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Abstract— A fundamental challenge in multiagent systems
is to design local control algorithms to ensure a desirable
collective behaviour. The information available to the agents,
gathered either through communication or sensing, defines the
structure of the admissible control laws and naturally restricts
the achievable performance. Hence, it is fundamental to identify
what piece of information can be used to produce a significant
performance enhancement. This paper studies, within a class of
resource allocation problems, the case when such information
is uncertain or inaccessible and pinpoints a fundamental risk-
reward tradeoff faced by the system designer.

I. INTRODUCTION

Several social and engineering systems can be thought
of as a collection of multiple subsystems or agents, each
taking local decisions in response to available information. A
central goal in this field is to design control algorithms for the
individual subsystems to ensure that the collective behaviour
is desirable with respect to a global objective. Achieving this
goal is particularly challenging because of the restriction on
the information available to each agent and to the large scale
of typical systems. Examples include, but are not limited to
power grid networks [1], charging of electric vehicles [2],
transportation network [3], task assignment problems [4],
sensor allocation [5], robotic networks [6]. A considerable
bulk of the research has focused on the design of local
control algorithms in a framework where the information at
agents’ disposal is itself a fixed datum of the problem. A
non exhaustive list includes [7], [8] and references therein.
Understanding the impact of information availability on the
achievable performances is a seemingly important but less
tracked problem [9], [10], [11].

Of particular interest is to recognise what supplementary
piece of information would coordinate agents to improve
the system performance and how to incorporate this ad-
ditional knowledge into a control algorithm. For example,
[12] shows how giving to certain agents full knowledge
of the constraint sets of some others, improves the system
performance, relatively to a class of allocation problems. It is
important to highlight that providing each agent with all the
information available to the system is clearly beneficial, but
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not necessarily desirable. Therefore, the previous question
has to be understood within this context. Ideally, one is
interested in a piece of information that gives a significant
performance enhancement, and is simple to obtain.

Due to the large scale and spatial distribution of multi-
agent systems, uncertainty plays an important role and needs
to be managed while designing control algorithms. Power
grid networks [1], demand-response methods [2] and trans-
portation networks [3] are only a few examples that show the
importance of modelling uncertainty in a distributed system.
Following this observation, one would like to understand
what is the risk associated with injecting an additional piece
of incorrect information into previously designed control
algorithms.

The paper proceeds by considering covering problems
[13], [14], a class of resource allocation problems where
agents are assigned to resources in order to maximise the
total value of covered items. Examples include vehicle-target
assignment problems [15], sensor allocation [5], task assign-
ment [16], among others. Due to the inherent limitations in
sensing and communication, in all these applications the con-
trol algorithms are required to rely only on local information.
Thus, we model distributed covering problems as strategic-
form games, where the system operator has the ability to
assign local objective functions to each agent. As a matter of
fact, Game Theory lends itself to analyse distributed systems
where individual agents adjust their behaviour in response to
partial information, as shown in [17], [9]. The overarching
goal of the system operator is to design local utilities in order
to render the equilibria of the game as efficient as possible.
Agents can then be guided towards an equilibrium of such
game by means of existing distributed algorithms [4], [18].

Within this framework, [10] shows that the maximum
number of players that can simultaneously select a resource
(cardinality) constitutes a valuable piece of information.
More precisely, when the system operator is aware of the
cardinality of the problem, he can tailor agents’ utility
functions to improve the overall performance. Nevertheless,
the knowledge of the exact cardinality is in many applications
not available or may require excessive communication to
be determined. Building on this, we study the problem of
optimally designing the utility functions in the case when
the true cardinality is not known, but only an upper bound
is available.1 We further perform a risk-reward analysis in
the case when the information on the cardinality of the
game is uncertain. When the goal is to guard the system

1A simple bound is given by the number of agents.



against the worst case performances, the right choice is to
design the utilities as if the true cardinality was the given
upper bound. Different designs will offer potential benefits,
but come with a certain degree of risk. These results are
presented in Theorem 2.

The remaining of the paper is organised as follows. The
next section introduces the covering problem, its formula-
tion as a strategic game and the metric used to measure
the system-level performance. Section III studies the utility
design problem when a sole upper bound on the cardinality
is available and presents the risk-reward tradeoff associated
with the use of uncertain information. Future directions and
conclusions follow.

