is well posed, see [15, Lemma 4].
Solving this problem means finding the distribution rule that
maximizes C∗ in Theorem 2,
f∗ ∈ argmax

f∈F
max

λ∈R,µ∈R
µ

s.t. 1{b+x≥1}c(b+ x)− µ1{a+x≥1}c(a+ x)

+ λe(a, x, b) ≥ 0,∀(a, x, b) ∈ IR,
where e(a, x, b) is defined as in Theorem 2. To avoid having
to solve a nonlinear program, we combine λ and f in f̃(j) :=
λf(j), and note that when (a, x, b) = (0, 0, 1), then f̃(1) =
λf(1) ≤ 1, and that λ ≥ 1/f(1) > 0 since f > 0. We can
now merge the two max operators to get

f̃∗ ∈ argmax
f̃∈Rn

≥0
,f̃(1)≥1,µ∈R

µ

s.t. 1{b+x≥1}c(b+ x)− µ1{a+x≥1}c(a+ x)

+ λẽ(a, x, b) ≥ 0,∀(a, x, b) ∈ IR.

where ẽ(a, x, b) = af̃(a+x)c(a+x) − bf̃(a+x+1)c(a+x+1)
for all (a, x, b) ∈ I. We note that f̃∗ must be feasible as
f̃∗ = λf∗(j) and f∗ ∈ F , and that PoA(f̃∗) = PoA(f∗) as
equilibrium conditions are invariant to scaling.

We have successfully developed a linear program approach
to designing distribution rules that minimize the price of

anarchy of a cost-minimization game, given the maximum
number of agents in the game and the cost function. Next,
we motivate these results by examining a class of cost-
minimization games.

IV. SPECIAL CASE: CONVEX COST FUNCTIONS

In this section, we explore the implications of the linear
program developed in Section II for a particular class of
cost-minimization games. We consider the class of games
for which c(j) is convex and nondecreasing, i.e. for all j ∈
[n− 1],

c(j + 1) ≥ c(j)
c(j + 1)− c(j) ≥ c(j)− c(j − 1).

Note that these properties of c imply that fMC(j) ≥
fSV(j), as c(j) − c(j − 1) ≥ c(j)−c(0)

j , ∀j > 1, and we
assumed earlier that c(0) = 0. Only in this section, we also
assume, without loss of generality, that f(1)c(1) = 1.

Theorem 4. For f(j)c(j) nondecreasing, c(j) convex and
nondecreasing, and f(j) ≤ fMC(j), ∀j ∈ N , we can rewrite
Corollary 1 as PoA(f) = 1/C∗, where

C∗ = min
λ∈[0,1],µ∈R

µ

s.t.µc(j)≤c(l)+λ[min{j, n−l}f(j)c(j)
−min{l, n−j}f(j+1)c(j+1)], l ≤ j ∈ N

Proof. Observe that if we were to write this theorem’s claim
for j + l ≤ n and j + l > n, separately, it would resemble
Corollary 1(i), with λ = 1 and j ≥ l. Note that when j = 0
and 1 ≤ j + l ≤ n, the constraints in Corollary 1 become,

λ ≤ 1

f(1) c(1)

c(l)

l
.

Due to the concavity of c, the right-hand side is minimized
for l = 1, and λ ≤ 1/f(1)c(1) = 1, by assumption. We
continue by demonstrating that the constraints on µ when
j = l are more strict than those when j < l, for λ ≤ 1.

When 1 ≤ j + l ≤ n, it is sufficient to show that,
0 ≤ c(l)− c(j) + λ(j − l)f(j + 1)c(j + 1).

For convex, nondecreasing cost function c, l > j, and λ ≤ 1,
c(l) ≥ c(j) + λ(c(j + 1)− c(j))(l − j).

Thus,
c(l)− c(j) + λ(j − l)f(j + 1)c(j + 1)

≥ c(j) + λ(c(j + 1)− c(j))(l − j)− c(j)
− λ(l − j)f(j + 1)c(j + 1)

= λ(l − j)(c(j + 1)− c(j)− f(j + 1)c(j + 1)) ≥ 0,
where the final inequality relies on c(j + 1)− c(j) ≥ f(j +
1)c(j + 1), which is true for f(j) ≤ fMC(j), ∀j ∈ N , and
l > j. Note that we need not consider the case when j = n
because there is no l ∈ N such that l > j = n.

