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Abstract—This paper treats the IMU calibration and validation

problem in three settings: Factory production line with the aid

of a precision multi-axis turntable, in-the-field on land and at

sea, both without specialist test equipment. The treatment is

limited to the IMU calibration parameters of key relevance for

gyro-compassing grade optical gyroscopes and force-rebalanced

pendulous accelerometers: Scale factor, bias and sensor axes

misalignments. Focus is on low-dynamic marine applications e.g.,

subsea construction and survey.

Two different methods of calibration are investigated: Kalman

smoothing using an Aided Inertial Navigation System (AINS)

framework, augmenting the error state Kalman filter (ESKF)

to include the full set of IMU calibration parameters and a

least squares approach, where the calibration parameters are

determined by minimizing the magnitude of the INS error

differential equation output.

A method of evaluating calibrations is introduced and dis-

cussed. The two calibration methods are evaluated for factory

use and results compared to a legacy proprietary method as well

as in-field calibration/verification on land and at sea.

The calibration methods shows similar navigation performance

as the proprietary method. This validates both methods for

factory calibration. Furthermore it is shown that the AINS

method can calibrate in-field on land and at sea without the

use of a precision multi-axis turntable.

Keywords—inertial measurement unit; inertial navigation; sen-

sor fusion; Kalman filters.

I. INTRODUCTION

The core of a strap-down Inertial Navigation System (INS)
is an Inertial Measurement Unit (IMU) which is composed of
gyroscope and accelerometer triads mounted along nominally
orthogonal axes. This paper treats the IMU calibration and
validation problem in three substantially different settings:

• Factory production line with the aid of a precision multi-
axis turntable.

• On land without specialist test equipment.
• At sea without specialist test equipment.

The treatment is limited to the IMU calibration parameters of
key relevance for gyro-compassing grade optical gyroscopes
and force-rebalanced pendulous accelerometers: Scale factor,
bias and sensor axes misalignments. The latter are determined
with respect to precision machined mounting fixtures on

the IMU housing enabling easy in the field system replace-
ment. Furthermore, this paper focuses on the low-dynamic
marine domain such as subsea survey and construction us-
ing Autonomous Underwater Vehicles (AUVs) and Remotely
Operated Vehicles (ROVs), and as a supplement to Global
Navigation Satellite System (GNSS) to satisfy the redundancy
requirements of Dynamic Positioning (DP) drill ships and
semi-submersible platforms. Calibration methods for other
types of IMU sensor including more complex sensor models
for higher dynamics can be found in [1], [2].

The three settings considered are vastly different. Factory
calibration using a multi-axis precision turntable benefit from
effectively perfect knowledge of absolute orientation, position,
(zero) velocity, angular rate and local gravity. Orientation can
be controlled arbitrarily to approximately 0.001� accuracy,
although some restrictions are imposed if using a dual axis
table. Per the nature of the domain, some marine inertial
systems are frequently subjected to rough transport, handling
and harsh operational conditions. Other systems may be in
continuous operation for years. This introduces a special
need to reliably validate and calibrate INS performance at
customer storage facilities on land or at times offshore. At
typical customer sites on land, the reference observation set is
limited to fixed position, zero velocity and zero angular rate,
relative to Earth. Orientation can be controlled via manual
handling and the read-out of the INS itself but no reference
is available. At sea the reference observations are severely
limited. Approximate position can be provided by GNSS or
from knowledge of DP station keeping at a fixed location.
Position accuracy is limited by antenna lever arm uncertainty
or DP (wave) excursions away from the reference location.

An overview of the different frames used for navigation
in this paper is given in section II. Two different methods of
calibration are investigated. Both relies on the principle of INS
given in section III: Kalman smoothing using a conventional
AINS framework, augmenting the ESKF to include the full
set of IMU calibration parameters is given in section IV, also
investigated in [1]; and a conventional batch least squares
optimization approach in section V, where the calibration
parameters are determined by minimizing the magnitude of
the INS error differential equation output. This technique has
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been proposed by [3], [4] for similar IMU sensors.
Section VI describes the experimental calibration set-up

that forms the basis of the analysis. A method of evaluating
calibrations is introduced and discussed in section VII. The
two calibration methods are evaluated for factory use and
results compared to in-field calibration/verification on land
and at sea in section VIII. The calibration trajectory used
was chosen to compare a legacy proprietary method with
the two presented herein. Alternatively, the trajectory could
be chosen as in [3] or even optimized for observability of
the estimated parameters as partly examined in [5], [6]. The
presented methods are compared and advantages over other
methods are discussed in section IX.