Notation

For any two positive integers p ≤ q, denote [p] = {1, ..., p}
and [p, q] = {p, ..., q}; given (a1, . . . , an), denote a−i =
(a1, . . . , ai−1, ai+1, . . . , an). We use N and R≥0 to denote
the set of natural numbers (excluding zero) and the set of
non-negative real numbers, respectively.

II. DISTRIBUTED COVERING VIA GAME THEORY

In this section we present the covering problem and the
associated covering game. We further define the performance
metric used throughout the paper and recap previous results.

A. Model

Let us consider the problem of assigning a collection
of agents N = {1, . . . , n} to a finite set of resources
R = {r1, . . . , rm} with the goal of maximising the value
of covered resources. The feasible allocations for each agent
i ∈ N are the elements of the action set Ai ⊆ 2R, while
every resource r ∈ R is associated with a non-negative value
vr ≥ 0. The welfare of an allocation a = (a1, . . . , an) ∈
A1 × · · · × An is measured by the total value of covered
resources

W (a) :=
∑

r : |a|r≥1

vr ,

where |a|r denotes the number of agents that choose re-
source r in allocation a. The covering problem C =
{N,R, {Ai}i∈N , {vr}r∈R} consists in finding an optimal
allocation, that is an assignment ao ∈ arg maxa∈AW (a).
We associate to every covering problem C its cardinality

k := max
r∈R
a∈A

|a|r (1)

representing the maximum number of players that can con-
currently select the same resource.

Instead of directly specifying a distributed algorithm, we
shift the focus to the design of local utility functions for
each agent, as proposed first in the framework of distributed
welfare games by [19], [4] and successively by [10].
We consider utility functions of the form

ui(ai, a−i) :=
∑
r∈ai

vrf(|a|r) , i ∈ N . (2)

The function f : [k] → R≥0 constitutes our design choice
and is called distribution rule as it represents the fractional
benefit an agent receive from each resource he selects.

The advantages of using utilities of the form (2) are
twofold. First, ui(ai, a−i) is local as it depends only on
the resources agent i selects, their value and the number of
agents that selects the same resources. Second, (2) allows to
construct a distribution rule irrespective of {Ai}i∈N , so that
the final design is scalable and applies to different choices
of the action sets.

Given a covering problem C with cardinality k and a dis-
tribution rule f : [k]→ R≥0, we consider the associated cov-
ering game G := {C, f} = {N,R, {Ai}i∈N , {vr}r∈R, f},
where Ai is the set of feasible allocations and the utility
of player i ∈ N is as in equation (2). We do not aim
at designing f using information on the specific instance
of covering problem at hand, as such information is often
not available to the system designer. We rather construct
a distribution rule that behaves well for a large class of
problems. Hence, we consider the set of covering problems
for which the cardinality is smaller or equal to k ∈ N (with
slight abuse of notation in the use of k). Given a distribution
rule f : [k] → R≥0, we define the set of associated games
as

Gkf := {G : max
r∈R,a∈A

|a|r ≤ k} .

Our objective is to design f : [k] → R≥0 so that the
efficiency of all the equilibria of games in the class Gkf is as
high as possible. Note that for fixed f , any game G ∈ Gkf
is potential [19]. Hence existence of equilibria is guaranteed
and distributed algorithms, such as the best response scheme,
converge to them [20]. Throughout the paper, we focus on
pure Nash equilibria [21], which we will refer to in the
following just as equilibria.

Definition 1 (Pure Nash equilibrium). Given a game G,
an allocation ae ∈ A is a pure Nash equilibrium iff
ui(aie, a

−i
e ) ≥ ui(ai, a−ie ) for all deviations ai ∈ Ai and

for all players i ∈ N . In the following we use NE(G) to
denote the set of Nash equilibria of G.

For a given distribution rule, we evaluate the efficiency of
the Nash equilibria of games in Gkf , adapting the concept of
Price of Anarchy from [22] as

PoA(Gkf ) := inf
G∈Gk

f

{
mina∈NE(G)W (a)

W (ao)

}
≤ 1 . (3)

In essence, the quantity PoA(Gkf ) bounds the inefficiency of
all the equilibria over all games in Gkf . The higher the price
of anarchy, the better the performance guarantees we can
provide.

