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Abstract

Detailed morphometric analysis of the neonatal brain is required to charac-
terise normal brain development and investigate the neuroanatomical corre-
lates of cognitive impairments. The segmentation of the brain in Magnetic
Resonance Imaging (MRI) is a prerequisite to obtain quantitative measure-
ments of regional brain structures. These measurements obtained at term-
equivalent or early preterm age may lead to improved understanding of brain
growth and may help evaluate long-term neurodevelopmental performance
at an early stage.

This thesis focuses on the development of an accurate segmentation algo-
rithm for the neonatal brain MR images and its application in large cohorts
of subjects. Neonatal brain segmentation is challenging due to the large
anatomical variability as a result of the rapid brain development in the
neonatal period. The lack of training data in the neonatal period, encoded
in brain atlases, further hinders the development of automatic segmentation
tools.

A novel algorithm for the tissue segmentation of the neonatal brain is
proposed. The algorithm is extended for the regional brain segmentation.
This is the first segmentation method for the parcellation of the developing
neonatal brain into multiple structures. A novel method is further proposed
for the group-wise segmentation of the data that utilizes unlabelled data to
complement the labelling information of brain atlases. Previous studies in
the literature tended to overestimate the extent of the cortical region. A
method based on the morphology of the cortex is introduced to correct for
this over-segmentation.

The segmentation method is applied on an extensive database of neona-
tal MR images. Regional volumetric, surface and diffusion tensor imaging

measurements are derived from the early preterm period to term-equivalent



age. These measurements allow characterisation of the regional brain devel-
opment and the investigation of correlations with clinical factors. Finally,
a spatio-temporal structural atlas is constructed for multiple regions of the

neonatal brain.
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Djiowed,component is estimated from neighboring parts of the

cortical ribbon that their streamlines do not cross ”shock”

points (yellow lines). . . . . . ... ... ... ... ......

Sulci detection and enhancement. The cortical segmentation
of the MRI in A is presented in B and E before and after the
sulci delineation. ”Shock” voxels detected are illustrated in
C. The voxels that are finally labelled as CSF (sulci enhance-

ment) are presented in D. . . . ... o000
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6.7

7.1

7.2

7.3

7.4

7.5

7.6
7.7

7.8

Relative WM and CGM volumes (left plot) and cortical thick-
ness (right plot) with increasing age at scan. Dotted lines
present the results obtained by a Gaussian Mixture Model
that assumes one class for WM and one class for CGM. Solid
lines present the results including the proposed CGM-WM

partial volume correction and sulci correction . . . . .. . ..

Example segmentation of a neonatal MRI acquired at 28
weeks age at scan with the 82 labels overlaid (second row:
WM labels, third row: CGM labels, fourth row: subcortical
GM labels and ventricles). . . ... ... ...
Example segmentation of a neonatal MRI acquired at 44
weeks age at scan with the 82 labels overlaid (second row:
WM labels, third row: CGM labels, fourth row: subcortical
GM labels and ventricles). . . ... .. ... ... ... ...
Example cortical surface of a neonate at 44 weeks age at scan.
The red part of the surface that corresponds to the WM
- deep GM boundary is excluded from the cortical surface
measurements. . . ... ..o oL s
Example cortical surfaces for neonates at 28, 36 and 44 weeks
age at scan with the labels overlaid. . . . ... ... ... ..
Geometric distortions exhibited on the ADC map of a neona-
tal brain acquired at 29 weeks age at scan. The ADC map
that is rigidly registered (B) to the T2 image (A) presents
an example of these distortions (evident in the anterior part
of the brain). Non-rigid registration of the ADC map (C)
improves the alignment to the T2 space. . . . . . ... .. ..
Change in tissue volumes with increasing age at scan.
Relative tissue volumes with increasing age at scan (% of the
total brain volume). . . . . ... ..o Lo

Cortical surface measures with increasing age at scan.
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7.9 Different ages of the maximum probability structural atlas.
The structures of the atlas (second row: WM structures,
third row: CGM structures, fourth row: subcortical GM
structures and ventricles) are defined in the coordinate space

of the spatio-temporal template of Serag et al. (2012) (first

7.10 Different ages of the probabilistic structural atlas. The fol-
lowing probability maps are displayed (second-seventh row)
: WM (sum of the probability maps of the WM structures),
right frontal lobe WM, GM (sum of the probability maps of
the GM structures), right frontal lobe GM, subcortical GM
and ventricles (sum of the probability maps of the subcortical
GM structures and the ventricles), right thalamus. The prob-
abilistic structural atlas is defined in the coordinate space of

the spatio-temporal template of Serag et al. (2012) (first row). 147
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Chapter 1

Introduction

1.1 Motivation

Studying the anatomy of the developing brain is essential to characterise
normal development and investigate factors that affect brain growth. With
improvements in neonatal intensive care, increasing numbers of infants who
are born preterm now survive (Schwartz et al., 1994; Wilson-Costello et al.,
2005). However, approximately 10% of infants who are born preterm will
develop cerebral palsy (Hack and Fanaroff, 2000) and up to 50% will de-
velop cognitive and/or behavioural problems in childhood (Marlow et al.,
2005; Delobel-Ayoub et al., 2009). With advances in Magnetic Resonance
Imaging (MRI), detailed images of the neonatal brain can be visualized
non-invasively at a millimeter scale. Quantitative neuroimaging studies us-
ing MRI are increasingly being used to assess brain growth and development
in this vulnerable population. These studies have identified disturbances in
the growth of cortical grey matter (CGM) (Hiippi et al., 1998b; Peterson
et al., 2000, 2003; Kapellou et al., 2006a; Thompson et al., 2007; Rath-
bone et al., 2011), white matter (WM) microstructure (Anjari et al., 2007;
Ball et al., 2010; Boardman et al., 2010; van Kooij et al., 2012), regional
brain growth and development of deep grey matter structures (Inder et al.,
2005; Limperopoulos et al., 2005; Boardman et al., 2006; Mewes et al., 2006;
Srinivasan et al., 2006, 2007; Thompson et al., 2007; Boardman et al., 2010;
Ball et al., 2012; Gousias et al., 2012) compared to infants born at term.
Quantitative MR measures, obtained at term equivalent age or older, are as-

sociated with neurodevelopmental performance (Peterson et al., 2000, 2003;



Woodward et al., 2005; Beauchamp et al., 2008; Counsell et al., 2008; Lody-
gensky et al., 2008; Thompson et al., 2008; Boardman et al., 2010; Lind
et al., 2010, 2011; Rathbone et al., 2011; van Kooij et al., 2012).

Regional volumetric and shape measurements of the brain are derived
on the basis of the segmented structures of the brain. Diffusion weighted
imaging (DWI) and functional MRI (fMRI) further provide insights into the
regional structural and functional connectivity of the brain at a macroscopic
scale. Systematic assessment of these measurements in population studies
is essential to identify regions of the brain that are affected by pathologies
and provide information on the normal development of the brain. However,
manual segmentation of MR images is extremely time consuming and thus
an expensive process. Furthermore, manual labelling is subject to inter-
and intra-observer variability, which limits its reproducibility. These limi-
tations of manual approaches present an obstacle in labelling large cohorts
of subjects that are required for population studies. There is therefore a
need for an accurate automatic technique to parcellate the brain into multi-
ple structures of interest. Automatic segmentation of the neonatal brain is
considerably more challenging than the adult brain and hinders the devel-
opment of image processing tools. MR images of the neonatal brain have a
much lower contrast-to-noise ratio (CNR), frequently have lower signal-to-
noise ratio due to the small size of the neonatal brain and vary enormously in
terms of brain shape and appearance as a result of rapid brain development
during this period.

The aim of the research in this thesis is to provide an accurate automatic
method for regional segmentation of the neonatal brain. This allows for
the first time regional quantitative measurements of the neonatal brain to
be derived, from early preterm age to term-equivalent age. Regional brain
measurements can lead to improved understanding of the development of
the brain and will enable the impact of aberrant brain growth on subsequent

neurodevelopment following preterm birth to be assessed.

1.2 Magnetic Resonance Imaging methods

Magnetic resonance imaging is increasingly being used for imaging the
neonatal brain. MRI provides an excellent imaging technique to assess the

brain development due to the high-resolution images it provides while being



non-invasive and non-ionizing. This section briefly overviews MR techniques

used in structural imaging of the neonatal brain.

Figure 1.1: Structural imaging of the neonatal brain. T1-weighted image
(A), T2-weighted image (B), ADC map (C) and FA map (D) of a neonatal
brain (skull-stripped) acquired at 44 weeks post-menstrual age (PMA) are
presented.

1.2.1 Magnetic Resonance Imaging

MRI is based on the quantum mechanical properties of the hydrogen protons
in the body. Nuclei that have an odd number of protons and neutrons,
like hydrogen, rotate/spin around their axis at random orientations. When
placed in a magnetic field of strength By, the spin axis of the nuclei tends
to align with the magnetic field in the parallel direction to the field. The
nuclei reach an equilibrium with By but their position is not fixed, they
precess around their axis. If a pulse of radiofrequency (RF) is applied, the
majority of the nuclei will align to the anti-parallel direction of the By, and
start to precess in a phase coherent with each other. After the RF pulse,
the nuclei lose their magnetization and recover to their equilibrium state as

a result of two relaxation factors:

e T1 relaxation. The spin axis of the nuclei aligns back to the direction

parallel to By.
e T2 relaxation. The spins of the nuclei lose their phase coherence.

The tissue contrast arises from the different concentration of hydrogen pro-
tons in the different tissues. This leads to different T1 and T2 relaxation
rates among the tissues. The induced RF pulse can be manipulated in

order to weight the acquired image according to the T1 relaxation factor



(T1-weighted images) or the T2 relaxation factor (T2-weighted images).
Example T1-weighted and T2-weighted are presented in Figure 1.1.

1.2.2 Diffusion Weighted Imaging / Diffusion Tensor
Imaging

Diffusion weighted imaging (DWI) is based on the application of diffusion
gradients, that result in linearly-varying magnetic fields. Stejskal and Tan-
ner (1965) introduced a commonly used method for a Diffusion Weighted
Imaging (DWI) acquisition: Two gradient pulses with the same amplitude
but opposite directions are applied. The static spins will result in the same
MR signal as the two pulses will cancel each other. However, spins which
have moved will result in a signal loss. This allows the macroscopic water
displacement of water in each voxel of the image to be described. Applying
different directions to the diffusion gradients allows to further compute the
diffusion tensor, an estimate of the water diffusion direction in 3D. At least
six different gradient directions are required to estimate the diffusion tensor.

Quantitative measures derived from DWI and DTT can be used to charac-
terise the underlying tissue micro-structure. The motion of water molecules
in the brain is restricted by structural barriers resulting in diffusion that is
not equal in all directions. An example of such barriers are the WM tracts,
axonal fibres in the WM that connect different parts of the brain. The
water molecules’ motion in the WM is preferential in the direction parallel
to the WM tracts. Commonly used quantitative measures of the DWI/DTI
include the apparent diffusion coefficient (ADC), axial diffusivity (AD), ra-
dial diffusivity (RD) and fractional anisotropy (FA). The ADC quantifies
the overall diffusion of the water molecules. Diffusion anisotropy can be
estimated from the eigenvalues of the diffusion tensor. AD is approximated
with the eigenvalue of the principal eigenvector, while the RD is the average
of the eigenvalues from the two minor eigenvectors. FA is computed from
the three principal eigenvalues and quantifies the degree of anisotropy in
the water diffusion. ADC and FA maps of a neonatal brain are shown in

Figure 1.1.



1.3 Challenges of automatic segmentation in
neonatal brain MRI

Automatic brain MRI segmentation is challenging due to several reasons:

e Intensity inhomogeneity /non-uniformity (INU). The intensity of a sin-
gle tissue class is not uniform, rather changes gradually, over the image
space. This inconsistency of the signal intensity is caused by non-
uniform radio-frequency (RF) fields and reception sensitivity as well
as electromagnetic interaction with the body (Belaroussi et al., 2006).
Higher field strength scanners result in more significant intensity vari-
ability. Figure 1.2 shows the INU effect.

e Partial Volume (PV) effects. Partial Volume effect is the mixing of
different tissue classes in a single voxel (Tofts, 2003). Since the image
resolution is limited, voxels that contain more than one tissue result
in an intensity intermediate of the composing tissues. The PV effect
is evident in the tissue boundaries. Figure 1.3 presents the partial
volume effect of the CGM and WM at the boundary between them.

e Noise in the image can be due to electromagnetic noise in the body
and small anomalies in the reception electronics (Weishaupt et al.,
2008).

Automatic segmentation of neonatal brain MRI is considerably more chal-
lenging than adult brain segmentation. The neonatal brain MR images

further exhibit domain-specific challenges:

e Neonatal MRI data have a lower contrast-to-noise ratio (CNR) due
to the small size of the neonatal brain and shorter scanning periods
(Prastawa et al., 2005).

e Increased occurence of motion artifacts compared to the adults. Mo-
tion artifacts appear as mis-aligned image slices and ghosting effects
along the direction of phase-encoding (Rutherford, 2002) (an example

is presented in Figure 1.4).

e CSF-WM PV. The neonatal MR images exhibit a reverse WM/GM
contrast compared to the adult data. The WM, which is predomi-

nantly unmyelinated in the neonatal brain, appears brighter than GM



Figure 1.2: MRI intensity inhomogeneity exhibited on a neonatal T2 MR
image acquired at 37 weeks PMA (A). Images (B) and (C) present the
estimated bias field and bias-corrected image, respectively, using the N4
bias field correction (Tustison et al., 2010).

Figure 1.3: Partial volume effect in the CGM-WM interface.  Im-
age (A) presents a neonatal T2 MR image and image (B) the man-
ually parcellated CGM (red) and WM (blue) (data obtained from
http://neobrainsl12.isi.uu.nl). Image (C) displays the intensity histogram
of the voxels belonging to the tissues (yellow color: combined CGM, WM
histogram). The PV effect describes the intensity overlap (region of the his-
togram with dashed lines in image (C)) between the tissues at the boundary
between them.

in the T2-weighted images while in the adult data GM has larger
intensity values than WM. The mixing of CSF and GM in the CSF-
CGM boundary leads to intensities similar to the intensity profile of
the WM (see Figure 1.5). This PV effect leads to mislabelled PV
voxels as WM in the CSF-CGM interface (Xue et al., 2007).



e Neonatal brains vary enormously in shape and appearance of struc-

tures due to the rapid brain development during this period (Figure 1.6
exhibits the changes occuring with increasing scan age). The neona-
tal cortex is rapidly folding and deep GM structures are formed. The
precise registration of subjects of different scan ages is challenging due

to these differences in anatomical characteristics.

Lack of manually-labelled atlases across different scan ages. Manual
delineation of detailed structures requires expert anatomical knowl-
edge and is extremely time-consuming. Contrary to the atlas resources
that exist for the adult brain, neonatal brain atlasing is very limited.
The large variability in brain appearance in addition to the lack of

atlases poses a challenge to segmentation techniques as the training

data are limited.

Figure 1.4: Motion artifacts on a neonatal T2 MR image acquired at 31
weeks PMA. Motion is evident with ghosting effects in the slices of the phase
encoding direction (A) and mis-alignment of the slices along the direction

(B).



Figure 1.5: CSF-WM PV evident in the CSF-CGM boundary. A neonatal
T2 MR image acquired at 36 weeks PMA (A) is split into tissues types
(yellow:CSF, red:WM, blue:GM, green:background) with intensity cluster-
ing (B). The arrows point areas where the partial volume of CSF and CGM
results in similar intensities to the WM.

Figure 1.6: T2 MR images of the neonatal brain acquired at 28,32,36 and
44 weeks PMA (from left to right).



1.4 Thesis and contributions

This thesis aims to develop a robust and versatile segmentation framework
for the regional parcellation of the developing neonatal brain. The main

contributions are:

e An accurate tissue segmentation algorithm of the neonatal brain. The
algorithm parcellates the neonatal brain into the different tissue types
and the major subcortical structures, namely the brainstem, basal
ganglia and thalami, cerebellum and ventricles. The presented frame-
work is based on an Expectation-Maximization (EM) scheme (Van Leem-
put et al., 1999) for the segmentation of the brain. Spatial priors are
propagated from a spatio-temporal atlas of the neonatal brain (Serag
et al., 2012) and combined with subject-specific tissue priors. Since the
developing brain encompasses large changes in shape and appearance,
adaptivity is encouraged with a prior relaxation technique (Cardoso
et al., 2011; Shiee et al., 2011; Cardoso et al., 2013). The spatial de-
pendency of the labels in encoded with Markov Random Field (MRF)
regularization (Van Leemput et al., 1999; Cardoso et al., 2011, 2013).
The partial volume (PV) effect in the CSF-CGM interface is corrected
as proposed in Xue et al. (2007). A recent neonatal brain segmenta-
tion challenge, NeoBrainS12 (2012), evaluated the performance of sub-
mitted tissue segmentation algorithms on a common reference. The
proposed algorithm exhibited the most accurate results with respect

to the manual reference.

e An accurate algorithm for the segmentation of the developing brain
into 50 WM/CGM and subcortical structures (82 brain regions with
the WM /CGM regions subdivided into WM and CGM). Previous ap-
proaches segment the brain into tissue types and major subcortical
structures. This is the first detailed segmentation technique for the
neonatal brain into a large number of regions. A detailed modelling of
the brain allows the regional segmentation of the neonatal MRI from
the early preterm period to term. ”Superlabels”, structures whose
sub-regions share similar intensity characteristics, are introduced to
prevent their sub-regions from competing in terms of intensity. In

addition, a model averaging scheme tackles segmentation problems in



areas where there is not enough intensity information to differentiate
between the structures. The CSF-WM PV correction is extended to
multiple structures. The algorithm outperforms state-of-the-art tech-
niques in the adult brain segmentation field in both accuracy and

robustness in the challenging case of neonatal brains.

e A group-wise segmentation method that utilizes unlabelled images
in addition to the labelled data to improve the segmentation perfor-
mance. Similar patches across the unlabelled images in the database
are encouraged to share the same labelling. This constraint is incor-
porated in the segmentation algorithm with a novel inter-image MRF
energy that penalizes dissimilar label configurations across the un-
labelled images. The proposed label propagation scheme provides a
more accurate and consistent labelling than the individual segmenta-

tion of images.

e A method for the accurate delineation of the cortical ribbon. Improved
delineation is achieved with a novel PV correction for the CGM-WM
boundary and a cortical sulci correction method. Cortical sulci are
hard to separate in the neonatal brain due to PV effects. The sulci
are detected with the method presented in Han et al. (2004), and a
sulci enhancement method is proposed based on the assumption that

the cortical ribbon of a subject has similar thickness values regionally.

e Application of the segmentation algorithm for the parcellation of an
extensive database of 420 neonatal brain MR images, from the early
preterm period to term-equivalent age. Regional volumetric, surface
and DTI measurements of the brain are derived from all the segmen-
tations and used to investigate the brain growth and development in
the neonatal period. The regional effect of prematurity is quantified

in this population.

e A spatio-temporal structural atlas of 82 structures of the neonatal
brain from 28 to 44 weeks scan age, publicly available for the neona-
tal research community!. The segmentations of the images in the

database are propagated to the spatio-temporal atlas of Serag et al.

"http://brain-development.org/
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(2012) and averaged with an age-weighted kernel to derive probabilis-
tic spatial priors and average labelling of each structure at each scan

age.

1.5 Thesis organisation

The thesis is organised as follows: The next chapter reviews the state-of-the-
art segmentation techniques for the parcellation of brain MR images and
methods applied in the neonatal segmentation field. Chapter 3 presents the
contributions of this research for the segmentation of the neonatal brain MR
images into tissue types. Chapter 4 introduces the automatic algorithm for
the regional parcellation of the neonatal brain into a large number of brain
structures. In Chapter 5 the algorithm is extended in order to incorporate
unlabelled data, that are often readily available, to improve the segmenta-
tion accuracy and consistency. A novel method for the detailed delineation
of the cortical ribbon and correction of the cortical sulci is presented in
Chapter 6. Finally, Chapter 7 presents regional measurements of the brain
in terms of volume, cortical surface and DTI measures and investigates their
relations with clinical variables in an extensive database of neonatal brain
MR images. The segmentations of the neonatal database are further used to
build a spatio-temporal structural atlas of the brain for 82 structures that
captures the brain development occuring from early preterm to term equiv-
alent age. Chapter 8 concludes this research and describes future research

directions.
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Chapter 2

Background

Brain MR image segmentation is the process of partitioning an MR image
of the brain into regions of interest according to intensity or anatomical
characteristics. Different brain structures often share similar intensity char-
acteristics. Therefore, a priori information is required to guide the segmen-
tation on the expected anatomical location of the structures. This a priori
information is provided with predefined rules or is encoded in the form of
brain atlases.

The next section introduces the concept of brain atlases and presents
existing neonatal atlases. Section 2.2 provides an overview of the main
brain MR image segmentation approaches in the literature. Section 2.3
presents techniques that have been used for the segmentation of the neonatal
brain into tissues. The NeoBrainS12 (2012) challenge evaluated different
segmentation algorithms for the tissue parcellation. An overview of the
submitted algorithms is presented in Section 2.4. Limited approaches have
been proposed for the regional segmentation of the neonatal brain and are
discussed in Section 2.5. Finally, the chapter presents techniques that have
been used in the adult segmentation field that additionally utilize unlabelled

data to aid the segmentation task.

2.1 Brain atlases

The term atlas is often used in an ambiguous fashion. In the context of this
work we will use the term atlas to refer to a pair of images: One being the

atlas template image (e.g. an MR image of the brain) and one being the atlas

12



label image. The atlas label image may contain either hard labels or soft
labels (i.e. probabilities) indicating the presence of anatomical structures or
tissues at every voxel. One of the first printed brain atlases in the literature
was the Talairach atlas (Talairach et al., 1957; Talairach and Tournoux,
1988). The Talairach atlas provided a coordinate system to locate different
brain regions based on a single subject. A drawback with a single-subject
atlas is that it cannot accommodate the anatomical variability exhibited in
the brain.

Probabilistic atlases were introduced to address this limitation based on
multiple labelled subjects. Probabilistic atlases are composed of population-
based templates and probability maps of brain structures. Population-based
templates are mean MR images created by co-registering and averaging
a large number of brain MR images, e.g. MNI-305 (Evans et al., 1993;
Collins et al., 1994) was based on 305 images, ICBM152 (Mazziotta et al.,
1995b,a) on 152 images. The corresponding segmentations of the images
are averaged to construct the probability maps of the probabilistic atlases.
An example probabilistic atlas is presented in Figure 2.1. The different
probability maps can be further merged into a maximum probability map
by assigning the structure with the highest probability to each voxel of the
template. The atlases that are accompanied by the maximum probability
map instead of multiple probability maps of brain structures are referred
to as maximum probability atlases (e.g. Hammers et al. (2003)). Since
the probabilistic and maximum probability atlases are typically based on
a large number of subjects, manual delineation is extremely time-intensive.
As an alternative, automatic segmentation of the subjects is often used for
the labelling (e.g. Collins et al. (1995)), although some multi-subject atlases
have been constructed based on manual delineations (e.g. Hammers et al.
(2003); Shattuck et al. (2008)).

An alternative approach to account for the anatomical variability is the
direct use of multiple single-subject atlases, where each one is manually
segmented (such as the individual single-subject atlases of Hammers et al.
(2003) or Shattuck et al. (2008)), instead of averaging them to a probabilistic
atlas. These atlases can be used collectively as prior information of the
anatomical location of each brain structure.

The availability of neonatal atlases is limited. Probabilistic atlases of tis-

sues have been constructed based on automatically segmented data (Bhatia
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et al., 2007; Shi et al., 2010; Kuklisova-Murgasova et al., 2011; Serag et al.,
2012; Shi et al., 2014). The first manually delineated single-subject atlases
of regional structures of the brain were introduced by Gousias et al. (2012).

The following sections present the neonatal atlases utilized in this work.

Figure 2.1: The Loni probabilistic brain atlas (LPBA40/SPM5) constructed
by Shattuck et al. (2008) (image adapted from Shattuck et al. (2008)). (A)
presents the population-based T1 template and (B) the probability maps of
the different brain structures. The color at each voxel in (B) corresponds
to the most probable structure, and the intensity indicates the probability
of the respective structure.

2.1.1 Single-subject neonatal atlases

The structural atlases used in this work, ALBERTS (a label-based encephalic
ROI template) (Gousias et al., 2012), were obtained by manual delination by
an expert on MPRAGE MR brain images in 20 preterm infants. The atlases
divide the brain into 50 regions, 32 WM/CGM regions and 18 subcortical
regions. Table 2.1 presents the parcellated regions. The protocol followed
for the delineation of the different structures is described in Gousias et al.
(2012). The infants were born at a median (range) gestational age (GA)
of 2972 (26 - 38) and imaged at 4076 (367* - 4476 ) weeks (T9%%) post-
menstrual age (PMA) at scan (GA plus number of weeks (days) after birth).
MR imaging was performed on a Philips 3T system using an 8 channel head
coil with the acquisition parameters in Table 2.2. The T2-weighted MRI
of the atlases were co-registered to their corresponding T1 images (Gousias
et al., 2012) to align the modalities in a common space. An example atlas

can be seen in Figure 2.2.
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Figure 2.2: Different slices from one of the ALBERTSs (Gousias et al., 2012)
in the sagittal plane. The T1 image, T2 image and T1 image with the
manually segmented labels overlaid are presented (from top to bottom row).

WM/CGM structures
Frontal lobe (left/right)
Parietal lobe (left/right)

Occipital lobe (left/right) Subcortical Regions
Anterior temporal lobe, medial part (left/right) Hippocampus (left/right)
Anterior temporal lobe, lateral part (left/right) Amygdala (left/right)

Gyri parahippocampalis et ambiens, anterior part (left/right) Cerebellum (left/right)

Gyri parahippocampalis et ambiens, posterior part (left/right)  Brainstem

Superior temporal gyrus, middle part (left/right) Caudate nucleus (left/right)
Superior temporal gyrus, posterior part (left/right) Thalamus (left /right)

Medial and inferior temporal gyrus, anterior part (left/right) Sub-thalamic nucleus (left/right)
Medial and inferior temporal gyrus, posterior part (left/right)  Lentiform nucleus (left/right)
Fusiform gyrus, anterior part (left/right) Corpus callosum

Fusiform gyrus, posterior part (left/right) Lateral ventricles (left/right)
Insula (left/right)

Cingulate gyrus, anterior part (left/right)

Cingulate gyrus, posterior part (left/right)

Table 2.1: Manually segmented regions defined in the ALBERTSs (Gousias
et al., 2012).

2.1.2 Probabilistic neonatal atlas

Kuklisova-Murgasova et al. (2011) used non-parametric kernel regression
to construct age-dependent anatomical templates for the ages at scan of
28 to 44 weeks. The template was based on 142 images that were affinely
registered to a common space. Each age of the template is accompanied

with tissue probability maps obtained by averaging tissue segmentations of
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T1 T2
TR (ms) 17 8670
TE (ms) 4.6 160
flip angle (o) 13 90
FOV 210x210 220x220
matrix 256 %256 256 x256
thickness (mm) 0.8 1
resolution (mmxmm) | 0.82x0.82 0.86x0.86

Table 2.2: MR Acquisition parameters of the ALBERTSs (Gousias et al.,
2012)

the subjects (automatically segmented). Serag et al. (2012) used a similar
approach to develop a ”high-definition” atlas, that was based on non-linear
pairwise registration of 204 subjects, instead of affine used in Kuklisova-
Murgasova et al. (2011). Similarly to Kuklisova-Murgasova et al. (2011),
Serag et al. (2012) additionally constructed age-dependent tissue probability
maps. In this work, the atlas of Serag et al. (2012) was selected due to
the superior level of regional detail of the template. The spatio-temporal

probabilistic atlas of (Serag et al., 2012) is presented in Figure 2.3.

2.2 Automatic brain MRI segmentation

The segmentation techniques applied to brain MRI can be categorized into:
e Supervised and unsupervised classification techniques
e Atlas-based approaches

e Deformable models

2.2.1 Supervised classification techniques

Classification techniques address the problem of dividing the data into dis-
tinct categories. In the MR image segmentation field the voxels of the image
are divided/segmented into a number of labels. The classification methods
are categorised into supervised and unsupervised techniques. Supervised
classification techniques learn a model for the categorisation based on train-
ing data. Unsupervised methods do not require training data. Supervised
methods further fall into two categories: parametric and non-parametric

techniques.

16



/
’
4

v /

L}

w Wi W Y
A s Ad (g O

‘\f_‘ P!_. @B 1  @)

BOOO0
!

SIRTRTSIY

an W AR AR

AR SR AR SRR S
NaFANasPAN e PAN o8

Mmoo HN WM

36 38 40 42 44

Figure 2.3: Different ages of the probabilistic neonatal atlas developed by
Serag et al. (2012) (image from http://www.brain-development.org). The
T1 image, T2 image and the probability maps of WM, GM, CSF and deep
grey matter (DGM) are depicted (from top to bottom row)

Parametric techniques

Parametric models solve the segmentation problem by fitting a model (e.g.
a statistical model) to the data. The (posterior) voxel probabilities are

derived as a composition of a spatial prior term and an intensity term:
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P(yi | zi = ex, ®y) P2 = ex)
SR Pyi | 2 = ej, @) P(z = ¢;)
o P(yi | zi = ex, ©y) P(2i = ex) (2.1)

Pik =

The posterior probability p;r of voxel i belonging to structure k is ob-
tained based on the spatial prior distribution of k, P(z; = eg), and the
intensity likelihood of the structure, P(y; | z; = ey, ®,) (where y; the in-
tensity of the voxel and ®, the model parameters). The product of the
spatial prior and intensity likelihood of structure & is normalised by the
products (of the spatial prior and intensity likelihood) of all the K struc-
tures. The spatial prior distribution essentially encodes the spatial location
of each structure and is usually derived based on probabilistic or single-
subject atlases. A typical choice of parametric distribution for the intensity
model is the Gaussian mixture model (GMM), where the intensity likelihood
of each brain structure (P(y; | 2z; = ey, ®y)) is modelled with a Gaussian
distribution. The model is then normally fitted to the data with the use
of Expectation-Maximization (EM), Iterated Conditional Modes (ICM) or
graph cuts.