II. REFERENCE FRAMES

The inertial sensor triads gives rise to two non-orthogonal
reference frames. Besides the inertial sensor frames the fol-
lowing frames are used in this paper [7]:

i Inertial frame. Origin is at the center of the Earth with
the z-axis coincident with Earth’s rotation axis.

e Earth frame, with origin at the center of the Earth,
z-axis coincident with Earth’s rotation axis and x-axis
through the Greenwich meridian where it intersects the
equatorial plane. The e-frame rotates about the z-axis,
with respect to the i-frame, at a rate of ⌦.

n North–East–Down (NED) local geographic navigation
frame. Rotates with respect to the e-frame with the
transport rate, !en, which is dependent on motion of
the position with respect to Earth.

b IMU body frame. This is the post-calibrated orthogonal
IMU axis set.

m orientation “sensor” NED local geographic navigation
frame. This is not necessarily coincident with the n-
frame.

The rotation from b-frame to n-frame can be expressed with
the direction cosine matrix (DCM) Cn

b. If the DCM is derived
from a small angle approximation, also known as the cross-
product form, the notation �Cn

b =  = [ ⇥], is used, where
 is the equivalent vector form.

If a vector expressed in b-frame, yb, is to be converted to
n-frame, the DCM can be used: y

n = Cn
by

b. This notation
is used throughout this paper. Furthermore, the quantity can
be explicitly represented e.g., !n

en which means that it is
the rotation rate of the e-frame with respect to the n-frame,
expressed in n-frame.

III. INERTIAL NAVIGATION

An INS allows any vehicle to be positioned, in the short
term, precisely without having to rely on models of vehicle
dynamic. Earth bound navigation using a strap-down IMU
can be described with a set of ordinary differential equations
(ODEs), derived from the laws of motion within moving
coordinate frames. For the chosen n-frame mechanization, the
inertial navigation equations (INEs), velocity v, position p and

orientation Cn
b, can be written as

v̇n
e = [vN vE vD]

> (1)

= Cn
bf

b

| {z }
Inertial

� (2!n
ie + !

n
en)⇥ vn

e| {z }
Coriolis

+ gn
l|{z}

Local gravity
(2)

ṗn
e = [L ` d]> (3)

=

"
vN

R0 � d| {z }
Latitude

vE secL

R0 � d| {z }
Longitude

� vd

| {z }
Height

#>

(4)

orientationĊn
b = Cn

b⌦
b
nb , (5)

following the notation of [7], with
f b specific force as observed by the accelerometers, in

m/s2
vN local horizontal velocity the in North direction in m/s
vE local horizontal velocity the in East direction in m/s
vD vertical velocity in the down direction in m/s
L latitude in radians
` longitude in radians
d depth in meters from mean sea level of the reference

ellipsoid
R0 radius of the reference ellipsoid at equator, in meters
Cn

b platform orientation, DCM from b-frame to n-frame,
with the Euler angles [↵ � �]>

⌦b
nb rotation rate of the n-frame with respect to the

b-frame, in rad/s. Calculated from the navigation
frame rate ⌦in and from the absolute body rate ⌦ib
observed by the gyroscopes

gn
l local gravity vector, in m/s2. Often simplified to

[0 0 g]>.
The IMU together with the INEs makes up the core of an

INS. The INS outputs the navigation state; the three dimen-
sional position, attitude, heading, and velocity. Any navigation
state can be found by performing dead-reckoning navigation
from the previous state. The dead-reckoning navigation can be
performed by propagating the IMU measurements through the
INEs.

