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The Importance of System-Level Information in Multiagent Systems
Design: Cardinality and Covering Problems

Dario Paccagnan1 and Jason R. Marden2

Abstract—A fundamental challenge in multiagent systems is to
design local control algorithms to ensure a desirable collective
behaviour. The information available to the agents, gathered
either through communication or sensing, naturally restricts the
achievable performance. Hence, it is fundamental to identify what
piece of information is valuable and can be exploited to design
control laws with enhanced performance guarantees. This paper
studies the case when such information is uncertain or inaccessi-
ble for a class of submodular resource allocation problems termed
covering problems. In the first part of this work we pinpoint a
fundamental risk-reward tradeoff faced by the system operator
when conditioning the control design on a valuable but uncertain
piece of information, which we refer to as the cardinality, that
represents the maximum number of agents that can simulta-
neously select any given resource. Building on this analysis,
we propose a distributed algorithm that allows agents to learn
the cardinality while adjusting their behaviour over time. This
algorithm is proved to perform on par or better to the optimal
design obtained when the exact cardinality is known a priori.

I. INTRODUCTION

SEVERAL social and engineering systems can be thought
of as a collection of multiple subsystems or agents, each

taking local decisions in response to available information. A
central goal in this field is to design control algorithms for the
individual subsystems to ensure that the collective behaviour
is desirable with respect to a global objective. Achieving this
goal is particularly challenging because of the restriction on
the information available to each agent and to the large scale
of typical systems. Examples include, but are not limited
to, power grid networks [2], charging of electric vehicles
[3], transportation network [4], task assignment problems [5],
sensor allocation [6], robotic networks [7]. A considerable
bulk of the research has focused on the design of local
control algorithms in a framework where the information at
agents’ disposal is itself a fixed datum of the problem. A
non exhaustive list includes [8], [9] and references therein.
Understanding the impact of information availability on the
achievable performances is a seemingly important but less
tracked problem [10], [11], [12].

Of particular interest is to recognise what supplementary
piece of information could coordinate the agents to improve
the system performance, and further how to incorporate this
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additional knowledge into a control algorithm. It is important
to highlight that providing each agent with all the information
available to the system is in principle beneficial, but not nec-
essarily desirable. Indeed, the communication costs associated
with propagating additional information through the system
might overcome the performance gains that the knowledge of
additional information gives. Therefore, the previous question
has to be understood within this context. Ideally, one is
interested in a piece of information that gives a significant
performance enhancement, and is simple to obtain. Loosely
speaking, we measure the value of an additional piece of
information with the performance gain that the best controller
can offer, using that supplementary piece of information.

Relative to the class of resource allocation problems termed
covering problems, [11], [13] show that the maximum number
of agents that can simultaneously select a resource (which we
term cardinality) constitutes a valuable piece of information.
More precisely, when the system operator is aware of the
cardinality of the problem, he can devise distributed algo-
rithms with improved performance guarantees. Nevertheless,
the knowledge of the exact cardinality is in many applications
uncertain, not available or may require excessive communica-
tion to be determined. Following this observation, a system
operator would like to understand how to operate when the
knowledge of the exact cardinality is not available. What is the
risk associated with using the wrong cardinality in the control
design? What is the reward for using the correct one? Further
and more fundamental: when the cardinality is not available
at all, can the agents learn it while simultaneously adjusting
their behaviour?

The paper proceeds by considering covering problems [14],
[15], a class of resource allocation problems where agents are
assigned to resources in order to maximise the total value
of covered items. Examples include vehicle-target assignment
problems [16], sensor allocation [6], task assignment [17],
among others. Due to the inherent limitations in sensing and
communication, in all these applications the control algorithms
are required to rely only on local information. Thus, we
model distributed covering problems as strategic-form games,
where the system operator has the ability to assign local
objective functions to each agent. Indeed, as shown in [18],
[10], Game Theory lends itself to analyse distributed systems
where individual agents adjust their behaviour in response to
partial information. Such game theoretic approach offers the
possibility to build upon existing tools to quantify the system
performance, as well as the opportunity to exploit readily
available algorithms to compute equilibria in a distributed
fashion [5], [13]. The overarching goal of the system operator
is to design local utilities in order to render the equilibria of
the game as efficient as possible. Agents can then be guided
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towards an equilibrium of such game by means of existing
distributed algorithms [5], [19]. It is important to highlight that
we are not modelling agents as competing units, but we are
rather designing their utilities to achieve the global objective.

Building on the previous results of [11], [13], we contribute
as follows.

i) We study the problem of optimally designing the utility
functions in the case when the true cardinality is not
known, but only an upper bound is available.1 We further
perform a risk-reward analysis in the case when the
information on the cardinality of the game is uncertain.
When the goal is to guard the system against the worst
case performances, the right choice is to design the
utilities as if the true cardinality was the given upper
bound. Different designs will offer potential benefits, but
come with a certain degree of risk. These results are
presented in Theorem 1.

ii) Motivated by the potential advantages and inherent short-
comings presented in the risk-reward analysis, we pro-
pose a distributed and asynchronous algorithm that dy-
namically updates the utility functions while agents adjust
their behaviour over time. Such algorithm requires no
initial information, and is certified to perform on par
or better (in a worst case sense) to the optimal design
possible, had we known the cardinality in the first place.
These results are summarised in Theorem 2.

iii) We compare, instance by instance, the performance of
the proposed learning algorithm with the performance
of the optimal design obtained with full knowledge of
the cardinality. We show that it is not possible to deem
one approach superior to the other on all instances of
covering problems, in that there are instances where one
outperforms the other, and the converse too. These results
are presented in Theorem 3.

The remaining of the paper is organised as follows. The next
section introduces the covering problem, its formulation as a
strategic game and the metric used to measure the system-level
performance. Section III studies the utility design problem
when a sole upper bound on the cardinality is available and
presents the risk-reward tradeoff associated with the use of
uncertain information. Section IV shows the possibility of
dynamically adjusting the utility functions to improve the
performance. Numerical simulations and conclusions follow.

Notation
For any two positive integers p ≤ q, denote [p] = {1, ..., p}

and [p, q] = {p, ..., q}; given (a1, . . . , an), denote a−i =
(a1, . . . , ai−1, ai+1, . . . , an). We use N, N0 and R≥0 to denote
the set of natural numbers excluding zero, the set of natural
numbers including zero, and the set of non-negative real
numbers, respectively.

II. DISTRIBUTED COVERING VIA GAME THEORY

In this section we present the covering problem and the
associated covering game. We further define the performance
metric used throughout the paper and recap previous results.

1A simple bound is given by the number of agents.

A. Model

Let us consider the problem of assigning a collection of
agents N = {1, . . . , n} to a finite set of resources R =
{r1, . . . , rm} with the goal of maximising the value of covered
resources. The feasible allocations for each agent i ∈ N
are the elements of the action set ai ∈ Ai ⊆ 2R, while
every resource r ∈ R is associated with a non-negative value
vr ≥ 0. Observe that ai ⊆ R. The welfare of an allocation
a = (a1, . . . , an) ∈ A1 × · · · × An is measured by the total
value of covered resources

W (a) :=
∑

r : |a|r≥1
vr ,

where |a|r denotes the number of agents that choose re-
source r in allocation a. The covering problem C =
{N,R, {Ai}i∈N , {vr}r∈R} consists in finding an optimal
allocation2, that is an assignment

ao ∈ argmax
a∈A

W (a).

Given a covering problem C, we define its cardinality as the
maximum number of players that can concurrently select the
same resource, that is

max
r∈R, a∈A

|a|r . (1)

Instead of directly specifying a distributed algorithm, we
shift the focus to the design of local utility functions for each
agent, as proposed first for distributed welfare games by [22],
[5] and successively by [11]. Within this framework, each
agent i ∈ N is associated with a utility function of the form

ui(ai, a−i) :=
∑
r∈ai

vr ·f(|a|r) . (2)

The function f : [n] → R≥0 constitutes our design choice
and is called distribution rule as it represents the fractional
benefit an agent receives from each resource he selects. The
advantages of using utilities of the form (2) are twofold. First,
ui(ai, a−i) is local as it depends only on the resources agent
i selects, their value and the number of agents that selects the
same resources. Second, (2) allows to construct a distribution
rule irrespective of {Ai}i∈N and {vr}r∈R so that the final
design is scalable and applies to different choices of the action
sets and of the resource valuations.

Given a covering problem C and a distribution rule f :
[n] → R≥0, we consider the associated covering game G :=
{C, f} = {N,R, {Ai}i∈N , {vr}r∈R, f}, where Ai is the set
of feasible allocations and the utility of agent i ∈ N is as in
equation (2).