The EM-GMM algorithm for tissue segmentation was introduced by Wells
et al. (1996). The EM algorithm alternates between a Expectation and a
Maximization step until convergence (see Figure 2.4). The Expectation
step estimates the posterior probability for each structure (according to the
spatial priors and the intensity model). The parameters of the intensity
model are then re-estimated at the Maximization step. Each voxel is finally
labelled according to the structure with the highest posterior probability.
Van Leemput et al. (1999) incorporated an atlas-based spatial prior term to
constrain the spatial location of the structures. Van Leemput et al. (1999)
further introduced a MRF regularization term to model the spatial interac-
tion of structures and approximated the intensity inhomogeneity with poly-
nomial basis functions. In their later work (Van Leemput et al., 2003), they
further model the PV effect with a mixed distribution. Van Leemput et al.
(2009) and Lotjonen et al. (2010) utilized the algorithm for the purpose of
structural segmentation. Shiee et al. (2011) proposed a prior relaxation that

adapts the spatial priors according to the posteriors in order to accomodate
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mis-registrations and pathologies. Fischl et al. (2002) developed FreeSurfer
(http://freesurfer.net), a segmentation software extensively used in the lit-
erature. A novelty of the work is the introduction of a non-stationary MRF
learned from the manually labelled atlases. Ashburner and Friston (2005)
proposed a model that combines the tissue segmentation, bias correction
and non-linear registration and is optimised with ICM. They proposed the
use of multiple Gaussians per structure to account for the PV effect. Their
model has been implemented as part of the Statistical Parametric Mapping
(SPM) software (http://www.fil.ion.ucl.ac.uk/spm). Song et al. (2006) and
van der Lijn et al. (2008) introduced the use of graph cuts to fit the para-

metric model.

Non-parametric techniques

Non-parametric methods do not assume a parameterization of the data in
the target image. A classifier is directly trained on the atlases to learn the
label assignment based on image-derived features, such as the intensity of
single or multiple modalities and spatial features. Estimated labels from
other segmentation techniques can be further incorporated as features to
learn and correct for the segmentation bias of the techniques (Wang et al.,
2010). Afterwards, the classifier labels the voxels in the subject image on
the basis of the learned model. Example non-parametric techniques in the
literature have employed k-NN (Srhoj-Egekher et al., 2012; Chita et al.,
2013), naive Bayes (Srhoj-Egekher et al., 2012), decision forests (Criminisi
et al., 2012; Pereira et al., 2013) and Adaboost classifiers (Wang et al.,
2010).

2.2.2 Unsupervised classification techniques

The unsupervised techniques classify the data according to some measure
of inherent similarity and do not require training data. Unsupervised tech-
niques in the segmentation domain incorporate methods that exploit image-
derived features to split the brain into intensity-distinct regions. Example
techniques that can be classified in this category are: thresholding (Al-Attas
and El-Zaart, 2007), region growing (Adams and Bischof, 1994; Justice and
Stokely, 1996), morphological operations (Mangin et al., 1995), watershed
segmentation (Sijbers et al., 1997), edge detection (Yu-qian et al., 2005) and
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Subject

rRepeat until convergence:

Expectation Step:

estimate posteriors Spatial Priors

Maximization Step:
estimate parameters

Figure 2.4: Expectation-Maximization. The Expectation step estimates the
posteriors based on the spatial priors and the intensity model. The Max-
imization step re-estimates the parameters of the intensity model. The
Expectation and Maximization step are computed iteratively until conver-
gence. The resulting posteriors are then used to derive the segmentation of
the brain.

clustering (Pham and Prince, 1999).
Thresholding techniques use a pre-defined or automatically defined thresh-
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old to split the image into distinct regions. Region growing methods start
by a seed voxel or set of voxels in the image and iteratively add adjacent
voxels if they satisfy a certain criterion. Morphological operations are used
to isolate or fill an image region and are composed of simple erosion and
dilation steps. Watershed segmentation is a method for splitting an image
into ”basins”, low intensity set of points that share a boundary with other
"basins”. Connected component labelling can be used to identify different
components of the image according to a specified connectivity. Edge de-
tection methods split the image into regions according to edges where the
intensity signal has discontinuities. Further details on the aforementioned
techniques can be found in textbooks on image processing, e.g. Pitas (2000);
Pratt (2007); Bankman (2008).

Clustering techniques aim to group data points, in this case voxels, into a
number of classes such that the points belonging to each class are similar to
each other and dissimilar to points of other classes. Clustering algorithms
can be classified into hard and soft or fuzzy clustering according to the
assignment of points to classes. Hard clustering assigns each point to a
single class, while soft clustering assigns the points to multiple classes with
a membership level that reflects the probability of each class. k-means
(Macqueen, 1967) and fuzzy c-means (FCM) (Bezdek, 1981) are popular
algorithms for hard and soft clustering respectively, that assign the points
to a predefined k number of classes. k-means and FCM operate in a similar
way: Initially, the points are randomly assigned to a class. The algorithm
then iteratively computes the centroid of each cluster and estimates the
membership (soft or hard) of the points to the classes according to the
distance to the centroids. k-means and FCM minimize the intra-cluster
variance but they converge to a local minimum that depends on the initial
random assignment. A simple stability solution is to re-run the algorithm
multiple times and select the solution with the best fit to the data.

Unsupervised techniques are highly susceptible to noise, intensity inho-
mogeneity and partial volume averaging. They are usually employed in
the literature to refine the segmentation, e.g. to exclude mislabelled small
WM components with connected component labelling (Xue et al., 2007;
Weisenfeld and Warfield, 2009; Wang et al., 2011). Clustering techniques
have been used in the literature for tissue segmentation. For example, k-

means has been used to initialize the intensity distributions of the data in
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an Expectation-Maximization framework (Xue et al., 2007), a supervised
classification technique. Pham and Prince (Pham and Prince, 1999; Pham,
2002) proposed an FCM model for tissue segmentation that estimates the
INU bias field and penalizes assignment of different class to neighboring
voxels to account for noise. A combination of unsupervised methods has
been also used in limited studies (Tang et al., 2000; Gui et al., 2012b).

2.2.3 Atlas-based approaches

Atlas-based approaches are methods that segment the image based on the
labels of aligned atlases. The images of the atlases are initially registered
to the target image. Image registration is the process of spatially aligning a
pair of images into the same coordinate system. The registration estimates
a transformation, a mapping, between the images that maximises the sim-
ilarity between the source and the target image. The registration can be
global or local and estimates a linear or non-linear transformation, respec-
tively, of the source to the target image. The global registration accounts
for rigid or affine motion. The local registration deforms the source image
locally in order to align it to the target image, e.g. by moving a set of
control points. By registering an atlas MR image to the subject image, the
estimated transformation can be used to transform/warp the atlas image
and labels to the subject space. The propagated labels can then be consid-
ered as an estimate of the spatial location of the structures in the subject
space.

Early atlas-based approaches segmented the target image by propagating
the labels of a single atlas (Christensen et al., 1994; Collins et al., 1995).
However, by using a single atlas, the segmentation is limited to the accu-
rate registration of a single pair of brains. This is a non-trivial problem
due to differences in the anatomy of the subjects. The mapping between
different brains will fail in areas where the brain appearance is different in
the pair of images. To resolve this issue and increase the robustness of the
segmentation, Rohlfing et al. (2004), proposed the multi-atlas segmentation.
Multiple atlases are registered to the target image and the transformed la-
bels are combined /fused to provide the segmentation result (Rohlfing et al.,
2004; Heckemann et al., 2006) (see Figure 2.5).

Label fusion techniques are amongst the most accurate techniques for
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Figure 2.5: Label fusion. The atlases’ MR images are registered to the sub-
ject image and their labels are propagated to the target. The segmentation
is obtained by fusing the propagated labels according to a voting function
on the atlases.

brain segmentation. Every atlas provides a vote to the estimated segmen-

tation:
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where a = {1, .., A} denotes the atlases and ~{ is the vote for structure k&

Pik =
produced by atlas a calculated as

. 1, if voxel ¢ belongs to structure & in atlas a
Yik =
0, else

Majority voting label fusion (Heckemann et al., 2006) assumes an equal
weight for the atlases and labels each voxel of the image according to the
structure that is favoured by most of the atlases. More sophisticated voting
schemes weight the vote of each atlas according to the similarity of the atlas
MR image to the unseen image, either globally or locally. Artaechevarria
et al. (2009) provide a comparison of different voting schemes in label fusion,

where locally-weighting schemes are shown to result in better accuracy. The
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accuracy of label fusion techniques increases with an increase in the number
of manually labelled atlases provided (Heckemann et al., 2006; Aljabar et al.,
2009). However, atlas selection (Aljabar et al., 2009) has been also used to
discard atlases that degrade the result, e.g. due to registration errors.

Patch-based techniques (Coupé et al., 2011; Rousseau et al., 2011) pro-
vide a non-local alternative to the label fusion techniques. In patch-based
methods the most similar patches in the atlases are located for each voxel
of the image at the neighborhood of the voxel. After a patch preselection,
e.g. using the structural similarity measure (SSIM) (Wang et al., 2004), the
labels of the patches are fused with a weight defined by the similarity of
the atlas patch to the image patch around the voxel. The weighting can
be further refined in order to reduce the joint atlas errors between different
atlases as shown in Wang et al. (2012a); Wang and Yushkevich (2013).

Another family of atlas-based techniques, STAPLE (Simultaneous Truth
and Performance Level Estimation), was proposed by Warfield et al. (2004).
STAPLE computes an estimate of the true segmentation and weights the
atlases according to their performance to the estimated segmentation. The
procedure is repeated until convergence in an Expectation-Maximization
framework.

Atlas-based techniques are limited by the anatomical variability exhibited
in the available atlases as they do not explicitly model the intensity of the
unseen image. This is problematic in the presence of pathological cases or
large changes in anatomy, such as the changes occuring in the anatomy of

the developing brain.

2.2.4 Deformable models

Deformable models are physics-based models that segment an object by
deforming a closed surface. The surface is iteratively expanded or contracted
under the influence of an external and an internal energy. The external
energy is usually an image-driven data fitting term that moves the surface to
the desired object boundary. The internal energy ensures the smoothness of
the propagating surface and constrains the evolution driven by the external
energy. The internal energy may further incorporate prior knowledge about
the object of interest. Deformable models are classified into two categories:

the parametric and geometric models.
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Parametric models (Kass et al., 1988; Terzopoulos and Fleischer, 1988)
provide an explicit parameterization of the surface. The main advantage
of this family of deformable models is their fast convergence to the opti-
mal solution. A limitation is that it is difficult to incorporate topological
adaptation, such as splitting or merging parts of the surface, in the surface
propagation. Furthermore, these models are limited to the segmentation of
a single object - the desired ROI and the background. An example method
using parametetric deformable models is the widely used algorithm for brain
extraction proposed by Smith (2002) (the algorithm is implemented as part
of the FSL software, http://fsl.fmrib.ox.ac.uk). It evolves a tesselated sur-
face with an intensity-driven external force until it reaches the low intensity
area of CSF or skull. The internal force is implemented as a constraint in
the curvature of the vertices and enforces smoothness of the propagating
surface.

Geometric models (Osher and Sethian, 1988; Malladi et al., 1995), also
referred to as level set deformable models, represent the surface implicitly
as the zero level-set of a higher-dimensional function. A level-set is essen-
tially a set of points that have the same function value. The surface in these
models is evolved implicitly by updating the level-set function. The surface
parameterization is computed after the convergence of the model and there-
fore allows topological adaptivity. An example geometric model has been
used for cortical surface reconstruction by Han et al. (2004). In this work,
the level-set function is updated based on an external force described by
tissue class probabilities and an internal force computed based on the sur-
face curvature. Multi-object segmentation in the level-set framework can
be implemented with coupling-surfaces regularizers, refered to as coupled
level-sets. The regularization is introduced with an additional energy that
retains the distance between objects within a predefined range. Zeng et al.
(1999) introduced the coupling-surfaces regularizer to constrain the distance
between the exterior cortical surface (CSF-GM boundary) and the interior
cortical surface (GM-WM boundary).

Prior information in the deformable models can be incorporated with
statistical models of shape or intensity. Cootes et al. proposed the Ac-
tive Shape Models (ASM) (Cootes et al., 1995) and the Active Appearance
Models (AAM) (Cootes et al., 1998) to constrain the shape/appearance of

the surface according to the variability exhibited in training data. A large
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number of variations to these models have been proposed in the literature
(e.g. Van Ginneken et al. (2002); Jiao et al. (2003); Matthews and Baker
(2004); Donner et al. (2006); Langs et al. (2006)). An example application
of these models for the brain segmentation into different structures is the
method of Patenaude et al. (2011) (the algorithm is implemented as part of
the FSL software, http://fsl.fmrib.ox.ac.uk). The segmentation problem is
formulated within a Bayesian framework that allows relationships between

shape and intensity of different structures to be integrated in the model.

2.3 Neonatal brain MRI tissue segmentation

Studies in the neonatal segmentation field are mostly focused to tissue seg-
mentation of the brain MR images (CSF, GM, un-myelinated WM, myeli-
nated WM, subcortical GM, brainstem, cerebellum). An example parcel-
lation into different tissue types is presented in Figure 2.6. This section
presents methods used in the literature for the tissue segmentation of the

neonatal brain.

2.3.1 Supervised classification techniques

Parametric techniques

Prastawa et al. (2005) developed a method for tissue segmentation based
on the Expectation-Maximization algorithm of Van Leemput et al. (1999).
Novelties of the work include the differentiation between the myelinated
and unmyelinated WM class according to a graph based clustering tech-
nique (minimum spanning tree) and removal of outliers with the use of the
Minimum Covariance Determinant (MCD) estimator. Spatial tissue priors
of CSF,GM and WM were propagated with affine warping of a probabilistic
atlas. Sample locations of high atlas probability were used to estimate the
initial intensity estimates with the MCD estimator. The segmentation was
carried out with the EM algorithm proposed in Van Leemput et al. (1999)
with inhomogeneity correction. The segmentation was consequently refined
with the use of non-parametric kernel density estimates. A drawback of
the technique is that the atlas was created by averaging semi-automatic
segmentations from three subjects and therefore can not capture the large

differences undergoing in the neonatal population.
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Figure 2.6: Example tissue segmentation of a neonatal MRI acquired at 36
weeks PMA with the method proposed in this thesis (second row: WM
label, third row: GM label, fourth row: CSF labels, fifth row: subcortical
GM labels).
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Xue et al. (2007) implemented an EM scheme with a MRF regularization
term similar to Van Leemput et al. (1999) to enforce a smooth labelling. In
their work, subject-specific tissue priors were estimated with k-means clus-
tering, eliminating the use of an atlas for the spatial priors. Further, Xue et
al. addressed the CSF-WM partial volume problem with a knowledge-based
method implemented with connected component labelling. The spatial pri-
ors of misclassified partial volume voxels were adjusted to correct for the
CSF-WM PV effect. Instead of using global statistics in the intensity dis-
tributions, the authors introduce a local splitting of the brain into different
regions and estimate the Gaussian parameters in a more localised fashion.

Song et al. (2007) proposed a neonatal brain MRI segmentation technique
based on graph-cuts, which were used to minimise a Gibbs energy composed
of four terms: likelihood, intensity-based prior, probabilistic atlas prior and
MRF. The likelihood term is estimated with the use of non-parametric
Parzen-window estimators and the intensity-based prior is learned with
fuzzy nonlinear SVMs. They further adopted an extensive preprocessing
of the images with edge-preserving anisotropic smoothing, inhomogeneity
correction and adaptive histogram equalization. Song et al. only segmented
the GM,WM having excluded the skull and CSF with manual delineation.

Cardoso et al. (2011, 2013) proposed an EM-MRF scheme that adapts
the atlas priors similar to Shiee et al. (2011). The atlas priors provided
by atlases were modelled as samples drawn from a Dirichlet distribution
(in essence a hyperprior) and were adapted according to the posteriors of
each EM iteration. The CSF-WM PV was modelled as mixed distributions
among the different tissues. Moreover, they deviated from the classic Gaus-
sian modelling by introducing a semi-conjugate Gaussian prior over the
tissue Gaussian means initialised by sampling manually selected patches.
Cardoso et al. in their work avoid the dependence on the atlas alignment
with the prior relaxation scheme. However, when segmenting structures
with very similar intensity profiles it is unclear how the relaxation scheme
will adapt the propagated priors, for example in deep grey matter structures.

Shi et al. (2010) presented a framework for neonatal tissue segmentation
taking advantage of a subject-specific probabilistic atlas that is generated
from longitudinal data acquired at a later time. The atlas is built with
AFCM, a fuzzy clustering technique. Afterwards, the atlas is used in a joint

registration-segmentation framework that performs atlas registration, bias
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field correction, and atlas-based tissue segmentation iteratively in a modi-
fied EM algorithm. In their later work (Shi et al., 2011), the segmentations
of neonatal brains computed from Shi et al. (2010) were used to build a
neonatal atlas of the brain. Instead of averaging the images for the atlas
construction, Shi et al. construct a subject specific atlas by weighting the
images according to their similarity to the underlying subject. The similar-
ity is measured across a cortical GM confidence map of the subject gener-
ated with the use of a Hessian filter. The constructed subject-specific atlas is
used for the segmentation of the images in a joint registration-segmentation
fashion as in Shi et al. (2010).

Non-parametric techniques

Anbeek et al. (2008) proposed a tissue segmentation method based on k-
NN classification. They construct a multidimensional feature space based
on intensity and spatial features of training images. The segmentation is
estimated from the affinity of the k closest neighbors in the multidimensional
space for each voxel of the unseen image.

Chita et al. (2013) presented a supervised classification technique for the
neonatal image segmentation. Voxel classification was performed in three
stages: The feature space of the algorithm was composed of spatial, inten-
sity features and the current probabilistic output. Intensity features were
obtained from both T1 and T2 images. The first and second stage perform
independent 2-class k-NN classification for each tissue separately and the
third stage uses a 4-class k-NN for all the classes. The best features of each

stage were selected using a forward feature selection scheme.

2.3.2 Unsupervised classification techniques

Gui et al. (2012b) derived a segmentation method that is based on prior
knowledge about brain morphology and avoids the use of any atlases. In
their work, Gui et al. use both the T1 and T2 modalities and segment
the brain tissues with application of the watershed segmentation, region

growing, active contour segmentation and morphological operations.
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2.3.3 Atlas-based techniques

Weisenfeld and Warfield (2009) used an iterative sample editing process for
segmentation of the brain tissues. Initially, the labels of the atlases were
fused into the subject space to result in an initial estimate of the segmen-
tation. Afterwards, they iteratively refine each atlas’ samples with the use
of the segmentation, and reestimate the segmentation with the STAPLE al-
gorithm. Weisenfeld et al. further perform CSF-WM PV correction with a
method similar to Xue et al. (2007), model spatial homogeneity with a MRF
term and correct for noise with anisotropic diffusion. The tissue segmenta-
tion of Weisenfeld et al. heavily depends on the initial alignment of atlases,
which is a non-trivial problem due to the large changes with increasing scan

age of the neonates.

2.3.4 Deformable models

Wang et al. (2011) proposed a segmentation algorithm based on coupled
level sets with a local intensity information term, atlas tissue priors and
a cortical thickness constraint. Local intensity information was modelled
with Gaussian distributions with spatially varying mean and variance. The
cortical thickness constraint is used to retain the CSF/GM and GM/WM
surface distance within a predefined extent. CSF-WM PV correction is in-
corporated in the model with a method similar to Xue et al. (2007). They
later (Wang et al., 2012b) extended their method in a multi-modal and longi-
tudinal framework. The segmentation utilized a multi-modality data fitting
term using both T1, T2 and FA images. Additionally, images obtained at
different timepoints were incorporated in a longitudinally guided level-set
segmentation. The different timepoints were iteratively co-registered with a
4D registration method and segmented in a longitudinal fashion with con-

straints from neighboring timepoints.

2.4 NeoBrainS12 challenge

A recent neonatal brain segmentation challenge, NeoBrainS12 (2012), was
held and aimed to evaluate the performance of submitted tissue segmenta-
tion algorithms on a common reference. This section presents the automatic

techniques that participated in the challenge. Example parcellations with
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different techniques submitted to the challenge are presented in Figure 2.7.

Unseen Image Manual

Automatic 1 Automatic 2

Automatic 3 Automatic 4

Figure 2.7: Example GM segmentations from the NeoBrainS12 (2012)
challenge of a neonatal MRI acquired at 30 weeks PMA (data from
http://neobrains12.isi.uu.nl). The T2 image and the corresponding man-
ual segmentation can be observed in the top row. The second and third row

display the GM segmentation produced by four different automatic tech-
niques.
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2.4.1 Supervised classification techniques

Parametric techniques

In Makropoulos et al. (2012b) we proposed a state-of-the-art tissue seg-
mentation method for the neonatal brain. The algorithm was based on an
EM-MRF scheme with prior adaptation as in Cardoso et al. (2011, 2013).
Partial volume correction for the CSF-WM intensity overlap was imple-
mented as in Xue et al. (2007). A second partial volume correction step
was added for the correction of the WM-GM boundary, which enabled a
more detailed delineation of the cortical ribbon. Structure priors were ob-
tained as a combination of atlas priors and subject-specific priors derived
from intensity clustering with k-means. Chapter 3 provides the details of
the method.

Wang et al. (2012¢) participated with a method based on the Statistical
Parametric Mapping (SPM) Segment software (www.fil.ion.ucl.ac.uk/spm).
The SPM segmentation algorithm iteratively refines the tissue segmentation,
bias correction and non-linear registration of a probabilistic atlas. The
tissue segmentation method was based on an EM scheme and the joint
cost function was optimised with ICM. After convergence, partial volume
correction was performed with the use of connected component labelling.

Melbourne et al. (2012) used the technique developed by Cardoso et al.
(2011, 2013) to segment the neonatal challenge data. The algorithm was
extended to perform outlier rejection of intensity clusters that have a large
Mahalanobis distance from the estimated model in order to reduce their
influence in the parameter estimation. The prior adaptation was excluded
from the original model.

Wu and Avants (2012) presented a technique based on the Atropos tool
(Avants et al., 2011). An EM-MRF technique was used with ICM parameter
optimisation. Both T1 and T2 images were used in a multivariate data-term.
Clusters of misclassified voxels were corrected based on the atlas-based prior

probabilities.

Non-parametric techniques

Srhoj-Egekher et al. (2012) proposed a method based on label fusion and

supervised classification. The priors of an initial label fusion step are com-
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bined with the probabilities from an independent 2-class k-NN classification
for each tissue. The k-NN classification is performed on intensity features
derived from both T1 and T2 modalities. A final step is using a naive Bayes
classifier in a reduced dimensional space obtained with Principal Component
Analysis to classify voxels assigned to more than one tissue classes.
Anbeek et al. and Chita et al. applied the segmentation techniques
described in Anbeek et al. (2008) and Chita et al. (2013) respectively in the

neonatal challenge (described in Section 2.3.1).

2.4.2 Unsupervised classification techniques

Gui et al. used the technique proposed in Gui et al. (2012b) for the seg-
mentation of the challenge data (described in Section 2.3.1).

2.5 Neonatal brain MRI structural segmentation

Delineation of more localised structures of the brain is limited. Due to the
lack of manually segmented atlases, previous automatic methods (Peterson
et al., 2003; Mewes et al., 2006; Gilmore et al., 2007; Thompson et al., 2007)
did not segment deep grey matter structures and parcellated CGM and
WM regions according to arbitrary linear parcellations which did not reflect
regional anatomy. The first regional atlases of the brain were manually
delineated by Gousias et al. (2012) that define 50 brain regions in 20 term-
equivalent neonatal brains. In Makropoulos et al. (2012a) we presented the
first study to automatically segment the neonatal brain from early preterm
to term-equivalent age, into 50 structures with the use of these atlases.
The method was extended and presented in detail in Makropoulos et al.
(2014) (an example parcellation is presented in Figure 2.8). We discuss
the proposed structural segmentation method in Chapter 4. Gousias et al.
(2013) investigated the segmentation of term-equivalent brains based on

label fusion of the atlases or alignment of a maximum probability atlas.
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2.6 Label propagation for brain MRI

segmentation

Previous studies in the literature have demonstrated the increase in segmen-

tation accuracy with the introduction of more labelled datasets (Heckemann

Figure 2.8: Example structural segmentation of a neonatal MRI acquired
at 36 weeks PMA with the method proposed in this thesis (second row:
WM labels, third row: CGM labels, fourth row: subcortical GM labels and
ventricles).
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et al., 2006; Aljabar et al., 2009). Since manual segmentation of magnetic
resonance (MR) images is an extremely time consuming and expensive pro-
cess, the number of atlases available for a specific application may be lim-
ited. However, large numbers of unlabeled images are often available at a
low cost. There is an increasing interest in the segmentation field for the
potential use of unlabelled images to improve the automatic methods in
terms of consistency and accuracy.

Recent studies focus on ways to extract additional information from the
unlabeled images to complement the prior information (e.g. in form of at-
lases). Wolz et al. (2010) proposed LEAP, a stepwise propagation approach.
The manually labeled atlases are propagated to unlabeled images which are
then in turn used as atlases for the segmentation of other images in the
dataset. The atlases are initially propagated to N unlabeled images that
are the most similar to the atlases. Afterwards, the segmented images are
added to the pool of labelled images as atlases. In the next iteration the
new atlases (the manually labelled atlases and the segmented images) are
used in turn for the segmentation of the remaining N most similar images
in the dataset. The closest M atlases to the subject to be labelled are
selected to drive the segmentation. The algorithm stops once all the un-
labelled images in the database have been segmented. An illustration of
the label propagation in Wolz et al. (2010) is presented in Figure 2.9. In
Wolz et al. (2010) the similarity of images for the label propagation is esti-
mated according to the distance of the images in a manifold. The images
are transformed to a common space defined by a template. The manifold is
then built using Laplacian eigenmaps and Normalised Mutual Information
(NMI) (Studholme et al., 1999) of images in a mask around the region of
the interest (Wolz et al., 2010). The segmentation of the images is refined
with graph-cuts.

Similarly, Jia et al. (2012) presented a technique for group-wise registra-
tion and segmentation, where the segmented images are iteratively updated
based on the labels of the remaining images in the database. A tree-based
group-wise registration is proposed for the registration of an image to the
database. A tree of atlases is built where the nodes represent the atlases
and the edges the deformation required to align the pair of images at the
edges. A new (target) image is linked to the tree by locating the most simi-

lar image in the tree and registering the target image to it. The deformation
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Figure 2.9: Label propagation in LEAP (Wolz et al., 2010). The images are
initially embedded in the manifold (1). The N most similar images to the
atlases are selected for the label propagation (2). Each image is segmented
according to the M most similar atlases and is included in the database
as an atlas (3-4). The process is repeated until all the images have been
labelled (5). Image from Wolz et al. (2010).

of the target image to any other image in the tree can be then obtained by
following the path in the tree that connects the two images and concatenat-
ing the deformations along the path. The main idea behind the proposed
registration technique is that the registration between images with large
shape differences can be difficult. By locating the most similar image in the
tree, the target image can be reliably registered to the database. Having
estimated the deformation of the target image to all the atlases, the image
is segmented with locally-weighted label fusion. All the unlabelled images
in the database are initally segmented in this manner. Afterwards, the seg-
mented images are considered as atlases and all the images are re-segmented
with the use of all the atlases (manually and automatically segmented). The
process is repeated until convergence.

Bhatia et al. (2007) proposed a method for group-wise segmentation and
registration to improve both the alignment and the segmentation of images
in their average space. The segmentation is performed with a standard EM
segmentation algorithm (Van Leemput et al., 1999). A single EM step is ini-
tially performed for all the subjects using the MNI 305 priors (Evans et al.,
1993) as the spatial priors. The posteriors of the subjects are averaged to

obtain the new spatial priors for the next segmentation step. The images
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are then re-aligned according to their posteriors to the group average using
the KLM divergence (Kullback and Leibler, 1951) as the registration metric.
After the alignment the next segmentation step is run using the new spa-
tial posteriors. The interleaved segmentation-registration is iterated until
convergence.

Riklin-Raviv et al. (2010) and Dittrich et al. (2011) presented a level-set
group-wise segmentation technique where a latent atlas is inferred from the
images of the database, which in turn constrains the individual segmenta-
tions. Riklin-Raviv et al. (2010) model the segmentation with a probabilis-
tic formulation of level-sets that incorporates an image likelihood term, a
spatial prior term and a smoothness constraint. The parameters of each
term are minimized in an interleaved manner. The parameters of the image
likelihood term are modelled with a GMM that is optimised with the EM
algorithm for each image. The spatial term parameters are estimated as a
probabilistic average of all the individual segmentations and can be thought
as a ’latent atlas’. All the images are aligned before the segmentation with
a group-wise registration technique. The segmentation is performed for a
single structure and is based on a single manually segmented atlas. Dit-
trich et al. (2011) extend the model of Riklin-Raviv et al. (2010) with an
age-dependent latent atlas. A spatio-temporal latent atlas is derived as the
age-weighted average of the segmentations at different ages.

Cardoso et al. (2012) propose the label propagation through a spatially
variant graph. They construct a graph at each voxel based on morphological
and intensity similarities of each image with the rest of the images in the
database. Instead of retaining the complete graph for all the voxels and
all the pairwise combinations of images, they reduce the graph to a local
embedding. Afterwards, the labelling is obtained as a locally-weighted label
fusion at each voxel with the weights defined from the graph. At each
iteration all the labelled voxels act as atlases, with the manually labelled
ones having a larger influence. The segmentation proceeds until the voxels
of all the images have been labelled.

In Chapter 5 we propose a novel multi-atlas group-wise segmentation tech-
nique that is based on the assumption that similar patterns across images
should exhibit similar labelling. A graph of local correspondences among
the images in the database is constructed at each voxel in a patch-based

fashion. These correspondences are used to propagate the labelling from
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the database to each image with an inter-image MRF energy similar to
Sotiras et al. (2009); Rubinstein et al. (2012).

2.7 Discussion and conclusions

This chapter overviewed techniques used in the literature for the segmenta-
tion of brain MR images. Segmentation techniques can be categorised into:
classification techniques, atlas-based approaches and deformable models.
Training data used as input to brain segmentation techniques are typically
encoded in atlases. Numerous segmentation techniques have been proposed
for the delineation of tissues in the neonatal brain. However, methods for
the regional segmentation of the neonatal MR images are lacking. This is
due to the limited atlases available for the newborn brain. The first detailed
atlases of the neonatal brain were introduced by Gousias et al. (2012). This
chapter further presented techniques that improve the segmentation perfor-
mance by incorporating unlabelled data (in addition to atlases) as training
data. The following chapters accordingly propose algorithms for the seg-
mentation of the neonatal brain into: different tissue types (Chapter 3),
detailed structures of the brain (Chapter 4), and the use of unlabelled data

as additional information to the atlases (Chapter 5).
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Chapter 3

Neonatal tissue segmentation

This chapter is based on:

Makropoulos, A., Gousias, 1. S., Ledig, C., Aljabar, P., Serag, A., Hajnal,
J., Edwards, A. D., Counsell, S., and Rueckert, D. (2014). Automatic whole
brain MRI segmentation of the developing neonatal brain. IEEE Transac-

tions on Medical Imaging.

Makropoulos, A., Ledig, C., Aljabar, P., Serag, A., Hajnal, J. V., Ed-
wards, A. D., Counsell, S. J., and Rueckert, D. (2012b). Automatic tis-
sue and structural segmentation of neonatal brain MRI using Expectation-
Maximization. In MICCATI Grand Challenge on Neonatal Brain Segmenta-
tion 2012 (NeoBrainS12).