B. Related Work and Performance Guarantees

The problem of designing a distribution rule so as to
maximise PoA(Gkf ) has been studied in [10] and [12]. Both
works impose a natural constraint on the admissible f ,
requiring f(1) = 1 and f : [k]→ R≥0 to be non-increasing.
The optimal distribution rule is explicitly derived in the



former work, while the latter shows how PoA(Gkf ) is fully
characterised by a single scalar quantity χkf , measuring how
fast the distribution rule f decreases. We intend to build
upon these results, which are summarised in the following
theorem.

Given k and a distribution rule f , we define χkf as

χkf := min
x≥0

x

s.t. jf(j)− f(j + 1) ≤ x j ∈ [k − 1] ,

(k − 1)f(k) ≤ x .

(4)

Theorem 1 ([10], [12]). Consider a non-increasing distri-
bution rule f : [k]→ R≥0, with f(1) = 1.

i) The price of anarchy over the class Gkf is

PoA(Gkf ) =
1

1 + χkf
.

ii) The price of anarchy over the class Gkf is maximised
for

f?k (j) = (j − 1)!

1
(k−1)(k−1)! +

∑k−1
i=j

1
i!

1
(k−1)(k−1)! +

∑k−1
i=1

1
i!

, (5)

with corresponding

χkf?
k

= (k − 1)f?k (k) . (6)

iii) The optimal price of anarchy is a decreasing function
of the cardinality k

PoA(Gkf?
k
) = 1− 1

1
(k−1)(k−1)! +

∑k−1
i=1

1
i!

.

III. THE CASE OF UNKNOWN CARDINALITY: A
RISK-REWARD TRADEOFF

When the cardinality of the covering problem we intend
to solve is known, Theorem 1 gives a conclusive answer on
which distribution rule agents should choose to achieve the
best possible approximation. In spite of that, the knowledge
of the exact cardinality is in many applications not available
or may require excessive communications between the agents
to be determined. Observe that a universal upper bound for
such quantity can be easily computed as the number n of
agents. Potentially tighter bounds can be derived for specific
applications.

Motivated by this observation, we study in the following
the problem of designing a distribution rule when the true
cardinality k is not known, but an upper bound k ≤ k̄ is
available. Our objective is to design a distribution rule f :
[k̄] → R≥0 with the best performance guarantees possible
with the sole knowledge of k̄. Two natural questions arise:

1) How should we select the distribution rule?
2) What performance can we guarantee?

We will show how selecting f?
k̄

guards us against the worst
case performance but will not guarantee the same efficiency
of f?k in (5). We will then present the potential benefits and
risks associated with a more aggressive choice.

A. A safe and a risky distribution
A natural choice when an upper bound on the cardinality

is available consists in designing the distribution rule exactly
at the upper bound. A different choice might entail designing
the distribution rule as if the cardinality was lower than the
upper bound, and then to optimally fill the tail. The latter
suggestion is inspired by the observation that the price of
anarchy is higher for lower caridinality k, when f?k is used.
In the following we define and compare these distributions,
called respectively safe and risky distribution rule.

The safe distribution rule, denoted with f̄ , is the distribu-
tion rule obtained as if the true cardinality was exactly k̄,
i.e.

f̄ := f?k̄ , (7)

where f?
k̄

is defined in equation (5).
The risky distribution rule, denoted with f̂p is a potentially

rewarding alternative to f̄ . More precisely, f̂p is a family
of distributions parametrised by p ∈ [k̄]. It is constructed
as if the true cardinality was p ≤ k̄, that is fixing the
first entries to f̂p(j) = f?p (j) for j ∈ [p]. The tail entries
corresponding to j ∈ [p + 1, k̄] are chosen to mitigate the
risk taken. Formally, we define the family f̂p as a solution
of the following optimisation program

f̂p ∈ arg max
f∈F

PoA(Gk̄f )

s.t. f(j) = f?p (j) ∀j ∈ [p] ,
(8)

where F = {f : [k̄] → R≥0 with f(1) = 1, f(j + 1) ≤
f(j), ∀j ∈ [k̄−1]} is the set of admissible distributions and
p ∈ [k̄]. In essence, we are operating as if the true cardinality
was p ≤ k̄ and using the tail entries of the distribution to
balance the risk taken.

The next proposition characterises explicitly f̂p.