We do not aim at designing f using information on the
specific instance of covering problem at hand, as such infor-
mation is often not available to the system designer. Our goal
is rather to construct a distribution rule that behaves well for a

2While this problem is in general intractable, approximation algorithms
for finding a near optimal solution to submodular optimization problems have
been extensively studied in the literature [20], [21]. The focus of this literature
is predominantly on centralized algorithms for finding near optimal alloca-
tions. In contrast, our focus is on distributed solutions where each decision-
making entity has incomplete information about the system as a whole.
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large class of problems. Hence, we consider the set of covering
problems for which the cardinality is exactly equal to k ∈ N,
k ≤ n. Given a distribution rule f : [k]→ R≥0, we define the
set of associated games as

Gkf := {G = {C, f} : max
r∈R, a∈A

|a|r = k} .

Our objective is to design f : [k]→ R≥0 so that the efficiency
of all the equilibria of games in Gkf is as high as possible. Note
that for fixed f , any game G is potential [22]. Hence existence
of equilibria is guaranteed and distributed algorithms, such as
the best response scheme, converge to them [23]. Throughout
the paper, we focus on pure Nash equilibria [24], which we
will refer to in the following just as equilibria.

Definition 1 (Pure Nash equilibrium). Given a game G, an
allocation ae ∈ A is a pure Nash equilibrium iff ui(aie, a

−i
e ) ≥

ui(ai, a−ie ) for all deviations ai ∈ Ai and for all players
i ∈ N . In the following we use NE(G) to denote the set of
Nash equilibria of G.

For a given distribution rule, we evaluate the efficiency of
the Nash equilibria of games in Gkf , adapting the concept of
Price of Anarchy from [25] as

PoA(f, k) := inf
G∈Gk

f

{
mina∈NE(G)W (a)

maxa∈AW (a)

}
≤ 1 . (3)

In essence, the quantity PoA(f, k) bounds the inefficiency of
the worst equilibrium (and thus of all equilibria) over games
in Gkf , that is over games with distribution rule set to f and
cardinality equal to k.3 The higher the price of anarchy, the
better the performance guarantees we can provide.4

B. Related Work and Performance Guarantees

The problem of designing a distribution rule so as to max-
imise PoA(f, k) has been studied in [11] and [13]. Both works
impose a natural constraint on the admissible f , requiring
f(1) = 1 and f : [k]→ R≥0 to be non-increasing. The optimal
distribution rule is explicitly derived in the former work, while
the latter shows how PoA(f, k) is fully characterised by a
single scalar quantity χ(f, k) defined in (4), measuring how
fast the distribution rule f decreases. We intend to build
upon these results, which are summarised in the following
proposition. Given k and a distribution rule f , we define

χ(f, k) := max
j≤k−1

{j · f(j)− f(j + 1), (k − 1) · f(k)} . (4)

Proposition 1 ([11], [13]). Consider a non-increasing distri-
bution rule f : [k]→ R≥0, with f(1) = 1.

3Observe that the quantity PoA(f, k) defined in (3) bounds the price of
anarchy not only for games with cardinality exactly equal to k, but for all the
games with cardinality smaller or equal to k. Indeed, among all games with
cardinality smaller or equal to k, the worst price of anarchy is achieved in a
game with cardinality exactly equal to k. This is because, for any game with
cardinality smaller than k, it is possible to construct a game with cardinality
k that has the same price of anarchy, by assigning an additional resource r0,
valued zero, to k agents.

4The quantity W (a) appearing in Equation (3) does depend on which game
instanceG we are considering, since the resource valuations do. Hence, a more
formal notation would entail using W (a;G). In the interest of readability, we
avoid the latter and simply use W (a) when no ambiguity arise.

i) The price of anarchy over the class Gkf is

PoA(f, k) =
1

1 + χ(f, k)
.

ii) The price of anarchy over the class Gkf is maximised for

f?k (j) = (j − 1)!

1
(k−1)(k−1)! +

∑k−1
i=j

1
i!

1
(k−1)(k−1)! +

∑k−1
i=1

1
i!

, j ∈ [k] (5)

with corresponding

χ(f?k , k) = (k − 1)·f?k (k) . (6)

iii) The optimal price of anarchy is a decreasing function of
the cardinality k

PoA(f?k , k) = 1− 1
1

(k−1)(k−1)! +
∑k−1
i=1

1
i!

. (7)

III. THE CASE OF UNKNOWN CARDINALITY: A
RISK-REWARD TRADEOFF

When the cardinality k defining the class of games Gkf is
known, Proposition 1 gives a conclusive answer on which
distribution rule agents should choose to achieve the best
worst case performance. In spite of that, the knowledge of
the exact cardinality is in many applications not available or
may require excessive communications between the agents to
be determined.

Motivated by this observation, we study in the following the
problem of designing a distribution rule when the cardinality
k defining the class of games Gkf is not known, but an
upper bound k ≤ ku is available. Observe that a universal
upper bound for such quantity can be easily computed as
the number n of agents. Potentially tighter bounds can be
derived for specific applications. Our objective is to design
a distribution rule f : [ku]→ R≥0 with the best performance
guarantees possible with the sole knowledge of ku. Once such
a distribution rule has been designed, one can use existing
distributed algorithms to find an equilibrium as discussed in
the introduction. Two natural questions arise in this context:

1) How should we select the distribution rule?
2) What performance can we guarantee?

We will show how selecting f?ku guards us against the worst
case performance but will not guarantee the same efficiency
of f?k , when k < ku. We will then present the potential
benefits and risks associated with a more aggressive choice.
These results motivate Section IV, where we will present a
dynamic scheme that overcomes the difficulties encountered
here, offering the same performances of f?k at no risk.

A. Two alternative distributions

A natural choice when an upper bound on the cardinality is
available consists in designing the distribution rule exactly at
the upper bound, that is using f?ku . A different choice might
entail constructing a distribution rule where the entries [kd]
are designed as if the cardinality was kd < ku, while the
remaining entries [kd + 1, ku] are optimally filled. The latter
suggestion is inspired by the observation that the optimal
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system level performance (measured by the price of anarchy)
is a decreasing function of k as per (7). This distribution is
denoted with f ′kd and is constructed fixing f ′kd(j) = f?kd(j)
for j ∈ [kd]. The tail entries corresponding to j ∈ [kd+1, ku]
are chosen to mitigate the risk taken. Formally, for any
1 < kd < ku we define the distribution rule f ′kd : [ku]→ R≥0
as a solution of the following optimisation problem

f ′kd ∈ argmax
f∈F

PoA(f, ku)

s.t. f(j) = f?kd(j) ∀j ∈ [kd] ,
(8)

where F = {f : [ku] → R≥0 with f(1) = 1, f(j + 1) ≤
f(j), ∀j ∈ [ku − 1]} is the set of admissible distributions.

Note that we do not define f ′kd for kd = 1 or kd = ku as
it would reduce in both cases to f?ku . Further observe that the
constraint f ′kd(j) = f?kd(j),∀j ∈ [kd] is equivalent to requiring
f ′kd ∈ argmaxf∈F PoA(f, kd).

The next proposition characterises explicitly f ′kd .

Proposition 2. For any 1 < kd < ku, the distribution f ′kd
defined in (8) is given by

f ′kd
(j) =


f?kd

(j) j ∈ [kd]

(j−1)!
(kd−1)!

f?kd
(kd)− χ(f ′kd

, ku)
(∑j−1−kd

h=1
(j−1)!

(j−h−1)!
+ 1
)

j ∈ [kd + 1, ku]
(9)

where χ(f ′kd , ku) is given by the following expression

χ(f ′kd , ku) =
(ku − 1)(ku − 1)!

ku + (ku − 1)
∑ku−1−kd
h=1

(ku−1)!
(ku−h−1)!

f?kd(kd)

(kd − 1)!
.

(10)

The proof is reported in Appendix A.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

j

f(j)

f?ku
f ′kd

Fig. 1: Example of distribution rules f?ku and f ′kd as defined
respectively in (5) and (9); ku = 10, kd = 2.

Remark. In [11] a distribution rule f was required to satisfy
the constraint j · f(j) ≤ 1 for all j. Loosely speaking the
above requirement guarantees that a distribution rule does not
overpay the players, in the sense that

∑
i∈N u

i(ai, a−i) ≤
W (a) for all allocations. Observe that such constraint might
be important for economic applications, but it is irrelevant in
the design of engineering systems. While [11] shows that the
distribution rule f?ku satisfies this property, the next lemma
proves that also f ′kd verifies this condition even if this was
not requested a priori.