Isgum, 1., Benders, M. J.N.L., Avants, B., Cardoso, M. J., Counsell, S.
J., Gomez, E. F., Gui, L., Hiippi, P., Kersbergen, K. J., Makropoulos, A.,
Melbourne, A., Moeskops, P., Mol, C. P., Kuklisova-Murgasova, M., Rueck-
ert, D., Schnabel, J. A., Srhoj-Egekher, V., Wu, J., Wang, S., de Vries, L.
S., and Viergever, M. A. Evaluation of automatic neonatal brain segmenta-
tion algorithms: the NeoBrainS12 challenge. Submitted in Medical Image
Analysis.

3.1 Introduction

Segmentation of neonatal brain MR images is considerably more challeng-
ing than adult brain segmentation. The CSF-WM PV effect, the lower
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contrast-to-noise ratio compared to the adult brain, and the large changes
in appearance of the brain occuring from the early preterm period to term-
equivalent age present obstacles for the segmentation techniques.

A number of algorithms have been proposed in the literature for the
neonatal tissue segmentation (Prastawa et al., 2005; Song et al., 2007; Xue
et al., 2007; Anbeek et al., 2008; Weisenfeld and Warfield, 2009; Shi et al.,
2010; Cardoso et al., 2011, 2013; Wang et al., 2011; Gui et al., 2012b; Chita
et al., 2013). Direct comparison of these techniques is not easily feasi-
ble due to different data acquisition parameters, different manual reference
segmentations as well as different definition of structures and number of
structures segmented. To address this problem, a recent neonatal segmen-
tation challenge, NeoBrainS12 (2012), compared submitted algorithms on a
common reference. Evaluation was performed on three different image sets
of preterm infants with eight manually segmented structures. In Makropou-
los et al. (2012b) we proposed a neonatal tissue segmentation method that
achieved the highest accuracy in NeoBrainS12 (2012) with respect to the
manual reference. This chapter presents details of the submitted algorithm
(Makropoulos et al., 2012b).

3.2 Data acquisition

Three different sets of T1 and T2 images were provided as part of the
NeoBrainS12 challenge:

e Axial scans acquired at 40 weeks corrected age (Set 1),
e Coronal scans acquired at 30 weeks corrected age (Set 2) and
e Coronal scans acquired 40 weeks corrected age (Set 3).

The scan acquisition parameters for the three sets are summarized in Ta-
ble 3.1. Imaging data of seven infants were included from Set 1 and Set 2
and five infants from Set 3. The brain MR images were manually parcellated
in eight regions: cortical grey matter (CGM), unmyelinated white matter
(WM), myelinated white matter (MWM), brainstem, basal ganglia and tha-
lami (BGT), cerebellum, CSF and ventricles. The segmentation protocol
is described in the webpage of the challenge, http://neobrains12.isi.uu.nl.

The challenge consisted of two stages: a part prior to the challenge and an
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on-site part. Datasets of three infants per set were provided as test data in
the part prior to the challenge and two infants per set at the on-site part,
without the manual segmentations. The algorithms were evaluated on these
datasets. The teams could select which datasets and tissue types to seg-
ment. A two hours timeframe was set for the on-site part. The remaining
datasets of two infants per Set 1 and Set 2 were provided as training data

accompanied by the manual segmentations.

Axial (40 weeks) Coronal (30 weeks) Coronal (40 weeks)
T1 T2 T1 T2 T1 T2
TR (ms) 9.4 6293 9.4 10085 9.5 4847
TE (ms) 4.6 120 4.6 120 4.6 150
time (min) 3.44 5.4 4.44 6.23 7.02 5.05
FOV 180180 180x 180 130x104 130x104 200x200 180x 180
matrix 512x512 512x512 384x384 384x384 256 X256 512x512
thickness (mm) 2 2 2 2 1.2 1.2
nr. sections 50 50 50 50 110 110
resolution (mmXmm) 0.35x0.35 0.35x0.35 0.34x0.34 0.34x0.34 0.78x0.78 0.35%x0.35

Table 3.1: Acquisition parameters of the MR images in NeoBrainS12 (2012)
(data from http://neobrains12.isi.uu.nl)

3.3 Methods

We propose a Expectation-Maximization (EM) framework for the segmen-
tation of the neonatal brain into seven regions: CSF, CGM, unmyelinated
WM, ventricles, brainstem, cerebellum and BGT. The myelinated WM
could not be consistently segmented and was excluded from the model.

The EM algorithm of Van Leemput et al. (1999) is extended with a num-
ber of modifications for the case of neonatal segmentation: The spatial
proximity of structures is modelled with a Markov Random Field (MRF)
regularization term (Section 3.3.5). A prior relaxation scheme is introduced
to account for the large anatomical variability in the neonatal brain (Sec-
tion 3.3.6). Mislabelled WM voxels in the CSF-CGM interface (CSF-WM
PV) are corrected with connected component labelling and knowledge-based
rules (Section 3.3.7). A novel PV correction is further implemented for the
accurate delineation of the CGM-WM boundary. The CGM-WM PV cor-
rection is outlined in Chapter 6. These modifications are implemented in
the Correction step of the proposed EM algorithm.

The next section presents the proposed segmentation pipeline and Sec-
tions 3.3.2-3.3.7 describe the different components of the pipeline. Section

3.3.8 summarizes the modified EM algorithm for the tissue segmentation.
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Figure 3.1: Tissue segmentation pipeline. The subject’s MR image is brain-
extracted and bias field corrected. Atlas priors are propagated from the
spatio-temporal atlas of Serag et al. (2012) and combined with subject-
specific tissue priors. The proposed EM algorithm is initialised with the
combined tissue priors and results in the final labelling (after a postprocess-
ing of the labels). The algorithm incorporates MRF regularisation, CSF-
WM PV correction and prior relaxation.

3.3.1 Segmentation pipeline

Figure 3.1 presents an overview of the tissue segmentation pipeline. The tar-
get image is initially skull-stripped with the Brain Extraction Tool (BET)
(Smith, 2002) and corrected for the intensity inhomogeneity with the N4
algorithm (Tustison et al., 2010). The spatio-temporal neonatal atlas of
Serag et al. (2012) is then registered to the image and the tissue probabil-
ities of the atlas are propagated to the subject space. The atlas priors are
combined with subject-specific tissue priors obtained with k-means to pro-

vide a robust initialization of the EM algorithm. Finally, the proposed EM
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algorithm results in the parcellation of the brain into tissues (after a post-
processing step). The segmentations were performed in the T2 images of
the subjects due to their superior contrast over T1 for tissue differentiation

in the neonatal population.

3.3.2 Atlas priors

The spatio-temporal atlas of Serag et al. (2012) was used to propagate
spatial priors for the target image. Since the atlas has different structure
definitions from the delineations provided in NeoBrainS12, the tissue proba-
bility maps of the atlas were manually modified to comply with the protocol
of the challenge. The CSF prior was divided into left and right ventricle and
extra-cerebral CSF. Parts of the BGT were removed and merged with the
CGM map and the brainstem mask was modified to have a better agreement
with the NeoBrainS12 definitions.

For each subject the corresponding age template of the atlas was rigidly,
affinely and non-rigidly registered to the subject space. The non-rigid reg-
istration was carried out using free-form deformations with control point
grid spacings of 20mm, 10mm, 5mm and 2.5mm and normalized mutual
information (NMI) as the similarity measure (Rueckert et al., 1999). The
tissue probability maps were then warped to the native space of the subject

using the estimated transformation.

3.3.3 Subject-specific tissue priors

Subject-specific priors that reflect the tissue proportions of the target im-
age were obtained with k-means (Macqueen, 1967). The image intensities
were clustered into four classes that represent the three tissue memberships
(CSF, GM, WM) and the background. The CSF class from k-means was
re-clustered into two parts, a low intensity and a high intensity part, with
a second k-means clustering. The low intensity part is mainly attributed to
the low CSF intensities of the brain and some high WM intensities observed
in the frontal and occipital lobe. The high intensity part corresponds to the
‘pure’ CSF intensities of the brain. Subject-specific tissue priors were then
modelled with a Gaussian distribution initialized with each of the five result-
ing k-means classes’ centroids and variances (extra-cranial space, GM, WM,
high intensity WM /low intensity CSF, CSF) and blurred with a Gaussian
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kernel with standard deviation o¢c = 1. To avoid local minima of k-means,
the clustering was repeated multiple times using random initialisation and
the solution with the best fit to the data was retained.

The atlas priors were then refined by multiplying them with the appropri-
ate subject-specific tissue priors for each region (e.g. the CGM atlas prior
was multiplied with the GM tissue prior to result in the refined CGM prior,
the CSF atlas prior was divided into a low intensity CSF and a CSF prior
by multiplying it with the low intensity CSF and the CSF tissue prior re-
spectively). The refined priors were used to initialise the spatial prior term,
P(z; = eg), of the EM algorithm, providing a better initialization than
the atlas priors alone. The structures introduced into the EM model were:
CSF, low intensity CSF, CGM, high intensity WM, WM, BGT, brainstem,

cerebellum, left ventricle, right ventricle and extra-cranial space (ECS).

3.3.4 Expectation-Maximization formulation

This section presents the standard EM algorithm with a notation similar to
Van Leemput et al. (1999). The image intensity likelihood is approximated
by a Gaussian Mixture Model of the K structures (here K = 11). The
label of each voxel i is denoted by a 1-of-K indicator variable z;. The prior

distribution of z;’s is denoted with the K x 1 vector parameter m;, i.e.
P(zi=er) =mx - (3.1)

7 is the (spatial) prior probability of observing structure k in voxel i.

Assuming the observed intensities y; are independent, the problem can
be formalised as a Maximum a Posteriori (MAP) estimation of the means
ug and standard deviations oy, of the structures’ Gaussian distributions G(. |
i, o) (Van Leemput et al., 1999). The parameters &, = {u1, .., g, 01, ..., Ok }
are estimated with the EM algorithm (Dempster et al., 1977), at each iter-
ation m:

Expectation step:

P = Pz = ex | yi, @)
__ Plyilz= er, @) )P(z = ex)
S Py | 2= 5, @) Pz =€)

(3.2)
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3.3.5 Markov Random Field regularization

In practice, the label of a voxel is dependent on the label assignment of
its surrounding voxels. To account for this, we introduce a spatial reg-
ularisation term to enforce a smooth labelling among neighbouring voxels
(Van Leemput et al., 1999). The Markov Random Field (MRF) implementa-
tion in the present work follows the work of Cardoso et al. (2011) adopting
the mean field approximation, where the regularisation term is expressed

with a multiclass extension of the Potts model:

7Tik€_’3 Unrrr(ex|Ny)

K — N
Zj:l Tije B Unmrr(ej|Ns)

P(zi=e) = (3.6)

Here N; are the first-order neighbours of voxel ¢ and 8 the overall MRF
strength. The energy function Upsrr is defined as:

Unmrr(ex | Ni) =

K
S A sep+ Y sypi+ > sapi) (3.7)

j=1 IENF leN? IEN?

where the variable s = {s;,s,,s.}, models the anisotropic voxel spacing
(Cardoso et al., 2011). Aj; is an a-priori defined connectivity strength
matrix that penalises the interaction of structures according to their spatial

proximity. Ay; is defined as:

0, if structure k is the same as j
Apj = q b, if structure £ is neighbouring j,

¢, if structure k is distant from j

45



with b < ¢. Larger values attribute a stronger effect of the neighboring voxels
resulting in a smoother labelling. The connectivity strength parameters
were empirically set to b = 1, ¢ = 5 and the overall MRF strength to
8 =0.33.

3.3.6 Prior relaxation

Since the neonatal brain presents a large anatomical variability, the spatio-
temporal atlas may not be registered accurately to parts of the target image.
Adaptivity of the spatial priors in this work is introduced as in Shiee et al.
(2011); Cardoso et al. (2011, 2013) to correct for such misalignments. The
m; are modelled as the posteriors of a Dirichlet distribution (the Dirichlet
distribution is in essence a hyperprior of the model). The 7;;’s are updated
by

mik = (1 — a)mig + a(C * pix) (3.8)

where C' is a Gaussian kernel and * denotes the convolution operation. The
spatial priors of the model are adapted according to the EM posteriors. The
amount of adaptivity allowed for the spatial priors is determined with the
parameter a, 0 < a < 1. Here the relaxation factor was set to a = 0.5
similarly to Shiee et al. (2011).

3.3.7 CSF-WM Partial Volume correction

The spatial regularisation introduced by the MRF allows the removal of
isolated voxels that may be mislabelled due to partial volume signal aver-
aging and noise in the image. However, there is a large number of adjacent
voxels that can be misclassified when labelled based on the intensity in the
neonatal brain. Since most of these voxels are neighboring each other, they
favor their neighbors through the MRF energy formulation. As a result,
the MRF alone is not sufficient to remove them. A way to overcome this
problem as shown in Xue et al. (2007) is to introduce a knowledge-based
approach designed specifically to lower the probability of partial volume
(PV) in misclassified regions.

Table 3.2 summarizes the knowledge-based rules defined here to detect
partial volume voxels and the tissues they should belong to instead. Isolated

partial volume regions are detected with connected component labelling.
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Knowledge-based rules Misclassified tissue Appropriate tissues

WM ccs,voxels in CSF-ECS boundary WM CSF
WM voxels in GM - CSF, GM-ECS boundaries WM CSF, GM
CSF ccs mainly surrounded by WM CSF WM
GM voxels in CSF-ECS boundary GM CSF, ECS

Table 3.2: Knowledge-based rules for detecting misclassified voxels and their
appropriate tissues according to the connected components (ccs) of the tis-
sues.

The partial volume correction in (Xue et al., 2007) is performed by reduc-
ing the prior probability of the misclassified tissue in favor of the appropriate
tissue(s). Let r represent the misclassified tissue class and ¢; the appropri-

ate tissue classes. The prior probabilities of the detected voxels are adjusted

as follows:
/
Tic; = Ticy + (]- - A)wiCjﬂ-ir
/
i = AT
Here
Tc,;
_ ]
Wic;

B Zn 7T7:Cn
and A is set to 0.5 in our experiments. Essentially, the PV correction redis-

tributes the misclassified tissue probability mass to the appropriate tissue(s)

after each EM iteration.

3.3.8 Summary

Algorithm 1 presents the proposed EM algorithm for the segmentation of
the neonatal brain into tissues. The EM steps (Expectation, Correction,

Maximization) are repeated until convergence.

3.4 Evaluation

The segmentation accuracy was assessed with the manual reference data
of the NeoBrainS12 challenge in the on-site part and the part prior to the
challenge. Tables 3.3 and 3.4 present the overlap, measured with the Dice
coefficient, between the submitted automatic techniques and the manual
segmentations. The Dice coefficient (Dice, 1945) between the sets of cor-

responding voxels S, and S, of two segmentations of the same object, is
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Algorithm 1 The proposed EM algorithm for tissue segmentation.

Repeat
Expectation step
Wikeiﬁ UMRF(ek\Ni)G(yZ, | gk, o%)
Pik =
T mge P Ve NGy, | g, 0)

Correction step
Tk = (1 — a)mig + a(C * pix)

Detect partial volume voxels i and ¢j,r € [CGM,WM,CSF, ECS]
with connected component labelling and update:

Tics
Mic; = Mic; + (1 =) =

ZTL Tricn

Ty

Ty = )\7Tir

Maximization step
Calculate parameters ®,:

N
_ Zi:l PikYi
By = ——N
2&:1 Dik
o iy Pik(Yi — p)?
Ok = N
Zi:l Dik

Until convergence
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defined as
B 2|Sq N S|

~|Sa] + [Sm]

where |S,|, | S| is the number of voxels of the segmented object in S, and

Dice (3.9)

S respectively and |S, N Sy,| the number of common voxels between the
two segmentations. The measure takes a value of 1 in the case of perfect
match amongst the two segmentations and 0 when there is no overlap.
The following methods were submitted to the challenge: Makropoulos
et al. (2012b), Wang et al. (2012c), Melbourne et al. (2012), Wu and Avants
(2012), Gui et al. (2012a), Srhoj-Egekher et al. (2012), Anbeek et al. (2008),
Chita et al. (2013). The last three methods (Srhoj-Egekher et al. (2012),
Anbeek et al. (2008), Chita et al. (2013)) had the manual reference data of
the test set available during the method construction. These methods were
not considered in the method ranking in NeoBrainS12, however they are in-
cluded here as a benchmark. The methods by Makropoulos et al. (2012b),
Wang et al. (2012¢), Melbourne et al. (2012), Wu and Avants (2012) seg-
mented all the sets of images. In Makropoulos et al. (2012b) we did not
specifically delineate the MWM tissue because it could not be consistently
segmented in initial experiments. The performance of the submitted meth-
ods in the MWM segmentation (ranging from 0.07 to 0.69) further demon-
strated this effect. The method developed by Gui et al. (2012a) segmented
the CSF and ventricles as a single class. Chita et al. (2013) delineated only
the WM, CGM and CSF tissues. The rest methods (Wang et al. (2012c),
Melbourne et al. (2012), Wu and Avants (2012), Srhoj-Egekher et al. (2012),
Anbeek et al. (2008)) segmented all the tissue types of the challenge.
Example segmentations of the proposed technique are shown in Figure
3.2. The average runtime of the segmentation was less than 30 minutes
per subject. The whole pipeline requires around 95 minutes per subject
and was amongst the most demanding methods in terms of execution time
submitted in the challenge (reported times in minutes (') were: 7’ for Wang
et al. (2012¢), 15’ for Melbourne et al. (2012), 80’-100" for Wu and Avants
(2012), 120" for Gui et al. (2012a), 60" for Srhoj-Egekher et al. (2012), 15
for Anbeek et al. (2008) and 15" for Chita et al. (2013)). The proposed
algorithm achieved high Dice overlaps in all the segmented regions, with an
average Dice of 0.83 in the different parts of the challenge. Equal or better

results to the other techniques were obtained in the majority of the regions
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and the method was ranked first in NeoBrainS12 (2012) for the segmentation
accuracy. A notable exception is the area of the ventricles which presents
worse results than the other techniques. Due to the similar intensity of
the ventricles and CSF, the prior relaxation described in Section 3.3.6 often
resulted in ”leakage” of the ventricles in the CSF tissue. An example can be
seen in Figure 3.2.B, where the ventricles are oversegmented in the middle
part of the brain. It should be noted here that the differences in the results
between the methods were small in most of the cases. Furthermore, since
evaluation was performed on a limited number of images (two images per
set on the on-site and three per set in the part prior to the challenge),

significance of the results was not assessed in NeoBrainS12 (2012).

3.5 Discussion and conclusions

This chapter presents an algorithm for the segmentation of neonatal T2 im-
ages into 7 tissue types: CSF, CGM, unmyelinated WM, brainstem, cere-
bellum, basal ganglia and thalami and ventricles. The algorithm is based
on an EM scheme similar to Van Leemput et al. (1999) with a spatial prior
term and an intensity model of the image. Spatial priors of the structures
are propagated from a spatio-temporal probabilistic atlas and are refined
with subject-specific tissue priors obtained with k-means. The intensity of
the image is modelled with a GMM. Spatial regularization is enforced with
an MRF term and spatial adaptivity with a prior relaxation term as in Car-
doso et al. (2011). The proposed technique further incorporates bias field
and partial volume correction. The next chapter builds upon the proposed
EM scheme for the structural segmentation of the neonatal brain.
Evaluation of the proposed algorithm was performed on manually seg-
mented data from the NeoBrainS12 challenge. The method achieved state-
of-the-art results and outperformed submitted techniques in the majority
of regions. The challenge evaluated the performance of the algorithms on
limited datasets. A larger-scale evaluation would allow further exploration
of the strengths and weaknesses of different automatic segmentation tech-

niques for the neonatal brain.
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Figure 3.2: Example tissue segmentation of a neonatal MRI from Set 1 (A)
and Set 2 (B) of the NeoBrainS12 challenge (second row: manual segmen-
tation, third row: automatic segmentation).
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Chapter 4

Neonatal structural segmentation

This chapter is based on:

Makropoulos, A., Gousias, 1. S., Ledig, C., Aljabar, P., Serag, A., Hajnal,
J., Edwards, A. D., Counsell, S., and Rueckert, D. (2014). Automatic
whole brain MRI segmentation of the developing neonatal brain. IEEE

Transactions on Medical Imaging.

4.1 Introduction

Due to the lack of detailed atlases of the neonatal brain, previous neona-
tal segmentation techniques focused on the parcellation of brain tissues.
In order to assess regional brain development, detailed segmentations of a
large number of brain regions are required. In Makropoulos et al. (2012a,
2014), we presented the first study to automatically segment the developing
neonatal brain, from the early preterm period to term-equivalent age, into
50 structures (82 when the WM/CGM regions are subdivided into WM,
CGM).

The contributions of this work are three-fold:

e A novel multi-structural segmentation algorithm is presented for the

parcellation of the developing brain into 50 regions.

e The proposed segmentation outperforms current state-of-the-art tech-
niques used in the segmentation field. The model is compared with
standard label fusion techniques which are amongst the most accu-
rate techniques for the structural segmentation of the brain (Babalola
et al., 2009).
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e The presented algorithm allows for the first time accurate detailed
segmentation of the neonatal brain from 24 weeks gestational age to
term-equivalent age. The algorithm was successfully applied to 234

T2-weighted images of different gestational ages.

This chapter presents the multi-structural segmentation technique out-
lined in Makropoulos et al. (2014).

4.2 Data acquisition

T2-weighted MR images were acquired for 198 premature infants and 36
term controls. The cohort characteristics for the T2 scans are presented
in Table 4.1. Ear protection was provided for each infant with earplugs
moulded from a silicone-based putty (President Putty, Coltene Whaledent,
Mahwah, NJ) and neonatal ear protectors (MiniMuffs, Natus Medical, San
Carlos, CA). All examinations were supervised by a pediatrician experienced
in MRI procedures and pulse oximetry, temperature and electrocardiogra-
phy data were monitored throughout the procedure. The T2-weighted MR

images were acquired using the parameters in Table 2.2.

T2 preterm infants term controls
number of images 198 36
age at birth (weeks) 2912 (2413 - 3572) 3972 (36 - 4119)
age at scan (weeks) 3971 (2675 - 4472) 4016 (3673 - 4474)
weight at birth (kg) 1.18 (0.6 - 3.7) 3.3 (2.2 - 4.3)
weight at scan (kg) 2.3 (0.75 - 5.5) 3.44 (2.18 - 4.71)
head circumference at birth (cm) | 27.15 (22 - 36.8) 34 (23 - 39.6)
head circumference at scan (cm) | 33.3 (23.1 - 39.6) 35.5 (32 - 38.7)

Table 4.1: Cohort characteristics for the T2 images. Median (range) age,
weight and head circumference at the time of birth and scan are presented.

4.3 Methods

We propose a novel multi-structure EM-based segmentation technique for
the subdivision of the whole brain. Structural information is provided from
multiple single-subject atlases (described in Section 2.1.1). In atlas-based
segmentation methods, the MR images of manually segmented atlases are

registered to the subject’s MR image and their labels are propagated to
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it, based on the calculated transformations (Heckemann et al., 2006). The
propagated labels of multiple atlases can then be fused to yield probabilistic
spatial priors or to provide the final segmentation result. In the proposed
framework spatial priors are combined with an intensity model to segment
the structures in a fashion similar to Lotjonen et al. (2010); Ledig et al.
(2012).

A number of improvements to the standard EM algorithm employed for
brain segmentation (Van Leemput et al. (1999); Ledig et al. (2012); Létjonen
et al. (2010)) are proposed here for the accurate segmentation of the neona-

tal brain:

e The manual protocol of the atlases (Gousias et al., 2012) subdivides
the combined WM and CGM space into 32 structures. Each one
of the 32 structures contains both the WM and CGM part of the
respective region of the brain (see Figures 2.2, 4.1 for an example of
this manual parcellation). The boundaries between the WM/CGM
structures are based on the morphology of the cortex and are not
separated according to image intensity. A hierarchy within anatomical
structures is introduced here to overcome this issue. The whole CGM
and WM tissues are modelled as ’superlabels’ (aggregations) of their
subdivisions. This hierarchical modelling allows the accurate sampling
of the tissues’ intensities. Furthermore, the boundaries between the
WM/CGM structures are defined according to the spatial priors and
are not modified according to the intensity. In contrast to this, the
boundaries of the WM/CGM structures to the other structures (e.g.
CSF, subcortical GM) are adapted with the EM segmentation.

e Segmentation of the subcortical grey matter into different regions
based on the intensity is difficult for some parts of the brain. Sub-
cortical GM structures have very similar intensity profiles and parts
of their boundaries are often hard to distinguish. This challenge is
addressed in the present work by defining the predictive (posterior)
distribution as a model averaging of label fusion and the Gaussian
Mixture Model (GMM). The segmentation decision in homogeneous
regions in the deep grey matter is primarily based on label fusion

rather than the GMM since the intensity is less reliable in these areas.
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Figure 4.1: Different slices from one of the manually segmented atlases used
in this work (Gousias et al., 2012), in the sagittal and azxial plane (top and
bottom row respectively) with the manually defined labels overlaid.

The proposed technique further incorporates bias field correction (Tusti-
son et al., 2010), spatial regularization (Cardoso et al., 2011) and partial
volume correction (Xue et al., 2007), similarly to the previous chapter. The
prior relaxation discussed in Section 3.3.6 for the purpose of tissue segmen-
tation is explictly not incorporated in the structural segmentation of the
brain. The prior relaxation adapts the priors according to the posteriors
and helps when segmenting between the brain tissues that have large differ-
ences in intensity. In the structural segmentation, there are a large number
of structures, for example the subcortical GM structures, that exhibit very
similar intensity profiles. Since the intensity likelihood of these structures is
similar, adaptation of the priors according to the posteriors will introduce
errors in the segmentation.

Section 4.3.1 presents the segmentation pipeline. Sections 4.3.2 and 4.3.3
describe the atlas propagation and the probabilistic modelling of the whole
brain. The EM algorithm presented in the previous chapter is extended
for the regional segmentation of the brain. Sections 4.3.4 to 4.3.7 present
the new components of the EM framework for the purpose of structural
segmentation. Section 3.3.8 concludes the methodology with the modified

EM algorithm for the structural segmentation.

57



Atlases

Brain Extraction

| N4 Bias Field Correction | <
i Image Preprocessing

k-means + Brain Subdivision Atlas < ~
simple EM / Tissue Priors Modelling Atlas Priors \_Weighting Transformation

- _¢ i Label Priors Preprocessing

Expectation step
-MRF regularization
-hierarchical modelling

Registration

Repeat until Correction step
convergence -CSF-WM PV correction
-model averaging

! Maximization step
|
|

Expectation-Maximization

Label Postprocessing

Figure 4.2: Structural segmentation pipeline. After the preprocessing of
the subject’s MR image, the atlases” MR images are registered to it and
the atlas labels are propagated to the image. The atlas priors are com-
bined with subject-specific tissue priors. The resulting spatial priors of the
structures are introduced to the proposed EM algorithm that provides the
final segmentation, after a label postprocessing step. The algorithm extends
the MRF regularisation and CSF-WM PV correction of Chapter 3 and in-
troduces a hierarchical modelling of the structures and a model averaging
correction.
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4.3.1 Segmentation pipeline

Figure 4.2 presents an overview of the proposed segmentation pipeline. The
unlabelled MRI is initially brain-extracted with the Brain Extraction Tool
(Smith, 2002) and bias field corrected with the N4 algorithm (Tustison et al.,
2010). Afterwards, the atlases’ MR images are registered to the target
image and the atlas labels are propagated to the image. The propagated
labels are averaged in a locally-weighted scheme and subdivided with the
use of subject-specific tissue priors obtained with k-means clustering. The
proposed EM scheme is used for the estimation of the resulting labelling.
Finally, a postprocessing step results in a labelling similar to that of the

atlases.

4.3.2 Atlas priors

The atlases” MR images are rigidly, affinely and non-rigidly registered to
each subject’s image in the T2 space. The non-rigid registration is based
on free-form deformations with control point grid spacings of 20mm, 10mm,
5mm and 2.5mm and normalized mutual information (NMI) as the similarity
measure (Rueckert et al., 1999). The atlas labels are then propagated to
the image space and are averaged to form a probabilistic spatial prior for

each structure (for each voxel i):

A
Za:l wiafygk
K A
Zj:l > a1 Wiy

Tk =

where a = {1,.., A} denotes the transformed labels of each atlas and k €
[1..K] denotes the different structures, ~f; is the vote for structure & pro-

duced by atlas a calculated as

. { 1, if voxel ¢ belongs to structure & in atlas a
ik =

0, else

and w;, denotes the weight of each atlas. w;, may be set to a uniform value
of 1 globally for all voxels or may be spatially varying in a local weighting
scheme. In this work both cases are examined. The local weighting is based
on the sum of squared differences (SSD) of the intensity-normalized images

of the atlas and the unseen image (Artaechevarria et al., 2009), in the local
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neighbourhood of each voxel (in patches of 3 x 3 x 3 size). Notice that 7

is the segmentation estimate of label fusion, as described in Section 2.2.3.

4.3.3 Brain subdivision modelling

EM segmentation involves the accurate modelling of the intensities of the
whole space covered by the different regions of the brain. In the standard
EM segmentation, every region is assumed to follow a Gaussian distribution
over the intensities of the voxels. This section describes the subdivision of
regions that need to be described with more than one Gaussian distribution.
The subdivision is performed in the space of the image to be segmented by
splitting the spatial priors propagated from the atlases.

As the manual segmentation protocol (Gousias et al., 2012) did not divide
the WM/CGM structures of the brain into CGM and WM, these regions
contain both tissues. Therefore, in order to describe each structure with
a single Gaussian intensity model, each WM /CGM structure was divided
into its corresponding tissue parts (WM, CGM) using a soft segmentation.
The prior probability of each WM /CGM structure in the individual subject
space is multiplied with a WM and a CGM probability map to define the
corresponding WM and CGM parts. The required subject-specific tissue
probabilities are obtained as the posteriors of a simple EM scheme with 4
classes (CSF, GM, WM and extra-cranial space) in the intensity domain.
In this EM scheme, the means and standard deviations are initialised using
k-means clustering (Macqueen, 1967). The k-means clustering is performed
in the intensity space with k=4 clusters. An alternative approach would be
to segment the WM/CGM structures of the atlases into WM and CGM and
use the modified atlases for the propagation of the CGM,WM components
of these structures. However, the registration between different neonatal
brains does not align accurately the cortical ribbon (Figure 4.11.A. demon-
strates this effect). The term-equivalent atlases have very different cortical
complexity from early neonatal brains and the registration can not capture
the large deformations occuring as a result of the rapid development. There-
fore, we have chosen to differentiate between the tissue types in the space
of the target image with intensity clustering.

The background of the manual segmentations contains the extra-cranial

space, CSF, as well as parts of the subcortical GM space as can be seen
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in Figure 4.1. The background prior probability is subdivided accordingly
into three parts. The CSF and extra-cranial space are defined from the
tissue probability maps. The ventricles were further excluded as separate
regions from the CSF. The subcortical background mainly represents the
internal capsule and is segmented by masking the background with a deep
grey matter binary map (obtained by transforming and thresholding the
subcortical GM map of Serag et al. (2012)).