Proposition 1. The family f̂p takes the form

f̂p(j) =

f
?
p (j) j ∈ [p]

(j−1)!
(p−1)!

f?p (p)− χk̄
f̂p

(∑j−1−p
h=1

(j−1)!
(j−h−1)!

+ 1
)

j ∈ [p+ 1, k̄]

(9)
where χk̄

f̂p
defined in equation (4) is given by

χk̄
f̂p

=
(k̄ − 1)(k̄ − 1)!

k̄ + (k̄ − 1)
∑k̄−1−p
h=1

(k̄−1)!

(k̄−h−1)!

f?p (p)

(p− 1)!
, (10)

The proof uses (4) and the result i) of Theorem 1. It is
based on a relaxation argument and can be found in the
appendix.

B. Performance comparison
In this section we compare the performance of the risky

and safe distribution rule based on the metric introduced in
(3). Theorem 2 constitutes the main result of this section.

Theorem 2. Consider a covering game with cardinality k
upper bounded by k̄.

i) The safe distribution f̄ has performance

PoA(Gkf̄ ) = PoA(Gk̄f̄ ) =
1

1 + χk̄f?
k̄

.



Such performance is strictly worse than the one
achieved by the optimal distribution f?k if k < k̄ and
equal if k = k̄.

ii) For p ∈ [k−1] the risky distribution f̂p has performance

PoA(Gk
f̂p

) = PoA(Gk̄
f̂p

) =
1

1 + χk̄
f̂p

.

Such performance is strictly worse than the one
achieved by the safe distribution f̄ .

iii) For p ∈ [k, k̄] the risky distribution f̂p has performance

PoA(Gk
f̂p

) = PoA(Gpf?
p
) =

1

1 + χpf?
p

.

Such performance is strictly better than the one
achieved by the safe distribution f̄ if p ∈ [k, k̄ − 1]
and equal if p = k̄.

The proof can be found in the Appendix.
Remark. Claim i) in Theorem 2 shows that the performance
of the distribution f̄ on the class of games with cardinality
bounded by k is independent on k, for any k ≤ k̄, such
performance is governed by PoA(Gk̄

f̄
). Claims ii) and iii) in

Theorem 2 certifies that the distribution f̂p performs worse
than f̄ for p < k, and better for p ≥ k.
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Fig. 1: The bars represent the difference PoA(Gk
f̂p

) −
PoA(Gk

f̄
), normalized by its largest value. As such, it de-

scribes the normalized difference in performance between
f̂p and f̄ for various value of 1 < p < k̄ = 10.

In Figure 1 we compare the performance of f̂p with the
performance of f̄ . It is important to note that the performance
degradation (incurred whenever p < k) dominate signifi-
cantly the potential gains (achieved when p ≥ k). A similar
trend is obtained for any other k̄. This motivates the interest
in future work where we intend to understand if it is possible
to dynamically adjust the distribution rule used to obtain the
benefits of f̂ at no risk.

IV. CONCLUSIONS AND FUTURE WORK

In this work we studied how additional information im-
pacts the optimal design of local utility functions, when

the goal is to improve the overall efficiency of the system.
Focusing on covering problems, we studied the case when
such additional information is uncertain or not available.
Within this setup, we highlighted an inherent tradeoff be-
tween potential risks and rewards associated with committing
to different distribution rules.

Theorem 2 has demonstrated how f̄ guards against worst
case performance while f̂p could give potential benefits, but
comes with a certain degree of risk. It is therefore interesting
to understand, wether this tradeoff can be completely erad-
icated by allowing the distribution rule to be dynamically
updated. In particular, when the cardinality is not available
at all, can the agents learn it while simultaneously adjusting
their behaviour to guarantee an improved performance?

APPENDIX I
PROOF OF PROPOSITION 1

Thanks to result i) in Theorem 1, PoA(Gk̄f ) = 1
1+χk̄

f

, with

χk̄f implicitly defined by (4). Hence maximising PoA(Gk̄f ) is
equivalent to minimising χk̄f and f̂p can be computed by the
following linear program (LP) in the unknowns x, {f(j)}k̄j=1

min
x≥0, f∈F

x

s.t. jf(j)− f(j + 1) ≤ x j ∈ [k̄ − 1] ,

(k̄ − 1)f(k̄) ≤ x ,
f(j) = f?p (j) j ∈ [p] .