Lemma 1. For any 1 < kd < ku the distribution f ′kd : [ku]→
R≥0 satisfies j ·f ′kd(j) ≤ 1 for all j ∈ [ku].

The proof is provided in Appendix A.

B. Performance comparison

Based on the metric introduced in (3), we compare in this
section the performance of f?ku with the performance of f ′kd .
Theorem 1 constitutes the main result of this section.

Theorem 1. Consider the set of games Gkf , where k ≤ ku.
i) The distribution f?ku has performance

PoA(f?ku , k) = PoA(f?ku , ku) .

Such performance is strictly worse than the one achieved
by the distribution f?k if k < ku and equal if k = ku.

ii) For 1 < kd < k the distribution f ′kd has performance

PoA(f ′kd , k) = PoA(f ′kd , ku) ,

which is strictly worse than the one achieved by f?ku .
For k ≤ kd < ku the distribution f ′kd has performance

PoA(f ′kd , k) = PoA(f?kd , kd) ,

which is strictly better than the one achieved by f?ku .

The proof can be found in Appendix A.

Remark. Claim i) in Theorem 1 shows that the performance
of the distribution f?ku on the class of games with cardinality
equal to k is independent on the actual value of k, as for
any k ≤ ku, such performance is governed by PoA(f?ku , ku).
Claim ii) in Theorem 1 ensures that the distribution f ′kd
outperforms f?ku for ku > kd ≥ k and the opposite when
kd < k. In each of these cases the performance is independent
on the actual value of k, but only depends on whether kd is
above or below k. Loosely speaking, if we underestimate k by
designing kd < k, the performance guarantees offered by f ′kd
are worse than what f?ku can achieve. The reverse holds in the
case when we overestimate the cardinality as in ku > kd ≥ k.

2 3 4 5

−1
−0.75
−0.5
−0.25

0

0.25

-1

0.099 0.012 0.001

kd

Performance of f ′kd relative to f?ku , k = 3

Fig. 2: The bars represent the difference PoA(f ′kd , k) −
PoA(f?ku , k), normalized by its largest value. As such, it
describes the normalized difference in performance between
f ′kd and f?ku for various values of 2 ≤ kd ≤ 5, k = 3, ku = 6.
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In Figure 2 we compare the performance of f ′kd with the per-
formance of f?ku . It is important to note that the performance
degradation (incurred whenever kd < k) always dominates
the potential gains (achieved when kd ≥ k). This is also
exemplified in Table I and motivates the next section where
we will introduce a dynamic algorithm capable of offering the
benefits of f?k without the knowledge of k.

TABLE I: Comparison between f ′kd and f?ku for 2 ≤ kd ≤ 5,
k = 3, ku = 6.

kd
PoA(f ′

kd
,k)−PoA(f?

ku
,k)

PoA(f?
ku

,k)
in %

2 −6.727
3 0.670

4 0.083

5 0.009

IV. BEYOND THE RISK-REWARD TRADEOFF

The previous section has focused on the design of a distribu-
tion rule when an upper bound on the true cardinality is known.
We have demonstrated how f?ku guards against worst case
performance while f ′kd could give potential benefits, but comes
with a certain degree of risk. In both cases the performance
is equal or inferior to what we could achieve if we knew the
true cardinality.

In this section we show how to overcome such difficulties,
when we are given a game G ∈ Gkf with unknown cardinality
k. We propose a distributed and asynchronous implementation
of the best response algorithm that dynamically updates which
distribution rule to use. The upshot is that we guarantee an
equal or superior performance to what we could achieve if we
knew k.

In the following, we allow distribution rules to depend on
an additional variable xr ∈ [n] defined for r ∈ R, which we
will dynamically update to coordinate the agents. In particular,
we generalise the utilities of (2) to

ui(ai, a−i;x) :=
∑
r∈ai

vrf(xr, |a|r) , (11)

where x = {xr}r∈R and f : [n] × [n] → R≥0 might be
different across the resources, depending on the value of xr.

One could question whether the improved performance
we will obtain comes from the additional degree of free-
dom introduced allowing resource specific distribution rules.
Nevertheless [11] shows that it is not the case, in that the
best resource specific and non resource specific distribution
perform equally (in the worst case sense). The only rationale
to introduce resource dependent rules is the distributability of
the algorithm. Indeed, similar results could have been achieved
dynamically updating a single distribution rule shared by all
resources, but such algorithm would have not been distributed.

A. Algorithm description and distributedness

In the following t ∈ N0 describes the time step of the
algorithm and at ∈ A the corresponding allocation. With slight
abuse of notation, for every resource r ∈ R we introduce the

quantity xr(t) that associates r ∈ R to the maximum number
of agents that chose such resource until time t ∈ N0. Further,
we define falg` : [n]→ R≥0 for every ` ∈ N as a distribution
rule5 matching the optimal in equation (5) for j ∈ [`] and
constant in between [`, n]

falg` (j) :=

{
f?` (j) j ∈ [`] ,

f?` (`) j ∈ [`+ 1, n] .
(12)

Algorithm 1 Asynchronous cardinality learning

1: Initialise a0; t← 0; xr(t)← |a0|r ∀r ∈ R

2: while not converged do

. Best response
3: i← 1 + (t mod n)
4: ait+1 ← argmaxai∈Ai

∑
r∈ai vrf

alg
xr(t)

(|at|r)
5: ait+1 ← (ait+1, a

−i
t )

. Update kt and thus f on every resource
6: xr(t+ 1)← max{xr(t), |at+1|r} ∀r ∈ R
7: t← t+ 1
8: end while

Through the additional variable xr(t), the algorithm keeps
track of the maximum number of players that visited every
resource until the current time t, and selects consequently a
resource specific distribution rule. In particular on every r ∈
R, the algorithm uses falg` with ` set to the maximum number
of players that visited that resource until time t (lines 4 and 6).
Following a round-robin rotation, players i is selected to best
respond and update the allocation (lines 3 to 5). The procedure
repeats until convergence.6

The algorithm is distributed in the sense that every agent
needs to keep track of xr(t) only for those resources he has
access to i.e. for r ∈ Ai. Further, it is asynchronous as players
need not to update their allocation in a specified order, but
can spontaneously revise their strategies (see footnote 6). It is
important to highlight that the communication requirements of
Algorithm 1 are the same of those needed by the best response
algorithm applied for instance to distribution rules f?ku or f ′kd .
That is, Algorithm 1 better exploits the information that is
already available.

In Figure 3 we compare the distribution f?k with falgx∞
r

, where
x∞r = limt→∞ xr(t). We exemplify such comparison for some
of the allowed values 1 ≤ x∞r ≤ k.

5The rule falg` is a valid distribution rule, being non increasing and such
that falg` (1) = 1. It will in general not satisfy j · falg` (j) ≤ 1, but this was
neither requested, nor has relevance in the design of engineering systems.

6Note that the best response strategy is not guaranteed to be unique. To
overcome this issue, in the following we assume the existence of a tie-
breaking rule selecting a single optimal allocation, should these be multiple.
Nevertheless, we observe that neither this, nor requiring players to best
respond in a round-robin is fundamental. It is still possible to show that
Algorithm 1 converges almost surely if the players best responding are
uniformly randomly selected form [n] and a single optimal allocation is
uniformly randomly extracted from the set of best responses. This will produce
a totally asynchronous algorithm.
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Fig. 3: Comparison between f?k and falgx∞
r

, in the case of k = 5,
n = 7, for different values x∞r = {2, 3, 5}.

For ease of exposition we have presented the case where
the distribution rules depend on the history xr(t), but the
same across the players. It is simple to extend these results
to the case of agent specific distribution rules. Every player
would use a resource specific distribution rules that depend on
the maximum number of players that visited every resource
up until his last visit. Similar convergence guarantees and
performance certificates will follow.

B. Convergence and quality of equilibria

The following theorem is the main result of this section.
Claim i) shows convergence of Algorithm 1 to a Nash equi-
librium. Claim ii) proves that the quality of such equilibrium
is higher or equal to what the optimal distribution f?k could
achieve.

Theorem 2. Consider a covering game G with cardinality k.

i) Algorithm 1 converges in a finite number of steps
to ae := limt→∞ at ∈ A. The allocation ae is a
Nash equilibrium of the game with resource specific
distribution rules fixed to falgx∞

r
for r ∈ R, where

x∞r := limt→∞ xr(t).

ii) Let kM := maxr∈R x∞r . The quality of the equilibrium
ae is higher than PoA(f?kM , kM ) and thus of PoA(f?k , k)

W (ae)

W (ao)
≥ PoA(f?kM , kM ) ≥ PoA(f?k , k) , (13)

where ao ∈ argmaxa∈AW (a).