The ventrolateral nuclei of the thalamus deviates significantly in terms
of intensity from the rest of the thalamus (Counsell and Rutherford, 2002).
To account for this, the right and left thalamus were subdivided into the
low intensity (in T2 space, inversely for the T1 space) part of the thalamus
that represents the ventrolateral nuclei and the rest of the thalamus, with
another simple EM scheme initialised with a 2 cluster k-means technique.

The remaining subcortical structures retain their propagated definitions
from the atlases. It should be noted that the subcortical GM background
and the thalamus parts are segmented using a hard segmentation in the
atlas space and then propagated to the subject image, as these regions are
difficult to differentiate in early preterm brains. The initial labels and the
ones resulting from the subdivision are presented in Figure 4.3. The 50 atlas
labels are subdivided into 87 labels. Once the EM estimation has converged,

the subdivided parts of the structures are merged.

4.3.4 Markov Random Field regularization

MRF regularization is modelled as in the previous chapter (Equation 3.6).
The spatial proximity is automatically defined from the atlases. A pair
of structures is defined as "neighboring” if the structures have neighboring
voxels in at least one set of atlas labels. Since the atlases did not differentiate
the WM/CGM structures into WM, CGM, these parts were automatically

subdivided prior to the definition of the neighboring structures.
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Atlas labels Labels after brain subdivision (87)
(50 + background)

WM/CGM structure 1
WM/CGM structure 1

WM/CGM structure 2
WM/CGM structure 2 < WM /CGM structure 2

WM part)
CGM part)
WM part)
CGM part)

WM/CGM structure 1 <

NN SN

Wl\/.I/CGM structure 32 (WM part)
WM/CGM structure 32 <7 WM/CGM structure 32 (CGM part)

Subcortical structure 1 Subcortical structure 1
Subcortical structure 2 Subcortical structure 2
Subcortical structure 16 Subcortical structure 16

Left thalamus without the ventrolateral nuclei

Left thalamus Left ventrolateral nuclei

< Right thalamus without the ventrolateral nuclei

Right thalamus Right ventrolateral nuclei

Extra-cranial space
Background CSF
Subcortical background

Figure 4.3: Initial labels of the atlases and labels after the subdivision.

Here Ay; is defined as:

0, if structure k is the same as j
a, if structure k is neighbouring 7,

and both &k and j belong to WM/CGM
b, if structure k is neighbouring 7,

and either k or j do not belong to WM/CGM

¢, if structure k is distant from j

\

with ¢ < b < ¢. To preserve the propagated anatomical information at
the boundaries between the WM/CGM structures while removing isolated
voxels, a weak smoothing is allowed here to alter the boundaries between
these structures. The connectivity strength parameters were empirically set
toa=1,b=3,c=5.
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4.3.5 Superlabels

The WM/CGM structures on the atlases were parcellated according to the
position of the sulci and gyri. Therefore, the boundaries between these re-
gions are determined by anatomical landmarks and not according to inten-
sity. In the standard EM formulation, the different structures that belong to
the same tissue (WM, CGM) compete with each other based on their prior
and intensity likelihoods. As a result, the WM part of a WM /CGM struc-
ture can expand into the space of neighboring WM parts (and the CGM
part of a WM/CGM structure can expand into the space of neighboring
CGM parts) driven by its intensity likelihood. To prevent this from hap-
pening, we constrain the expansion amongst structures of the same tissue
using only the prior probability, by defining a single intensity likelihood for
all the divisions of the same tissue.

We define superlabels for the WM and CGM, as aggregations of their
subdivisions. Figure 4.4 presents the implemented hierarchical tree of the
structures and Figure 4.5 an example of segmented superlabels.

Let the WM regions belong to the WM superclass Sy s and the CGM
regions to the CGM superclass Scgas. The WM and CGM prior and pos-
terior probabilities are defined as the summation of the prior and posterior

probabilities of their subdivisions (at the Expectation step (Equation 3.2)):

+1 +1
TiCGM = Z WZ[ZL ], picGMm = Z pz[?;? ]

keScam k€eScam

m+1 m+1

TiWM = Z Wl[k ], piwm = Z pgk !
keSw m keSw m

The intensity of each superlabel is described with a single Gaussian (Gcaar,
Gyw ) which is updated in the standard Maximization step in equations 3.4-
3.5 as an additional class. The superlabel’s Gaussian distribution is thus
sampled from the whole space of its subdivisions. This allows for a more
accurate estimation of the tissue parameters. In order to consider only the
prior probabilities for the separation of the WM subdivisions and the CGM

subdivisions, the same intensity likelihood is defined for all the subdivisions
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MR
Image

—>» WM/CGM structure 1 (WM part)
— 3> WM —s}—> WM/CGM structure 2 (WM part)
L_> WM/CGM structure 32 (WM part) )

— > WM/CGM structure 1 (CGM part) )
L 5> CCM—s}—> WM /CGM structure 2 (CGM part)

- Sw M

rScam

L > WM/CGM structure 32 (CGM part))
—> CSF

> Eixtra-cranial space
—> Subcortical background

—> Subcortical structure 1
—> Subcortical structure 2

—> Subcortical structure 16
—> Left thalamus without the ventrolateral nuclei

—> Right thalamus without the ventrolateral nuclei

—>[eft ventrolateral nuclei

> Right ventrolateral nuclei

Figure 4.4: Label hierarchy.

of each superlabel as:

k GSCGM :
P(y; | zi = ek,CIDLLm]) =Py | z = 6CGMa<I>Lm])

k GSWM :
P(y; | zi = ex, <I>[ym]) =Py |z = €WM7(I)?[Jm})

The segmentation problem is thus reduced to the estimation of ®; =

{lE Q) 5 BE(K) TH(1)> -+ TH(k) }> Where |®p] < [®,[. H is a hierarchy func-

tion similar to Van Leemput et al. (2009) and indicates the parent of the
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Figure 4.5: Example of segmented WM /CGM structures (A) and the cor-
responding superlabels for CGM (B) and WM (C) in the axial plane of a
T2-weighted MRI.

label in the hierarchical tree of the structures:

CGM, ifke SCGM
H(k) = WM, ifkeSwyu

k, else

The estimation of the Gaussian parameters in the proposed hierarchical
framework is similar to the hippocampal subfield segmentation in Van Leem-
put et al. (2009). Van Leemput et al. (2009) define a global WM, CGM and
CSF tissue type with a shared mean and variance over the tissue subparts
as proposed here. In the present work the hierarchical model is defined for
the whole brain instead of a region of interest (Van Leemput et al., 2009).
The proposed hierarchical modelling is further similar to Pohl et al. (2004)
where a whole-brain hierarchical model is defined. In Pohl et al. (2004),
the Gaussian parameters are estimated for all the substructures. Then the
intensity distribution for structures with children is defined as the weighted
sum of the intensity distribution of its sub-structures, where the weight is
equal to the atlas prior. The hierearchical framework described in this sec-
tion deviates from the hierarchical modelling in Pohl et al. (2004) in the
sense that the Gaussian parameters are estimated from top to bottom in
the hierarchy, starting from the superlabels, rather than starting from the
substructures.

As shown in Van Leemput et al. (2009), the EM update equations still
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hold by setting:
P(y; | zi = e, ®)™) = P(y; | zi = egrqry, @) (4.1)

4.3.6 CSF-WM Partial Volume correction

The CSF-WM PV correction is performed as described in Section 3.3.7,
however is implemented to follow the top to bottom hierarchy described
in the previous section. The correction for labels that have subdivisions
is initially estimated for the (tissue) superlabels and then passed to their
subdivisions with respect to their prior probability:
’ ik /
te[GM, WM, keS;:my ==—"—"4
ZjeSt Tij

4.3.7 Model averaging

A challenge in the GMM modelling for multi-class whole brain labelling
arises when segmenting the deep grey matter into subcortical structures.
These structures are very similar in terms of intensity and the differenti-
ation between them is very difficult. The Gaussian distributions of deep
grey matter structures overlap significantly (see Figure 4.7). The problem
becomes more significant for images of early preterm infants where the con-
trast is limited.

To account for this, we model the predictive distribution of the data as
model averaging of an ensemble of two models, label fusion and GMM. A
weighting scheme reduces the update based on the GMM model in vox-
els belonging to homogeneous regions (with low gradient with respect to
their neighborhood) of the deep GM. In these regions the segmentation is
primarily based on label fusion of the atlases. This modelling prevents the
expansion of structures in homogeneous areas due to intensity and favors the
anatomical definition based on the a-priori information of the propagated
labels of the atlases.

The predictive (posterior) distribution pf;; of the ensemble of models,
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indexed by M, with overall parameters ® = {®j/} can be written as
PG =Pz = e |y, ®) = > P(M)P(z = ex | yi, M, D)
M

= P(Maym)P(zi = ex | yi, Moy, @ rvigan) +
[1 — P(Maym)P(zi = ek | yi, Myus, Pury,,)

where Mgary denotes the GMM model with parameters ®,s.,,,, and
Mys denotes the fusion model with parameters @y, .

The predictive distribution of label fusion is independent of the intensity
modelling of the image. It is effectively equal to the spatial prior formed as

the averaged propagated label sets from the atlases:
P(zi = e | Yi, Mpus, Puty,,) = ik

The weighting of the GMM is spatially defined as P(Mgprar) = 7i- 75 18
set to 1 to allow for the standard EM update with the GMM, except for the

subcortical regions where 7 is defined as
T=1-(1+L(VI,o.))! (4.2)

where VI is the gradient magnitude of the image. The L-function repre-
sents the robust Lorentzian error norm in Black et al. (1998) with o, being
a spatially-variant scale calculated in the local neighborhood of the voxels
(an example of the weighting factor can be seen in Figure 4.6).

Modelling the segmentation as averaging of label fusion and GMM alters

the predictive distribution of the original EM model as
pik = P = (1 = 7) ik, + Tiin (4.3)

The posteriors with the new modelling are updated at each iteration of

the modified EM algorithm in the Correction step.

4.3.8 Summary

The proposed EM algorithm for the structural segmentation is outlined in
Algorithm 2.
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Algorithm 2 The proposed EM algorithm for structural segmentation.

Repeat
Expectation step

mine P Umrr(eIND Gy, | HE (k)> O H (k)
Pik = =x¢

Zj:l Wije_ﬁ UMRF(GJ|Ni)G(yZ- ’ NH(j)aUH(j))
t € [CGM,WM]: pys =Y s, Pik

Correction step
pik = (1 — )ik + TiDik

Detect partial volume voxels ¢ and ¢j,r € [CGM,WM,CSF, ECS]
with connected component labelling and update:

Tie; = Tie; + (1 = A)

Tic.:
iCj

—_ T
zn 7'['icn r

Tir = ATy

ik

t e [CGM, WM, k€S :my= S
€Sy Mg

Tt

Maximization step
Calculate parameters ®,:

. Ef\; PiH(k)Yi
]\}‘:1 PiH (k)
o i1 Pire)(Yi — BHK)”
OHk) = N
Zizl PiH (k)

Until convergence
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Figure 4.6: Axial slice of a T2-weighted MRI (A), magnified region of the
deep grey matter (B) and the weighting of EM in the model ensemble (C).
In red areas the segmentation decision is primarily based on label fusion
while in blue areas the result is dominated by the GMM model.

+ — Hippocampus
4- Amygdala
— Cerebellum
3.5- — Brainstem
— Caudate nucleus
3L — Thalamus
— Subthalamic nucleus
Bosh — Lentiform Nucleus
é ' — Corpus Callosum
E oL — Lateral Ventricle
= —CSF
1.5F :SVGMM
1
0.5

intensity (log domain)

Figure 4.7: Gaussian intensity likelihood of the subcortical structures and
the tissues in the log domain (in the T2 space)

4.4 Evaluation

Leave one out cross-validation using the atlases by Gousias et al. (2012) was
carried out by specifying in turn one of the atlases as the target and using
the remaining atlases to segment it. The atlases were segmented using the
proposed EM algorithm and label fusion with both atlas weighting schemes
(global and local). The atlas segmentations were carried out on the T1

images as the manual delineations of the atlases are defined in the T1 space
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(Gousias et al., 2012). The T2-weighted MR images present a different
intensity contrast from the T1-weighted images in the tissue boundaries.
Therefore, performing the segmentations in the T1-weighted images allows
a more accurate comparison to the gold standard which follows the T1
intensity profile for the structure delineation.

The methods were evaluated with the Dice coefficient to compare overlaps
of the automatically computed labels with the manually parcellated gold
standard. A primary analysis explores the segmentation accuracy of the
two techniques in labelling the whole brain, obtained as the union of the
segmented areas with each method. Further exploratory analysis assesses
the improvement in regional accuracy of the proposed technique over label
fusion. Regional Dice scores are presented in Section 4.4.1.

The atlases are derived from subjects scanned at term and registrations
between pairs of atlas images are more likely to succeed given that the mor-
phology of the subjects corresponds to very similar stages of development.
However, early preterm brains vary largely in the cortical appearance and
subcortical structures compared to the term-equivalent brains. To test per-
formance of the methods across a range of gestational ages, the proposed
segmentation scheme was applied to 198 preterm subjects with age ranging
from 2413 to 3512 weeks GA and 36 term controls with GA ranging from
36 - 4175, The segmentations were performed in the T2 images since the
T2 intensity profile provides more contrast for the neonatal images between
the subcortical GM, unmyelinated WM and cortical GM. The T2 images
allow a better intensity characterization and therefore more reliable inten-
sity segmentation. All the 234 segmentations were rated by an observer
blinded to the processing method with a scale from 1 to 5 (1=segmentation
failure, 2=extensive region inaccuracies/alignment problems, 3=moderate
region inaccuracies/alignment problems, 4=regional boundaries inaccura-
cies, b=accurate segmentation) with both label fusion and the proposed EM
algorithm in the locally-weighted scheme based on 7 equally spaced axial
slices. Example segmentations rated with the different scores are presented
in Figure 4.8. The rating performance of the 2 techniques is presented in
Section 4.4.2.

15 cases were further selected to qualitatively evaluate the method at
different scan ages (2612, 2716, 28+2 29, 30, 311!, 32, 33, 34, 3572, 36,
37723976 42, 44%2 weeks) in all the structures and all the image slices. The
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Figure 4.8: Example segmentations rated with the different scores (image
A: 2=extensive region inaccuracies/alignment problems, image B: 3=mod-
erate region inaccuracies/alignment problems, image C: 4=regional bound-
aries inaccuracies, image D: 5=accurate segmentation) All the images in the
database could be segmented (no images were rated with 1=segmentation
failure). The arrows indicate problematic areas in the segmentations.

71



qualitative evaluation was based on the region definitions in the protocol
used for the manual delineation of the atlases (Gousias et al., 2012). In
order to evaluate quantitatively the performance of the proposed algorithm
at different gestational ages, the ventricles, frontal and occipital lobe were
manually segmented for each of the 15 selected cases. An initial version of
the labels was semi-automatically obtained with label fusion and automatic
tissue segmentation (Xue et al., 2007). These labels were then refined with
manual editing to result in the final labels. The manually segmented cases
were compared against label fusion and EM with both weighting schemes.
Section 4.4.3 presents the qualitative and quantitative evaluation of the 15
cases. The rater that performed the qualitative assessment and manual
segmentations of the data was different from the expert who performed the
manual segmentation of the atlases.

Comparison between techniques is performed with two-sided paired t-
tests. The results are conservatively adjusted for multiple comparisons using

Bonferroni’s correction where stated.

4.4.1 Atlas cross-validation

EM significantly (p < 10~%) improves the whole-brain segmentation accu-
racy with a mean Dice score of 0.961 compared to 0.957 obtained with label
fusion in the local weighting of the atlases (0.958 over 0.949 with majority
vote weighting, p < 1075). The results of the leave-one-out cross-validation
of the atlases for all 50 structures are shown in Table 4.4 with both weight-
ing schemes. To allow for an easier comparison, the averaged results of
the major WM/CGM and subcortical regions over the two hemispheres are
presented in Table 4.2.

Local weighting of the atlases performs significantly better in both label
fusion and EM. LW-EM performs equally or better in all structures, with sig-
nificantly better results (p < 0.05) for 36 out of 50 structures with majority
vote weighting (24 after Bonferroni correction), and 39 out of 50 structures
with locally-weighted voting (25 after Bonferroni correction). The struc-
tures with stronger intensity differentiation from their surrounding regions
benefit most by using the EM technique, such as the lateral ventricles, hip-
pocampus and corpus callosum and the WM /CGM structures. The bound-

aries of these structures can be more clearly separated in terms of intensity
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Structure MV-Fusion MV-EM LW-Fusion LW-EM

hippocampus 0.758 0.772 0.780 0.790
amygdala 0.818 0.822 0.820 0.826
cerebellum 0.922 0.925 0.925 0.929
brainstem 0.920 0.922 0.917 0.922
caudate nucleus 0.840 0.844 0.843 0.846
thalamus 0.902 0.900 0.901 0.901
subthalamic nucleus 0.741 0.743 0.741 0.744
lentiform nucleus 0.872 0.874 0.873 0.876
corpus callosum 0.706 0.710 0.717 0.727
lateral ventricle 0.790 0.829 0.813 0.838
frontal lobe 0.918 0.927 0.927 0.932
occipital lobe 0.850 0.860 0.857 0.860
WM/CGM structures 0.790 0.801 0.802 0.808
subcortical structures 0.828 0.836 0.835 0.842
overall 0.804 0.814 0.814 0.820

Table 4.2: Dice coefficient of leave one out cross-validation with the atlases.
The atlas segmentations are carried out in the T1-weighted images. Fusion
and EM are compared with both majority vote (MV) and local weighting
(LW) of the training atlases (bold = significantly better at p < 0.05).

and are improved with the presented EM technique through the GMM mod-
elling. Label fusion relies on accurate registration of the atlases and does
not model the intensity of the structures. However, accurate registration of
neonatal brain images is challenging, even in areas of large intensity con-
trast, due to the large developmental changes. As a result, label fusion is
sensitive to misalignments as it cannot remove the intensity outliers in the
boundaries of the structures. Segmentation results in areas that boundaries
are difficult to identify such as the thalamus, caudate nucleus and subtha-
lamic nucleus are not significantly different to label fusion. In these areas
the weighting of label fusion in the model ensemble is increased through
the Lorentzian error norm. This avoids expansion of structures into areas
without sufficient intensity differentiation. The overall significance of im-
provement was assessed comparing the average Dice scores of each structure
obtained with EM against label fusion. EM is significantly better than label
fusion with p < 10~® for global and p < 107'° for local weighting of the
atlases.

Another experiment was performed to compare the modelling of the pre-
dictive distribution as a model averaging as opposed to the Gaussian Mix-

ture Model formulation alone (essentially the effect of Equation (4.3)). The
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results are summarized in Table 4.5. The proposed modelling with the
model ensemble results in significantly better overlap for 31 out of 50 struc-
tures and worse for one structure with majority vote weighting (better for
22 structures after Bonferroni correction), and significantly better score in
20 out of 50 structures with locally-weighted voting (10 after Bonferroni
correction). All of the subcortical structures except for the hippocampus
and corpus callosum have significantly better (p < 0.05) overlap with re-
spect to the gold standard. Figure 4.9 allows a visual comparison of the

results of the atlas cross-validation presented in this section.

4.4.2 Evaluation across the subject cohort

Results of the blinded rating (1-5) of all 234 segmentations of locally-
weighted label fusion and the proposed technique are presented in Figure
4.10. The segmentations produced with the presented method are greatly
improved with a mean rating of 4.9 across ages compared to 3.8 judged
for label fusion. The majority of the segmentations with the proposed EM
implementation are rated with 5 (accurate segmentation) at all scan ages
(92% of the cases), in contrast to label fusion mostly voted with 4 (regional
boundaries inaccuracies) for brains around term (81.9% of the cases) and
declines to 3 (moderate region inaccuracies/alignment problems) for early
preterm brains (16% of the cases). The increase is consistent and significant
(p < 0.05) for all the ages with a minimum increase in the rating of 0.9 (for
the age of 40 weeks) up to 1.8 (for the age of 30 weeks).

Example segmentations of neonates at 28 weeks, 31 weeks and 32 weeks
GA with the two techniques are shown in Figure 4.11. Registration between
term-equivalent brains to early preterm brains is challenging, especially in
the cortical areas due to different degree of cortical complexity. Utilizing the

intensity information, the tissue boundaries are refined (see Figure 4.11.A).

4.4.3 Manually segmented cases

Label fusion and EM were compared in the 15 subjects selected at differ-
ent scan ages. The method produced segmentations that were judged more
accurate than locally-weighted label fusion in an average of 21 out of 26
structures (structures that are defined separately for each hemisphere were

merged) in the 15 cases, and equally accurate in the rest of the structures.
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Figure 4.9: Dice coefficient of leave one out cross-validation with the atlases.
Fusion, EM with the GMM modelling and the proposed EM (as model
averaging) are compared with both majority vote (MV) and local weighting
(LW) of the training atlases. The Dice coefficient of each method (columns
of the table) for each structure (rows of the table) is represented according
to the color scale displayed on the right of the table.
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Number of images

28 30 32 34 36 38 40 42 44
Age at scan (weeks)

Figure 4.10: Rating (5=best) of label fusion (left columns) and the proposed
EM segmentation method (right columns) with local weighting across the
scan ages of the cohort. Each age at the horizontal axis covers the span
[age — 1 week, age + 1 week).

Structure MV-Fusion MV-EM LW-Fusion LW-EM
lateral ventricle 0.690 0.821 0.712 0.806
frontal lobe 0.905 0.952 0.934 0.963
occipital lobe 0.805 0.870 0.903 0.945

Table 4.3: Dice coefficient of the ventricles, frontal and occipital lobe in
the 15 manually segmented cases. Fusion and EM are compared with both
majority vote (MV) and local weighting (LW) of the training atlases (bold
= significantly better at p < 0.05).

Table 4.6 summarizes the qualitative results. The volumetric comparison
in terms of the Dice score of the manually segmented cases against label
fusion and EM is presented in Table 4.3. The proposed technique signifi-
cantly outperforms label fusion in the manually segmented regions in both

employed weighting schemes.
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Figure 4.11: Axial slices of T2 weighted MRIs of 28(A), 31(B) and 32(C)
weeks GA brains at different scan ages (28, 31, 42 weeks) with labels over-
laid. The labels are estimated with label fusion (left images) and the pro-
posed EM scheme (right images). The arrows show areas of improvement
with the proposed technique.
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4.5 Discussion and conclusions

This chapter presented an automatic segmentation algorithm that allows
for the first time detailed parcellation of the neonatal brain from the early
preterm period to term equivalent age. In contrast to existing methods
for neonatal MR image segmentation, the algorithm performs whole brain
intensity-based segmentation into 50 structures, enabling the detailed as-
sessment of regional brain growth and development in these infants.

An EM scheme is adapted to segment a large number of structures simul-
taneously for the neonatal brain. The proposed method improves the seg-
mentation utilizing the image intensity and provides more accurate results
than state of the art techniques used in the segmentation field (majority-
vote, local-weighted fusion). The novelties of the EM implementation com-
pared to previous approaches (Van Leemput et al. (1999); Ledig et al. (2012);
Lotjonen et al. (2010)) include the hierarchical intensity modelling of the
whole brain and constraints allowing for the restriction of the EM update
to regions that are difficult to be differentiated from the signal intensity.

A careful modelling was adopted to subdivide the subject’s brain MRI
into distinct intensity regions that allowed each structure to be modelled
with a single Gaussian distribution. Furthermore, a hierarchical approach
is introduced to model the WM subdivisions and CGM subdivisions to avoid
competition between them in terms of the intensity likelihood. This hier-
archical modelling is essential for the segmentation of different structures
that belong to the same tissue. Modelling the predictive distribution as
a model averaging between label fusion and the GMM prevents subcorti-
cal labels from expanding in homogeneous regions. This is essential as in
homogeneous areas the intensity distributions of the subcortical structures
overlap significantly and this would introduce errors in the segmentations.
The model averaging is necessary due to the low contrast in the subcortical
space in the neonatal brains, especially in early preterm MR images.

The proposed technique was compared with label fusion, one of the most
commonly used techniques, using leave-one-out cross-validation in a global
and local weighting of the atlases. A qualitative and quantitative evaluation
is further performed in a wide range of gestational ages, from early preterm
to term-equivalent, as the atlases cover a spectrum of ages around term

equivalent age. The segmentation results are clearly improved over the label
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fusion labelling in terms of intensity and regions problematic for registration.

In summary, the proposed framework allows the segmentation of neona-
tal MR brain images with gestational ages ranging from the early preterm
period to term-equivalent age, a time when the developing brain is changing
considerably in terms of brain volume, cortical folding and signal intensity
on MR images. The EM scheme described in the previous chapter was
extended for the segmentation of tissues in order to divide the brain into
multiple brain structures. The proposed algorithm outperforms current ap-
proaches. This improvement becomes even more significant in the brain
of early preterm infants that vary considerably from the brain at term-
equivalent age. The next chapter presents a group-wise extension of the
algorithm to further encourage a consistent labelling across different images

of a database.
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Region MV-Fusion MV-EM LW-Fusion LW-EM
Hippocampus right 0.767 0.781 0.788 0.797
Hippocampus left 0.749 0.764 0.772 0.783
Amygdala right 0.813 0.817 0.816 0.821
Amygdala left 0.822 0.828 0.824 0.831
Cerebellum right 0.921 0.925  0.924 0.929"
Cerebellum left 0.922 0.925 0.926 0.930"
Brainstem, spans the midline 0.920 0.922 0.917 0.922"
Caudate nucleus right 0.843 0.846 0.844 0.848
Caudate nucleus left 0.837 0.842 0.841 0.845
Thalamus right 0.908 0.907 0.907 0.908
Thalamus left 0.895 0.894 0.895 0.895
Subthalamic nucleus right 0.744 0.746 0.746 0.748
Subthalamic nucleus left 0.738 0.740 0.737 0.740
Lentiform Nucleus right 0.873 0.876 0.874 0.877
Lentiform Nucleus left 0.871 0.873 0.872 0.874
Corpus Callosum 0.706 0.710 0.717 0.727"
Lateral Ventricle right 0.785 0.822"  0.803 0.829"
Lateral Ventricle left 0.795 0.836"  0.822 0.846"
Frontal lobe right 0.918 0.929"  0.928 0.934"
Frontal lobe left 0.917 0.925"  0.926 0.930"
Parietal lobe right 0.866 0.877"  0.876 0.881
Parietal lobe left 0.870 0.883 0.884 0.887
Occipital lobe right 0.846 0.856"  0.852 0.856"
Occipital lobe left 0.854 0.864"  0.862 0.865
Anterior temporal lobe, medial part right 0.815 0.837"  0.826 0.842"
Anterior temporal lobe, medial part left 0.806 0.836"  0.819 0.834
Anterior temporal lobe, lateral part right 0.783 0.814"  0.802 0.821"
Anterior temporal lobe, lateral part left 0.788 0.815"  0.797 0.811"
Insula right 0.843 0.848"  0.852 0.856"
Insula left 0.856 0.860  0.862 0.866"
Cingulate gyrus, anterior part right 0.816 0.819 0.820 0.826"
Cingulate gyrus, anterior part left 0.766 0.765 0.770 0.774
Cingulate gyrus, posterior part right 0.799 0.802 0.798 0.803"
Cingulate gyrus, posterior part left 0.804 0.806 0.803 0.808"
Superior temporal gyrus, middle part right 0.816 0.831  0.833 0.841"
Superior temporal gyrus, middle part left 0.816 0.825"  0.828 0.832
Superior temporal gyrus, posterior part right 0.667 0.667 0.671 0.671
Superior temporal gyrus, posterior part left 0.682 0.681 0.686 0.685
Medial and inferior temporal gyri anterior part right 0.821 0.838"  0.840 0.847"
Medial and inferior temporal gyri anterior part left 0.814 0.827"  0.830 0.836
Medial and inferior temporal gyri posterior part right 0.777 0.784%  0.778 0.781
Medial and inferior temporal gyri posterior part left 0.795 0.799 0.799 0.800
Gyri parahippocampalis et ambiens anterior part right | 0.782 0.796"  0.797 0.810"
Gyri parahippocampalis et ambiens anterior part left 0.786 0.801"  0.805 0.814"
Gyri parahippocampalis et ambiens posterior part right | 0.701 0.714*  0.721 0.729"
Gyri parahippocampalis et ambiens posterior part left 0.689 0.702"  0.712 0.718
Fusiform gyrus anterior part right 0.718 0.734"  0.745 0.752"
Fusiform gyrus anterior part left 0.721 0.739"  0.740 0.749"
Fusiform gyrus posterior part right 0.672 0.679 0.688 0.695"
Fusiform gyrus posterior part left 0.686 0.696"  0.702 0.705

Table 4.4: Dice coeflicient of leave one out cross-validation with the atlases.
Fusion and EM are compared with both majority vote (MV) and local
weighting (LW) of the training atlases (bold = significantly better at p <
0.05, “= significantly better after Bonferroni correction).
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Region MV-EM-GMM MV-EM LW-EM-GMM LW-EM
Hippocampus right 0.776 0.781 0.794 0.797
Hippocampus left 0.763 0.764 0.788 0.783
Amygdala right 0.800 0.817"  0.814 0.821
Amygdala left 0.812 0.828"  0.823 0.831
Cerebellum right 0.916 0.925"  0.927 0.929
Cerebellum left 0.915 0.925"  0.929 0.930
Brainstem, spans the midline 0.914 0.922  0.919 0.922
Caudate nucleus right 0.824 0.846" 0.834 0.848"
Caudate nucleus left 0.822 0.842"  0.832 0.845"
Thalamus right 0.900 0.907"  0.901 0.908"
Thalamus left 0.886 0.894"  0.890 0.895"
Subthalamic nucleus right 0.723 0.746"  0.729 0.748"
Subthalamic nucleus left 0.715 0.740"  0.720 0.740"
Lentiform Nucleus right 0.865 0.876"  0.871 0.877"
Lentiform Nucleus left 0.859 0.873"  0.866 0.874"
Corpus Callosum 0.711 0.710 0.727 0.727
Lateral Ventricle right 0.815 0.822"  0.826 0.829
Lateral Ventricle left 0.828 0.836"  0.844 0.846
Frontal lobe right 0.929 0.929 0.934 0.934
Frontal lobe left 0.926 0.925 0.930 0.930
Parietal lobe right 0.874 0.877"  0.881 0.881
Parietal lobe left 0.881 0.883 0.887 0.887
Occipital lobe right 0.853 0.856 0.856 0.856
Occipital lobe left 0.862 0.864 0.864 0.865
Anterior temporal lobe, medial part right 0.835 0.837 0.842 0.842
Anterior temporal lobe, medial part left 0.836 0.836 0.833 0.834
Anterior temporal lobe, lateral part right 0.810 0.814 0.821 0.821
Anterior temporal lobe, lateral part left 0.819 0.815 0.811 0.811
Insula right 0.844 0.848"  0.852 0.856"
Insula left 0.855 0.860"  0.864 0.866"
Cingulate gyrus, anterior part right 0.815 0.819 0.825 0.826
Cingulate gyrus, anterior part left 0.764 0.765 0.773 0.774
Cingulate gyrus, posterior part right 0.799 0.802 0.803 0.803
Cingulate gyrus, posterior part left 0.803 0.806 0.807 0.808
Superior temporal gyrus, middle part right 0.829 0.831 0.841 0.841
Superior temporal gyrus, middle part left 0.824 0.825 0.832 0.832
Superior temporal gyrus, posterior part right 0.664 0.667 0.670 0.671
Superior temporal gyrus, posterior part left 0.681 0.681 0.684 0.685
Medial and inferior temporal gyri anterior part right 0.831 0.838"  0.847 0.847
Medial and inferior temporal gyri anterior part left 0.824 0.827 0.836 0.836
Medial and inferior temporal gyri posterior part right 0.782 0.784 0.781 0.781
Medial and inferior temporal gyri posterior part left 0.797 0.799 0.799 0.800
Gyri parahippocampalis et ambiens anterior part right | 0.783 0.796"  0.807 0.810
Gyri parahippocampalis et ambiens anterior part left 0.791 0.801 0.813 0.814
Gyri parahippocampalis et ambiens posterior part right | 0.709 0.714 0.728 0.729
Gyri parahippocampalis et ambiens posterior part left 0.699 0.702 0.717 0.718
Fusiform gyrus anterior part right 0.726 0.734"  0.751 0.752
Fusiform gyrus anterior part left 0.732 0.739 0.749 0.749
Fusiform gyrus posterior part right 0.672 0.679"  0.694 0.695
Fusiform gyrus posterior part left 0.690 0.696 0.705 0.705