It requires a good initial navigation state for these non-linear
equations to work properly, since they are highly dependent
on position and orientation. In order to simplify the INS
algorithms, the orientation is initialized with an attitude and
heading reference system (AHRS). This is a simple, robust
and self contained system. The AHRS determines North by
use and sensing of the Earths gravitational acceleration and
rotation.

Ultimately, the goal of any IMU calibration is to minimize
the navigation errors.

IV. AINS FRAMEWORK

Dead-reckoning navigation inhibits poor long term precision
performance and will eventually drift off due to sensor errors,
modeling errors, initial errors, etc. Errors propagate through
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the INEs and build up over time according to the navigation
error equations [7], [8]:

� ̇ = �!n
in ⇥ + �!n

in � Cn
b�!

b
ib (6)

�v̇n
e = [f n⇥] + Cn

b�f
b � (2!n

ie + !
n
en)⇥ �vn

e

� (2�!n
ie + �!

n
en)⇥ vn

e � �gn
l

(7)

�ṗn
e = �vn

e (8)

with
 platform misalignment vector [�↵ �� ��]>

�!b
ib gyroscope measurement error

�!n
ie error in Earth’s spin rate, which is negligible for

navigation purposes
�f b accelerometer measurement error
�gn

l error in the local gravity
�vn

e velocity error
where the last three errors are defined similar to (11). These
are found e.g., by differencing the estimated INEs and the true
INEs.

The complementary properties of extrinsic sensors and the
intrinsic can be combined to get the best from both worlds:
bounded navigation error with good precision; this is the
definition of AINS. An ESKF [7]–[9] framework is used,
allowing the estimator to have a slower update rate than
the INS, which relaxes requirements for both hardware and
algorithms. The states in the ESKF are models of errors,
instead of the full states e.g. estimated depth error compared
to estimated depth. Since the INS errors are evolving much
slower than the navigational dynamics, it makes sense to make
the computational harder estimation task only track the errors.
Fig. 1 shows such a processing framework. Aiding sensors
make navigation state errors observable. The difference be-
tween the expected and the actual observation is fed into the
ESKF. The estimated navigational state errors are used as INE
corrections. The corrections can be fed back to the INS to let
the INS deal with correcting the navigation state. Alternatively
the ESKF accumulated corrections can be used to correct the
INS navigation state. In the former set-up the ESKF resets the
error state vector to zero every time a correction is given to
the INS.

An extended Kalman filter (EKF) [9] is employed, as the
system is non-linear, here expressed in state-space form

ẋ(t) = f(x,ud, t) + g(u, t) (9)
z(t) = h(x, t) + v(t) . (10)

The EKF requires knowledge of a nominal state, x⇤, in order
to estimate the true state. The nominal state is defined as being
equal to the true state plus an error

�x = x� x⇤
. (11)

Since the goal is to estimate INS errors, the nominal state is
the INS navigation state. Linearizing the system in (9) and
(10) with respect to the nominal state gives

�ẋ(t) = F �x(t) +Gu(t) (12)
�z(t) = H�x(t) + v(t), (13)

INS

�

+

Sensor
model

ESKF

�
+

Sensor

(corrected)

navigation state

corrections

corrected

navigation state

accumulated

corrections

measurement

ex
pe

ct
ed

m
ea

su
re

m
en

t

measurement

difference

error state

estimate

Fig. 1. General AINS framework. The corrections, dashed connections, are
either applied to the INS output or alternatively fed back to the INS. If the
latter is true, the error state must be reset.

where � denotes error state and observation error, both from
the navigation state, and F , G and H are formed from the
partial derivatives of f , g and h, respectively, with respect
to x; all evaluated in the nominal state. With this linearized
system the EKF estimates the error state, �x̂ and the associated
estimation error covariance P . it should be emphasized that
the EKF should be operating close to the linearization point
to minimize non-linear effects.

The resulting parameters are refined by using the Rauch-
Tung-Striebel (RTS) fixed interval smoothing technique [9].
For offline processing the RTS interval spans the entire data
set, thus making two passes, one forward and one backward.
The backward pass is effectively running the KF backwards in
time, with the a priori information coming from the forward
pass.