These statements hold for any initial condition, even if
the allocation to which the Algorithm 1 converges may be
different. The proof is detailed in Appendix A.

Remark. The reason for which the proposed algorithm gives a
performance that is on par or better compared to what offered
by f?k is, informally, in the structure of the equilibria induced
by falgx∞

r
. More precisely, i) for each equilibrium ae, the number

of agents selecting resource r is |ae|r ≤ x∞r ≤ k; and ii) at
convergence resource r is using falgx∞

r
(with x∞r ≤ k), which

exactly matches the optimal f?x∞
r

for j ≤ x∞r . This is enough
to guarantee an improved performance. The proof of Theorem
2 makes this reasoning formal.

C. Instance by instance analysis

The previous theorem shows that Algorithm 1 achieves
a higher or equal worst case performance than the optimal
distribution f?k . While worst case analysis has been and still
is a fruitful tool to measure and improve on algorithms’ perfor-
mance, the computer science community has recently showed
interest in moving beyond it [26]. Inspired by this, the question
arises as to whether Algorithm 1 performs better than f?k ,
instance by instance. More formally, we would like to under-
stand if Algorithm 1 yields higher welfare than the optimally
designed rule on all the remaining instances (the non worst
case ones). We show that neither this, nor the converse holds.

Theorem 3. Let C be an instance of covering problem defined
in Section II. Further denote with NEalg(C) the set of equilib-
ria obtained using Algorithm 1 on C, and G? = {C, f?k} the
associated game where the optimal distribution f?k has been
selected.

i) There exists an instance C of the covering problem such
that

min
a∈NEalg(C)

W (a) > min
a∈NE(G?)

W (a) .

ii) There exists an instance C of the covering problem such
that

min
a∈NEalg(C)

W (a) < min
a∈NE(G?)

W (a) .

The proof is constructive and is presented in Appendix A.
Note that both statements in Theorem 3 compare the perfor-
mances of a given covering problem C and associated game
G?. Observe that this metric is significantly different from (3),
where we additionally take the infimum over problems with
cardinality equal to k.

V. SIMULATIONS

In this section we provide simulations to compare the
performance of different distribution rules.

For this numerical study, we consider the problem of
distributed data caching introduced in [27] as a technique
to reduce peak traffic in mobile data networks. In order to
alleviate the growing radio congestion caused by the recent
surge of mobile data traffic, the latter work suggested to
store popular and spectrum intensive items (such as movies
or songs) in geographically distributed stations. The question
we seek to answer is how to distribute the popular items across
the nodes of a network so as to maximize the total number of
queries fulfilled. More in details, we consider a square grid of
800× 800 bins and a set of geographically distributed agents
N (the stations) with position Pi. Additionally, we consider
a set R of data items, where each item has query rate qr
and is also geographically distributed with position Or. The
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allocation set of agents i is Ai ⊆ 2Ri , where Ri are the set of
resources r ∈ R that are sufficiently close to the considered
station. Formally, Ri = {r ∈ R s.t. ||Or − Pi|| ≤ ρ}. In
addition, we require that |ai| ≤ li for all ai ∈ Ai as the
storage capacity is limited in each station. The goal is to select
a feasible allocation on every station so as to jointly maximize
the number of queries fulfilled i.e.

W (a) =
∑

r : |a|r≥1
qr.

In the following we consider |N | = 150, |R| = 1500, ρ = 50,
li = 10 for all i. Data items are randomly located in the
grid (with uniform distribution), while the corresponding query
rates follow the Zipf distribution7 qr = 1/rα with α = 0.6.
The stations are uniformly distributed, on the grid. All the
instances considered have cardinality k = 3. We considered
5 · 104 instances of this problem, and for every instance we
computed an equilibrium allocation using the best response
algorithm in conjunction with f ′kd , f?ku , f?k or Algorithm 1.
Given the size of the problem, it is not possible to compute
the optimal allocation and thus the price of anarchy. As a
surrogate for the latter we use the ratio between W (ae) and
Wtot, where Wtot =

∑
r∈R qr is the total value of queries.

This ratio provides a lower bound for the true price of anarchy
as W (ao) ≤ Wtot. Observe that Wtot is constant throughout
any instance considered as Wtot =

∑
r≤1500 1/r

α. Thus, it is
possible to compare the performance across different instances
by looking at W (ae)/Wtot.

In Figure 4 (top) we compare the empirical distribution of
the ratio W (ae)/Wtot for the rules that use no information
about the true cardinality i.e. f ′kd , f?ku for kd = 2 and ku = 5.
In Figure 4 (bottom) we compare the performance of the worst
case optimal distribution f?k with that of our learning Algo-
rithm 1. The worst case ratio W (ae)/Wtot ever encountered
for each case is represented in Figure 4 with a marker, and
is also reported in the following table. Additionally, in Table
II we show the maximum, minimum, and average number of
best response rounds.8

TABLE II: Performance Comparison

Algorithm Min W (ae)/Wtot Min #BR Max #BR Avg #BR

BR with f ′kd
0.8823 2 5 3.32

BR with f?ku
0.9052 3 5 3.28

BR with f?k 0.9125 2 5 3.23
Algorithm 1 0.9186 3 5 3.29

First, we note that all the tested algorithms require a com-
parable number of best response rounds, and thus have very
similar running time. Second, we observe that f ′kd performs
the worst among all the other distributions, both in terms of
wort-case performance, and in terms of average performance.
Additionally, we note that Algorithm 1 and the distribution
rules f?ku , f?k perform similarly, when looking at an average
instance, while f?k and Algorithm 1 outperform f?ku in terms of

7Query rates approximately follow this distribution, as shown in [28].
8Observe that in each best response round all the agents have a chance to

update their allocation.
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Fig. 4: Empirical distribution of W (ae)/Wtot on 5 · 104
instances of the covering problem considered; k = 3, kd = 2
and ku = 5.

worst case performance with a slight advantage for Algorithm
1. The efficiency values are much higher compared to the
analytical worst case, hinting at the fact that such instances
are very few. Given that the average performance is similar,
but the distribution f?ku is proven to have inferior worst case
performance (Theorem 1), one might want to use either the
optimal distribution f?k or Algorithm 1. Recall indeed that the
worst case performance of Algorithm 1 is on par or better to f?k
(Theorem 2). Nevertheless, the use of f?k requires knowledge
of the cardinality k, while the algorithm proposed does not.

To conclude: Algorithm 1 achieves similar average perfor-
mances compared to f?k , but has a better worst case perfor-
mance than f?ku and a better-equal worst case performance
than f?k even if it does not require the knowledge of k.

VI. CONCLUSION

In this work we studied how additional information impacts
the optimal design of local utility functions, when the goal
is to improve the overall efficiency of a class of multiagent
systems. Relative to covering problems, in the first part of
the manuscript we highlighted an inherent tradeoff between
potential risks and rewards when such additional information
is uncertain. In the second part, we showed how it is possible
to fully eliminate the risks by using a distributed algorithm that
dynamically updated the local utility functions. The method-
ology used suggests that similar results could be obtained for
a broader class of resource allocation problems than the one
studied here.
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APPENDIX A

In the proofs presented in Appendix A, we make use of
Lemmas 2-5. Their presentation and proof is deferred to
Appendix B.

PROOF OF PROPOSITION 2

Thanks to result i) in Proposition 1 maximising PoA(f, ku)
is equivalent to minimising χ(f, ku) and f ′kd can be computed
by the following linear program (LP) in the unknowns x,
{f(j)}kuj=1

min
x≥0, f∈F

x

s.t. jf(j)− f(j + 1) ≤ x j ∈ [ku − 1] ,

(ku − 1)f(ku) ≤ x ,
f(j) = f?kd(j) j ∈ [kd] .

(14)

We remove the constraints x ≥ 0, f ∈ F as well as jf(j)−
f(j + 1) ≤ x for j ∈ [kd − 1] and introduce the following
relaxed linear program

min
x, f

x

s.t. jf(j)− f(j + 1) ≤ x j ∈ [kd, ku − 1] ,

(ku − 1)f(ku) ≤ x ,
f(j) = f?kd(j) j ∈ [kd] .

(15)

The proof is divided in two subproofs:
i) We show that a solution to the relaxed program (15) is

given by (9) and (10).
ii) We show that the solution to the relaxed program obtained

in i) is feasible for the original problem too.