Table 4.5: Dice coefficient of leave one out cross-validation with the atlases.
The proposed EM as an ensemble of models is compared with the EM with
GMM modelling alone with both majority vote (MV) and local weighting
(LW) of the training atlases (bold = significantly better at p < 0.05, "=
significantly better after Bonferroni correction).
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Region 2645 2746 2842 29 30 3141 32 33 34 3542 36 3742 3946 42 4442

Hippocampus o EM EM EM o o EM EM o o EM o o EM o
Amygdala EM o EM EM EM o EM o o o EM o o EM o
Cerebellum EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM
Brainstem, spans the midline EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM
Caudate nucleus EM EM o o EM EM EM EM EM 0 o EM o EM o
Thalamus EM EM o o EM EM EM o EM o EM o EM EM o
Subthalamic nucleus o o EM o EM o o o o o o o o o o
Lentiform Nucleus o EM EM EM EM EM EM o EM 0 EM EM o EM EM
Corpus Callosum o EM EM EM EM EM EM o EM o EM EM o EM o
Lateral Ventricle EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM
Frontal lobe EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM
Parietal lobe EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM
Occipital lobe EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM
Insula EM o EM EM EM 0 EM o EM EM EM EM EM EM EM

Medial and inferior temporal gyri, anterior part EM EM EM EM EM EM EM EM EM EM EM EM EM EM o
Medial and inferior temporal gyri posterior part EM EM EM EM EM EM EM EM EM EM EM EM EM EM o

Cingulate gyrus, anterior part o EM o o EM EM EM o EM EM EM EM EM EM EM
Cingulate gyrus, posterior part EM EM EM o EM EM EM o EM EM EM EM EM EM EM
Gyri parahippocampalis et ambiens anterior part EM EM o EM EM EM EM o EM EM EM o o EM EM
Gyri parahippocampalis et ambiens posterior part o EM EM EM EM EM EM EM EM EM EM o o EM EM
Fusiform gyrus anterior part EM EM EM EM EM EM EM EM EM EM EM o EM EM EM
Fusiform gyrus posterior part EM EM o EM EM EM EM EM EM EM EM EM EM EM EM
Superior temporal gyrus, middle part EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM
Superior temporal gyrus, posterior part EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM
Anterior temporal lobe, medial part EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM
Anterior temporal lobe, lateral part EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM

Table 4.6: Qualititative comparison of fusion and EM with local weighting of
the training atlases. The best segmentation result for each label is presented
according to the observer. Labels where the two segmentation techniques
are equally accurate are denoted with 'o’.
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Chapter 5

Label propagation via Patch-Based

Neighbors for neonatal segmentation

5.1 Introduction

Previous studies have demonstrated the increase in segmentation accuracy
with the introduction of more labelled datasets (Heckemann et al., 2006; Al-
jabar et al., 2009). Since manual segmentation of magnetic resonance (MR)
images is an extremely time-consuming and expensive process, the number
of atlases available for a specific application may be limited. However, large
numbers of unlabeled images are often available at a low cost that can be
employed to improve the automatic methods. Recent studies focus on ways
to extract additional information from the unlabeled images to complement
the prior information (e.g. in form of atlases) (Bhatia et al., 2007; Riklin-
Raviv et al., 2010; Wolz et al., 2010; Dittrich et al., 2011; Cardoso et al.,
2012; Jia et al., 2012).

This chapter proposes a group-wise segmentation technique that is based
on the assumption that similar patterns across images should exhibit similar
labelling. This assumption is incorporated as a constraint into the EM algo-
rithm presented in the previous chapter. Implicit information of the image
appearance in the image ensemble which is not provided by the atlases is
derived from the image ensemble, which is utilised to improve the segmen-
tation technique. The proposed technique is tested on a large database of
preterm infants, with 420 MR images, with a broad range of scan ages, from

27 to 45 weeks. The group-wise method outperforms the individual segmen-
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tation of images both in terms of accuracy when compared to the manual
ground truth, and consistency across the database. Due to the very limited
number of labeled atlases that exist for the neonatal period and the vast
variability in appearance with increasing scan age, additional information
to the labelled atlases can be used to improve the automatic segmentation

techniques.

5.2 Data acquisition

420 T2-weighted MR images were acquired for 312 infants born at a median
(range) GA of 30 (2312 - 42) weeks at birth and imaged at 397! (2711 - 44%9)
weeks PMA at scan. None of the infants had evidence of focal abnormalities
on MRI. The median (range) weight at birth of the subjects was 1.23 (0.54
- 4.3) kg and at scan was 2.3 (0.54 - 5.7) kg. The head circumference of
the infants at birth was 27 (20 - 38) cm and at scan was 33 (20.5 - 39.6)
cm. Ear protection was provided for each infant with earplugs molded from
a silicone-based putty (President Putty, Coltene Whaledent, Mahwah, NJ)
and neonatal ear protectors (MiniMuffs, Natus Medical, San Carlos, CA).
All examinations were supervised by a pediatrician experienced in MRI
procedures and pulse oximetry, temperature and electrocardiography data
were monitored throughout the procedure. The T2-weighted MR images

were acquired using the parameters in Table 2.2.

5.3 Methods

Labelling information is propagated through similar patches of different im-
ages. The proposed method in this chapter exploits local image correspon-
dences among a large database of unlabeled images to build a graph for the
information propagation. In contrast to previous group-wise segmentation
techniques (Wolz et al., 2010; Jia et al., 2012; Bhatia et al., 2007; Riklin-
Raviv et al., 2010; Dittrich et al., 2011; Cardoso et al., 2012), the local image
correspondences are computed in a patch-based fashion rather than relying
on the global alignment accuracy of the images. With this localization, the
method is better able to adapt to large variations in images.

The labelling information is then propagated through the graph of images

at each iteration of the EM algorithm. The information propagation is
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integrated into the EM model presented in the previous chapters with the
addition of an inter-image Markov Random Field (MRF) energy, similarly
to Sotiras et al. (2009); Rubinstein et al. (2012).

The following sections (5.3.1-5.3.3) present the group-wise segmentation

technique in three parts:
e The information propagation through the images in the database.
e The graph construction using global and local image correspondences.

e The group-wise implementation of the information propagation.

5.3.1 Information propagation

The label of each voxel 7 is dependent on the label assignment of its neigh-
boring voxels Njnirq (i) in the 3D lattice of the image (here the 6 first-order
neighbors). As shown in Chapter 3, the spatial dependency can be intro-
duced into the model with an (intra-image) MRF energy. The proposed
group-wise model is based on the assumption that similar patches across
images in the database should additionally have a similar labelling. This
constraint is implemented with an inter-image MRF energy that regularizes
the labelling of the center voxel of the patch to be similar to that of the
center voxels Niper(2) of its closest patches, in terms of the patch similarity,
in the graph (see Figure 5.1). The prior probability of each structure k£ with

the new MRF energy can be written as :

7Tik:\Ilintra,ik \Ilinter,ik

P(zi=er) = =% - v
Zj:l Tij ¥intra,jk ¥ inter,jk
Here Wintrqik and Wipser i1 are the intra-image and inter-image MRE en-
ergies respectively :
lI’iTLtT‘(Z ik = efﬂintra U]\JRF(ek‘Nintra(i))
Uintorik = e~ Binter UnrF (€| Ninter (4))
/Bintray ﬂinter are the energy Weightings set to Bintra = Binter = 0.33 in

the experiments. Upsrr is defined similarly to Equation 3.7 based on the
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neighbors N (i) and the a-priori defined interaction matrix Ay;:
Umrr(ex | N(i ZAk] > i
= ZEN(Z)

For the sake of simplicity, the neighbor weighting according to the anisotropic

voxel spacing is omitted from the notation.

Ninter

. target voxel
. intra-image neighbors
. inter-image neighbors

Figure 5.1: Information propagation from the intra-image and inter-image
neighbors

5.3.2 Graph construction

The graph for the propagation of information among corresponding patches

of the images in the database is constructed in two stages :

e Coarse Image Correspondence. The images are initially aligned
non-rigidly to the same space, defined by the mid-template (36 weeks)
of the spatio-temporal template by Serag et al. (2012) (presented in
Section 2.1.2). The nearest neighbors Iny of image I € [I;..Iy,] in
the database are defined as the most similar in terms of the Normal-
ized Mutual Information (NMI) (Studholme et al., 1999). Since the
brain morphology encompasses large changes in terms of shape and
appearance with increasing age, the neighbors of the target image
were further constrained to be similar in terms of age by limiting the

difference in age of the neighbours to a maximum of two weeks.

e Local Image Correspondence. Local image correspondences are
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computed at the voxel level (after the initial image alignment). For
each image Iny the patches for which the center is in the 5x5x5
neighborhood of the center voxel of the target patch are added to
the graph. The edge weight of two connected patches in the graph is
defined as in Coupé et al. (2011); Rousseau et al. (2011):

o 1P =Py G
WI,InN (i,5)=e h (5.1)

where || Pr(i) — Pryy (7) Hg is the sum of squared intensity differences
(SSD) between the patch Pr(i) surrounding voxel ¢ in the target image
and the patch Py, (j) centered at voxel j in image Inn. The locally
varying decay parameter h is estimated as proposed in Coupé et al.
(2011). The patch size to 5x5x5 in the experiments.

The most similar N;,ze, patches at each voxel were used for the prop-
agation of label information among the images in the database. In order
to enforce wide propagation, each of the Nj,, patches used for a specific
voxel was constrained to originate from a different Iy image. In the ex-
periments, the 20 closest Iy images to image I were selected for the label
propagation, and consequently the 20 closest Njnter patches were selected

for each voxel of I (one patch per selected image Iny).

5.3.3 Group-wise implementation

In most multi-atlas segmentation techniques the labelling is estimated inde-
pendently for each image. Alternative methods interleave the segmentation
of the images and the group-wise correction between the images (Bhatia
et al., 2007; Wolz et al., 2010; Riklin-Raviv et al., 2010; Jia et al., 2012).
Here, the message passing among the images of the database is implemented
directly into the segmentation algorithm as in Rubinstein et al. (2012). The
group-wise segmentation alternates between the estimation of the intensity
model for all the images (in the M-step) and the message passing (in the
E-step), where the labelling information (EM posteriors) obtained at the
current iteration is propagated to the neighboring patches in the graph.
The segmentation of the image ensemble is assumed to have converged once

convergence is met for the segmentation of all of the images.
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5.3.4 Summary

The proposed EM algorithm for the group-wise structural segmentation is

outlined in Algorithm 3.

Algorithm 3 The proposed EM algorithm for group-wise structural seg-
mentation.

Construct the graph for the information propagation.
Repeat

For each image in the collection:
Expectation step
Tik e BintraUMrF (x| Nintra (1)) ¢=BinterUni RF (€k|Ninter (7)) Gy | NH(k)»O'H(k))
Pik = Zngl ey e BintraUMmRF (€j|Nintra(1)) ¢—BinterUnrF (€5 Ninter (1)) Gy | .LLH(j)ng(j))

te [CGM,WM]:py = Zkest Dik

Correction step
pit = (1 — 7)mgp, + Tipik

Detect partial volume voxels ¢ and ¢;,r € [CGM,WM,CSF, ECS]

with connected component labelling and update:
icj

Tic. = Tie: + (1 — A Tir
ic; ic; ( )Zn Tie. ir
Tir = AT
Tik
te [CGM, WM,k € Sy:mijp = =———Tit
EjESt ﬂ-ZJ

Maximization step
Calculate parameters ®y,:

) = Z%} Pif(k)Yi
ZNizl PiH (k) ,
By = din piH](vk’)(yi — LEH)
21;:1 PiH(K)

Until convergence

5.4 Results

The proposed method was evaluated on the ALBERT's in terms of segmen-
tation accuracy and in all 420 images in the database for the segmentation
consistency. Individual segmentation of the images (without the label prop-
agation) is compared with the group-wise method. This is equivalent to
removing the influence of the inter-image MRF term, and reduces to the

segmentation of individual images separately as presented in the previous

88



chapter, i.e. without feedback from the rest of the images in the database.
Example segmentations with the group-wise segmentation technique are pre-

sented in Figure 5.2.

Figure 5.2: Example segmentations with the proposed group-wise segmen-
tation technique at different ages at scan (29, 33, 39 and 44 weeks).

5.4.1 Segmentation accuracy

To assess the segmentation accuracy, the manually labelled atlases were
segmented with both methods in a leave one out fashion. The accuracy
was measured with the average Dice coefficient of the 50 structures. The
proposed group-wise segmentation resulted in an average Dice coefficient
of 0.815 which was significantly (p < 107!2) higher than the individual
segmentation of images (0.807). The results for all structures are presented
in Table 5.1. Note that differences in the results of individual segmentation
in this chapter to the results of the previous chapter are due to the use of
the T2 instead of the T1 space in the segmentation of the ALBERTSs. The
segmentation with the label propagation resulted in a significantly (p <
0.05) better overlap in 36 out of 50 structures (better for 24 structures after
Bonferroni correction).

A second experiment was performed to demonstrate the advantage of
utilising unlabelled data when the available atlases are limited. The 10
oldest atlases were defined as the training set and used to segment the 10
youngest atlases (test set). The resulting Dice coefficient with the group-
wise segmentation (0.805) outperformed significantly (p < 10~7) the indi-
vidual segmentation (0.800). By using all 19 remaining atlases, the accuracy
of the individual segmentation increased to 0.803 in the test set. The accu-

racy was worse than the group-wise method that used only the 10 atlases
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as the training data. The proposed method outperforms the individual seg-
mentation of images, as it utilises information from the unlabelled images
in the dataset.

5.4.2 Segmentation consistency

To compare the segmentation consistency, the labels of each of the 420 sub-
jects, obtained with the two segmentation techniques, were propagated to
the 36 weeks’ template of the spatio-temporal atlas (Serag et al., 2012). The
mean overall overlap of the labels of an individual subject to all the other
subjects in the database is used as a measure of the segmentation consis-
tency. The results of the two methods across different scan ages are pre-
sented in Figures 5.3, 5.4. The segmentation consistency across the database
increases significantly (p < 107!%3) from an average Dice of 0.823 to 0.840
with the label propagation. The increase in consistency varies from 0.023
in the early preterm ages (scan age < 32 weeks) to 0.013 in the late term-
equivalent period (scan age > 40 weeks).

It should be noted that the consistency of both methods decreases as the
subjects’ ages deviate from the 36-44 weeks range. This is expected as this

is the range of ages for which the 20 manually labelled atlases are available.
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Figure 5.3: Segmentation consistency in different ages with and without the
introduction of the inter-image MRF term presented with boxplots.
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Figure 5.4: Segmentation consistency in different ages with and without the
introduction of the inter-image MRF term (a). The increase in consistency
with the proposed group-wise technique is depicted in (b).

5.4.3 Computational requirements

The group-wise segmentation has increased computational requirements
over the individual segmentation of images. Each image of the database
needs to be embedded in the graph which takes approximately 100 min-
utes. Computation of the inter-MRF term for the different structures takes
around one minute (run in parallel) at each E-step. This increases the overall
segmentation time from less than 30 minutes for the individual segmenta-
tion to around 2 hours for the group-wise segmentation. The execution time
is reported here for Njpter = 20. Increase in the number of Njj,er neighbors
will result in (linear) increase in the computation time. The inter-MRF
term further requires additional memory over the individual segmentation

and needs to store in memory one image per structure.

5.5 Discussion and conclusions

This chapter presented a method that improves the segmentation by in-

corporating additional information from unlabeled images available at a

91



Region EM EM inter-image MRF
Hippocampus right 0.770 0.780
Hippocampus left 0.787 0.794
Amygdala right 0.833 0.831
Amygdala left 0.822 0.825
Cerebellum right 0.903 0.911
Cerebellum left 0.906 0.912"
Brainstem, spans the midline 0.899 0.901
Caudate nucleus right 0.844 0.845
Caudate nucleus left 0.844 0.844
Thalamus right 0.893 0.893
Thalamus left 0.905 0.905
Subthalamic nucleus right 0.741  0.735
Subthalamic nucleus left 0.744 0.748
Lentiform Nucleus right 0.876 0.879
Lentiform Nucleus left 0.878 0.881
Corpus Callosum 0.697 0.698
Lateral Ventricle right 0.834 0.832
Lateral Ventricle left 0.821 0.819
Frontal lobe right 0.907 0.920"
Frontal lobe left 0.912 0.925"
Parietal lobe right 0.861 0.876"
Parietal lobe left 0.857 0.871"
Occipital lobe right 0.846 0.856"
Occipital lobe left 0.840 0.852"
Anterior temporal lobe, medial part right 0.825 0.829
Anterior temporal lobe, medial part left 0.817 0.827
Anterior temporal lobe, lateral part right 0.778 0.788
Anterior temporal lobe, lateral part left 0.791 0.804
Insula right 0.854 0.869"
Insula left 0.847 0.861"
Cingulate gyrus, anterior part right 0.755 0.767
Cingulate gyrus, anterior part left 0.805 0.810
Cingulate gyrus, posterior part right 0.793 0.807"
Cingulate gyrus, posterior part left 0.784 0.798"
Superior temporal gyrus, middle part right 0.816 0.829"
Superior temporal gyrus, middle part left 0.825 0.834
Superior temporal gyrus, posterior part right 0.675 0.691"
Superior temporal gyrus, posterior part left 0.662 0.665
Medial and inferior temporal gyri anterior part right 0.824 0.833"
Medial and inferior temporal gyri anterior part left 0.835 0.842"
Medial and inferior temporal gyri posterior part right 0.789  0.798"
Medial and inferior temporal gyri posterior part left 0.775 0.785"
Gyri parahippocampalis et ambiens anterior part right | 0.801 0.816"
Gyri parahippocampalis et ambiens anterior part left 0.788 0.801"
Gyri parahippocampalis et ambiens posterior part right | 0.705 0.725"
Gyri parahippocampalis et ambiens posterior part left 0.715 0.732"
Fusiform gyrus anterior part right 0.743  0.759"
Fusiform gyrus anterior part left 0.738 0.749"
Fusiform gyrus posterior part right 0.699 0.710
Fusiform gyrus posterior part left 0.683 0.696"

Table 5.1: Dice coefficient of leave one out cross-validation of the ALBERT's
with and without the introduction of the inter-image MRF term (bold =
significantly better at p < 0.05, "= significantly better after Bonferroni
correction).
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low cost to complement the labelling information provided by expert hu-
man raters. Local correspondences are computed among the images in a
patch-based fashion which are then used to build a graph that allows the
propagation of information across images. The labelling information at each
voxel is propagated to similar patches in the graph across different images
with the introduction of an inter-image MRF energy.

The proposed group-wise segmentation technique was evaluated with at-
las cross-validation and significantly improves the segmentation accuracy
over the individual segmenatation of the atlases. This improvement per-
sists even when only half of the atlases are used as training data. The
group-wise segmentation technique was further tested on a large neonatal
database and increases the segmentation consistency throughout the differ-
ent images. However, the segmentation of the images individually requires

less memory and execution time.
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Chapter 6

Accurate delineation of the cortex

in neonates

6.1 Introduction

Accurate delineation of the cortex in the neonatal brain is challenging due
to partial volume effects and limits in the MRI resolution. A partial volume
correction technique for the CSF-WM PV effect was presented in Chapters
3 and 4. Partial volume effects are also evident at the CGM-WM boundary.
The interior cortical boundary is difficult to delineate as the CGM-WM PV
can lead to overestimation of the segmented CGM. Furthermore, accurate
delineation of the exterior cortical boundary is challenging. The complexity
of the cortical surface in conjuction with limits in the MRI resolution ren-
der the sulci delineation in neonatal MRI problematic. Especially in areas
where cortical gyri ”touch” each other there is often very little evidence, in
terms of intensity, of the CSF inside the sulcus (see Figure 6.1). Surface
measurements are affected from undetected sulci, e.g. such as increased
cortical thickness estimates. Only a few segmentation approaches focus
on delineating the cortical ribbon in terms of morphology in the neonatal
population (Xue et al., 2007; Wang et al., 2011, 2012b, 2013). Xue et al.
(2007) employ an implicit surface evolution technique to reconstruct the
cortical surface in neonates. Wang et al. (2011) define a coupling function
of the inner and outer cortical surface that maintains the distance, in essence
thickness, within a predefined range. Wang et al. (2012b, 2013) extend this

approach with the introduction of a longitudinal cortical constraint term to
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drive a consistent cortical segmentation throughout the age of the subject.
However, to the best of our knowledge, there are not any approaches that
attempt to specifically detect and delineate the cortical sulci in the neonatal
population.

This chapter presents:

e A CGM-WM PV correction that reduces the CGM overestimation,
and improves the interior cortical boundary. The CGM-WM PV cor-

rection is described in Section 6.2.1.

e A novel approach for cortical sulci correction in voxel-based segmenta-
tion methods, that improves the exterior cortical boundary. The sulci
correction is based on the assumption that the thickness of the corti-
cal ribbon is locally consistent. The thickness estimation is outlined
in Section 6.2.2 and the sulci detection and enhancement in Section
6.2.3.

Figure 6.1: Axial slice of a T2-weighted MRI (A) and magnified region
of the cortex (B). Due to PV effects, the CSF inside the cortical sulci is
often hard to discriminate, and consequently delineate with intensity-based
segmentation techniques.

6.2 Methods

6.2.1 CGM-WM Partial Volume correction

Due to the partial volume between WM and CGM in the interface between
the two tissues, automatic techniques tend to overestimate the CGM vol-
ume. Figure 6.2 depicts this effect. The voxels between WM and CGM have
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an intermediate intensity and it is difficult to attribute them to either tis-
sue. A Gaussian Mixture Model (GMM) that assumes one class for WM and
one class for CGM tends to overestimate the CGM extent. To account for
this effect in Makropoulos et al. (2012b) we implemented a partial volume
correction for the CGM-WM boundary.

An additional class is added to the GMM as a partial volume class between
CGM and WM. The PV class is approximated with a mixed class similar to
Cardoso et al. (2013, 2011). The Gaussian parameters fioea/was Toam/wim

of the mixed class distribution are initialised as:

Heom/wMm = FCGM/WM Peoam + (1 - FCGM/WM),U/WM

2 _ 2 2 2 2
(goamwm)” = Laanywu Toam T (1 = Loamwm) “owu

where I'cgm/w is the average of the fractional content (FC) of the voxels.

The FC of a voxel ¢, I'cam/wu,i, is defined as:

FCGM/WM,i = (MCGM - yi)/(,UCGM - MWM)

where y; is the voxel intensity. The average FC value, I'cgu/wu, is calculated
over the voxels with T'camywwm,i € [0, 1]. The spatial prior m; cam/wu of the
mixed class is defined as the normalised geometric mean of the CGM and

WM posteriors (p; cam, Piwwm):

vV Pi,cam Piwwm

0.5

Once the Expectation-Maximization scheme has converged, the PV class

Ti,cGM/WM —

is merged with the WM class to reduce the CGM overestimation and en-

hance the WM tissue estimate.

6.2.2 Cortical thickness estimation using Laplace’s equation

Voxelwise cortical thickness is estimated as described in Jones et al. (2000).
In this approach, a potential field from the CGM-WM interface to the CGM-

CSF interface is determined by solving the Laplace’s equation:

8% 6% 6%
2

where ¥ = 11 in voxels labelled as CSF and ¥ = 19 in the WM voxels.
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Figure 6.2: Example segmentations of a neonatal MRI acquired at 44 weeks
(A). B presents the original segmentation with the standard Gaussian Mix-
ture Model. C is obtained with the CGM-WM Partial Volume correction,
reducing the CGM oversegmentation. D illustrates the final segmentation
after the sulci delineation.

The potential field defines nonintersecting intermediate lines, or isopoten-
tials, between the inner and outer cortical surface, essentially dividing the
cortical ribbon into layers. Streamlines are calculated for the CGM voxels
starting from each voxel on the cortical ribbon and following the direction

perpendicular to the isopotentials, E = —V (see Figure 6.3). The distance
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of a voxel ¢ to WM, Dy s, is defined as the length of the streamline that
starts at the voxel location and ends at the CGM-WM interface. Accord-
ingly, the distance of a voxel to CSF, Dcgsr, is defined as the length of the
streamline that starts at the voxel location and ends at the outer cortical
boundary. Voxelwise thickness is then estimated at each voxel as the sum
of the voxel’s distance to WM and the voxel’s distance to CSF. Example

streamlines are displayed in Figure 6.4.

CSF

Figure 6.3: Schematic of the cortical thickness estimation using Laplace’s
equation (Jones et al., 2000) in 2-D. Isopotentials (dashed lines) between
the inner and outer cortical surface (normal lines) are determined by solving
the Laplace’s equation. The cortical thickness at a CGM voxel can then be
estimated from the streamline (red lines) that starts from the voxel and
follows the direction perpendicular to the isopotentials. The points along
the same streamline share the same thickness.

Due to the limited resolution, the cortical ribbon in the two hemispheres
may be connected in different parts of the midsection of the brain (an exam-
ple can be seen in Fig.6.5.A). In order to avoid an artificial increase in the
thickness estimation as a result of streamlines crossing the two hemispheres,
the voxelwise cortical thickness is estimated separately for each hemisphere.
The median cortical thickness of a subject can finally be estimated as the
median value of thickness across the central line of the cortex, in essence
the intermediate isopotential with ¢ = (¢¥1 + 12)/2.
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Figure 6.4: Example streamlines starting from the CGM-WM surface and
ending at the CGM-CSF boundary. The color of the streamlines represents
the length of the streamline (estimated cortical thickness). Notice the differ-
ence prior to the corrections (top image) and after the corrections proposed
in this chapter (bottom image).

6.2.3 Sulci detection and enhancement

Delineation of the sulci in the neonatal cortex is difficult due to the lim-
ited resolution that leads to partial volume effects. This section presents
a novel approach for sulci enhancement for the neonatal images, based on
the assumption that cortical sulci ought to have similar cortical thickness
to neigboring parts of the cortical ribbon.

Sulci detection is performed in a way similar to Han et al. (2004). The
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CGM-WM interface (interior cortical surface) is iteratively propagated with
the fast marching method with speed defined from the CSF posterior ob-
tained with EM. The distance D to the CGM-WM interface is defined
by solving the following Eikonal equation:

F@)|[[VDrym(i)| =1

where Dppsar(i) = 0 for voxels in the CGM-WM interface and F'(i) =
1 —0.9 p;,csF according to the CSF posterior pcgr of the EM algorithm.
The gradient VD gy can subsequently be used to identify ”shock” points,

points where the spatial derivative is not well defined:
S ={il FO)IIVDrum ()|l <=T}

Here T is set to 0.8 as in Han et al. (2004). At these points two sulcal
banks will merge in the propagated surface and VDppsps will be small. A
second type of ”shock” points is further added here for CGM voxels from
different hemispheres that are neighboring each other in the midsection of
the brain. As described in the previous section, due to the low CNR, gyri
of the two hemispheres appear to be connected in the midsection.

Having detected these points, Han et al. (2004) perform morphological
thinning to create a thin layer, one voxel thick, of CSF that splits the
two sulcal banks apart. However, defining the CSF inside the sulcus to be
one voxel wide might induce an artificial cortical thickness to the points
belonging to the sulcal banks. As can be seen in Figure 6.5.B, since the
cortical thickness is estimated from the CGM-WM interface to the CGM-
CSF interface, the width of the layer of the ”shock” points will have a direct
effect to the cortical thickness measured in the sulcal regions.

In this work the ”shock” voxels are attributed to CSF only if their dis-
tance Dy ar; to the CGM-WM interface is equal or larger than the cortical
thickness of neighboring parts of the cortical ribbon. Dy, is measured
voxelwise as described in the previous section. A distance Dyjjoped,; is then
measured for each ”shock” voxel as the mean, locally weighted, cortical
thickness measured on other points of the cortical ribbon. Dyjjouped,; is only
averaged over points that their streamlines do not cross a ”shock” point, in
essence points that are not inside a cortical sulcus. Connected components

of ”shock” points, points that belong to the same sulcus, are identified with
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"shock" component

Figure 6.5: A: T2 with the cortical segmentation overlaid. The arrows show
parts of the cortical ribbon connected across the two hemispheres in the
midsection of the brain. B: Example "shock” points (in pink) detected for
the cortical segmentation (in red). ”Shock” voxels are labelled as CSF if
their distance Dws; to the WM is equal or larger to Dgyjowed,component-
D giiowed,component 1s estimated from neighboring parts of the cortical ribbon
that their streamlines do not cross "shock” points (yellow lines).

connected component labelling. Points that belong to the same sulcus are
then defined to have the same Dgjiowed,component, Which is the mean Dyjoped,i
of the ”shock” points in the component. Finally, ”shock” points are labelled
as CSF only if their distance to the CGM-WM interface Dyyjz; is equal or
larger than Dgjiowed,component- The sulcal points are thus prevented from
having an incosistent thickness to the rest of the cortex, since their corti-
cal thickness is approximated based on the thickness of close parts in the

cortical ribbon.

y .
y y
A B c

Figure 6.6: Sulci detection and enhancement. The cortical segmentation of
the MRI in A is presented in B and E before and after the sulci delineation.
”Shock” voxels detected are illustrated in C. The voxels that are finally
labelled as CSF (sulci enhancement) are presented in D.
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6.3 Results

The method was applied in 420 neonatal T2-weighted scans in a large range
of scan ages (271! - 4476 weeks) and ages at birth (2372 - 42 weeks). The
data acquisition details were already presented in Chapter 5. Volumetric
and surface analysis of the data is described in detail in the next chapter.
The CGM oversegmentation caused by a Gaussian Mixture Model that as-
sumes one class for WM and one class for CGM can be observed in Fig.
6.7. Without the introduction of the CGM-WM partial volume correction,
the segmentation tends to attribute a larger proportion of the brain to the

CGM.
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Figure 6.7: Relative WM and CGM volumes (left plot) and cortical thickness
(right plot) with increasing age at scan. Dotted lines present the results
obtained by a Gaussian Mixture Model that assumes one class for WM and
one class for CGM. Solid lines present the results including the proposed
CGM-WM partial volume correction and sulci correction .