A. IMU sensor error models

The ESKF can be used as a parameter estimator for e.g.
sensor error models, by augmenting the navigational state-
space model:

�x0 =

"
�xnav

�xsens

#
(14)

�ẋ0(t) = f 0(�x0(t)) + g0(u0(t)), (15)

where prime, 0, denotes augmented quantities. Gauss-Markov
processes are commonly used for error modeling in ESKFs
as they only require a single state, are easy to implement
and versatile. A first order Gauss–Markov process, with time-
constant ⌧ and variance �

2, is exponentially-correlated and
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can be described by the system

x(0) ⇠ N (0,�2) (16)

ẋ(t) = �1

⌧

x(t) +

r
2�2

⌧

u(t), (17)

where u(t) is unity white noise . This allows modeling the
errors as anything from a random constant, ⌧ = 1, to
almost zero time auto-correlation for ⌧ ! 0 i.e., every sample
independently and identically Normal-distributed.

Both the gyroscopes and the accelerometers are modeled as
having biases, scale-factor errors and axis misalignment errors,
all modeled as first order Gauss–Markov processes. For the
calibration problem these are all modeled as random constants.
These are applied to the IMU to correct the output with fixed
parameters. Unmodeled effects and degradation is accounted
for by estimating some or all of the IMU sensor errors as
time-varying parameters, when navigating using AINS. These
values should be much smaller than the calibrated values
for the type of inertial sensors discussed in this article; not
necessarily true for other sensor types.

The errors are defined such that the observed quantity (e)
equals the truth plus an error (�). Thus, the accelerometer
model defined as:

ef b = f b + �f b = f b +
⇣
�f b

bias + �Maf
b
⌘
, (18)

where f b is the true specific force in body frame,

�f b
bias =

2

4
�fbias,x
�fbias,y
�fbias,z

3

5 (19)

the accelerometer biases with each element modeled with a
variance �

2
abias and

�Ma =

2

4
�m

a
11 �m

a
12 �m

a
13

�m

a
21 �m

a
22 �m

a
23

�m

a
31 �m

a
32 �m

a
33

3

5
, (20)

with the the diagonal elements modeled with the variance �

2
asfe

and the off-diagonal elements �

2
ama. Note that �Macc contains

both the sensor axes misalignments and the scale-factor errors,
which is seen in the structure of the associated variances. Note
that this resembles the cross-product form for small angle
approximations, but is not quite the same. Also, using this
model the diagonal terms will contain a contribution from
physical axis misalignments and scale factor errors.

It should be clear that the Gauss–Markov process, (17), only
affects its own state in (14). The coupling into the navigation
states are found by applying the sensor error model to the
navigation error equations. Taking (7) and ignoring products
of errors, the tiny contribution from the Coriolis error term
and substituting (18) in gives:

�v̇n
e = [f n⇥] + Cn

b�f
b
bias + Cn

b�Maccf
b (21)

Equation (21) is linearized, when using EKF, to find the
couplings in the state transition matrix

@�v̇n
e

@�f b =
@

⇥
�v̇N �v̇E �v̇D

⇤>

@

⇥
�fbias,x �fbias,y �fbias,z �m

a
11 · · · �m

a
33

⇤>

= Cn
b
⇥
I3 I3fx I3fy I3fz

⇤
,

(22)
where I3 is the 3x3 identity matrix.

Similarly, the gyroscope sensor model is defined:

e!b
ib = !b

ib + �!
b
ib = !b

ib +
�
�!b

ib,bias + �Mg!
b
ib
�
, (23)

with !b
ib being the true angular velocity of the body frame

with respect to the inertial frame, expressed in body frame,

�!b
ib,bias =

2

4
�!bias,x
�!bias,y
�!bias,z

3

5 (24)

the gyroscope biases with each element modeled with a
variance �

2
gbias and

�Mg =

2

4
�m

g
11 �m

g
12 �m

g
13

�m

g
21 �m

g
22 �m

g
23

�m

g
31 �m

g
32 �m

g
33

3

5
, (25)

with the the diagonal elements modeled with the variance �

2
gsfe

and the off-diagonal elements �

2
gma. Taking (6) and ignoring

products of errors and substituting with (23)