Proof. i) The proof proceeds by showing that a solution of
(15) can be obtained transforming all the inequality constraint
into equalities. This will produce the expressions (9) and (10).

Let us define vj = f(j) for j ∈ [kd+1, ku] and introduce the
cost function J(x, vkd+1, . . . , vku) = x. We further introduce
the constraint functions g1(x, vkd+1) = −x − vkd+1 and
gi(x, vp+i−1, vp+i) = −x+j vp+i−1−vp+i for i ∈ [2, ku−p]
and gku−kd+1(x, vku) = −x+(ku− 1)vku . With these defini-
tions the LP (15) is equivalent to the following where we have
removed the decision variables that are already determined

min
x,vkd+1,...,vku

J(x, vkd+1, . . . , vku) ,

s.t. g1(x, vkd+1) ≤ −kdf?kd(kd) ,
gi(x, vp+i−1, vp+i) ≤ 0 i ∈ [2, ku − p] ,
gku−kd+1(x, vku) ≤ 0 .

Thanks to the convexity of the cost function and to the
polytopic constraints, the Karush-Kuhn-Tucker conditions are
necessary and sufficient for optimality [29]. Consequently, a
feasible point (x?, v?k+1, . . . , v

?
n) is an optimiser iff there exists

µi ∈ R so that

∇J? +
ku−kd+1∑
i=1

µi∇g?i = 0

g?i ≤ 0, µi ≥ 0, µig
?
i = 0 i ∈ [ku − kd + 1]

where we used ∇J? to indicate ∇J(x?, v?kd+1, . . . , v
?
ku
), and

similarly for g?i , ∇g?i . Observe that the distribution rule in
(9) and the corresponding χ(f ′kd , ku) in (10) are the unique
solution of the linear system g?i = 0 for all i ∈ [ku − kd + 1],
that is


jf ′kd(j)− f

′
kd
(j + 1)− χ(f ′kd , ku) = 0 j ∈ [kd, ku − 1] ,

(ku − 1)f ′kd(ku)− χ(f
′
kd
, ku) = 0 ,

f ′kd(j) = f?kd(j) j ∈ [kd] .
(16)

Primal feasibility and complementarity slackness are hence
naturally satisfied. We are only left to prove that there exists
µi ≥ 0 such that ∇J? +

∑ku−kd+1
i=1 µi∇g?i = 0. We proceed

by writing the stationarity conditions explicitly and show that
this is indeed the case. Note that both the cost function and
the constraints are linear so that their derivatives are constant
functions

∇J? = (1, 0, . . . , 0)

∇g?1 = (−1,−1, 0, . . . , 0)
∇g?2 = (−1, kd + 1,−1, 0, . . . , 0)

...
∇g?ku−kd−1 = (−1, 0, . . . , 0, ku − 2,−1, 0)
∇g?ku−kd = (−1, 0, . . . , 0, ku − 1,−1)

∇g?ku−kd+1 = (−1, 0, . . . , 0, ku − 1)

Solving the stationarity condition in a recursive fashion start-
ing from last component gives{
µi = µku−kd+1

(ku−1)(ku−1)!
(kd+i−1)! i ∈ [ku − kd]∑ku−kd+1

i=1 µi = 1 .

Substituting the first equation into the second one and solving
yields
µi =

(∑ku−kd−1
i=1

(ku−1)(ku−1)!
(kd+i−1)!

)−1
(ku−1)(ku−1)!

(kd+i−1)! i ∈ [ku − kd],

µku−kd+1 =

(∑ku−kd−1
i=1

(ku−1)(ku−1)!
(kd+i−1)!

)−1
.

Since µi ≥ 0 for all i ∈ [ku − kd + 1], we conclude that (9)
and (10) solve the relaxed program (15).

Proof. ii) The proof proceeds by showing that (9) and (10)
satisfy the constraints removed when transforming the original
program (14) into (15).

Using (10) and (9), it is trivial to verify that χ(f ′kd , ku) ≥ 0
and f ′kd(1) = 1, f ′kd(j) ≥ 0. We proceed to prove that f ′kd is
non increasing. Note that for j ≤ kd, f ′kd coincides with f?kd ,
which was proven to be non increasing in [11]. Further, from
Lemma 2 we know that jf ′kd(j)− (j + 1)f ′kd(j + 1) ≥ 0 for
j ∈ [kd, ku − 1]. Thus

jf ′kd(j)− jf
′
kd
(j + 1) ≥ jf ′kd(j)− (j + 1)f ′kd(j + 1) ≥ 0

for j ∈ [kd, ku−1], which guarantees that f ′kd is non increasing
for j ∈ [kd, ku] too.
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We are left to show that jf ′kd(j)− f
′
kd
(j+1) ≤ χ(f ′kd , ku)

for j ∈ [kd − 1]. Since j ∈ [kd − 1], it holds that

jf ′kd(j)− f
′
kd
(j + 1) = jf?kd(j)− f

?
kd
(j + 1).

Note that jf?kd(j) − f?kd(j + 1) ≤ χ(f?kd , kd) by definition
of χ(f?kd , kd) in (4). Further, χ(f?kd , kd) ≤ χ(f?ku , ku) for
any kd ≤ ku since the price of anarchy is a monotonically
decreasing function (Proposition 1). Finally, Lemma 3 shows
that for any kd ≤ ku, it holds χ(f?ku , ku) ≤ χ(f

′
kd
, ku). Hence

jf ′kd(j)− f
′
kd
(j+1) ≤ χ(f ′kd , ku) for j ∈ [kd− 1]. It follows

that f ′kd is feasible for the original problem (14).
Thanks to this, and to the fact that f ′kd is optimal for (15),

we conclude that f ′kd is a solution of the original problem.

PROOF OF LEMMA 1

Proof. The result of Lemma 2 implies that for all kd ≤ ku

kdf
′
kd
(kd)− jf ′kd(j) ≥ 0 ∀j ∈ [kd, ku − 1] .

Further we know from [11] that kdf
?
kd
(kd) ≤ 1. Since

f?kd(kd) = f ′kd(kd), we conclude that for j ∈ [kd, ku − 1]

1 ≥ kdf?kd(kd) = kdf
′
kd
(kd) ≥ jf ′kd(j) .

For j ∈ [kd], it holds f ′kd(j) = f?kd(j) and we already know
that the optimal distribution f?kd does not overpay the players
[11]. This concludes the proof.

PROOF OF THEOREM 1

Proof. i) Thanks to Proposition 1, the performance of f?ku on
the class of games with cardinality k can be computed as
PoA(f?ku , k) =

1
1+χ(f?

ku
,k) . Since k ≤ ku, we can apply part

i) of Lemma 4 to χ(f?ku , k) and conclude that

PoA(f?ku , k) =
1

1 + χ(f?ku , ku)
.

This means that the performance of f?ku on the set of games
with cardinality k is the same performance of the distribution
f?ku on the set of games with cardinality ku ≥ k, and

PoA(f?ku , k) = PoA(f?ku , ku) ≤ PoA(f?k , k) ,

where the last inequality holds since PoA(f?k , k) is a decreas-
ing function of k as seen in part iii) of Proposition 1. The
inequality is tight if and only if k = ku.

ii) Consider kd ∈ [ku − 1]. The performance of f ′kd on
the class of games with cardinality k can be computed as
PoA(f ′kd , k) =

1
1+χ(f ′

kd
,k) . Since kd ∈ [k − 1], we apply part

ii) of Lemma 4 to conclude that

PoA(f ′kd , k) =
1

1 + χ(f ′kd , ku)
.

Hence, for kd ∈ [ku − 1], the performance of f ′kd in the class
of games with cardinality k is the same of the performance
in the class of games with cardinality ku i.e. PoA(f ′kd , k) =
PoA(f ′kd , ku). Finally, by Lemma 3 we conclude that such
performance is worse than what f?ku can offer

PoA(f ′kd , k) <
1

1 + χ(f?ku , ku)
= PoA(f?ku , k) .

Consider kd ∈ [k, ku]. Since k ≤ kd, only the first k entries
of f ′kd will determine the performance and these are identical
to f?kd by definition of f ′kd . Hence PoA(f ′kd , k) =

1
1+χ(f?

kd
,k) .

Further kd ∈ [k, ku] and part i) of Lemma 4 applies

PoA(f ′kd , k) =
1

1 + χ(f?kd , kd)
= PoA(f?kd , kd) ,

so that f ′kd has the same performance of f?kd . Using the fact
that the optimal price of anarchy is a decreasing function, for
any p ∈ [k, ku] we get

PoA(f ′kd , k) = PoA(f?kd , kd) ≥ PoA(f?ku , ku) = PoA(f?ku , k) .