The tissue volumes obtained after the proposed corrections are similar to
volumes in the literature evaluated using manual segmentation approaches.
Anbeek et al. (2008) provide average tissue volumes (mL) of 13 subjects
around term who were born over a wide age range of gestations (gestational
age 25.9 - 42.9 weeks, corrected age at test -3.6 - 5.1 weeks): CSF 51.4,
CGM 101.2, WM 146.4, BGT 20, Brain 319. Corresponding CGM and
WM volumes are obtained here over the scan ages of 36-40 weeks (see Table
7.13 of the next chapter). The CGM in Anbeek et al. (2008) represents
about 32% of the brain volume and the WM around 46% of the brain
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volume. The relative volumes obtained here are 34% for the CGM and
48% for the WM around term (see Table 6.1). It should be noted that the
relative volumes prior to correction for the CGM-WM partial volume and
sulci correction were 43% and 40% for the CGM and WM respectively. This
overestimation of CGM obtained prior to the corrections is consistent with
previous automatic segmentation studies (see Table 6.2). Similar volumes
to manual results are further obtained for the early preterm period after
the proposed corrections (see Table 6.1). Moeskops et al. (2013) present
a relative CGM volume of 18% and relative WM volume of 70% for 10
neonates scanned at 30.8 4+ 0.7 weeks age at scan. The relative volumes in
our study are 25% for the CGM and 57% for the WM around 30 weeks age
at scan (prior to the corrections the relative CGM and WM were 31% and
52% respectively).

early preterm period term period
manual CGM:18%, WM:70% CGM:32%, WM:46%
proposed, prior to corrections | CGM:31%, WM:52% CGM:43%, WM:40%
proposed CGM:25%, WM:57% CGM:34%, WM:48%

Table 6.1: Relative CGM and WM volumes in the early preterm and term
period reported using manual segmentation (Moeskops et al. (2013) for the
early preterm and Anbeek et al. (2008) for the term period) and the pro-
posed technique with and without correction for the CGM-WM partial vol-
ume and sulci correction.

preterm infants term controls
Inder et al. (2005) 178 £+ 41 227 + 26
Thompson et al. (2007) 159 + 41 173 £+ 32
Cardoso et al. (2013) centiles: 120-200
proposed, prior to corrections | 164 £ 42, centiles: 139-184 176 + 41, centiles: 144-193
proposed 126 £ 31, centiles: 108-140 130 = 30, centiles: 107-144

Table 6.2: CGM volumes (mL) around term-equivalent age reported with
different automatic segmentation techniques (mean + standard deviation,
centiles: 25%-75%).

Median thickness across the subjects in the cohort is presented in Fig.6.7.
The cortical thickness estimated using the segmentations without the sulci
correction produces an increasing thickness with age at scan. The thickness
of the uncorrected segmentations correlates significantly with the age at

scan (p < 1073%). However, with the introduction of the sulci correction,
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the cortical thickness measured over the subjects remains unaffected by the
age at scan (p = 0.07) of the neonate. The cortical thickness estimated
from the segmentations has a median value of 1.59 4+ 0.09 mm across the
database (the 25th and 75th percentiles are 1.54 and 1.65 mm respectively).
Cortical thickness in the neonatal population has been previously presented
in Xue et al. (2007); Moeskops et al. (2013) for limited datasets. Moeskops
et al. (2013) obtain a median cortical thickness of around 1-1.2 mm for
the early preterm brains and Xue et al. (2007) around 1.2-1.4 mm for the
neonatal brain. The cortical thickness estimated here remains constant in
the neonatal brain, similarly to Xue et al. (2007), with a value around 1.6
mm, from the early preterm period to term-equivalent age. Differences in
thickness values can be attributed to the different in-plane resolution of the
MRI (Moeskops et al. (2013) have a highly anisotropic resolution, 2 x 0.34
x 0.34mm, while the analysed data have a resolution of 0.86 x 0.86 x 1lmm),

and different thickness measurement methods (Xue et al. (2007)).

6.4 Discussion and conclusions

Two novel corrections were presented for the detailed delineation of the
cortical ribbon in the neonatal brain. The first correction estimates a partial
volume class between the CGM and WM which is consequently relabelled
as WM in order to limit the over-inclusion of voxels in the CGM tissue. The
second correction detects and delineates the cortical sulci that are hard to
segment with intensity-based segmentation techniques. The cortical sulci
are detected from the expansion of the interior cortical surface as areas of
the surface that collapse to each other. The thickness of the detected sulcal
areas is then approximated from neighboring parts of the cortical ribbon
where the thickness can be accurately measured. Derived volumetric and
thickness measures after the application of the method presented in this
chapter are similar to measurements obtained from manually segmented
data.
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Chapter 7

Applications

7.1 Introduction

Volumetric, surface and DTI measurements of the brain provide important
information on normal development and have the potential to predict long-
term neurodevelopmental performance (Peterson et al., 2003; Inder et al.,
2005; Anjari et al., 2007; Counsell et al., 2008; Thompson et al., 2008;
Rathbone et al., 2011; Boardman et al., 2010).

Quantitative measurements of the neonatal brain are not yet well char-
acterised. Brain tissue volumes and volumes of large subcortical structures
have been reported in the literature (Hiippi et al., 1998b; Murphy et al.,
2001; Peterson et al., 2003; Inder et al., 2005; Prastawa et al., 2005; Mewes
et al., 2006; Nishida et al., 2006; Zacharia et al., 2006; Gilmore et al., 2007;
Song et al., 2007; Thompson et al., 2007; Xue et al., 2007; Anbeek et al.,
2008; Dubois et al., 2008b,a; Pienaar et al., 2008; Rodriguez-Carranza et al.,
2008; Yu et al., 2010; Cardoso et al., 2013; Wang et al., 2012b; Moeskops
et al., 2013). However, most of the studies present results on limited datasets
and narrow range of ages at scan (see Table 7.1). Furthermore, tissue vol-
umes are often reported with inclusion of the basal ganglia and thalami,
cerebellum or brainstem. Volumetric studies of more detailed brain struc-
tures are lacking. Cortical surface measurements in the neonatal popula-
tion have been presented in a few studies (Kapellou et al., 2006b; Xue et al.,
2007; Dubois et al., 2008b,a; Pienaar et al., 2008; Rodriguez-Carranza et al.,
2008; Rathbone et al., 2011; Moeskops et al., 2013). Cortical surface area
has been reported in Kapellou et al. (2006b); Xue et al. (2007); Dubois
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et al. (2008b,a); Pienaar et al. (2008); Rodriguez-Carranza et al. (2008);
Rathbone et al. (2011) and curvature measurements in Xue et al. (2007);
Pienaar et al. (2008); Rodriguez-Carranza et al. (2008); Moeskops et al.
(2013).

Preterm birth is associated with widespread alterations in the neonatal
brain. Previous studies have demonstrated reduction in brain volume of
preterm infants (Peterson et al., 2003; Inder et al., 2005; Thompson et al.,
2007; Ball et al., 2012) and decreased cortical surface area (Ajayi-Obe et al.,
2000; Kapellou et al., 2006b). Prematurity has been further associated with
diffuse WM micro-structural disturbances, reductions in the WM fractional
anisotropy and increases in diffusivity (Hiippi et al., 1998a; Miller et al.,
2002; Partridge et al., 2004; Counsell et al., 2006; Anjari et al., 2007; Cheong
et al., 2009; Ball et al., 2010, 2012). Similar alterations of DTI measures
have been described in animal models of dysmyelination and white matter
injury (Song et al., 2002; Wang et al., 2009).

The previous chapters presented an accurate segmentation technique for

the regional parcellation of the neonatal brain. This chapter aims to:

e analyse regional brain growth of the developing preterm brain. The
segmentation method is applied to an extensive database of 380 T2
images of prematurely born infants at a wide range of ages at scan,
from 27 to 45 weeks, and 82 regions of the brain are delineated: 18
subcortical regions, 32 WM and 32 CGM structures. Regional volu-
metric and cortical surface measurements are derived for the cohort
of subjects. Centiles and correlations of the measurements with in-

creasing age at scan are reported.

e investigate the effect of prematurity on volumes and morphology of the
cortical ribbon. A group of healthy term-born infants are compared
with age-matched preterm infants to evaluate alterations associated
with preterm birth. Increasing prematurity is further explored based

on all the preterm subjects.

e characterise alterations of the underlying tissue micro-structure as a
result of brain maturation and prematurity. DTI data are aligned
with the corresponding T2 images of the infants. The segmentation
labels are transformed to the DTI space and are used to obtain re-
gional quantitative measures of DTI (FA,ADC,AD,RD). Associations
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of these measures with age at birth and age at scan of the subjects

are presented.

e construct a spatio-temporal structural atlas with 82 structures of the
neonatal brain. Segmentations of 420 neonatal images are propagated
to the spatio-temporal template of Serag et al. (2012) to define the

average labelling from 28 to 44 weeks age at scan

The data acquisition is decribed in Section 7.2. The data analysis and the
derived measurements of the brain are presented in Sections 7.3.1 and 7.3.2
respectively. Section 7.4 presents the results of the analysis with respect
to brain development and prematurity. Finally, Section 7.5 outlines the

construction of the spatio-temporal structural atlas of the neonatal brain.
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7.2 Data acquisition

MRI data of 312 infants were used for the analysis in this chapter. The
same cohort of subjects was described in Chapter 5. Inclusion criterion for
the infants in this cohort was the absence of focal abnormalities on MRI.

The following MRI data were acquired for the subjects:

e 380 T2-weighted MR images of preterm subjects and 40 of term con-
trols (acquisition parameters are described in Table 2.2). The cohort

characteristics for the T2 scans are presented in Table 7.2.

e 210 DTI data of preterm infants and 21 of term controls. Single shot
echo planar DTT was acquired in 32 non-collinear directions with the
following parameters: TR 8000ms, TE 49ms, slice thickness 2mm, field
of view 224mm, voxel size 2x2x2mm?, b value 750 s/mm?, SENSE

factor 2. The cohort characteristics for the DTI data are presented in

Table 7.3.
T2 preterm infants term controls
number of images 380 40
age at birth (weeks) 293 (2372 -36) 3972 (367! - 42)
age at scan (weeks) 376 (27HL - 4476) 4076 (37 - 4474)
weight at birth (kg) 117 (0.54 - 3.71)  3.42 (1 93 - 4.34)
weight at scan (kg) 2.19 (0.64 - 5.5) 3.48 (1.93 - 4.71)
head circumference at birth (cm) 27 (20 - 38.5) 34.3 (30.2 - 38.7)
head circumference at scan (cm) 31.6 (22 - 39.6) 35.4 (30.2 - 38)

Table 7.2: Cohort characteristics for the T2 images. Median (range) age,
weight and head circumference at the time of birth and scan are presented.

DTI preterm infants term controls
number of images 210 21
age at birth (weeks) 2915 (2312 - 3574) 39+ (361! - 42)
age at scan (weeks) 3972 (26 - 45T1)  40F! (37 - 4474)
weight at birth (kg) 1.17 (0.56 - 3.71)  3.45 (1.93 - 4.34)
weight at scan (kg) 2.2 (0.68 - 5.67)  3.48 (1.93 - 4.71)
head circumference at birth (cm) 27 (20.5 - 37.5) 34.1 (30.2 - 38.7)
head circumference at scan (cm) | 32.25 (20.5 - 39.3)  35.8 (30.2 - 38)

Table 7.3: Cohort characteristics for the DTI data. Median (range) age,
weight and head circumference at the time of birth and scan are presented.
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7.3 Methods

7.3.1 Data analysis

Image segmentation

The T2 images were segmented with the pipeline presented in Chapter 4
that was extensively validated for different ages of the neonatal brain. The
segmentation incorporated the CGM-WM PV correction and cortical sulci
detection and enhancement outlined in Chapter 6. Example segmentations
of the proposed segmentation technique in an early and term-equivalent

brain can be seen in Figures 7.1, 7.2 respectively.

Figure 7.1: Example segmentation of a neonatal MRI acquired at 28 weeks
age at scan with the 82 labels overlaid (second row: WM labels, third row:
CGM labels, fourth row: subcortical GM labels and ventricles).
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Figure 7.2: Example segmentation of a neonatal MRI acquired at 44 weeks
age at scan with the 82 labels overlaid (second row: WM labels, third row:
CGM labels, fourth row: subcortical GM labels and ventricles).
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Cortical surface reconstruction

Cortical surface meshes were obtained by triangulation of the CGM-WM
isosurface with the marching cubes algorithm (Lorensen and Cline, 1987).
The surfaces were slightly smoothed with Laplacian smoothing (Herrmann,
1976) to improve the mesh quality. Laplacian smoothing re-estimates the
position of each mesh vertex according to its neighboring vertices and dis-
tributes the mesh vertices more evenly. The surface region that belongs to
the boundary between WM and deep GM was excluded from the cortical
surface (see Figure 7.3). Example cortical surfaces are presented in Figure
74.

Figure 7.3: Example cortical surface of a neonate at 44 weeks age at scan.
The red part of the surface that corresponds to the WM - deep GM boundary
is excluded from the cortical surface measurements.

c ¥y L

Figure 7.4: Example cortical surfaces for neonates at 28, 36 and 44 weeks
age at scan with the labels overlaid.
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DTI analysis

Fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial dif-
fusivity (AD), and radial diffusivity (RD) maps were calculated from the
DTTI datasets with the FSL software (http://fsl.fmrib.ox.ac.uk). The DTI
space was aligned to the T2 native space with registration of the RD maps
to the T2 images. Echo planar DTT is often degraded from geometric distor-
tions caused by field imperfections due to eddy currents and static magnetic
field inhomogeneities (Jezzard and Balaban, 1995; Jezzard et al., 1998). To
deal with geometric distortions, the 2 spaces were registered non-rigidly, in
order to align the distorted brain regions of the DTI (an example is pre-
sented in Figure 7.5). The estimated transformation was used to propagate

the segmentation labels from the T2 space to the DTI space.

Figure 7.5: Geometric distortions exhibited on the ADC map of a neonatal
brain acquired at 29 weeks age at scan. The ADC map that is rigidly
registered (B) to the T2 image (A) presents an example of these distortions
(evident in the anterior part of the brain). Non-rigid registration of the
ADC map (C) improves the alignment to the T2 space.

7.3.2 Measurements of the brain
Volumetric measurements

Absolute and relative volumes of the tissues and 82 structures of the brain
were measured directly from the segmentations. Relative volume was de-
termined as the ratio of the structure volume to the total brain volume

(excluding the CSF and ventricles).
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Cortical surface measurements

Surface area and curvature measures of the cortex were computed from the
cortical surface meshes. A number of area-independent curvature measures
from Rodriguez-Carranza et al. (2008) were adopted with T-normalization
that are not sensitive to the surface area of the brain. This allows compari-
son of brains with different sizes, as is the case with the developing neonatal
brain. The curvature measures included in this study are: global curved-
ness, mean curvature L? norm and Gaussian curvature L? norm. Their
formulation is presented in Table 7.4.

Regional cortical surface measurements were measured based on the seg-
mented CGM structures. The segmentations were propagated to the surface
meshes. Each vertex of the mesh was labelled with the closest CGM struc-

ture in the 3-dimensional space.

Global curvedness GCr=%% ,c
mean curvature L? norm MLNp = T; S 4 H?

Gaussian curvature L? norm  GLNp =T/ %>, K?

Table 7.4: Area-independent curvature measures.
Notation: H=mean curvature, K=Gaussian curvature, c=curvedness,
A=surface area, T=3*volume/A.

DTI measurements

The T2 segmentations were transformed in the DTI space. This allowed
measurement of FA, ADC, AD, and RD values regionally. Since the res-
olution of the DTI is limited, approximately half of the T2 images, small
structures were merged into larger regions to obtain more reliable regional
estimates. Different structures across the two hemispheres were further
merged into a single structure. The insula were excluded from the DTI
analysis as the CGM part in early brains is constituted of a small number
of voxels (in the diffusion space). DTI measurements were obtained on the

structures presented in Table 7.5.
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DTT structures

WM/CGM structures

Frontal lobe
Parietal lobe
Occipital lobe

Temporal lobe

Fusiform gyrus

Cingulate gyrus

Subcortical Regions
Hippocampus
Amygdala

Cerebellum

Brainstem

Caudate nucleus
Thalamus
Sub-thalamic nucleus
Lentiform nucleus
Corpus callosum

T2 structures

Frontal lobe (left/right)
Parietal lobe (left/right)
Occipital lobe (left/right)

Anterior temporal lobe, medial part (left/right)

Anterior temporal lobe, lateral part (left/right)

Medial and inferior temporal gyrus, anterior part (left/right)
Medial and inferior temporal gyrus, posterior part (left/right)
Superior temporal gyrus, middle part (left/right)

Superior temporal gyrus, posterior part (left/right)

Fusiform gyrus, anterior part (left/right)

Fusiform gyrus, posterior part (left/right)

Gyri parahippocampalis et ambiens, anterior part (left/right)
Gyri parahippocampalis et ambiens, posterior part (left/right)

Cingulate gyrus, anterior part (left/right)
Cingulate gyrus, posterior part (left/right)

Hippocampus (left/right)
Amygdala (left/right)
Cerebellum (left/right)
Brainstem

Caudate nucleus (left/right)
Thalamus (left/right)
Sub-thalamic nucleus (left/right)
Lentiform nucleus (left/right)
Corpus callosum

Table 7.5: Correspondence between the structures defined in the DTI and
the T2 space.

7.4 Results

Volumetric, cortical surface and DTI measurements are analysed in this

section:

e Centiles of the measurements and correlations with the age at scan
were determined for the preterm datasets to investigate the premature

brain development (with increasing age at scan).

e The effect of preterm birth was assessed comparing the group of term
controls versus an equal-sized group of early preterm subjects born at
less than 30 weeks with equivalent ages at scan. Group comparison

was performed with two-sided paired t-tests.

e The incidence of increasing prematurity was further explored for all
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the preterm subjects with correlations of the measurements with the

age at birth (correcting for the age at scan).

Multiple measurements in all cases were adjusted with Bonferroni correc-

tion. Significance is assumed with p < 0.05.

7.4.1 Volumetric measurements

Absolute and relative volumes of the brain tissues with increasing age at
scan are illustrated in Figures 7.6, 7.7 and centiles are reported in Tables
7.13, 7.14 respectively. Tissue volumes estimated with the proposed auto-
matic segmentation method are similar to volumetric results of manually
segmented data in early preterm subjects (Moeskops et al., 2013) and term-
equivalent brain (Anbeek et al., 2008) in the literature (as discussed in
Section 6.3). Absolute volumes for all the 82 structures are presented in
Table 7.15.

Correlations with age at scan are displayed in Tables 7.7 and 7.8. Sig-
nificant correlation of the absolute and relative volume with age at scan
is observed for all the tissues. With the exception of the ventricles, all the
tissue volumes have a prominent linear correlation to age at scan with a cor-
relation coefficient larger than 0.8. A negative trend between the relative
volume and age at scan is observed for the WM, ventricles, basal ganglia and
thalami and brainstem. Absolute volume of all the 82 regional structures
is significantly correlated with increasing age at scan. After Bonferroni cor-
rection most of the structures have a significant linear correlation of their
relative volumes to age at scan with the exception of: anterior temporal lobe
medial right WM, anterior temporal lobe lateral left WM, cingulate gyrus
anterior right WM, cingulate gyrus anterior left GM, cingulate gyrus poste-
rior GM, fusiform gyrus anterior right WM, gyri parahippocampalis anterior
GM (left/right) and gyri parahippocampalis posterior WM (left /right).

Volumetric differences between the groups (of term controls and the preterm
subjects) are presented in Tables 7.9 and 7.10. Tables 7.11 and 7.12 demon-
strate the correlations with age at birth (correcting for the age at scan).
Total brain volume of the preterm group was significantly smaller than the
term controls and this reduction is significantly associated with increasing
prematurity. This adverse effect has been consistently reported in the liter-
ature (Peterson et al., 2003; Inder et al., 2005; Thompson et al., 2007; Ball
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et al., 2012). The preterm infants had significantly reduced WM volume and
more specifically in the parietal lobe, anterior temporal lobe, medial and in-
ferior temporal gyrus and the left hemispheric parts of the insula, cingulate
gyrus posterior,superior temporal gyrus middle and gyri parahippocampalis
anterior. The degree of prematurity was associated with a decline in total
and regional WM volume in all the WM parts except for the fusiform gyrus
anterior and the gyri parahippocampalis anterior right. The CGM was less
affected overall with significant group differences localised in the anterior
temporal lobe and the fusiform gyrus anterior. Decreasing age at birth was
significantly associated with reduced volume in these regions and was further
negatively correlated in the frontal lobe left, cingulate gyrus anterior left,
superior temporal gyrus middle and the anterior parts of the medial and
inferior temporal gyrus, gyri parahippocampalis and fusiform gyrus. Re-
gional decreases in the WM have been previously described in Mewes et al.
(2006); Thompson et al. (2007). These studies presented both reductions
and increases in the regional CGM volumes. The volume of subcortical GM
structures is significantly affected by prematurity. The preterm subjects in-
dicated reduced volume in the areas of the amygdala, caudate nucleus, tha-
lamus right, subthalamic nucleus and corpus callosum. Volumes of all the
subcortical GM structures were significantly reduced with increasing pre-
maturity. Similar volumetric associations in the subcortical GM and more
specifically in the amygdala, thalamus, hippocampus and lentiform nucleus
have been reported in Peterson et al. (2000); Srinivasan et al. (2007); Ball
et al. (2012). Larger volumes of CSF and ventricles in the preterm subjects
have been found in previous studies (Peterson et al., 2000; Mewes et al.,
2006; Thompson et al., 2007). In this study, the relative volume of CSF
and ventricles was significantly increased for the preterm subjects and this
increase is correlated with increasing prematurity. Prematurity was further
associated with widespread regional volume changes in the brain (see Table
7.10 and 7.12).

7.4.2 Cortical surface measurements

The different surface measures of the cortex with respect to age at scan
are illustrated in Figure 7.8 and correlations in Tables 7.6 and 7.16,7.17 for

the whole cortex and the different cortical areas respectively. Regional cen-
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Figure 7.6: Change in tissue volumes with increasing age at scan.

‘ SA MLNy GLNy GCr
age at scan 0.921 0.880 0.894 0.909
age at birth | age at scan | 0.244 -0.039 -0.017  0.089

Table 7.6: Correlations of surface measures with age at scan and age at birth
correcting for the age at scan (bold=significant at p < 0.05).

tiles of the cortical surface area are reported in Table 7.22. The curvature

measures and surface area are positively related to the age at scan for the

whole cortex and for almost all the cortical regions after Bonferroni correc-

tion (exceptions are the mean curvature L? norm and global curvedness of
the gyri parahippocampalis anterior left). The relative surface area presents

both regional increases and decreases with increasing age at scan that are

significantly associated in the majority of cortical regions. Cortical surface
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Figure 7.7: Relative tissue volumes with increasing age at scan (% of the
total brain volume).

area measurements have been previously presented for the neonatal brain
with a range of 150-1500 cm? between 27 and 44 weeks post-mentrual age at
scan (Kapellou et al., 2006b; Xue et al., 2007; Dubois et al., 2008b; Pienaar
et al., 2008; Rodriguez-Carranza et al., 2008; Moeskops et al., 2013). The
surface area of the cortex in this study was around 120-1100 ¢m? in the cor-
responding ages at scan. Curvature measurements have been reported in a
limited number of studies (Xue et al., 2007; Pienaar et al., 2008; Rodriguez-
Carranza et al., 2008; Moeskops et al., 2013) which used different defini-
tions of curvature measures and included only small numbers of subjects.
Here, the curvature measures from Rodriguez-Carranza et al. (2008) were

adopted that are invariant to the surface area. Similar positive correlations
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of cortical curvature with age at scan to Rodriguez-Carranza et al. (2008)
are derived in this analysis. Xue et al. (2007) and Dubois et al. (2008b)
likewise presented increasing mean curvature and gyrification, respectively,
with increasing age at scan.

Ajayi-Obe et al. (2000) presented reduced cortical surface area in preterm
infants compared to term controls. Kapellou et al. (2006b) further demon-
strated a decreasing surface area in the cortex with increasing prematu-
rity. Similarly to these studies, the cortical surface area was found to be
significantly reduced in the preterm subjects and more specifically in the
frontal lobe, anterior temporal lobe lateral and the left hemispheric parts
of the parietal lobe, anterior temporal lobe medial, insula and gyri parahip-
pocampalis anterior (see Table 7.18). Increasing prematurity was further
associated with descreasing surface area in the whole cortex and most of
the regions (see Tables 7.6, 7.20). Ajayi-Obe et al. (2000) additionally re-
ported reduced cortical folding in the preterm population. The curvature
measurements in the present analysis were not associated with age at birth
in the whole cortex and the majority of cortical regions (see Tables 7.6 and
7.21). A notable exception is the anterior part of the temporal lobe that
consistently presented a positive correlation with increasing prematurity in
all of the curvature measures. Kesler et al. (2006) demonstrated similar
results in prematurily-born children, where the temporal lobe was shown to
be specifically disrupted by preterm delivery with increased gyrification in
the preterm population. Kesler et al. (2006) suggested that increased gyri-
fication may be due to abnormal growth of the inner cortical layers. The
preterm infants demonstrated increased curvature measurements compared
to the term controls (see Table 7.19). Since cortical curvature is largely
not affected by the age at birth of the infants, the increased curvature may
reflect the prolonged extra-uterine growth of the preterm infants versus the

term control group.

7.4.3 DTI measurements

Correlations of the DTI measurements with age at scan are presented in
Table 7.23. FA was positively related to age at scan in the WM and deep
GM structures with the exception of the hippocampus and cingulate gyrus
WM. All the CGM structures had a significant negative correlation of FA to
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Figure 7.8: Cortical surface measures with increasing age at scan.

the age at scan of the preterm subjects. ADC, AD and RD had a significant
negative correlation in all the structures except for the cingulate gyrus GM
RD.

The preterm group demonstrated significant differences in the corpus cal-
losum with reduced FA and increased RD and ADC values (see Table 7.24).
Reduced FA values were also present in the thalamus of the preterm infants.
The corpus callosal and thalamic alterations were further significantly asso-
ciated with increasing prematurity (see Table 7.25). Similar alterations in
the preterm population have been described in (Anjari et al., 2007) for the
corpus callosum and the posterior limb of the internal capsule. Differences
between the groups were also detected in the cingulate gyrus GM with in-
creased AD. Decreases in fractional anisotropy and increases in diffusivity
may indicate dysmyelination as shown in experimental models (Song et al.,
2002; Wang et al., 2009). Increasing prematurity was further accompanied
by increased FA in the caudate nucleus and frontal lobe GM and decreased
AD in the fusiform gyrus WM. Increased FA may be related to increasing
maturation of WM fibre tracts associated with the exposure to the extra-

uterine environment (Giménez et al., 2008).
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Tissues

CGM 0.909"
UWM 0.825"
CGM+UWM 0.878"
CSF 0.829"
Ventricles 0.543"
BGT 0.875"
Cerebellum 0.911"
Brainstem 0.847"
Brain 0.884"

‘WM structures

7.4.4 Tables with volumetric results

Subcortical structures

Hippocampus r 0.8417
Hippocampus 1 0.831"
Amygdala r 0.844"
Amygdala 1 0.841"
Cerebellum r 0.913"
Cerebellum 1 0.908"
Brainstem 0.847"
Caudate nucleus r 0.846"
Caudate nucleus 1 0.857"
Thalamus r 0.878"
Thalamus 1 0.880"
Subthalamic nucleus r  0.814"
Subthalamic nucleus 1  0.803"
Lentiform Nucleus r 0.868"
Lentiform Nucleus 1 0.862"
Corpus Callosum 0.888"
Lateral Ventricle r 0.550"
Lateral Ventricle 1 0.485"

CGM structures

Frontal lobe r wm 0.797" Frontal lobe r gm 0.903%
Frontal lobe 1 wm 0.806" Frontal lobe 1 gm 0.904"
Parietal lobe r wm 0.833" Parietal lobe r gm 0.913
Parietal lobe 1 wm 0.822" Parietal lobe 1 gm 0.911"
Occipital lobe r wm 0.800" Occipital lobe r gm 0.909"
Occipital lobe 1 wm 0.790" Occipital lobe 1 gm 0.912"
Anterior temporal lobe M r wm 0.778" Anterior temporal lobe M r gm 0.872"
Anterior temporal lobe M 1 wm 0.821" Anterior temporal lobe M | gm 0.860™
Anterior temporal lobe L r wm 0.693" Anterior temporal lobe L r gm 0.844"
Anterior temporal lobe L 1 wm 0.768" Anterior temporal lobe L 1 gm 0.862"
Insula r wm 0.683" Insula r gm 0.887"
Insula 1 wm 0.668" Insula 1l gm 0.881"
Cingulate g A r wm 0.814" Cingulate g A r gm 0.845"
Cingulate g A 1 wm 0.813" Cingulate g A 1 gm 0.838"
Cingulate g P r wm 0.871" Cingulate g P r gm 0.845
Cingulate g P 1 wm 0.868" Cingulate g P 1 gm 0.843"
Superior temporal g middle r wm 0.795" Superior temporal g middle r gm 0.890"
Superior temporal g middle 1 wm 0.788" Superior temporal g middle 1 gm 0.902"
Superior temporal g P r wm 0.753" Superior temporal g P r gm 0.903
Superior temporal g P 1 wm 0.728" Superior temporal g P 1 gm 0.882"
Medial & inferior temporal g A r wm 0.816" Medial & inferior temporal g A r gm 0.857"
Medial & inferior temporal g A 1 wm 0.798" Medial & inferior temporal g A 1 gm 0.863"
Medial and inferior temporal g P r wm 0.819" Medial and inferior temporal g P r gm 0.913"
Medial and inferior temporal g P 1 wm 0.821" Medial and inferior temporal g P 1gm 0.918"
Gyri parahippocampalis A r wm 0.710" Gyri parahippocampalis A r gm 0.834"
Gyri parahippocampalis A 1 wm 0.659" Gyri parahippocampalis A 1 gm 0.824"
Gyri parahippocampalis P r wm 0.790™ Gyri parahippocampalis P r gm 0.878"
Gyri parahippocampalis P 1 wm 0.799" Gyri parahippocampalis P 1 gm 0.883"
Fusiform g A r wm 0.835" Fusiform g A r gm 0.828"
Fusiform g A 1 wm 0.865" Fusiform g A 1 gm 0.840™
Fusiform g P r wm 0.868" Fusiform g P r gm 0.865"
Fusiform g P 1 wm 0.863" Fusiform g P 1 gm 0.873"
Table 7.7: Correlations of absolute volumes with age at scan