� ̇ = �!n
in ⇥ + �!n

in � Cn
b�!

b
ib,bias � Cn

b�Mg!
b
ib, (26)

yields the system combined equation. Again, the gyroscope
error states influence on the navigation states are found by
linearizing (26):

@� ̇

@�!b
ib
=

@

⇥
�↵̇ ��̇ ��̇

⇤>

@

⇥
�!bias,x �!bias,y �!bias,z �m

g
11 · · · �m

g
33

⇤>

= �Cn
b
⇥
I3 I3!b

ib,x I3!b
ib,y I3!b

ib,z
⇤
,

(27)
where I3 is the 3x3 identity matrix. The similarity between
(22) and (27) is expected since the sensor models are identical
and as both couple sensor errors into identical state dynamic,
i.e., accelerometer to velocity and gyroscope to angular veloc-
ity.

B. Factory observations
The AINS is initialized with knowledge of the absolute

orientation and position. Knowledge of local gravity is used to
adjust the depth, so it fits with the reference frame, WGS-84
in this case.

Whenever stationary the AINS is aided by orientation from
the turn table, mean depth and zero velocity. The two latter
are pseudo sensors. They provide aiding information, but relies
on the operator to satisfy/verify the assumptions. In case these
assumptions does not hold true and the aiding is enabled, the
ESKF will be provided with wrongful information that ”can
not escape”. So once the information is there it will flow to
the least observable states, leading to estimation errors perhaps
even loss of integrity i.e., when the true estimation error is not
consistent with the propagated covariance.
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1) Orientation: An orientation sensor observes the body
frame orientation with respect to the orientation sensor local
navigation frame, that is Cm

b . The actual orientation obser-
vation is taken from the reference platform, the two-axis
turntable, although the following mechanization is general in
nature.

eCm
b =

2

4

2

4
↵att
�att
�att

3

5⇥

3

5+ watt, (28)

where watt ⇠ N (0, I3�att). The related expected observation
is given by

bCm
b = bCm

n
bCn

b. (29)

The estimated navigation frame orientation with respect to the
orientation sensor local navigation frame is defined as

bCm
n = [I3 �⌃]Cm

n , (30)

where ⌃ = [&⇥] and

& =

2

4
�↵att
��att
��att

3

5 (31)

are small misalignment angles modeled as Gauss–Markov
processes with variance �2

att. The ESKF observation is modeled
as the small misalignment angles between the estimated and
observed orientation,

�Cm
n = I3 � bCm

b Cm
b
>
, (32)

which comes from the definition of orientation errors i.e., same
as (30). Expanding and ignoring products of errors

�Cm
n = I3 � bCm

n
bCn

bCm
b
>

= I3 � [I3 �⌃]Cm
n [I3 � ]Cn

bCm
b
>

⇡ Cm
n Cm

n
> +⌃

(33)

or on vector form
�⇠ = Cm

n  + &, (34)

where �⇠ is the misalignment angles corresponding to the
DCM �Cm

n . The corresponding observation matrix is found
by linearizing (34),

H( , &) =
@�⇠

@�x
=

⇥
Cm

n I3
⇤
, (35)

which is trivial in this case.
2) Zero velocity: If completely stationary an observation of

zero velocity, relative to Earth, is a rather good approximation.
This is also known as zero velocity update (ZUPT). The
observed zero velocity is simply

ṽn = 0, (36)

and the expected observation

v̂n = 0+ �vn
, (37)

with �vn modeled as with a variance of �2
zupt. The observable

difference is simply

�vn = v̂n � ṽn

= (0+ �vn)� 0

= �vn
(38)

and the observation matrix

H(�vn) =
@�vn

@�x
= I3. (39)

As seen from (38) and (39) the ESKF estimate is directly the
estimation error, with corresponding noise.