The inequality is tight if and only if p = ku.

PROOF OF THEOREM 2

Proof. i) Consider xr(t) for fixed r ∈ R. The integer sequence
{xr(t)}∞t=0 is upper bounded by the true cardinality k (by
definition of cardinality) and is non decreasing in t thanks to
its update rule (line 6 in Algorithm 1). Hence, after a finite
number of steps, xr(t) has converged to x∞r . Repeating the
same reasoning for all the resources r ∈ R shows that the
map xr(t) converges in a finite number t̂ of steps. Hence,
for t ≥ t̂ the distribution rule used in the algorithm is fixed.
Consequently the game is potential as it can be formulated as a
standard congestion game [11], [23]. Since for t ≥ t̂ agents are
playing round-robin best response on a potential game, their
strategy will converge in a finite number of steps to a Nash
equilibrium of the game with resource specific distribution
rules fixed to falgx∞

r
for r ∈ R.

ii) Let us define ke = maxr∈R |ae|r (note that in general
ke 6= kM ). To ease the notation, in the following we will
simply use f(xr, |a|r) to indicate falgx∞

r
(|a|r), and similarly

ui(ai, a−i) to refer to ui(ai, a−i; {x∞r }r∈R). Further, we
define Ae = ∪iaie and Ao = ∪iaio

By definition of equilibrium we have for all i ∈ [n],
ui(aie, a

−i
e ) ≥ ui(aio, a−ie ) and hence

0 ≤
∑
i∈[n]

ui(aie, a
−i
e )−

∑
i∈[n]

ui(aio, a
−i
e ) . (17)

Using the definition of payoff, the first term can be rewritten
as ∑

i∈[n]
ui(aie, a

−i
e ) =

∑
i∈[n]

∑
r∈aie

f(xr, |ae|r)vr

=
∑
r∈Ae

|ae|rf(xr, |ae|r)vr =
ke∑
j=1

∑
r∈Ae

|ae|r=j

jf(xr, j)vr .
(18)

With a similar manipulation the second term becomes∑
i∈[n]

ui(aio, a
−i
e ) =

∑
i∈[n]

∑
r∈aio

f(xr, |(aio, a−ie )|r)vr

≥
∑
i∈[n]

∑
r∈aio

f(xr,min{k, |ae|r + 1})vr,
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this holds because for all resources |(aio, a−ie )|r ≤ |ae|r + 1,
|(aio, a−ie )|r ≤ k and f is non increasing in its second
argument. For resources r ∈ ao it holds |ao|r ≥ 1, and so∑

i∈[n]

∑
r∈aio

f(xr,min{k, |ae|r + 1})vr

=
∑
r∈Ao

|ao|rf(xr,min{k, |ae|r + 1})vr

≥
∑
r∈Ao

f(xr,min{k, |ae|r + 1})vr.

The second term in (17) can thus be lower bounded by∑
i∈[n]

ui(aio, a
−i
e ) ≥

∑
r∈Ao

f(xr,min{k, |ae|r + 1})vr

=

ke∑
j=0

∑
r∈Ao

|ae|r=j

f(xr,min{k, j + 1})vr .
(19)

Substituting (18) and (19) in (17) gives

0 ≤
∑
i∈[n]

ui(aie, a
−i
e )−

∑
i∈[n]

ui(aio, a
−i
e )

≤
ke∑
j=1

∑
r∈Ae
|ae|r=j

jf(xr, j)vr −
ke∑
j=0

∑
r∈Ao
|ae|r=j

f(xr,min{k, j + 1})vr

=

ke∑
j=1

∑
r∈Ae
|ae|r=j

jf(xr, j)vr −
ke∑
j=1

∑
r∈Ao
|ae|r=j

f(xr,min{k, j + 1})vr

−
∑

r∈Ao\Ae

vrf(xr, 1)

=

ke∑
j=1

∑
r∈Ae\Ao
|ae|r=j

jf(xr, j)vr +

ke∑
j=1

∑
r∈Ae∩Ao
|ae|r=j

jf(xr, j)vr

−
ke∑
j=1

∑
r∈Ao
|ae|r=j

f(xr,min{k, j + 1})vr −
∑

r∈Ao\Ae

vrf(xr, 1)

=

ke∑
j=1

∑
r∈Ae\Ao
|ae|r=j

jf(xr, j)vr −
∑

r∈Ao\Ae

vr

+

ke∑
j=1

∑
r∈Ao
|ae|r=j

(
jf(xr, j)− f(xr,min{k, j + 1})

)
vr , (20)

where we have used the fact that f(xr, 1) = 1 for all
resources. We intend to bound the first and the third term in
the last expression. In the summands of (20) j = |ae|r ≤ x∞r
due to the update of xr(t) in Algorithm 1 and recall that
f(xr, |a|r) = falgx∞

r
(|a|r). Hence we can apply Lemma 5 to the

first term in (20)

ke∑
j=1

∑
r∈Ae\Ao

|ae|r=j

jf(xr, j)vr ≤
ke∑
j=1

∑
r∈Ae\Ao

|ae|r=j

(χ(f?kM , kM ) + 1)vr .

(21)

Similarly for the third term in (20)
ke∑
j=1

∑
r∈Ao

|ae|r=j

(
jf(xr, j)− f(xr,min{k, j + 1})

)
vr

≤
ke∑
j=1

∑
r∈Ao

|ae|r=j

χ(f?kM , kM )vr = χ(f?kM , kM )
∑

r∈ae∩ao
vr .

(22)

Hence combining (20) with the bounds from (21) and (22)

0 ≤(χ(f?kM , kM ) + 1)

ke∑
j=1

∑
r∈Ae\Ao

|ae|r=j

vr (23)

+ χ(f?kM , kM )
∑

r∈Ae∩Ao

vr −
∑

r∈Ao\Ae

vr

=(χ(f?kM , kM ) + 1)
∑

r∈Ae\Ao

vr (24)

+ χ(f?kM , kM )
∑

r∈Ae∩Ao

vr −
∑

r∈Ao\Ae

vr

=(χ(f?kM , kM ) + 1)
∑

r∈Ae\Ao

vr (25)

+ (χ(f?kM , kM ) + 1)
∑

r∈Ae∩Ao

vr −
∑
r∈Ao

vr

=(χ(f?kM , kM ) + 1)
∑
r∈Ae

vr −
∑
r∈Ao

vr

=(χ(f?kM , kM ) + 1)W (ae)−W (ao).

Hence (χ(f?kM , kM )+1)W (ae)−W (ao) ≥ 0 and rearranging

W (ae)

W (ao)
≥ 1

1 + χ(f?kM , kM )
= PoA(f?kM , kM ) ≥ PoA(f?k , k) ,

where the last inequality follows from the fact that the price
of anarchy is a decreasing function, and kM ≤ k by definition
of cardinality.

PROOF OF THEOREM 3

Proof. i) Consider the covering problem depicted in the fol-
lowing figure (a), composed of players p1, p2, p3 represented
by a solid dot; resources r1, r2, r3, r4 represented by a circle
with values v1, v2, v3, v4 such that

v1 > v3 > v4 > v2 and v1f
?
3 (2) < v2 < v1f

?
2 (2) < v4

As an example take v = (11, 5, 7, 6). Each player p1, p2, p3
can choose only one resource from {r1, r2, r3}, {r2, r3, r4},
{r1, r2, r3, r4}, respectively i.e. each player can only choose
one arrow pointing outwards from himself.