The proof that µ is more strictly constrained for l = j
than for l > j, when j + l > n is almost identical, and also
uses the requirement that f(j) ≤ fMC(j), ∀j ∈ N .

The expression for C∗ in Theorem 4 may further simplify
when the distribution rule is known. For the two distribution



rules we have formally defined in this paper, we can explic-
itly write expressions for the price of anarchy. We have that
PoA(fSV) = 1/C∗SV, where,

C∗SV= min
l≤j∈N

{
c(l)

c(j)
+
min{j, n−l}

j
−min{l, n−j}c(j+1)

(j+1)c(j)

}
and PoA(fMC) = 1/C∗MC, where,

C∗MC=1+min
j∈N

{
min{j, n−j}

c(j)
[2c(j)−c(j−1)−c(j+1)]

}
.

The expression for C∗SV results from substituting f(j) = 1/j
into the equation in Theorem 4, and from Corollary 1 ii).
The proof for C∗MC is left out for conciseness, but amounts
to showing that the constraints for j > l are stricter than
those for j = l, due to similar reasoning as showing that we
need only consider j ≥ l in the proof of Theorem 4.

V. CONCLUSIONS

In this paper, we investigated distributed algorithm design
for finding approximate solutions to a combinatorial problem
that is difficult to solve, in general. By approaching the
problem from a game-theoretic perspective, we were able
to develop a linear program approach to calculate the price
of anarchy corresponding to a specified system objective.
Next, we proposed a method of designing the distribution
rule to minimize the price of anarchy for a given system.
For the case of convex and nondecreasing cost functions, we
have shown how the linear program further simplifies. Addi-
tionally, we have demonstrated that our designed distribution
rule has superior performance over the two most commonly
used (i.e. Shapley value and marginal contribution).
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APPENDIX

Lemma 1. The optimal value of the relaxed problem, D∗,
is greater than or equal to C∗ = 1/PoA(f).

Proof. We prove the lemma by constructing a game in the
parametrization that satisfies the constraints of the original
problem. Setup a congestion game with a feasible point
θ(a, x, b) with value v. This game consists of the resources
r(a, x, b, i) for all i ∈ N and for all (a, x, b) ∈ I. Each
resource r(a, x, b, i) is assigned the value θ(a, x, b)/n. In the
Nash equilibrium strategy, each agent i selects a+x consecu-
tive resources from each set {r(a, x, b, j)}∀j ∈ N, (a, x, b) ∈
I starting with resource r(a, x, b, i). In the optimal strategy,
each agent i selects b+x consecutive resources from the sets
{r(a, x, b, j)}∀j ∈ N, (a, x, b) ∈ I, starting from resource
r(a, x, b, (i − b) mod n). It is important to note that the
allocations anei and aopti have |anei ∩ a

opt
i | = x.

We must verify that ane is a Nash equilibrium. This game
is known to be a potential game, with potential function,

φ(a) =
∑
r∈R

|a|r∑
j=1

vrf(j)c(j).

Now we show that φ(aopti , ane−i) − φ(ane) ≥ 0 ∀i ∈ N ,
which implies that Ji(a

opt
i , ane−i)− Ji(ane) ≥ 0 ∀i ∈ N by

the definition of potential games. We have that

φ(ane) =
∑
j∈N

∑
a,x,b

θ(a, x, b)

n

a+x∑
i=1

f(i)c(i)

=
1

n

∑
a,x,b

nθ(a, x, b)

a+x∑
i=1

f(i)c(i).

When the agent i deviates from allocation ane to (aopti , ane−i),
there is one additional agent selecting b resources, one less
agent selecting a resources, and n− a− b resources that are
selected by the same number of agents. We can therefore
write that,

φ(aopti , ane−i)− φ(ane) =

=
1

n

∑
a,x,b

θ(a, x, b)
(
b

a+x+1∑
i=1

f(i)c(i) + a

a+x−1∑
i=1

f(i)c(i)

+ (n− a− b)
a+x∑
i=1

f(i)c(i)
)
− φ(ane)

=
1

n

∑
a,x,b

θ(a, x, b)
(
bf(a+ x+ 1)c(a+ x+ 1)

− af(a+ x)c(a+ x)
)
.

Which must be greater than or equal to zero, by both the
original and the relaxed constraints.
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