3) Mean depth: With ZUPT aiding the position drift of the
AINS is minimized, but the vertical channel is unstable [7],
[8] will diverge if not aided. Using the same principle as with
ZUPT, the observed depth is

d̃ ⇠ N (d0,�d), (40)

where d0 is the constant depth found from the local gravity.
With the expected observation

d̂ = d0 + �d, (41)

the observable difference is found

�d = d̂� d̃

= (d0 + �d)� d0

= �d

. (42)

The observation matrix is simply

H(�d) =
@�d

@�x
= 1. (43)

The final augmented system consists of 36 states: 9 naviga-
tion error states, 24 IMU sensor error states and 3 orientation
sensor platform misalignment states.

C. On land

Even without orientation observations, the AINS described
in the previous section will be able to calibrate the IMU, but
the lacking orientation information makes the IMU housing
orientation unobservable and thus indeterminable.

A gravity model must be used, as it is unlikely that the
remote site has surveyed local gravity. In order to achieve
good estimates for the accelerometer scale-factor errors, a
gravity model accounting for the spherical harmonics must be
employed. Such models are readily available in public domain.
For navigational performance an error in the order of deci-
micro-g is insignificant and the models should suffice.

The AINS is initialized with orientation from the AHRS
and position from an approximately known fixed position
and aided with ZUPT and mean depth. Constant orientation
aiding using the knowledge of rotational stationarity, much like
ZUPT, is believed to increase observability of the calibration
parameters, but is not being investigated in this paper.

The final augmented system consists of 33 states: 9 naviga-
tion error states, 24 IMU sensor error states.
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D. At sea
The only partly known quantities are the horizontal position,

and mean depth equal to roughly the mean sea level. The latter
is derived in section IV-B3.

The position is aided by a GNSS. These vessels tend to
place the GNSS receiver as high as possible, operationally
resulting in a large sensor lever arm. Errors will be introduced
if the lever arm is incorrectly compensated for e.g., erroneous
surveyed, if the vessel is unstable.

1) Position: Using the same principle as with ZUPT, the
observed position is

ep = p =


plat
plon

�
(44)

where p is the true position. With the expected observation

bp = p+ �p, (45)

where �plat is modeled with a variance �

2
lat and �plon with �

2
lon.

The observable difference is derived:
�p = bp� ep

= (p+ �p)� p

= �p

(46)

The observation matrix is simply

H(�p) =
@�p

@�x
= I2. (47)

The final augmented system consists of 33 states: 9 naviga-
tion error states, 24 IMU sensor error states.

V. BATCH/LEAST SQUARES PROCESSING

The fundamental idea behind the least-squares calibration
method is adjusting the calibration parameter such that the
error of the INEs is minimized rather than directly comparing
the IMU sensor output with a computed reference. This
technique has the advantage of being robust with respect to
errors in the experimental setup. Furthermore, it does not
require elaborate IMU sensor noise models unlike the AINS
method. The measurable difference in acceleration error for
two different IMU orientations is a function of the calibration
parameters, as seen from (6) and (7). If the rotations are
carefully chosen, the full set of parameters is observable. In
the simplest case, this yields an algebraic system of equations,
which can be solved using a least-squares technique [10].
Alternatively, a larger and more complex set of rotations can
be chosen e.g., optimized for observability, and the parameters
estimated using optimization. Both approaches assumes that
the IMU is stationary relative to Earth, at the start, T0, and
end, T , of each rotation, which greatly simplifies (7). Thus,
the i’th residual r

i

can be written as

r
i

= Cn
b(T0,i)| {z }
table

ef b(T0,i)| {z }
acc.

� bCn
b(Ti

)| {z }
gyro.

ef b(T
i

)| {z }
acc.

, (48)

where ef b are accelerometer measurements, Cn
b(T0,i) is the

absolute orientation from the turn table at the beginning of the
rotation and bCn

b(Ti

) the INS estimated orientation at the end of

the rotation. The IMU measurements are compensated apply-
ing current parameter estimates before any calculations. The
gyroscope sensor errors will propagate through the estimated
orientation in (48), making all IMU sensor errors observable
in the residual.