(bold=significant at p < 0.05, *=significant after Bonferroni correction).
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Subcortical structures

Hippocampus r -0.428"
Hippocampus 1 -0.655"
Amygdala r -0.458"
Amygdala 1 -0.574"
Tissues Cerebellum r 0.827"
CGM 0.9237 Cerebellum 1 0.812"
UWM -0.920" Brainstem -0.858"
CGM+UWM -0.249" Caudate nucleus r -0.284"
CSF 0.339" Caudate nucleus 1 -0.217"
Ventricles -0.408" Thalamus r -0.608"
BGT -0.699" Thalamus 1 -0.630"
Cerebellum 0.825 Subthalamic nucleus r -0.781"
Brainstem -0.858" Subthalamic nucleus 1 -0.814"
Lentiform Nucleus r -0.556"
Lentiform Nucleus 1 -0.676"
Corpus Callosum 0.414"
Lateral Ventricle r -0.376"
Lateral Ventricle 1 -0.382"
WM structures CGM structures
Frontal lobe r wm -0.917" Frontal lobe r gm 0.905"
Frontal lobe 1 wm -0.913" Frontal lobe 1 gm 0.898"
Parietal lobe r wm -0.793 Parietal lobe r gm 0.901"
Parietal lobe 1 wm -0.828" Parietal lobe 1 gm 0.891"
Occipital lobe r wm -0.676" Occipital lobe r gm 0.865"
Occipital lobe 1 wm -0.688" Occipital lobe 1 gm 0.876"
Anterior temporal lobe M r wm 0.172 Anterior temporal lobe M r gm 0.628"
Anterior temporal lobe M 1 wm 0.384" Anterior temporal lobe M 1 gm 0.546"
Anterior temporal lobe L r wm -0.269" Anterior temporal lobe L r gm 0.494"
Anterior temporal lobe L 1 wm -0.017 Anterior temporal lobe L 1 gm 0.549"
Insula r wm -0.810" Insula r gm 0.855™
Insula 1 wm -0.767" Insula 1 gm 0.854"
Cingulate g A r wm -0.131 Cingulate g A r gm 0.393"
Cingulate g A 1 wm 0.239" Cingulate g A 1 gm 0.039
Cingulate g P r wm 0.237" Cingulate g P r gm 0.145
Cingulate g P 1 wm 0.450" Cingulate g P 1 gm -0.065
Superior temporal g middle r wm -0.764" Superior temporal g middle r gm 0.846"
Superior temporal g middle 1 wm -0.806" Superior temporal g middle 1 gm 0.883"
Superior temporal g P r wm -0.662" Superior temporal g P r gm 0.777"
Superior temporal g P 1 wm -0.735 Superior temporal g P 1 gm 0.763
Medial & inferior temporal g A r wm -0.641" Medial & inferior temporal g A r gm 0.313"
Medial & inferior temporal g A 1 wm -0.724" Medial & inferior temporal g A 1 gm 0.498"

Medial and inferior temporal g P r wm -0.695" Medial and inferior temporal g P r gm 0.858"
Medial and inferior temporal g P 1 wm -0.754" Medial and inferior temporal g P 1gm 0.908"

Gyri parahippocampalis A r wm -0.201" Gyri parahippocampalis A r gm 0.124
Gyri parahippocampalis A 1 wm -0.217" Gyri parahippocampalis A 1 gm 0.041

Gyri parahippocampalis P r wm -0.191* Gyri parahippocampalis P r gm 0.623"
Gyri parahippocampalis P 1 wm -0.042 Gyri parahippocampalis P 1 gm 0.654"
Fusiform g A r wm -0.081 Fusiform g A r gm 0.390"
Fusiform g A 1 wm 0.478" Fusiform g A 1 gm 0.455"
Fusiform g P r wm 0.510" Fusiform g P r gm 0.567"
Fusiform g P 1 wm 0.580" Fusiform g P 1 gm 0.566"

Table 7.8: Correlations of relative volumes with age at scan
(bold=significant at p < 0.05, *=significant after Bonferroni correc-
tion).
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Hippocampus r 1

Hippocampus 1 1

Amygdala r 1

. Amygdala 1 1
EE;KZS T Cerebellum r 1
UWM T Cerfebellum 1 1
COMAUWM i* Brainstem 1
CSF ¥ Caudate nucleus r i:
. * Caudate nucleus 1 i
Ventricles T* Thalamus T s
gg"i‘bellum ,iL Thalamus 1 'L*
Brainstem J« Subthalamic nucleus r ,L*
. * Subthalamic nucleus 1 |
Brain I 1
1

1

)

T

WM structures

Subcortical structures

Lentiform Nucleus r
Lentiform Nucleus 1
Corpus Callosum
Lateral Ventricle r
Lateral Ventricle 1

CGM structures

*

*

Frontal lobe r wm 1 Frontal lobe r gm 1
Frontal lobe 1 wm 1 Frontal lobe 1 gm I
Parietal lobe r wm " Parietal lobe r gm

Parietal lobe 1 wm 1 Parietal lobe 1 gm 1
Occipital lobe r wm 1 Occipital lobe r gm

Occipital lobe 1 wm 1 Occipital lobe 1 gm

Anterior temporal lobe M r wm 1 Anterior temporal lobe M r gm 1
Anterior temporal lobe M 1 wm Iy Anterior temporal lobe M 1 gm 1
Anterior temporal lobe L r wm " Anterior temporal lobe L r gm i
Anterior temporal lobe L 1 wm " Anterior temporal lobe L 1 gm =
Insula r wm 1 Insula r gm

Insula 1 wm v Insula 1 gm

Cingulate g A r wm 1 Cingulate g A r gm

Cingulate g A 1 wm Cingulate g A 1 gm

Cingulate g P r wm 1 Cingulate g P r gm

Cingulate g P 1 wm i Cingulate g P 1 gm

Superior temporal g middle r wm 1 Superior temporal g middle r gm 1
Superior temporal g middle 1 wm e Superior temporal g middle 1 gm 1
Superior temporal g P r wm Superior temporal g P r gm

Superior temporal g P 1 wm 1 Superior temporal g P 1 gm

Medial & inferior temporal g A r wm v Medial & inferior temporal g A r gm 1
Medial & inferior temporal g A 1 wm 1 Medial & inferior temporal g A 1 gm 1
Medial and inferior temporal g P r wm Medial and inferior temporal g P r gm
Medial and inferior temporal g P 1 wm | Medial and inferior temporal g P 1 gm
Gyri parahippocampalis A r wm 1 Gyri parahippocampalis A r gm

Gyri parahippocampalis A 1 wm 1 Gyri parahippocampalis A 1 gm

Gyri parahippocampalis P r wm 1 Gyri parahippocampalis P r gm

Gyri parahippocampalis P 1 wm 1 Gyri parahippocampalis P 1 gm

Fusiform g A r wm Fusiform g A r gm i*
Fusiform g A 1 wm Fusiform g A 1 gm 1

Fusiform g P r gm
Fusiform g P 1 gm

Fusiform g P r wm
Fusiform g P 1 wm 1

Table 7.9: Comparison of absolute volumes between the group of early
preterm infants and the term controls. Significant (p < 0.05) volumetric
increases/decreases of the volumes in the preterm subjects are annotated
with 1/ (*=significantly different after Bonferroni correction).
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Subcortical structures
Hippocampus r
Hippocampus 1

Amygdala r

Amygdala 1 1
Tissues Cerebellum r
CGM 1* Cerebellum 1
UWM i Brainstem
CGM+UWM Caudate nucleus r 1
CSF 1 Caudate nucleus 1
Ventricles 1 Thalamus r
BGT Thalamus 1
Cerebellum Subthalamic nucleus r |
Brainstem Subthalamic nucleus 1

WM structures

Lentiform Nucleus r
Lentiform Nucleus 1
Corpus Callosum
Lateral Ventricle r
Lateral Ventricle 1

— =

CGM structures

Frontal lobe r wm 1 Frontal lobe r gm

Frontal lobe 1 wm 1 Frontal lobe 1 gm

Parietal lobe r wm 1 Parietal lobe r gm 1
Parietal lobe 1 wm i Parietal lobe 1 gm )
Occipital lobe r wm Occipital lobe r gm 1
Occipital lobe 1 wm Occipital lobe 1 gm 1
Anterior temporal lobe M r wm Anterior temporal lobe M r gm

Anterior temporal lobe M 1 wm 1 Anterior temporal lobe M 1 gm 1
Anterior temporal lobe L r wm 1 Anterior temporal lobe L r gm e
Anterior temporal lobe L 1 wm 1 Anterior temporal lobe L 1 gm 1
Insula r wm Insula r gm

Insula 1 wm 1 Insula 1 gm

Cingulate g A r wm Cingulate g A r gm 1
Cingulate g A 1 wm Cingulate g A 1 gm T
Cingulate g P r wm Cingulate g P r gm o
Cingulate g P 1 wm Iy Cingulate g P 1 gm 1
Superior temporal g middle r wm Superior temporal g middle r gm

Superior temporal g middle 1 wm 1 Superior temporal g middle 1 gm

Superior temporal g P r wm Superior temporal g P r gm *
Superior temporal g P 1 wm Superior temporal g P 1 gm *
Medial & inferior temporal g A r wm 1 Medial & inferior temporal g A r gm
Medial & inferior temporal g A 1 wm Iy Medial & inferior temporal g A 1 gm
Medial and inferior temporal g P r wm 1 Medial and inferior temporal g P r gm 1"
Medial and inferior temporal g P 1 wm Medial and inferior temporal g P 1gm 1"
Gyri parahippocampalis A r wm Gyri parahippocampalis A r gm

Gyri parahippocampalis A 1 wm Iy Gyri parahippocampalis A 1 gm T
Gyri parahippocampalis P r wm Gyri parahippocampalis P r gm 1
Gyri parahippocampalis P 1 wm Gyri parahippocampalis P 1 gm 1
Fusiform g A r wm T Fusiform g A r gm

Fusiform g A 1 wm 1 Fusiform g A 1 gm

Fusiform g P r wm T Fusiform g P r gm

Fusiform g P 1 wm Fusiform g P 1 gm T

Table 7.10: Comparison of relative volumes between the group of early
preterm infants and the term controls. Significant (p < 0.05) volumetric
increases/decreases of the volumes in the preterm subjects are annotated
with 1/| (*=significantly different after Bonferroni correction).
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Subcortical structures

%

Hippocampus r 0.315
Hippocampus 1 0.311"
Amygdala r 0.318"
. Amygdala 1 0.356"
glésﬁs 015" Cerebellum r 0.194"
Caqn* Cerebellum 1 0.190"
UWM 0'342* Brainstem 0.341"
CGM+UWM 0.278 *
CSF ~0.089 Caudate nucleus r 0'379*
Ventricles -0.093 Caudate nucleus 1 0.340*
BGT 0.313" Thalamus r 0.284*
Cerebellum 0.193" Thalamus 1 0'264*
Brainstem 0.341* Subthalam}c nucleus r 0.303*
Brain 0.281" Subt.halamlc nucleus 1 0.324*
Lentiform Nucleus r 0.289
Lentiform Nucleus 1 0.300"
Corpus Callosum 0.288"
Lateral Ventricle r -0.062
Lateral Ventricle 1 -0.105
WM structures . CGM structures
Frontal lobe r wm 0.374 Frontal lobe r gm 0.153
Frontal lobe 1 wm 0.363: Frontal lobe 1 gm 0.178*
Parietal lobe r wm 0.315* Parietal lobe r gm 0.117
Parietal lobe 1 wm 0.328 Parietal lobe 1 gm 0.161
Occipital lobe r wm 0.224" Occipital lobe r gm 0.069
Occipital lobe 1 wm 0.226" Occipital lobe 1 gm 0.099
Anterior temporal lobe M r wm 0.275" Anterior temporal lobe M r gm 0.247"
Anterior temporal lobe M 1 wm 0.216" Anterior temporal lobe M 1 gm 0.283"
Anterior temporal lobe L r wm 0.427" Anterior temporal lobe L r gm 0.306"
Anterior temporal lobe L 1 wm 0'368: Anterior temporal lobe L 1 gm 0.290"
Insula r wm 0.376 Insula r gm 0.071
Insula 1 wm 0.371* Insula 1 gm 0.055
Cingulate g A r wm 0.369" Cingulate g A r gm 0.085
Cingulate g A 1 wm 0.313" Cingulate g A 1 gm 0.175"
Cingulate g P r wm 0.281" Cingulate g P r gm 0.067
Cingulate g P 1 wm 0.304" Cingulate g P 1 gm 0.116
Superior temporal g middle r wm 0.312" Superior temporal g middle r gm 0.231"
Superior temporal g middle 1 wm 0.341" Superior temporal g middle 1 gm 0.154
Superior temporal g P r wm 0.265" Superior temporal g P r gm 0.037
Superior temporal g P 1 wm 0.277" Superior temporal g P 1 gm 0.060

Medial & inferior temporal g A r wm 0.407" Medial & inferior temporal g A r gm 0-179:
Medial & inferior temporal g A 1 wm 0.391" Medial & inferior temporal g A 1 gm 0.236
Medial and inferior temporal g P r wm 0.187" Medial and inferior temporal g P r gm  0.046

Medial and inferior temporal g P 1 wm  0.228" Medial and inferior temporal g P 1 gm  0.084

Gyri parahippocampalis A r wm 0.175 Gyri parahippocampalis A r gm 0272:
Gyri parahippocampalis A 1 wm 0.251* Gyri parahippocampalis A 1 gm 0.286
Gyri parahippocampalis P r wm 0.247" Gyri parahippocampalis P r gm 0.092

Gyri parahippocampalis P 1 wm 0.262" Gyri parahippocampalis P 1 gm 0~106*
Fusiform g A r wm 0.141 Fusiform g A r gm 0-273*
Fusiform g A 1 wm 0.082 Fusiform g A 1gm 0.336
Fusiform g P r wm 0.210" Fusiform g P r gm 0.129
Fusiform g P 1 wm 0.224" Fusiform g P 1 gm 0.109

Table 7.11: Partial correlations of absolute volumes with age at birth cor-
recting for the age at scan (bold=significant at p < 0.05, *=significant after
Bonferroni correction).
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Subcortical structures

Hippocampus r 0.097
Hippocampus 1 -0.015
Amygdala r 0.083
Amygdala 1 0.142
Tissues Cerebellum r 0.011
CGM -0.153" Cerebellum 1 -0.004
UWM 0.148™ Brainstem -0.113
CGM+UWM 0.012 Caudate nucleus r 0.314"
CSF -0.344" Caudate nucleus 1 0.224"
Ventricles -0.296" Thalamus r -0.076
BGT 0.002 Thalamus 1 -0.145
Cerebellum 0.004 Subthalamic nucleus r -0.083
Brainstem -0.113 Subthalamic nucleus 1  -0.071
Lentiform Nucleus r -0.017
Lentiform Nucleus 1 -0.022
Corpus Callosum 0.110
Lateral Ventricle r -0.264"
Lateral Ventricle 1 -0.278"
WM structures CGM structures
Frontal lobe r wm 0.285" Frontal lobe r gm -0.063
Frontal lobe 1 wm 0.248" Frontal lobe 1 gm -0.032
Parietal lobe r wm 0.020 Parietal lobe r gm -0.191"
Parietal lobe 1 wm 0.024 Parietal lobe 1 gm -0.105
Occipital lobe r wm -0.159 Occipital lobe r gm -0.370"
Occipital lobe 1 wm -0.135 Occipital lobe 1 gm -0.277"
Anterior temporal lobe M r wm 0.123 Anterior temporal lobe M r gm 0.119
Anterior temporal lobe M 1 wm 0.052 Anterior temporal lobe M 1 gm 0.154
Anterior temporal lobe L r wm 0.303" Anterior temporal lobe L r gm 0.237"
Anterior temporal lobe L 1 wm 0.248" Anterior temporal lobe L 1 gm 0.182"
Insula r wm 0.167 Insula r gm -0.006
Insula 1 wm 0.207" Insula 1 gm -0.025
Cingulate g A r wm 0.176" Cingulate g A r gm -0.191"
Cingulate g A 1 wm 0.179* Cingulate g A 1 gm -0.069
Cingulate g P r wm 0.097 Cingulate g P r gm -0.325"
Cingulate g P 1 wm 0.173 Cingulate g P 1 gm -0.285"
Superior temporal g middle r wm -0.004 Superior temporal g middle r gm 0.189"
Superior temporal g middle 1 wm 0.028 Superior temporal g middle 1 gm -0.014
Superior temporal g P r wm -0.007 Superior temporal g P r gm -0.200"
Superior temporal g P 1 wm -0.028 Superior temporal g P 1 gm -0.183"
Medial & inferior temporal g A r wm 0.278" Medial & inferior temporal g A r gm -0.119
Medial & inferior temporal g A 1 wm 0.188" Medial & inferior temporal g A 1 gm -0.003

Medial and inferior temporal g P r wm -0.282" Medial and inferior temporal g P r gm -0.313"
Medial and inferior temporal g P 1 wm -0.224" Medial and inferior temporal g P 1gm -0.243"

Gyri parahippocampalis A r wm -0.030 Gyri parahippocampalis A r gm 0.126
Gyri parahippocampalis A 1 wm 0.058 Gyri parahippocampalis A 1 gm 0.132
Gyri parahippocampalis P r wm 0.027 Gyri parahippocampalis P r gm -0.066
Gyri parahippocampalis P 1 wm 0.063 Gyri parahippocampalis P 1 gm -0.054
Fusiform g A r wm -0.187" Fusiform g A r gm 0.201"
Fusiform g A 1 wm -0.186" Fusiform g A 1 gm 0.316"
Fusiform g P r wm 0.056 Fusiform g P r gm -0.018
Fusiform g P 1 wm 0.100 Fusiform g P 1 gm -0.074

Table 7.12: Partial correlations of relative volumes with age at birth cor-
recting for the age at scan (bold=significant at p < 0.05, *=significant after
Bonferroni correction).
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Scan age(weeks)

28

28

24.40
30.06
41.57
55.57
65.81
78.09
102.90
121.98
126.30

27.97
33.63
42.98
51.43
58.87
71.71
92.67
117.87
117.64

5.34
6.48
8.67
11.73
14.34
15.31
22.67
26.08
26.47

CGM
27.36 + 4.41
32.83 &+ 8.04
48.53 £ 9.68
59.92 & 14.01
76.37 £ 13.45
90.79 + 23.46
118.77 + 21.22
133.18 £ 26.60
136.65 £ 35.51

CSF
31.08 £ 7.79
37.67 £ 8.71
49.78 + 14.84
63.40 £ 23.87
71.71 £ 19.24
94.25 £ 24.66
111.94 + 29.12
133.83 + 33.64
136.32 + 37.98

Cerebellum
5.98 + 0.86
6.93 = 1.46
9.98 £+ 2.26
12.70 £+ 2.80
15.48 + 3.34
18.97 + 5.88
25.33 + 4.14
29.11 £+ 5.59
30.89 + 6.58

30.40
39.60
54.47
66.59
82.77
111.40
130.08
154.96
180.27

39.36
42.15
60.41
76.59
82.57
102.25
128.20
155.35
164.65

6.31

7.91

11.49
14.67
17.12
23.84
27.73
31.31
33.67

58.62
67.09
87.65
109.39
117.89
122.44
152.03
163.61
166.78

3.69
3.88
5.0

5.45
5.59
5.47
7.04
7.86
8.08

2.45
2.65
3.40
3.92
4.39
4.54

5.90
5.83

UWM
67.18 + 11.44
79.32 £ 14.59
101.55 + 19.39
116.65 + 25.01
137.25 &+ 26.52
140.67 + 31.40
169.47 + 33.14
176.16 £ 37.59
185.78 + 31.96

Ventricles
4.88 +1.48
4.56 + 1.97
5.99 + 2.71
6.15 + 1.76
6.85 + 3.77
7.00 + 7.00
8.36 + 2.92
10.10 £ 3.60
10.08 £ 3.20

Brainstem
2.55 £ 0.44
2.84 £ 0.53
3.77 +£ 0.68
4.18 £ 0.85
4.65 + 0.82
5.02 £+ 0.99
5.87 £ 0.95
6.26 + 0.99
6.42 + 1.24

72.66

85.52

116.11
127.93
148.69
166.43
190.03
194.99
198.37

5.42
5.50
8.06
7.35
7.85
12.81
10.23
11.77
12.86

2.77
3.31
4.29
4.70
5.14
5.48
6.30
6.55
7.01

83.03

96.85

129.93
166.98
184.62
213.85
255.86
282.87
292.86

10.43
12.19
16.55
19.70
22.38
24.78
28.62
31.69
32.04

102.02
118.14
158.75
201.28
227.18
257.70
313.34
351.69
357.95

CGM+UWM

95.54 &+ 15.36

111.45 + 22.22
151.28 + 28.67
176.57 + 38.62
215.89 4 39.46
227.51 + 54.75
285.80 & 52.76
308.98 £ 62.97
330.79 & 59.20

BGT
11.69 £ 1.77
13.80 £ 2.53
18.46 + 3.51
21.60 + 4.49
24.59 + 4.42
27.37 £ 4.54
31.59 &+ 5.82
34.17 £ 5.83
35.76 + 6.42

Brain
115.76 + 18.21
133.98 + 26.71
184.10 + 34.76
215.92 £ 46.21
260.75 4+ 47.34
279.41 + 65.35
349.98 + 62.76
377.99 £+ 73.94
401.25 £+ 72.21

Table 7.13: Volume(mL) centiles of tissues with increasing scan age. The left
column for each region represents the 25% centile over the subjects in the
database, the middle column the median value + the standard deviation,
and the right column the 75% centile.
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103.20
123.74
169.17
192.85
227.81
277.82
322.04
348.12
365.62

12.02
15.55
20.79
23.33
26.85
27.75
34.49
37.55
38.83

124.30
149.13
205.93
234.04
277.84
334.75
387.78
419.84
447.58



Scan age(weeks)
28

28

23.00
24.43
25.66
26.60
28.31
30.30
32.13
33.93
34.90

24.85
25.16
26.06
24.09
23.82
26.45
27.31
29.78
28.26

4.89

5.11
5.55

6.23
6.83
7.11
7.12

CGM
24.34 £ 1.25
25.43 + 1.20
26.42 + 1.18
27.90 + 1.15
29.15 £+ 1.23
31.99 + 2.30
33.55 £ 1.99
34.94 £ 1.79
35.58 £+ 3.33

CSF
27.92 £ 5.84
2741 + 4.14
28.08 £+ 5.12
28.36 + 6.93
27.38 + 7.28
30.24 £+ 5.28
32.06 + 6.84
34.80 + 6.45
34.77 £ 6.19

Cerebellum
5.13 + 0.27
5.17 £ 0.32
5.59 + 0.44
6.02 = 0.45
6.16 + 0.60
6.68 + 0.60
7.24 + 0.54
7.64 + 0.91
7.72 £ 0.94

24.85
26.23
27.10
28.80
29.74
33.28
34.19
35.91
36.70

34.49
31.11
31.01
35.91
32.03
33.79
37.13
38.61
39.56

5.30
5.45
5.85
6.27
6.52
7.09
7.62
8.14
8.01

57.25
55.91
54.77
53.13
52.13
47.07
47.65
45.44
45.08

3.26
2.72
2.65
2.56
2.09
2.08
2.11
2.12
2.16

2.13
2.03
2.0

1.88
1.79
1.64
1.62
1.56
1.58

UWM
58.46 £ 1.65
56.83 £ 1.56
55.65 + 1.39
53.95 &+ 1.49
52.83 £ 1.53
49.72 + 2.38
48.65 + 2.16
46.99 + 1.89
45.97 + 3.18

Ventricles
4.04 £ 1.10
3.29 + 1.45
3.30 + 1.50
2.97 £+ 0.59
2.37 £ 1.31
2.66 £ 1.54
2.39 £ 0.84
2.47 £+ 0.88
2.38 +0.83

Brainstem
2.28 + 0.17
2.18 £ 0.15
2.13 £ 0.12
1.95 + 0.13
1.83 £ 0.15
1.85 + 0.16
1.69 £+ 0.10
1.63 £ 0.12
1.64 +0.13

59.65
58.31
56.66
55.05
54.27
50.83
49.99
47.83
46.92

5.18
4.28
4.16
3.22
3.16
3.12
2.70
2.93
2.84

2.39

2.17
1.99
1.96
1.89
1.78
1.72
1.71

82.26
81.87
81.54
81.54
81.55
81.42
81.39
80.91
81.05

9.58
9.71
10.00
9.64
9.45
8.54
8.82
8.67
8.81

CGM+UWM

82.79 + 0.70
82.28 + 0.77
81.99 £ 0.72
82.18 + 0.76
82.14 + 0.87
81.67 + 0.83
82.01 + 0.83
81.66 + 1.22
81.42 + 1.17

BGT
9.82 & 0.46
10.20 £ 0.46
10.28 £ 0.47
9.91 &+ 0.42
9.83 £ 0.37
9.62 £ 0.74
9.14 &+ 0.38
9.07 & 0.43
9.04 &+ 0.35

Table 7.14: Relative volume (ratio of structure’s volume to the total brain
volume) centiles of tissues with increasing scan age. The left column for
each region represents the 25% centile over the subjects in the database,
the middle column the median value £ the standard deviation, and the
right column the 75% centile.

129

83.02
83.15
82.76
82.75
82.79
82.37
82.62
82.54
82.39

10.20
10.52
10.62
10.17
9.94
10.04
9.33
9.28
9.38
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7.4.5 Tables with surface results

SA relative SA
Frontal lobe r 0.918"  “Frontal lobe r -0.657"
Frontal lobe 1 0.919"  Frontal lobe 1 -0.584*
Parietal lobe r 0.921: Parietal lobe r 0.754"
Parietal lobe 1 0.924* Parietal lobe 1 0.639"
gcqp}ta: ioge : 8232* Occipital lobe r -0.044
ccipital lobe .894 Occipital lobe 1 -0.058
Anterior temporal lobe M r 0.865" Anterior temporal lobe M r -0.125
Anterior temporal lobe M 1 0.870" Anterior temporal lobe M 1 0.033
Anterior temporal lobe L r 0.831" Anterior temporal lobe L r -0.412"
Anterior temporal lobe L 1 0.877" Anterior temporal lobe L 1 -0.266"
Insula r 0.910" Insula r 0.412"
Insula 1 0.898" Insula 1 0.350"
Cingulate g A r 0.858" Cingulate g A r -0.536"
Cingulate g A 1 0.871: Cingulate g A 1 -0.307"
Cingulate g P r 0.901 Cingulate g P r -0.373:
Cingulate g P 1 0.883" Cingulate g P 1 -0.266
Superior temporal g middle r 0.887" Superior temporal g middle r 0.025
Superior temporal g middle 1 0.910" Superior temporal g middle 1 -0.155
Superior temporal g P r 0.906" Superior temporal g P r 0.663"
Superior temporal g P 1 0.905 Superior temporal g P 1 0.488"

Medial & inferior temporal g A r 0.866" Medial & inferior temporal g A r -0.638
Medial & inferior temporal g A 1 0.892" Medial & inferior temporal g A 1 -0.665"
Medial and inferior temporal g P r  0.904" Medial and inferior temporal g P r 0.519
Medial and inferior temporal g P 1  0.927" Medial and inferior temporal g P 1 0.673

Gyri parahippocampalis A r 0.784" Gyri parahippocampalis A r -0.495
Gyri parahippocampalis A 1 0.727" Gyri parahippocampalis A 1 -0.515"
Gyri parahippocampalis P r 0.875" Gyri parahippocampalis P r 0.095
Gyri parahippocampalis P 1 0.863" Gyri parahippocampalis P 1 0.085
Fusiform g A r 0.876" Fusiform g A r -0.313"
Fusiform g A 1 0.898" Fusiform g A 1 0.026
Fusiform g P r 0.921*  Fusiform g P r 0.625"
Fusiform g P 1 0.913" Fusiform g P 1 0.520"

Table 7.16: Correlations of regional surface area with age at scan
(bold=significant at p < 0.05, *=significant after Bonferroni correction).
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MLNy GLNr

Frontal lobe r 0.890" Frontal lobe r 0.898"
Frontal lobe 1 0.891" Frontal lobe 1 0.896"
Parietal lobe r 0.852" Parietal lobe r 0.877"
Parietal lobe 1 0.854" Parietal lobe 1 0.874"
Occipital lobe r 0.891" Occipital lobe r 0.904"
Occipital lobe 1 0.895" Occipital lobe 1 0.903
Anterior temporal lobe M r 0.705" Anterior temporal lobe M r 0.729"
Anterior temporal lobe M 1 0.655" Anterior temporal lobe M 1 0.703"
Anterior temporal lobe L r 0.741" Anterior temporal lobe L r 0.785"
Anterior temporal lobe L 1 0.768" Anterior temporal lobe L 1 0.802"
Insula r 0.619" Insula r 0.720"
Insula 1 0.679" Insula 1 0.732"
Cingulate g A r 0.762" Cingulate g A r 0.814"
Cingulate g A 1 0.729" Cingulate g A 1 0.799™
Cingulate g P r 0.854" Cingulate g P r 0.881"
Cingulate g P 1 0.824" Cingulate g P 1 0.863"
Superior temporal g middle r 0.773" Superior temporal g middle r 0.849™
Superior temporal g middle 1 0.785" Superior temporal g middle 1 0.856™
Superior temporal g P r 0.693" Superior temporal g P r 0.835"
Superior temporal g P 1 0.657" Superior temporal g P 1 0.785"

Medial & inferior temporal g A r 0.924"
Medial & inferior temporal g A 1 0.926"
Medial and inferior temporal g P r 0.908"
Medial and inferior temporal g P 1 0.904"

Medial & inferior temporal g A r 0.903
Medial & inferior temporal g A 1 0.909
Medial and inferior temporal g P r 0.892
Medial and inferior temporal g P 1 0.896

Gyri parahippocampalis A r 0.317 Gyri parahippocampalis A r 0.694
Gyri parahippocampalis A 1 0.140 Gyri parahippocampalis A 1 0.628"
Gyri parahippocampalis P r 0.692" Gyri parahippocampalis P r 0.804"
Gyri parahippocampalis P 1 0.667" Gyri parahippocampalis P 1 0.776"
Fusiform g A r 0.799" Fusiform g A r 0.817"
Fusiform g A 1 0.793" Fusiform g A 1 0.781"
Fusiform g P r 0.840" Fusiform g P r 0.874"
Fusiform g P 1 0.831" Fusiform g P 1 0.852"
GCrp

Frontal lobe r 0.917"

Frontal lobe 1 0.917"

Parietal lobe r 0.873"

Parietal lobe 1 0.873"

Occipital lobe r 0.916"

Occipital lobe 1 0.917"

Anterior temporal lobe M r 0.746"

Anterior temporal lobe M 1 0.708"

Anterior temporal lobe L r 0.804"

Anterior temporal lobe L 1 0.845"

Insula r 0.689"

Insula 1 0.716"

Cingulate g A r 0.760"

Cingulate g A 1 0.713"

Cingulate g P r 0.869"

Cingulate g P 1 0.837"

Superior temporal g middle r 0.797"