The cardinality is k = 3 since all players could choose
simultaneously r2 or r3, hence the optimal distribution rule
is f?3 . Amongst the equilibria obtained with f?3 there is
ae = (r2, r3, r1), depicted in the previous figure (b). This
configuration is an equilibrium since v2 > v1f

?
3 (2) > v3f

?
3 (2)

and v3 > v4, v3 > v2f
?
3 (2) and v1 > v2f

?
3 (2), v1 > v3f

?
3 (2),

v1 > v4. Such equilibrium gives a welfare of v1 + v2 + v3
that is less than the optimal v1 + v3 + v4, since v2 < v4.
We intend to show that for any initial condition and for any
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execution, Algorithm 1 will converge to an optimal allocation.
This suffices to prove that the worst equilibrium obtained
with Algorithm 1 performs better than the worst equilibrium
obtained with f?3 , which is not optimal as shown above.
Observe that the conditions v1 > v3 > v4 > v2 and
v4 > v1f

?
2 (2) ensure that an allocation with two or more

agents covering the same resource is never an equilibrium.
This holds regardless of the distribution used. Hence, the

welfare can potentially take
(
4
3

)
= 4 different values, since

the binomial represents the number of subsets with 3 elements
(agents allocations) that can be extracted from a set of 4
elements (set of resources). These different welfare values are
obtained for (r1, r2, r4), (r2, r3, r4), (r1, r3, r4), (r1, r2, r3),
or feasible permutations of each. The allocation (r1, r2, r4) is
never an equilibrium since player p3 can improve moving to
r3 because v3 > v4. Similarly for any feasible permutation
of (r1, r2, r4), the player selecting resource r4 can always
improve moving to r3. The allocation (r2, r3, r4) is never an
equilibrium since player p3 can improve moving to r1 since
v1 is the highest. Similarly for any feasible permutation of
(r2, r3, r4), there exists a player that can improve moving to
r1. This holds regardless of what distribution rule is used. The
allocation (r1, r3, r4) (or any feasible permutation) is optimal.
We are thus left to show that Algorithm 1 never converges to
(r1, r2, r3), or any other feasible permutation. We show this
by enumeration.

The allocation (r1, r2, r3) can not be an equilibrium since
player p2 can improve moving to r4 because v4 > v2. The
allocation (r1, r3, r2) can not be an equilibrium since player p3
can improve moving to r4. The allocation (r3, r2, r1) can not
be an equilibrium since player p2 can improve moving to r4.
We are left to check ae = (r2, r3, r1), depicted in the previous
figure (b). This can not be an equilibrium of Algorithm 1,
because v2 < v1f

alg
` (2) for l = 1, 2 and so player p2 could

improve moving to r1. The fact that the algorithm uses l ≤ 2
on resource r1 holds because the maximum number of players
on r1 is two, and so kt(1) ≤ 2 at any time step t ∈ [n]. We
conclude that all the equilibria towards which the algorithm
converges give optimal welfare, while f?3 also produces the
suboptimal equilibrium ae; the claim follows. Observe that
this is not a worst case instance because the price of anarchy
with the example values v = (11, 5, 7, 6) is

W (ae)

W (ao)
=

11 + 5 + 7

11 + 6 + 7
=

23

24
> PoA(f?3 , 3) =

7

11
.

ii) Consider the covering problem depicted in the following

figure (a), composed of players p1, p2, p3 represented by a
solid dot; resources r1, r2, r3 represented by an empty circle
with values v1, v2, v3 such that

v3f
?
3 (2) < v1 < v2 < v3/2 < v3.

As an example take v = [9, 9.5, 20]. Each player p1, p2,
p3 can choose only one resource from {r1, r2}, {r2, r3},
{r1, r2, r3}, respectively i.e. each player can only choose one
arrow pointing outwards from himself.
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The cardinality is k = 3 since all players could choose
simultaneously r1, hence the optimal distribution rule is f?3 .
All the equilibria obtained with f?3 are completely spread i.e.
they feature one and only one player on each resource. Any
allocation where there are two or more players in one resource
is not an equilibrium for f?3 , as detailed in the following.
If all three players selected resource r2, p2 could improve
moving to r3 since v3 > v2. If p1 and p3 selected r1,
depending on the choice of p2, either p1 or p3 could improve
moving respectively to r2 or r3 since v2 > v1 and v3 > v1. If
p2 and p3 selected r3, depending on the choice of p1, either
p2 or p3 could improve moving respectively to r2 or r1 since
v3f

?
3 (2) < v2 and v3f

?
3 (2) < v1. If p1, p3 selected both r2,

regardless of the choice of p2, p3 could improve moving to
r3 since v3 > v2. If p2, p3 selected both r2, regardless of the
choice of p1, p3 could improve moving to r3 since v3 > v2.
Finally, if p1, p2 selected r2, regardless of the choice of p3,
p2 could always improve moving to r3 since v3 > v2. Thus
all equilibria obtained with f?3 (including the worst) give a
welfare of v1 + v2 + v3.

Let us consider Algorithm 1 and initialise it at a1 =
[r2, r3, r1], giving k1(r) = 1 for all r. Player p3 updates and
since v3 · 1 > v1 · 1, he selects r3, giving a2 = [r2, r3, r3]
and k2(r) = 1 for r1, r2 and k2(r3) = 2. This allocation
is depicted in the previous figure (b) and is an equilibrium
configuration. Indeed p1 can not improve since v2 > v1; p2 can
not improve since v3f?2 (2) =

v3
2 > v2 · 1; p3 can not improve

since v3f?2 (2) =
v3
2 > v2 · 1 and v3f?2 (2) =

v3
2 > v1 · 1. Such

equilibrium has a welfare of v2 + v3.
In conclusion, all equilibria obtained with f?3 give a better

welfare than a2 and thus of the worst equilibrium obtained
with Algorithm 1.

APPENDIX B
LEMMATA

Lemma 2. Let kd ∈ [ku]. The distribution f ′kd satisfies

jf ′kd(j)− (j + 1)f ′kd(j + 1) ≥ 0 j ∈ [kd, ku − 1] .



12

Proof. Recall that f ′kd is obtained from equation (16). Using
χ(f ′kd , ku) from (10), one can reconstruct the tail entries of
f ′kd(j) with the following backward recursion

jf ′kd(j)− f
′
kd
(j + 1) = χ(f ′kd , ku) j ∈ [kd, ku − 1] ,

(ku − 1)f ′kd(ku) =
χ(f ′kd , ku) .

Starting from f ′kd(ku) =
χ(f ′

kd
,ku)

ku−1 , the first equation gives for
j ≥ kd

jf ′kd(j) =
χ(f ′kd , ku)

(
1 +

ku−1∑
i=j+1

j!

i!
+

j!

(ku − 1)(ku − 1)!

)
.

Hence
1

χ(f ′kd
, ku)

(jf ′kd
(j)− (j + 1)f ′kd

(j + 1)) =

=

ku−1∑
i=j+1

j!

i!
−

ku−1∑
i=j+2

(j + 1)!

i!
+

j!− (j + 1)!

(ku − 1)(ku − 1)!
=

=

ku−2∑
i=j+1

(
j!

i!
− (j + 1)!

(i+ 1)!

)
+

j!

(ku − 1)!

(
1 +

1

ku − 1
− j + 1

ku − 1

)
.

Note that for i > j, one has

j!

i!
=

1

i(i− 1) . . . (j + 1)
and so

j!

i!
− (j + 1)!

(i+ 1)!
> 0.

Further

1 +
1

ku − 1
+

j + 1

ku − 1
=
ku − j − 1

ku − 1
≥ 0

since j ≤ ku − 1 by assumption. Hence we conclude that

jf ′kd(j)− (j + 1)f ′kd(j + 1) ≥ 0 j ∈ [kd, ku − 1] .

Lemma 3. For any 1 < kd < ku it holds χ(f?ku , ku) <
χ(f ′kd , ku).

Proof. The expression of χ(f?ku , ku) in (6) and of χ(f ′kd , ku)
in equation (10) can be rewritten as

χ(f?ku , ku) =
(ku − 1)(ku − 1)!

1 + (ku − 1)(ku − 1)!
∑ku−1
i=1

1
i!

,

χ(f ′kd , ku) =
(ku − 1)(ku − 1)!

ku +
∑ku−1−kd
h=1

(ku−1)(ku−1)!
(ku−h−1)!

β(kd) ,

where

β(kd) :=
1

1 +
∑kd−1
h=1

(kd−1)(kd−1)!
h!

.

Instead of showing χ(f?ku , ku) < χ(f ′kd , ku), in the following
we equivalently prove that 1

χ(f?
ku
,ku)

> 1
χ(f ′

kd
,ku)

i.e., that

1 + (ku − 1)(ku − 1)!

ku−1∑
i=1

1

i!
= ku + (ku − 1)(ku − 1)!

ku−2∑
i=1

1

i!
>

(
ku +

ku−1−kd∑
h=1

(ku − 1)(ku − 1)!

(ku − h− 1)!

)(
1 +

kd−1∑
h=1

(kd − 1)(kd − 1)!

h!

)
.

The previous inequality can be rewritten as

(ku − 1)(ku − 1)!

(ku−2∑
i=1

1

i!
−

ku−1−kd∑
h=1

1

(ku − h− 1)!

)
>

(
ku +

ku−1−kd∑
h=1

(ku − 1)(ku − 1)!

(ku − h− 1)!

)(kd−1∑
h=1

(kd − 1)(kd − 1)!

h!

)
.