The optimization problem for the calibration parameter set
✓ is then formulated as:

argmin
✓

krk22 , (49)

and solved using classical nonlinear least squares techniques.
Note that the minimization of the residuals defined in (48)
only guarantees internal consistency of the IMU data, but
does not estimate the IMU sensor orientation with respect
to a predetermined external frame of reference e.g., the IMU
housing. If the value of the gravity vector g is known with
sufficient precision, then minimizing the (new) residuals

r̃
i

=

"
Cn

b(T0,i)ef b(T0,i)� gn

bCn
b(T1,i

)ef b(T1,i

)� gn

#
, (50)

allows also to determine the orientation of the sensors with
respect to the table frame of reference.

The least-squares approach is only used for the factory
setting. Major rework would be necessary to make it work
for the other settings, as it is not as easily reconfigured for
different observations as the AINS.

VI. CALIBRATION SET-UP

The basis of the calibration is experimental data from six
IMUs on a two-axis turn table. The pre-calibrated 100 Hz IMU
data is collected after the coning and sculling algorithm [7],
[8] is applied. The IMUs are undergoing a rotation sequence
similar to that in Fig. 2. This sequence of rotations can be
realized in all three settings, either by hand or with help of a
fixture. Having the reference data from the table serves as a
mean to evaluate the calibration methods in all settings.

For the factory setting the table orientation is available for
the calibration methods, as well as surveyed local gravity.
Both the AINS and the least-squares methods are compared
to a third proprietary calibration method. This method does
not determine the IMU sensor orientation with respect to the
IMU housing, but it does ensure an orthogonal calibrated body
frame.

Note that the processing for the on land and at sea settings
does not require the IMU to follow the referenced example
trajectory absolutely, as only the stationary periods matter.

Using the data sets for the at sea setting is justified by the
fact that large vessels with DP systems in calm waters have
negligible attitude motion, thus any GNSS lever arm errors
will have no influence. GNSS observations are simulated by
taking the table position and adding 30 cm white noise.

Gyroscope biases are not calibrated for all methods and all
settings, due to small biases for the available IMUs.

All calibration methods output the calibration parameter set
and produces pertaining compensated IMU data.
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Fig. 2. Calibration fixture, two-axis turn table, example rotation sequence. Black is the inner axis and gray the outer axis.

VII. EVALUATION

Evaluating the navigational performance of IMU calibra-
tions is non-trivial due to different definitions of e.g., cali-
brated body frame. A calibration should be penalized if the
calibrated body frame is non-orthogonal, but not if it is not
calibrated to IMU housing frame. An evaluation method using
calibrated IMU data is presented in this section.

Two metrics are evaluated: the navigation frame misalign-
ment and the acceleration error in navigation frame. Evaluating
errors in navigation frame makes comparison easier than deal-
ing with different definitions of body frame. The references
are the IMU motion from the calibration platform and the
surveyed gravity, respectively.

The IMU body frame orientation with respect to the naviga-
tion frame, Cn

b[t], is found by running ZUPT aided INS. The
initial orientation and position are taken from the reference
platform. The body frames of the platform and the IMU might
not be perfectly aligned. Additionally the available calibration
fixture had a small but unknown heading misalignment. Con-
sequently the platform orientation reference, Cnp

bp[t], can not
be directly compared to Cn

b[t]. These misalignments are small
and constant throughout the entire procedure, and are fitted
with the residuals

ratt[t] = Cn
b[t]

h
Cn

np(�np)C
np
bp[t]C

bp
b (✓bp)

i>
, (51)

where the Euler angle �np is the heading difference and
✓bp =

⇥
↵bp �bp �bp

⇤> the body frame misalignments. The
minimization problem

argmin
{�np,✓bp}

kj(ratt)k22 , (52)

with function j resolving the residuals into Euler angles and
taking the 2-norm of the three Euler elements, is solved by a
conventional non-linear least-squares algorithm. Running the
AINS as part of the minimization increases the execution
time immensely, as a result a slightly different approach is
used. Running the AINS with an initial heading error will
converge with time, so using RTS smoothing on the result
gives an improved initial heading. This mitigates the initial
heading error effect on the AINS and the optimization executes
fast. The appertaining root–mean–square–error (RMSE) is
calculated as the RMS of the minimized residuals of (51),
for stationary periods.