Superior temporal g middle 1 0.825"

Superior temporal g P r 0.706"

Superior temporal g P 1 0.643"

Medial & inferior temporal g A r 0.934
Medial & inferior temporal g A 1 0.938
Medial and inferior temporal g P r 0.901
Medial and inferior temporal g P 1  0.901

Gyri parahippocampalis A r 0.329
Gyri parahippocampalis A 1 0.132
Gyri parahippocampalis P r 0.720"
Gyri parahippocampalis P 1 0.665"
Fusiform g A r 0.801"
Fusiform g A 1 0.773"
Fusiform g P r 0.849"
Fusiform g P 1 0.832"

Table 7.17: Correlations of regional curvature measures with age at scan
(bold=significant at p < 0.05, *=significant after Bonferroni correction).
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SA relative SA

Frontal lobe r N Frontal lobe r 1
Frontal lobe 1 I Frontal lobe 1 1
Parietal lobe r 1 Parietal lobe r

Parietal lobe 1 I Parietal lobe 1 "
Occipital lobe r 1 Occipital lobe r

Occipital lobe 1 Occipital lobe 1

Anterior temporal lobe M r 1 Anterior temporal lobe M r

Anterior temporal lobe M 1 " Anterior temporal lobe M 1 b
Anterior temporal lobe L r 1 Anterior temporal lobe L r "
Anterior temporal lobe L 1 1 Anterior temporal lobe L 1 e
Insula r 1 Insula r

Insula 1 1 Insula 1

Cingulate g A r Cingulate g A r 1
Cingulate g A 1 Cingulate g A 1 1
Cingulate g P r Cingulate g P r 1
Cingulate g P 1 b Cingulate g P 1

Superior temporal g middle r b Superior temporal g middle r

Superior temporal g middle 1 b Superior temporal g middle 1

Superior temporal g P r Superior temporal g P r 1
Superior temporal g P 1 Superior temporal g P 1

Medial & inferior temporal g A r 1 Medial & inferior temporal g A r
Medial & inferior temporal g A 1 1 Medial & inferior temporal g A 1
Medial and inferior temporal g P r Medial and inferior temporal g P r 1"
Medial and inferior temporal g P 1 | Medial and inferior temporal g P 1 7
Gyri parahippocampalis A r 1 Gyri parahippocampalis A r

Gyri parahippocampalis A 1 1 Gyri parahippocampalis A 1 1
Gyri parahippocampalis P r Gyri parahippocampalis P r T
Gyri parahippocampalis P 1 Gyri parahippocampalis P 1

Fusiform g A r Fusiform g A r T
Fusiform g A 1 Fusiform g A 1 1™
Fusiform g P r Fusiform g P r T
Fusiform g P 1 Fusiform g P 1 T

Table 7.18: Comparison of regional surface area between the group of
early preterm infants and the term controls. Significant (p < 0.05) in-
creases/decreases of the measures in the preterm subjects are annotated
with 1/] (*=significantly different after Bonferroni correction).
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MLNy GLNy

Frontal lobe r ) Frontal lobe r

Frontal lobe 1 ) Frontal lobe 1

Parietal lobe r 1 Parietal lobe r +
Parietal lobe 1 1*  Parietal lobe 1 1
Occipital lobe r T Occipital lobe r T
Occipital lobe 1 T Occipital lobe 1 T
Anterior temporal lobe M r T Anterior temporal lobe M r T
Anterior temporal lobe M 1 T Anterior temporal lobe M 1

Anterior temporal lobe L r Anterior temporal lobe L r

Anterior temporal lobe L 1 Anterior temporal lobe L 1

Insula r Insula r

Insula 1 Insula 1

Cingulate g A r 1" Cingulate g A r T
Cingulate g A 1 1 Cingulate g A 1 4
Cingulate g P r T Cingulate g P r

Cingulate g P 1 T Cingulate g P 1

Superior temporal g middle r Superior temporal g middle r
Superior temporal g middle 1 Superior temporal g middle 1
Superior temporal g P r 1 Superior temporal g P r 1
Superior temporal g P 1 T Superior temporal g P 1

Medial & inferior temporal g A r T Medial & inferior temporal g A r
Medial & inferior temporal g A 1 1 Medial & inferior temporal g A 1 T
Medial and inferior temporal g P r 1" Medial and inferior temporal g P r 1~
Medial and inferior temporal g P 1 1 Medial and inferior temporal g P 1 71
Gyri parahippocampalis A r 1 Gyri parahippocampalis A r 1
Gyri parahippocampalis A 1 1 Gyri parahippocampalis A 1 )
Gyri parahippocampalis P r T Gyri parahippocampalis P r

Gyri parahippocampalis P 1 1 Gyri parahippocampalis P 1

Fusiform g A r T Fusiform g A r

Fusiform g A 1 Fusiform g A 1
Fusiform g P r Fusiform gPr
Fusiform g P 1 Fusiform g P 1

— —

GCr

Frontal lobe r

Frontal lobe 1

Parietal lobe r

Parietal lobe 1

Occipital lobe r

Occipital lobe 1

Anterior temporal lobe M r
Anterior temporal lobe M 1
Anterior temporal lobe L r
Anterior temporal lobe L 1

Insula r

Insula 1

Cingulate g A r

Cingulate g A 1

Cingulate g P r

Cingulate g P 1

Superior temporal g middle r
Superior temporal g middle 1
Superior temporal g P r

Superior temporal g P 1

Medial & inferior temporal g A r
Medial & inferior temporal g A 1
Medial and inferior temporal g P r
Medial and inferior temporal g P 1
Gyri parahippocampalis A r

Gyri parahippocampalis A 1

Gyri parahippocampalis P r

Gyri parahippocampalis P 1
Fusiform g A r

Fusiform g A 1

Fusiform g P r T
Fusiform g P 1 T

(3

=

0

— = —

% (3

*

B e e

Table 7.19: Comparison of regional curvature measures between the group
of early preterm infants and the term controls. Significant (p < 0.05) in-
creases/decreases of the measures in the preterm subjects are annotated
with 1/] (*=significantly different after Bonferroni correction).
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SA

- relative SA

gontai }059 : gggg* Frontal lobe r 0.029

ontal lobe . Frontal lobe 1 -0.037
Parietal lobe r 0.201" 5 4
Parietal lobe 1 0.234" ﬁarfeza} :OEE lr ?)gf)i
Occipital lobe r 0.191" Oarl-e '? ]01 E 0 ilS
Ocipital lobe | 0184 Oceipital lobe | 0085
Anterior temporal lobe M r 0.187" Anterior temporal lobe M r -0.061
Anterior temporal lobe M 1 0-165: Anterior temporal lobe M 1 -0.067
Anterior temporal lobe L r 0.307 Anterior temporal lobe L r 0.112
Anterior temporal lobe L 1 0.257" Anterior temporal lobe L 1 0.039
Insula r 0.249" Insula r 0.140
Insula 1 0.304" Insula 1 0.211"
Cingulate g A r 0.202" Cingulate g A r -0.091
Cingulate g A 1 0.208" Cingulate g A 1 -0.042
Cingulate g P r 0.172" Cingulate g P r -0.141
Cingulate g P 1 0.200" Cingulate g P 1 -0.067
Superior temporal g middle r 0.334" Superior temporal g middle r 0.330"
Superior temporal g middle 1 0.281" Superior temporal g middle 1 0.129
Superior temporal g P r 0.089 Superior temporal g P r 0.003
Superior temporal g P 1 0.172" Superior temporal g P 1 0.063

Medial & inferior temporal g A r 0.262* Medial & inferior temporal g A r -0.037
Medial & inferior temporal g A 1 0.283" Medial & inferior temporal g A 1 -0.093

Medial and inferior temporal g P r 0.080 Medial and inferior temporal g P r -0-259:
Medial and inferior temporal g P 1 0.123 Medial and inferior temporal g P 1 -0.208
Gyri parahippocampalis A r 0.224" Gyri parahippocampalis A r 0.042
Gyri parahippocampalis A 1 0.310* Gyri parahippocampalis A 1 0.105*
Gyri parahippocampalis P r 0.249" Gyri Parahfppocampal§s Pr 0.168
Gyri parahippocampalis P 1 0.235" Gylfl parahippocampalis P 1 0146
Fusiform g A r 0.170" Fusiform g A r -0.101
Fusiform g A 1 0.153 Fusiform g A 1 -0.101
Fusiform g P r 0.117 Fusiform g P r -0.096
Fusiform g P 1 0.116 Fusiform g P 1 -0.042

Table 7.20: Correlations of regional surface area with age at birth correct-
ing for the age at scan (bold=significant at p < 0.05, *=significant after
Bonferroni correction).
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M LNy GLNp

Frontal lobe r -0.036 Frontal lobe r -0.010
Frontal lobe 1 -0.022 Frontal lobe 1 0.002
Parietal lobe r -0.004 Parietal lobe r 0.005
Parietal lobe 1 -0.015 Parietal lobe 1 0.008
Occipital lobe r 0.000 Occipital lobe r 0.047
Occipital lobe 1 0.004 Occipital lobe 1 0.027
Anterior temporal lobe M r -0.274" Anterior temporal lobe M r -0.235"
Anterior temporal lobe M 1 -0.230" Anterior temporal lobe M 1 -0.186"
Anterior temporal lobe L r -0.227" Anterior temporal lobe L r -0.235"
Anterior temporal lobe L 1 -0.235" Anterior temporal lobe L 1 -0.249"
Insula r -0.090 Insula r -0.132
Insula 1 -0.121 Insula 1 -0.122
Cingulate g A r -0.050 Cingulate g A r -0.116
Cingulate g A 1 -0.069 Cingulate g A 1 -0.061
Cingulate g P r -0.109 Cingulate g P r -0.054
Cingulate g P 1 -0.078 Cingulate g P 1 -0.000
Superior temporal g middle r -0.140 Superior temporal g middle r -0.132
Superior temporal g middle 1 -0.034 Superior temporal g middle 1 -0.089
Superior temporal g P r -0.072 Superior temporal g P r -0.070
Superior temporal g P 1 -0.028 Superior temporal g P 1 -0.026
Medial & inferior temporal g A r -0.214" Medial & inferior temporal g A r -0.103
Medial & inferior temporal g A 1 -0.109 Medial & inferior temporal g A 1 -0.005
Medial and inferior temporal g P r 0.012 Medial and inferior temporal g P r 0.082
Medial and inferior temporal g P 1  0.046 Medial and inferior temporal g P 1 0.118
Gyri parahippocampalis A r 0.005 Gyri parahippocampalis A r -0.006
Gyri parahippocampalis A 1 -0.031 Gyri parahippocampalis A 1 -0.081
Gyri parahippocampalis P r -0.161 Gyri parahippocampalis P r -0.112
Gyri parahippocampalis P 1 -0.036 Gyri parahippocampalis P 1 -0.036
Fusiform g A r 0.015 Fusiform g A r 0.101
Fusiform g A 1 0.117 Fusiform g A 1 0.168"
Fusiform g P r -0.080 Fusiform g P r -0.033
Fusiform g P 1 -0.015 Fusiform g P 1 0.060
GCrp

Frontal lobe r 0.101

Frontal lobe 1 0.117

Parietal lobe r 0.104

Parietal lobe 1 0.105

Occipital lobe r 0.166

Occipital lobe 1 0.156

Anterior temporal lobe M r -0.266"

Anterior temporal lobe M 1 -0.231"

Anterior temporal lobe L r -0.195"

Anterior temporal lobe L 1 -0.233"

Insula r -0.085

Insula 1 -0.107

Cingulate g A r -0.014

Cingulate g A 1 -0.022

Cingulate g P r -0.026

Cingulate g P 1 -0.016

Superior temporal g middle r -0.093

Superior temporal g middle 1 -0.018

Superior temporal g P r -0.037

Superior temporal g P 1 0.006

Medial & inferior temporal g A r -0.099

Medial & inferior temporal g A 1 0.040

Medial and inferior temporal g P r 0.154

Medial and inferior temporal g P 1 0.193"

Gyri parahippocampalis A r 0.047

Gyri parahippocampalis A 1 -0.024

Gyri parahippocampalis P r -0.120

Gyri parahippocampalis P 1 0.007

Fusiform g A r 0.151

Fusiform g A 1 0.226"

Fusiform g P r 0.009

Fusiform g P 1 0.067

Table 7.21: Correlations of regional curvature measures with age at birth
correcting for the age at scan (bold=significant at p < 0.05, *=significant
after Bonferroni correction).
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7.4.6 Tables with DTI results

FA ADC

Hippocampus 0.108 Hippocampus -0.651"
Amygdala 0.418" Amygdala -0.775"
Cerebellum 0.419" Cerebellum -0.889"
Brainstem 0.808" Brainstem -0.674"
Caudate nucleus 0.493" Caudate nucleus -0.825"
Thalamus 0.655" Thalamus -0.871"
Subthalamic nucleus 0.812" Subthalamic nucleus -0.782"
Lentiform Nucleus 0.678" Lentiform Nucleus -0.846"
Corpus Callosum 0.609" Corpus Callosum -0.529"
Frontal lobe wm 0.709" Frontal lobe wm -0.693"
Parietal lobe wm 0.756" Parietal lobe wm -0.848"
Occipital lobe wm 0.485" Occipital lobe wm -0.841"
Temporal lobe wm 0.540" Temporal lobe wm -0.733"
Fusiform gyrus wm 0.260" Fusiform gyrus wm  -0.679"
Cingulate gyrus wm  0.090 Cingulate gyrus wm  -0.601"
Frontal lobe gm -0.675" Frontal lobe gm -0.616"
Parietal lobe gm -0.659" Parietal lobe gm -0.686"
Occipital lobe gm -0.752" Occipital lobe gm -0.732"
Temporal lobe gm -0.814" Temporal lobe gm -0.674"
Fusiform gyrus gm -0.594" Fusiform gyrus gm -0.755"
Cingulate gyrus gm  -0.510" Cingulate gyrus gm  -0.354"
AD RD

Hippocampus -0.658" Hippocampus -0.633"
Amygdala -0.727" Amygdala -0.774"
Cerebellum -0.872" Cerebellum -0.885"
Brainstem -0.517" Brainstem -0.724"
Caudate nucleus -0.798" Caudate nucleus -0.825"
Thalamus -0.852" Thalamus -0.873"
Subthalamic nucleus -0.677" Subthalamic nucleus -0.807"
Lentiform Nucleus  -0.819" Lentiform Nucleus  -0.847"
Corpus Callosum -0.247" Corpus Callosum -0.600"
Frontal lobe wm -0.654" Frontal lobe wm -0.704"
Parietal lobe wm -0.831" Parietal lobe wm -0.852"
Occipital lobe wm -0.854" Occipital lobe wm -0.828"
Temporal lobe wm -0.726" Temporal lobe wm -0.731"
Fusiform gyrus wm -0.680" Fusiform gyrus wm -0.670"
Cingulate gyrus wm  -0.632" Cingulate gyrus wm  -0.558"
Frontal lobe gm -0.812" Frontal lobe gm -0.402"
Parietal lobe gm -0.842" Parietal lobe gm -0.482"
Occipital lobe gm -0.889" Occipital lobe gm -0.496"
Temporal lobe gm -0.871" Temporal lobe gm -0.394"
Fusiform gyrus gm -0.872" Fusiform gyrus gm -0.619"
Cingulate gyrus gm  -0.630" Cingulate gyrus gm  -0.120

Table 7.23: Correlations of DTT measures with age at scan (bold=significant
at p < 0.05, *=significant after Bonferroni correction).
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FA ADC
Hippocampus Hippocampus
Amygdala Amygdala
Cerebellum Cerebellum
Brainstem Brainstem
Caudate nucleus Caudate nucleus
Thalamus * Thalamus

Subthalamic nucleus
Lentiform Nucleus

*

D

Subthalamic nucleus
Lentiform Nucleus

Corpus Callosum Corpus Callosum 1
Frontal lobe wm Frontal lobe wm
Parietal lobe wm Parietal lobe wm 1
Occipital lobe wm Occipital lobe wm T
Temporal lobe wm Temporal lobe wm
Fusiform gyrus wm I Fusiform gyrus wm
Cingulate gyrus wm Cingulate gyrus wm 1
Frontal lobe gm Frontal lobe gm
Parietal lobe gm Parietal lobe gm
Occipital lobe gm Occipital lobe gm
Temporal lobe gm Temporal lobe gm
Fusiform gyrus gm Fusiform gyrus gm
Cingulate gyrus gm Cingulate gyrus gm 1
AD RD

Hippocampus Hippocampus
Amygdala Amygdala

Cerebellum Cerebellum

Brainstem Brainstem

Caudate nucleus Caudate nucleus
Thalamus Thalamus

Subthalamic nucleus Subthalamic nucleus
Lentiform Nucleus Lentiform Nucleus
Corpus Callosum Corpus Callosum 1"
Frontal lobe wm Frontal lobe wm T
Parietal lobe wm T Parietal lobe wm T
Occipital lobe wm Occipital lobe wm T
Temporal lobe wm Temporal lobe wm
Fusiform gyrus wm Fusiform gyrus wm T

Cingulate gyrus wm 1
Frontal lobe gm
Parietal lobe gm
Occipital lobe gm
Temporal lobe gm
Fusiform gyrus gm
Cingulate gyrus gm 1

*

Cingulate gyrus wm
Frontal lobe gm
Parietal lobe gm
Occipital lobe gm
Temporal lobe gm
Fusiform gyrus gm
Cingulate gyrus gm

Table 7.24: Comparison of regional DTI measures between the group of

early preterm infants and the term controls.

Significant (p < 0.05) in-

creases/decreases of the measures in the preterm subjects are annotated
with 1/] (*=significantly different after Bonferroni correction).
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FA ADC

Hippocampus 0.025 Hippocampus -0.064
Amygdala 0.003 Amygdala -0.017
Cerebellum -0.009 Cerebellum 0.206
Brainstem 0.063 Brainstem 0.076
Caudate nucleus -0.370" Caudate nucleus 0.024
Thalamus 0.214" Thalamus 0.003
Subthalamic nucleus 0.148 Subthalamic nucleus -0.005
Lentiform Nucleus -0.197 Lentiform Nucleus 0.112
Corpus Callosum 0.325™ Corpus Callosum -0.310"
Frontal lobe wm -0.187 Frontal lobe wm 0.134
Parietal lobe wm 0.064 Parietal lobe wm -0.005
Occipital lobe wm 0.038 Occipital lobe wm 0.058
Temporal lobe wm -0.059 Temporal lobe wm 0.195
Fusiform gyrus wm 0.056 Fusiform gyrus wm 0.191
Cingulate gyrus wm -0.178 Cingulate gyrus wm  0.114
Frontal lobe gm -0.229" Frontal lobe gm 0.088
Parietal lobe gm -0.179 Parietal lobe gm 0.040
Occipital lobe gm -0.174 Occipital lobe gm 0.106
Temporal lobe gm -0.174 Temporal lobe gm 0.051
Fusiform gyrus gm -0.167 Fusiform gyrus gm 0.008
Cingulate gyrus gm  -0.199 Cingulate gyrus gm  0.040
AD RD

Hippocampus -0.061 Hippocampus -0.063
Amygdala -0.008 Amygdala -0.020
Cerebellum 0.202 Cerebellum 0.194
Brainstem 0.089 Brainstem 0.067
Caudate nucleus -0.110 Caudate nucleus 0.097
Thalamus 0.079 Thalamus -0.041
Subthalamic nucleus 0.062 Subthalamic nucleus -0.041
Lentiform Nucleus 0.054 Lentiform Nucleus 0.137
Corpus Callosum -0.135 Corpus Callosum -0.368"
Frontal lobe wm 0.102 Frontal lobe wm 0.146
Parietal lobe wm 0.009 Parietal lobe wm -0.011
Occipital lobe wm 0.061 Occipital lobe wm 0.055
Temporal lobe wm 0.202 Temporal lobe wm 0.189
Fusiform gyrus wm  0.223" Fusiform gyrus wm 0.170
Cingulate gyrus wm  0.071 Cingulate gyrus wm  0.128
Frontal lobe gm -0.023 Frontal lobe gm 0.135
Parietal lobe gm -0.082 Parietal lobe gm 0.097
Occipital lobe gm -0.022 Occipital lobe gm 0.156
Temporal lobe gm -0.049 Temporal lobe gm 0.096
Fusiform gyrus gm -0.097 Fusiform gyrus gm 0.054
Cingulate gyrus gm  -0.068 Cingulate gyrus gm  0.084

Table 7.25: Correlations of DTT measures with gestational age at birth cor-
recting for the age at scan (bold=significant at p < 0.05, *=significant after
Bonferroni correction).
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7.5 Spatiotemporal structural atlas construction

Structural information of probabilistic brain atlases is constructed by av-
eraging segmentations of different brains in the same coordinate space, in
order to account for the anatomical variability in the brain. This section de-
scribes the construction of the first regional spatio-temporal structural atlas
for the neonatal brain with a methodology similar to Kuklisova-Murgasova
et al. (2011); Serag et al. (2012). As in Kuklisova-Murgasova et al. (2011);
Serag et al. (2012), the segmentations are averaged with a non-parametric
kernel regression according to the age at scan of the subjects.

The spatio-temporal template of Serag et al. (2012) is used as the coor-
dinate space of the atlas. This template defines mean brain images for the
ages of 28 to 44 weeks age at scan (with a week interval). The segmentations
of the 420 T2 images described in Section 7.2 are warped to the space of the
template according to the age at scan of each subject. In order to enforce
consistency of the atlas in the time domain (different ages of the template),
each segmentation is warped to the [a — 3, a + 3] mean images, where a is
the rounded age at scan of the subject. The transformations are calculated
with non-rigid registration of the subject’s T2 image to the corresponding
mean images of the template. Having computed the transformations for all
the subjects, the age-dependent probability map Py ; of each structure k at

time ¢ of the atlas can be computed as:

P, = Zsszl w(ts> t)Ms,k © Ts,t
kit = 5
Zs:l w(t$7 t)
where s denotes the different subjects (S = 420 in total). M,y is the

binary mask of structure k from the segmentation of subject s. M is

(7.1)

warped (o) under the transformation T; of s to the mean image of the
template at age t. w(ts,t) is an age-dependent weight of subject s according
to how closely the age t; of the subject matches the age t of the atlas. The
weight is defined according to a Gaussian kernel:

—(ts—t)?

1
w(ts,t) = ﬁe 203 (72)

where o, is set to 1 to introduce a large weight for subjects close to

each age of the atlas and small weight for those that deviate from it. The
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probabilistic atlas at each age ¢ is then defined as the union of the probability
maps at the corresponding age: P, = { Py}
A maximum-probability atlas at time ¢ is further constructed by assigning

the structure with the maximum probability to each voxel at age ¢:
Prazt = argmazxy Py, (7.3)

The constructed probabilistic and maximum-probability structural at-
lases incorporate the 82 structures of the brain and the CSF, intra-cranial
and extra-cranial background. Illustrations of the atlases are presented in
Figures 7.9, 7.10. The atlases are publicly available from http://brain-

development.org/.

7.6 Discussion and conclusions

Quantitative measurements of the developing neonatal brain are required
to study normal brain growth and potentially aid the prognosis of neuro-
logical impairments. In this chapter the proposed automatic segmentation
algorithm is employed to delineate 82 regions of the brain in an extensive
database and derive a number of volumetric, cortical surface and DTI mea-
surements. This is the first study to provide measurements on detailed
regional structures of the neonatal brain.

Absolute and relative volumes of the brain tissues are provided from the
early preterm period to term-equivalent age. Derived volumes are similar to
tissue volumes reported in studies where the subjects have been manually
annotated. Regional volumes are presented for the first time. Surface area
and curvature measures of the whole cortex and regional cortical parts are
estimated based on the segmentations. To further explore the tissue mi-
crostructure, DTI measurements are analysed over 21 regions of the brain.
All the measures are significantly associated with brain maturation.

The volumetric, DTI, surface area and curvature measures are further
used to characterize the effect of prematurity in the neonatal brain. Com-
parison of term controls with an age-matched group of early preterm infants
is presented to investigate differences associated with prematurity. The
effect of increasing prematurity is further quantified in a large cohort of

preterm subjects. Prematurity is related to widespread reductions in the
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Figure 7.9: Different ages of the maximum probability structural atlas. The
structures of the atlas (second row: WM structures, third row: CGM struc-
tures, fourth row: subcortical GM structures and ventricles) are defined in
the coordinate space of the spatio-temporal template of Serag et al. (2012)
(first row).

volume and surface area of the WM, CGM and subcortical structures, and
increases in the relative CSF and ventricular volume. Cortical curvature
is largely not associated with the age at birth of the infants. An excep-

tion is the anterior temporal lobe that presents a positive correlation with
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increasing prematurity. Increased temporal lobe gyrification is consistent
with a previous study in children born prematurily (Kesler et al., 2006).
Here, these alterations are specifically localised in the anterior part of the
temporal lobe. DTI measurements of the brain appear to be less affected
in preterm infants. Notable exceptions are the regions of corpus callosum
and thalamus that are known to be disrupted by prematurity (Anjari et al.,
2007). Future studies with the inclusion of clinical variables and neurode-
velopmental outcome will help to further elucidate the effect of prematurity
in the neonatal brain.

Finally, a probabilistic and a maximum-probability structural atlas is
constructed for different ages of the neonatal brain for all the segmented
brain structures. The atlases define the structure probability and average
segmentation respectively of each structure in the spatio-temporal space
of Serag et al. (2012). These atlases can be used to derive regional brain
measurements in subjects aligned to the common space of the atlas, or can
be used in turn as spatial prior information for the segmentation of other

subjects.
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Figure 7.10: Different ages of the probabilistic structural atlas. The fol-
lowing probability maps are displayed (second-seventh row) : WM (sum of
the probability maps of the WM structures), right frontal lobe WM, GM
(sum of the probability maps of the GM structures), right frontal lobe GM,
subcortical GM and ventricles (sum of the probability maps of the subcor-
tical GM structures and the ventricles), right thalamus. The probabilistic
structural atlas is defined in the coordinate space of the spatio-temporal
template of Serag et al. (2012) (first row).
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Chapter 8

Conclusion

This thesis has developed an automatic segmentation pipeline for the neona-
tal brain. Automated segmentation of infant MR imaging data is consider-
ably more difficult than segmentation in adults or children. Neonatal brain
development is accompanied by large changes in the shape and appearance
of structures. In addition, partial volume effects and limited signal-to-noise
ratio introduce challenges in the automatic techniques.

In Chapter 3, the problem of automatic delineation of the brain tissues
was addressed. An adaptive algorithm was introduced that allows the seg-
mentation of the neonatal brain in a wide range of gestational ages, from
the early preterm to the term equivalent period. The algorithm extended
the standard EM algorithm used for the segmentation of the adult brain
to account for the specific challenges in the neonatal brain segmentation.
Adaptivity to the large developmental changes was incorporated with a
combination of atlas-driven and image-driven tissue priors and a prior re-
laxation scheme. Different components of the algorithm deal with image-
related problems: the effect of noise and partial volume in the interface of
the CSF-cortical grey matter are accounted for. The algorithm was tested
on manually segmented data in a recent neonatal brain segmentation chal-
lege and produced state-of-the-art results.

Chapter 4 introduced a novel approach for the regional segmentation of
the brain. Proposed adaptations of the segmentation model limit the influ-
ence of intensity in the delineation of structures with very similar intensity
profiles. The modelling was performed with a structure hierarchy in the

brain and a model averaging term. This method has allowed for the first
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time to study the regional brain growth in an automatic and reproducible
way. An extensive validation was performed to verify the robustness of the
algorithm in different ages of the developing neonatal brain.

In Chapter 5 the segmentation of images was formulated in a group-wise
manner. A cross-image term ensures the consistent labelling between corre-
sponding regions of different images. Validation on term-equivalent brains
demonstrated the advantage over the individual segmentation of images.

Chapter 6 proposed a methodology for the accurate cortical ribbon de-
lineation. The problem of cortical grey matter oversegmentation was ad-
dressed with a novel partial volume correction for the boundary between
white matter and cortical grey matter. A novel morphological correction
was presented that delineates the cortical sulci, that cannot be detected
with the intensity alone, according to local thickness information.

The segmentation method was used to analyse the neonatal brain for the
first time in a detailed, regional scale. Regional measurements of volumes,
DTT and cortical surface were used to explore different aspects of the growth
of structures over the neonatal period and provided new insights on the
consequences of prematurity. Finally, the segmented data were utilized for
the construction of the first regional structural atlas of the developing brain,

which is now freely available for the neonatal community.

8.1 Future research directions

There are a number of interesting directions to extend the work presented
in this thesis, both in terms of methodology and clinical applications.

From a methodological point of view, the proposed segmentation algo-
rithm could be extended for the multi-modal segmentation of the neonatal
brain. Different imaging modalities provide complementary information of
the brain development and could be integrated to potentially improve the
segmentation. A straightforward extension would be the inclusion of T1, T2
and DTI data simultaneously for the brain parcellation similarly to Avants
et al. (2011); Wang et al. (2012b). A multi-modality extension of the seg-
mentation algorithm would further allow a more consistent labelling across
different images of the same subject.

Chapter 4 demonstrated the advantage of combining different segmen-

tation models. The proposed weighting of the models was based on the
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intensity gradient of the images. Different weighting strategies could be
explored. An example strategy would involve the automatic learning of re-
gional weights for each model based on supervised classification techniques.

A limiting factor in the development of automatic segmentation tech-
niques for the neonatal brain is the lack of manually segmented atlases. In
this study 20 manually labelled atlases at term-equivalent brains were used
to propagate the labelling information to neonatal brains at term but also
the preterm period. Manually segmented atlases at the preterm age could
potentially help to further improve the segmentation performance in the
early brains. Additionally, the proposed technique should not be limited to
the segmentation of the neonatal brain, but could be further utilised for the
delineation of brain structures in the fetus. However, this would require ad-
ditional atlases since the fetal brain presents large developmental differences
from the newborn brain.

Chapter 7 analysed a number of different cortical surface measures cal-
culated at the interior cortical surface. The interior cortical surface does
not suffer from the problem of merging gyri and can thus be easily recon-
structed. Nevertheless, the obtained surfaces may still include small topo-
logical defects. Topological correction of the surfaces was not addressed.
Furthermore, the inner cortical surface could be deformed, e.g. according
to forces defined from the Laplace’s equation, in order to reconstruct the
medial surface of the cortex. The middle cortical surface provides a more
unbiased representation of the sulcal and gyral regions than the inner or
outer cortical surfaces (Essen et al., 2006).

With respect to the clinical applications, Chapter 7 presented the anal-
ysis of a large cohort of newborn subjects to investigate the regional brain
development and effect of prematurity. The data analysis was performed
majorly in preterm subjects and a few term-equivalent datasets. Access to
imaging data of more term controls would allow better characterisation of
the normal development of the neonatal brain. Moreover, availiability of
additional clinical variables would help to factor out the effect of other clin-
ical conditions and localise even more the disturbances in prematurily born
infants. The work in this thesis allows regional exploration of the aberrant
effects of brain abnormalities and should not be therefore limited only to

the effect of prematurity.
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