(11)

We remove the constraints x ≥ 0, f ∈ F as well as jf(j)−
f(j + 1) ≤ x for j ∈ [p − 1] and introduce the following
relaxed linear program

min
x, f

x

s.t. jf(j)− f(j + 1) ≤ x j ∈ [p, k̄ − 1] ,

(k̄ − 1)f(k̄) ≤ x ,
f(j) = f?p (j) j ∈ [p] .

(12)

The proof is divided in two subproofs:

i) We show that a solution to the relaxed program (12) is
given by (9) and (10).

ii) We show that the solution to the relaxed program
obtained in i) is feasible for the original problem too.

Proof. i) The proof proceeds by showing that a solution
of (12) can be obtained transforming all the inequality
constraint into equalities. This will produce the expressions
(9) and (10).

Let us define vj = f(j) for j ∈ [p+1, k̄] and introduce the
cost function J(x, vp+1, . . . , vk̄) = x. We further introduce
the constraint functions g1(x, vp+1) = −x − vp+1 and
gi(x, vp+i−1, vp+i) = −x+j vp+i−1−vp+i for i ∈ [2, k̄−p]
and gk̄−p+1(x, vk̄) = −x+ (k̄−1)vk̄. With these definitions
the LP (12) is equivalent to the following where we have



removed the decision variables that are already determined

min
x,vp+1,...,vk̄

J(x, vp+1, . . . , vk̄) ,

s.t. g1(x, vp+1) ≤ −pf?p (p) ,

gi(x, vp+i−1, vp+i) ≤ 0 i ∈ [2, k̄ − p] ,
gk̄−p+1(x, vk̄) ≤ 0 .

Thanks to the convexity of the cost function and to the poly-
topic constraints, the Karush-Kuhn-Tucker conditions are
necessary and sufficient for optimality [23]. Consequently,
a feasible point (x?, v?k+1, . . . , v

?
n) is an optimiser iff there

exists µi so that

∇J? +

k̄−p+1∑
i=1

µi∇g?i = 0

g?i ≤ 0, µi ≥ 0, µig
?
i = 0 i ∈ [k̄ − p+ 1]

where we used ∇J? to indicate ∇J(x?, v?p+1, . . . , v
?
k̄
), and

similarly for g?i , ∇g?i . Observe that the distribution rule in
(9) and the corresponding χk̄

f̂p
in (10) are the unique solution

of the linear system g?i = 0 for all i ∈ [k̄ − p+ 1], that is


jf̂p(j)− f̂p(j + 1)− χk̄f = 0 j ∈ [p, k̄ − 1] ,

(k̄ − 1)f̂p(k̄)− χk̄f = 0 ,

f̂p(j) = f?p (j) j ∈ [p] .

(13)

Primal feasibility and complementarity slackness are hence
naturally satisfied. We are only left to prove that there exists
µi ≥ 0 such that ∇J? +

∑k̄−p+1
i=1 µi∇g?i = 0. We proceed

by writing the stationarity conditions explicitly and show that
this is indeed the case. Note that both the cost function and
the constraints are linear so that their derivatives are constant
functions

∇J? = (1, 0, . . . , 0)

∇g?1 = (−1,−1, 0, . . . , 0)

∇g?2 = (−1, p+ 1,−1, 0, . . . , 0)

...
∇g?k̄−p−1 = (−1, 0, . . . , 0, k̄ − 2,−1, 0)

∇g?k̄−p = (−1, 0, . . . , 0, k̄ − 1,−1)

∇g?k̄−p+1 = (−1, 0, . . . , 0, k̄ − 1)

Solving the stationarity condition in a recursive fashion
starting from last component gives{

µi = µk̄−p+1
(k̄−1)(k̄−1)!

(p+i−1)! i ∈ [k̄ − p]∑k̄−p+1
i=1 µi = 1 .

Substituting the first equation into the second one and solving
yields
µi =

(∑k̄−p−1
i=1

(k̄−1)(k̄−1)!
(p+i−1)!

)−1
(k̄−1)(k̄−1)!

(p+i−1)! i ∈ [k̄ − p],

µk̄−p+1 =

(∑k̄−p−1
i=1

(k̄−1)(k̄−1)!
(p+i−1)!

)−1

.

Since µi ≥ 0 for all i ∈ [k̄ − p + 1], we conclude that (9)
and (10) solve the relaxed program (12).