The navigation frame acceleration error is evaluated by
resolving the body frame output of the accelerometers, �vb,
into navigation frame using the gyroscopes

�vn[t] = Cn
b[t]�vb[t], (53)

and compensated for gravity

�an[t] =
�vn[t]

�TIMU
�

2

4
0
0
g

3

5
, (54)

where �TIMU is the IMU sample interval. Taking the RMSE of
the magnitude of the acceleration will unfairly weight longer
stationary periods more than shorter periods. Both problems
are mitigated by taking the mean of �vn for each stationary
period, weighting each period equally, before calculating the
RMSE.

VIII. RESULTS

The calibration methods are evaluated according to the
metrics defined in section VII, using the set-up described in
section VI.

Table I and II shows orientation and acceleration perfor-
mance, respectively, for the factory calibration setting. In this
setting the two calibration methods described in this paper has
been verified against a third proprietary calibration method.
Calibration performance for the on land setting is shown in
table III and at sea in table IV.

Comparing the results shows that all three methods perform
similarly for the factory setting. Furthermore, it is also seen
that the performance of the AINS method performs almost
identically in all three settings.

IX. CONCLUSION

Analyzing the results from the experimental data shows that
both methods presented herein can be used to achieve high
accuracy for factory calibration. Furthermore, utilizing two
substantially different algorithms is a useful aid in validation
of correctness of implementation. Both algorithms are found
to perform on par or better than a proprietary and previously
used method.

In-the-field calibration on land is shown to be feasible
without a multi axis precision turn table, by merely doing
a nominally similar series of rotations and leaving the IMU
stationary in-between and making use of the flexibility of
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TABLE I
ATTITUDE AND HEADING PERFORMANCE FOR

FACTORY SETTING.

Orientation RMSE (mili-�)

IMU# AINS NLSQ Proprietary

1 10.7668 11.0004 12.8470
2 20.3281 20.9816 21.9415
3 26.6626 26.1676 27.4034
4 22.3295 23.0129 22.6769
5 28.8444 27.5539 25.1533
6 26.3689 26.5847 26.5428

Mean 22.5500 22.5502 22.7608

TABLE II
ACCELERATION PERFORMANCE FOR FACTORY

SETTING.

Acceleration RMSE (µg)

IMU# AINS NLSQ Proprietary

1 16.7683 16.4582 21.9174
2 29.9454 26.5149 29.7009
3 28.5088 22.1025 89.6507
4 33.2744 29.1359 28.2366
5 25.6030 23.4516 31.6360
6 31.9135 30.0562 34.0508

Mean 27.6689 24.6199 39.1987

the AINS KF. Without absolute knowledge of orientation,
calibration to the IMU housing is unattainable.

In-field calibration at sea is shown feasible if certain con-
ditions are met. Results shows that the IMU can be field
calibrated with just a GNSS receiver and knowledge of local
gravity or a good model hereof.

Compared to the least-squares method, the AINS KF ap-
proach benefits from the ESKFs ability to process a wide range

TABLE III
CALIBRATION PERFORMANCE FOR ON LAND SETTING.

RMSE

IMU# Orientation (mili-�) Acceleration (µg)

1 30.1818 67.6954
2 20.4200 29.8001
3 26.4714 26.8985
4 22.9644 27.8462
5 28.0645 28.9807
6 25.4839 29.7186

Mean 25.5977 35.1566

TABLE IV
CALIBRATION PERFORMANCE FOR AT SEA SETTING.

RMSE

IMU# Orientation (mili-�) Acceleration (µg)

1 17.6468 28.5954
2 20.0357 32.6557
3 25.8094 34.5786
4 25.2287 31.4044
5 27.4300 24.9405
6 27.9529 33.9529

Mean 24.0173 31.0213

of external observations. The framework’s flexibility allows
easy adaptation to the available set of observations for each
of the settings. Using the KF covariance matrix to evaluating
parameter observability/accuracy and optimizing the sequence
of rotations might increase calibration accuracy. A drawback
of applying the AINS Kalman filter technique is dependence
on accurate IMU sensor noise models. A disadvantage that the
least-squares method does not share.

Finally, an evaluation method has been developed that
allows for a robust comparison of IMU performance.
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