Since the left hand side is equal to (ku−1)(ku−1)!
∑kd−1
h=1

1
h! ,

we can simplify the term
∑kd−1
h=1

1
h! to get

(ku − 1)(ku − 1)!

(kd − 1)(kd − 1)!
>

(
ku +

ku−1−kd∑
h=1

(ku − 1)(ku − 1)!

(ku − h− 1)!

)
,

which is finally equivalent to

1

(kd − 1)(kd − 1)!
>

ku
(ku − 1)(ku − 1)

+

ku−1−kd∑
h=1

1

(ku − h− 1)!
.

(26)
We use induction to show that inequality (26) holds for 1 <
kd < ku, as required. We start from kd = ku − 1 and apply
induction backwards until we reach kd = 2.

i) For kd = ku − 1 and kd > 1 inequality (26) reads as

1

(kd − 1)(kd − 1)!
>

kd + 1

kd · kd!
⇐⇒ kd

2 > kd
2 − 1 ,

which is always satisfied.
ii) Let us assume the inequality holds for a generic kd ≤

ku − 1, we show that it holds also for kd − 1 (with kd > 1).
That is, we assume

1

(kd − 1)(kd − 1)!
>

ku
(ku − 1)(ku − 1)

+

ku−1−kd∑
h=1

1

(ku − h− 1)!
,

(27)
and want to show

1

(kd − 2)(kd − 2)!
>

ku
(ku − 1)(ku − 1)

+

ku−kd∑
h=1

1

(ku − h− 1)!
.

(28)
We can rewrite the right hand side of (28) and use (27) to
upper bound it

ku
(ku − 1)(ku − 1)

+

ku−kd∑
h=1

1

(ku − h− 1)!
=

ku
(ku − 1)(ku − 1)

+

ku−kd−1∑
h=1

1

(ku − h− 1)!
+

1

(kd − 1)!
<

1

(kd − 1)(kd − 1)!
+

1

(kd − 1)!
=

kd
(kd − 1)(kd − 1)!

<

1

(kd − 2)(kd − 2)!
.

(29)

The last inequality holds since it is equivalent to

kd
(kd − 1)2

<
1

kd − 2
⇐⇒ kd

2 − 2kd < (kd − 1)2 ,

which is always satisfied. Comparing the first and last term in
(29) gives (28).

This completes the induction and thus the proof.
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Lemma 4. i) For any 1 ≤ l ≤ m, m ∈ N it holds

χ(f?m, l) = χ(f?m,m) .

ii) For any k ∈ [ku] and 1 < kd < k it holds

χ(f ′kd , k) =
χ(f ′kd , ku) .

Proof. i) If l = m, the result holds trivially. Hence in the
following we consider l ∈ [m− 1]. By definition of χ(f?m, l)
in (4), one has
χ(f?m, l) =min

x≥0
x

s.t. jf?m(j)− f?m(j + 1) ≤ x j ∈ [l − 1] ,

(l − 1)f?m(l) ≤ x .
Note that f?m is derived in [11, Theorem 2] solving the
following recursion

jf?m(j)− f?m(j + 1) = χ(f?m,m) j ∈ [m− 1]

(l − 1)f?m(l) = χ(f?m,m) .
(30)

Since m > l, it follows that any feasible x from the LP above
has to satisfy x ≥ χ(f?m,m). In the following we show that
setting x = χ(f?m,m), the constraint (l− 1)f?m(l) ≤ x is also
satisfied. This will be enough to conclude that χ(f?m, l) =
χ(f?m,m).
Since f?m is non increasing, one has

(l − 1)f?m(l)− χ(f?m,m) = lf?m(l)− f?m(l)− χ(f?m,m) ≤
≤ lf?m(l)− f?m(l + 1)− χ(f?m,m) = 0 ,

where the equality holds applying (30) for j = l ∈ [m− 1].
ii) We intend to compute
χ(f ′kd , k) =min

x≥0
x

s.t. jf ′kd(j)− f
′
kd
(j + 1) ≤ x j ∈ [k − 1]

(k − 1)f ′kd(k) ≤ x .
For any feasible x, it must be x ≥ χ(f ′kd , ku) due to how
f ′kd(j) is recursively defined for j > kd in Equation (16). Sim-
ilarly to what shown before, one can prove that x = χ(f ′kd , ku)
will also satisfy the constraint (k − 1)f ′kd(k) ≤ x. Hence
χ(f ′kd , k) =

χ(f ′kd , ku) and the proof is concluded.

Lemma 5. For all resources r ∈ R, the distribution rules
falgx∞

r
are such that

j falgx∞
r
(j) ≤ χ(f?kM , kM ) + 1 j ∈ [x∞r ]

(31)

j falgx∞
r
(j)− falgx∞

r
(min{k, j + 1}) ≤ χ(f?kM , kM ) j ∈ [x∞r ]

(32)

where kM = maxr∈R x∞r .

Proof. We start from (31) and examine falgx∞
r

for a fixed r ∈ R.
Consider j ∈ [x∞r − 1], by definition of falgx∞

r
and the fact that

f?x∞
r

is non increasing

j falgx∞
r
(j)− 1 = j f?x∞

r
(j)− f?x∞

r
(1)

≤ j f?x∞
r
(j)− f?x∞

r
(j + 1) ≤ χ(f?x∞

r
, x∞r )

=⇒ j falgx∞
r
(j) ≤ χ(f?x∞

r
, x∞r ) + 1 ,

where the last inequality holds thanks to the definition (4).
Since x∞r ≤ kM and the price of anarchy is a decreas-
ing function, one has χ(f?x∞

r
, x∞r ) ≤ χ(f?kM , kM ) and so

j falgx∞
r
(j) ≤ χ(f?kM , kM ) + 1 for j ∈ [x∞r − 1].

In a similar fashion when j = x∞r

x∞r f
alg
x∞
r
(x∞r )− 1 = x∞r f

?
x∞
r
(x∞r )− f?x∞

r
(1)

≤ x∞r f?x∞
r
(x∞r )− f?x∞

r
(x∞r )

= (x∞r − 1)f?x∞
r
(x∞r )

= χ(f?x∞
r
, x∞r ) ≤ χ(f?kM , kM ) ,

(33)

where the only difference is in the last equality that comes
from equation (6). Repeating the same reasoning for all r ∈ R,
one has proven (31).

In the remaining, we show that (32) holds. Consider falgx∞
r

for a fixed resource r ∈ R and recall that x∞r ≤ k. Thus for
j ∈ [x∞r − 1] one has min{k, j + 1} = j + 1 and the claim
reads as j falgx∞

r
(j) − falgx∞

r
(j + 1) ≤ χ(f?kM , kM ). This holds

since

j falgx∞
r
(j)− falgx∞

r
(j + 1) = j f?x∞

r
(j)− f?x∞

r
(j + 1)

≤ χ(f?x∞
r
, x∞r ) ≤ χ(f?kM , kM )

where the first inequality holds thanks to definition (4) and the
last since the price of anarchy is non increasing (x∞r ≤ kM ).
In the remaining we focus on j = x∞r and divide the proof
in two subparts. When k = x∞r , min{k, j+1} = x∞r and the
claim follows from

x∞r f
alg
x∞
r
(x∞r )− falgx∞

r
(x∞r ) = x∞r f

?
x∞
r
(x∞r )− f?x∞

r
(x∞r )

= (x∞r − 1)f?x∞
r
(x∞r ) = χ(f?x∞

r
, x∞r ) ≤ χ(f?kM , kM ) ,

similarly to (33). When k > x∞r , then min{k, j+1} = x∞r +1
and the claim holds if we show

x∞r f
alg
x∞
r
(x∞r )− falgx∞

r
(x∞r + 1) ≤ χ(f?x∞

r
, x∞r ).

For this to hold, one has to require

falgx∞
r
(x∞r + 1) ≥ x∞r f

alg
x∞
r
(x∞r )− χ(f?x∞

r
, x∞r )

= x∞r f
?
x∞
r
(x∞r )− χ(f?x∞

r
, x∞r )

= f?x∞
r
(x∞r ) = falgx∞

r
(x∞r ) ,

where the second equality sign follows form χ(f?x∞
r
, x∞r ) =

(x∞r − 1)f?x∞
r
(x∞r ), that is form equation (4). Hence we need

to impose
falgx∞

r
(x∞r + 1) ≥ falgx∞

r
(x∞r ) ,

but at the same time we are limited to non increasing distri-
bution rules. Hence we set falgx∞

r
(x∞r + 1) = falgx∞

r
(x∞r ) as by

definition of falg` from Equation (12). The proof is completed
by observing that the same reasoning can be repeated for any
resource r ∈ R.
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