Proof. ii) The proof proceeds by showing that (9) and
(10) satisfy the constraints removed when transforming the
original program (11) into (12).

Using (10) and (9), it is trivial to verify that χk̄
f̂p
≥ 0

and f̂p(1) = 1, f̂p(j) ≥ 0. We proceed to prove that f̂p is
non increasing. Note that for j ≤ p, f̂p coincides with f?p ,
which was proven to be non increasing in [10]. Further, from
Lemma 1 we know that jf̂p(j) − (j + 1)f̂p(j + 1) ≥ 0 for
j ∈ [p+ 1, k̄ − 1]. Thus

jf̂p(j)− jf̂p(j + 1) ≥ jf̂p(j)− (j + 1)f̂p(j + 1) ≥ 0

for j ∈ [p + 1, k̄ − 1], which guarantees that f̂p is non
increasing for j ∈ [p, k̄] too.

We are left to show that jf̂p(j) − f̂p(j + 1) ≤ χk̄
f̂p

for
j ∈ [p− 1]. Since j ∈ [p− 1], it holds that

jf̂p(j)− f̂p(j + 1) = jf?p (j)− f?p (j + 1).

Note that jf?p (j) − f?p (j + 1) ≤ χpf?
p

by definition of χpf?
p

in (4). Further, χpf?
p
≤ χk̄f?

k̄
for any p ≤ k̄ since the price

of anarchy is a monotonically decreasing function (Theorem
1). Finally, Lemma 2 shows that for any p ≤ k̄, it holds
χk̄f?

k̄
≤ χk̄

f̂p
. Hence jf̂p(j)− f̂p(j+ 1) ≤ χk̄

f̂p
for j ∈ [p− 1].

It follows that f̂p is feasible for the original problem (11).
Thanks to this, and to the fact that f̂p is optimal for (12),

we conclude that f̂p is a solution of the original problem
too.

PROOF OF THEOREM 2

Proof. i) Thanks to Theorem 1, the performance of f̄ on
the class of games with cardinality k can be computed as
PoA(Gk

f̄
) = 1

1+χk
f̄

. Recall from equation (7) that f̄ = f?
k̄

and

so PoA(Gk
f̄
) = 1

1+χk
f?
k̄

. Since k ≤ k̄, we can apply part i) of

Lemma 3 to χkf?
k̄

and conclude

PoA(Gkf̄ ) =
1

1 + χk̄f?
k̄

.

This means that the performance of f̄ on the set of games
with cardinality k is the same performance of the distribution
f?
k̄

on the set of games with cardinality k̄ ≥ k, and

PoA(Gkf̄ ) = PoA(Gk̄f?
k̄
) ≤ PoA(Gkf?

k
) ,

where the last inequality holds since PoA(Gkf?
k
) is a decreas-

ing function of k as seen in part iii) of Theorem 1. The
inequality is tight if and only if k = k̄.

ii) Thanks to Theorem 1, the performance of f̂p on the
class of games with cardinality k can be computed as
PoA(Gk

f̂p
) = 1

1+χk
f̂p

. Since p ∈ [k − 1], we apply part ii)

of Lemma 3 to conclude that

PoA(Gk
f̂p

) =
1

1 + χk̄
f̂p

.



Hence, for p ∈ [k̄ − 1], the performance of f̂p in the class
of games with cardinality k is the same of the performance
in the class of games with cardinality k̄ i.e. PoA(Gk

f̂p
) =

PoA(Gk̄
f̂p

). Finally, by Lemma 2 we conclude that such
performance is worse than what the safe distribution can
offer

PoA(Gk
f̂p

) =
1

1 + χk̄
f̂p

<
1

1 + χk̄f?
k̄

= PoA(Gkf̄ ) .

iii) Since k ≤ p, only the first k entries of f̂p will
determine the performance and these are identical to f?p by
definition of f̂p. Hence PoA(Gk

f̂p
) = PoA(Gkf?

p
) = 1

1+χk
f?
p

.

Further p ∈ [k, k̄] and part i) of Lemma 3 applies

PoA(Gk
f̂p

) =
1

1 + χpf?
p

= PoA(Gpf?
p
) ,

so that f̂p has the same performance of f?p . Using the fact
that the optimal price of anarchy is a decreasing function,
for any p ∈ [k, k̄] we get

PoA(Gk
f̂p

) = PoA(Gpf?
p
) ≥ PoA(Gk̄f?

k̄
) = PoA(Gkf̄ ) .

The inequality is tight if and only if p = k̄.

Lemma 1. Let p ∈ [k]. The risky distribution f̂p satisfies

jf̂p(j)− (j + 1)f̂p(j + 1) ≥ 0 j ∈ [p, k̄ − 1] .

Proof. Recall that f̂p is obtained from equation (13). Using
χk̄
f̂p

from (10), one can reconstruct the tail entries of f̂p(j)
with the following backward recursion

jf̂p(j)− f̂p(j + 1) = χk̄
f̂p

j ∈ [p, k̄ − 1] ,

(k̄ − 1)f̂p(k̄) = χk̄
f̂p
.

Starting from f̂p(k̄) =
χk̄
f̂p

k̄−1
, the first equation gives for j ≥ p

jf̂p(j) = χk̄
f̂p

(
1 +

k̄−1∑
i=j+1

j!

i!
+

j!

(k̄ − 1)(k̄ − 1)!

)
hence

1

χk̄
f̂p

(jf̂p(j) − (j + 1)f̂p(j + 1)) =

=

k̄−1∑
i=j+1

j!

i!
−

k̄−1∑
i=j+2

(j + 1)!

i!
+

j! − (j + 1)!

(k̄ − 1)(k̄ − 1)!
=

=

k̄−2∑
i=j+1

(
j!

i!
− (j + 1)!

(i+ 1)!

)
+

j!

(k̄ − 1)!

(
1 +

1

k̄ − 1
− j + 1

k̄ − 1

)
.

Note that for i > j, one has

j!

i!
=

1

i(i− 1) . . . (j + 1)
and so

j!

i!
− (j + 1)!

(i+ 1)!
> 0.

Further

1 +
1

k̄ − 1
+
j + 1

k̄ − 1
=
k̄ − j − 1

k̄ − 1
≥ 0

since j ≤ k̄ − 1 by assumption. Hence we conclude that

jf̂p(j)− (j + 1)f̂p(j + 1) ≥ 0 j ∈ [p, k̄ − 1] .

Lemma 2. For any 1 < p < k̄ it holds χk̄f?
k̄
< χk̄

f̂p
. If p = 1

or p = k̄, it holds χk̄f?
k̄

= χk̄
f̂p

.

Proof. If p = 1 or p = k̄, trivially f̂p = f?
k̄

and so χk̄f?
k̄

=

χk̄
f̂p

. We are left to show that χk̄f?
k̄
< χk̄

f̂p
when 1 < p < k̄.

After some algebraic manipulation on the expressions of χk̄f?
k̄

in equation (6) and of χk̄
f̂p

in equation (10) , we get

χk̄f?
k̄

=
(k̄ − 1)(k̄ − 1)!

1 + (k̄ − 1)(k̄ − 1)!
∑k̄−1
i=1

1
i!

,

χk̄
f̂p

=
(k̄ − 1)(k̄ − 1)!

k̄ +
∑k̄−1−p
h=1

(k̄−1)(k̄−1)!

(k̄−h−1)!

1

1 +
∑p−1
h=1

(p−1)(p−1)!
h!

.

Instead of proving that χk̄f?
k̄
< χk̄

f̂p
, in the following we

equivalently show that 1
χk̄
f?
k̄

> 1
χk̄
f̂p

i.e., that

1 + (k̄ − 1)(k̄ − 1)!

k̄−1∑
i=1

1

i!
= k̄ + (k̄ − 1)(k̄ − 1)!

k̄−2∑
i=1

1

i!
>

(
k̄ +

k̄−1−p∑
h=1

(k̄ − 1)(k̄ − 1)!

(k̄ − h− 1)!

)(
1 +

p−1∑
h=1

(p− 1)(p− 1)!

h!

)
.

The previous inequality can be rewritten as

(k̄ − 1)(k̄ − 1)!

(k̄−2∑
i=1

1

i!
−
k̄−1−p∑
h=1

1

(k̄ − h− 1)!

)
>

(
k̄ +

k̄−1−p∑
h=1

(k̄ − 1)(k̄ − 1)!

(k̄ − h− 1)!

)(p−1∑
h=1

(p− 1)(p− 1)!

h!

)
.

Since the left hand side is equal to (k̄−1)(k̄−1)!
∑p−1
h=1

1
h! ,

we can simplify the term
∑p−1
h=1

1
h! to get

(k̄ − 1)(k̄ − 1)! > (p− 1)(p− 1)!

(
k̄ +

k̄−1−p∑
h=1

(k̄ − 1)(k̄ − 1)!

(k̄ − h− 1)!

)
,

which is finally equivalent to

1

(p− 1)(p− 1)!
>

k̄

(k̄ − 1)(k̄ − 1)
+

k̄−1−p∑
h=1

1

(k̄ − h− 1)!
.

(14)
We use induction to show that inequality (14) holds for 1 <
p < k̄, as required. We start from p = k̄ − 1 and apply
induction backwards until we reach p = 2.

- For p = k̄ − 1 and p > 1 inequality (14) reads as

1

(p− 1)(p− 1)!
>
p+ 1

p · p!
⇐⇒ p2 > p2 − 1 ,

which is always satisfied.



- Let us assume the inequality holds for a generic p ≤
k̄−1, we show that it holds also for p−1 (with p > 1).
That is, we assume

1

(p− 1)(p− 1)!
>

k̄

(k̄ − 1)(k̄ − 1)
+

k̄−1−p∑
h=1

1

(k̄ − h− 1)!
,

(15)
and want to show

1

(p− 2)(p− 2)!
>

k̄

(k̄ − 1)(k̄ − 1)
+

k̄−p∑
h=1

1

(k̄ − h− 1)!
.

(16)
We can rewrite the right hand side of (16) and use (15)
to upper bound it

k̄

(k̄ − 1)(k̄ − 1)
+

k̄−p∑
h=1

1

(k̄ − h− 1)!
=

k̄

(k̄ − 1)(k̄ − 1)
+

k̄−p−1∑
h=1

1

(k̄ − h− 1)!
+

1

(p− 1)!
<

1

(p− 1)(p− 1)!
+

1

(p− 1)!
=

p

(p− 1)(p− 1)!
<

1

(p− 2)(p− 2)!
.

(17)

The last inequality holds since it is equivalent to

p

(p− 1)2
<

1

p− 2
⇐⇒ p2 − 2p < (p− 1)2 ,

which is always satisfied. Comparing the first and last
term in (17) gives (16).

This completes the induction and thus the entire proof.

Lemma 3. i) For any l ∈ [m], m ∈ N it holds

χlf?
m

= χmf?
m
.

ii) For any k ∈ [k̄] and p ∈ [k − 1] it holds

χk
f̂p

= χk̄
f̂p
.

Proof. i) If l = m, the result holds trivially. Hence in the
following we consider l ∈ [m− 1]. By definition of χlf?

m
in

(4)

χlf?
m

:= min
x≥0

x

s.t. jf?m(j)− f?m(j + 1) ≤ x j ∈ [l − 1] ,

(l − 1)f?m(l) ≤ x .

Note that f?m is derived in [10, Theorem 2] solving the
following recursion

jf?m(j)− f?m(j + 1) = χmf?
m

j ∈ [m− 1]

(l − 1)f?m(l) = χmf?
m
.

(18)

Since m > l, it follows that any feasible x from the LP
above has to satisfy x ≥ χmf?

m
. In the following we show that

setting x = χmf?
m

, the constraint (l − 1)f?m(l) ≤ x is also

satisfied. This will be enough to conclude that χlf?
m

= χmf?
m

.
Since f?m is non increasing, one has

(l − 1)f?m(l)− χmf?
m

= lf?m(l)− f?m(l)− χmf?
m
≤

≤ lf?m(l)− f?m(l + 1)− χmf?
m

= 0 ,

where the equality holds applying (18) for j = l ∈ [m− 1].
ii) We intend to compute

χk
f̂p

:= min
x≥0

x

s.t. jf̂p(j)− f̂p(j + 1) ≤ x j ∈ [k − 1]

(k − 1)f̂p(k) ≤ x .

As shown before it is clear that for any feasible x, it must be
x ≥ χk̄

f̂p
due to how f̂p(j) is recursively defined for j > p in

equation (13). Similarly to what shown before one can prove
that x = χk̄

f̂p
will also satisfy the constraint (k−1)f̂p(k) ≤ x.

Hence χk
f̂p

= χk̄
f̂p

and the proof is concluded.
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