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Abstract

Cardiovascular diseases are the single most important cause of death in the developed
world. Their early diagnosis and treatment is becoming crucial in order to reduce mortal-
ity and to improve the patient’s quality of life. The detection of cardiac diseases requires
advanced methods for the quantification and analysis of the cardiovascular system. Re-
cent advances in image modalities allow the high resolution imaging of the heart. Among
them, MR imaging plays an increasingly important role for the understanding of the heart
and the detection of cardiac abnormalities. However, MR imaging remains a new tech-
nology limited to specialised imaging centers. Therefore, algorithms assisting with the
interpretation of cardiac MR images are of high importance.

In this thesis, several novel approaches for the spatio-temporal alignment of cardiac
MR image sequences have been developed. The registration algorithms have the ability
to correct any spatial misalignment caused by differences in the acquisition of the hearts
and by local shape differences. Furthermore, the registration techniques have the ability
to correct temporal misalignment caused by differences in the length of the cardiac cycles
and by differences in the dynamic motion patterns of the hearts.

The spatio-temporal registration methods are used for the development of novel sta-
tistical and probabilistic atlases describing the anatomy and function of a healthy heart.
To our best knowledge, this is the first attempt to build atlases for cardiac MR image
sequences describing the cardiac function as well anatomy. The probabilistic atlas pro-
vides statistical information in the form of tissue probability maps while the statistical
atlas provides additional information regarding shape and function variability across the
healthy population. During the construction of the statistical atlas the distribution of car-
diac shapes is divided into two subspaces. One distribution subspace accounts for changes
in cardiac shape caused by inter-subject variability. The second distribution subspace ac-
counts for changes in cardiac shape caused by deformation during the cardiac cycle (i.e.

intra-subject variability).



The atlases can be used as educational tools and for assisting the diagnosis of cardiac
diseases. A possible use of the statistical atlases is demonstrated by using them to classify

image sequences from normal subjects and subjects with hypertrophic myocardiopathy.
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Chapter 1

Introduction

Cardiovascular diseases (CVDs) are the single most important cause of death in the devel-
oped world [133]. According to a recent estimate of Werld Health Organizatiori6.7

million deaths each year are caused by CVDs [133]. Their early diagnosis and treatment
is becoming crucial in order to reduce mortality and to improve patients’ quality of life.
The detection of CVDs requires advanced methods for the quantification and analysis
of the cardiovascular system. Novel cardiac imaging modalities provide researchers and
clinicians with important tools for the diagnosis and treatment of CVDs. This chapter pro-
vides the motivation for this work, reviews the basic anatomy and function of the heart,
describes the main modalities for the imaging of the cardiovascular system and finally

analyses the contributions of this thesis.

1.1 Motivation

Recent advances in non-invasive imaging modalities allow for the high resolution imag-
ing of the cardiovascular system. Among these modalities, magnetic resonance imaging
(MR) is playing an increasingly important role. MR imaging allows not only the acqui-
sition of high resolution 3D cardiac images which describe the cardiac anatomy but also
the acquisition of 4D cardiac image sequences which describe the cardiac anatomy and

function. Although the use of MR imaging in clinical practice is rapidly increasing, it
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still remains a new technology primarily limited to specialised imaging centers. There-
fore, applications assisting the interpretation of MR images are of high importance for
increasing the clinical use of MR imaging.

The recent advances in MR imaging have led to an increased need for image regis-
tration and normalisation methods which are used in a large number of applications for
calculating the cardiac motion [29], segmenting cardiac images [109] and building models
which describe the cardiac anatomy [112]. However, most of these registration methods
ignore any temporal information contained in the cardiac MR images and deal only with
the cardiac anatomy. The development of techniques for the spatial and temporal nor-
malisation and alignment of 4D cardiac MR images will enable comparison between the
cardiac anatomy and function of number of subjects to be made. These spatial and tem-
poral registration methods could also be used for the construction of computerised proba-
bilistic and statistical models containing information regarding the variability of anatomy
and function of a healthy heart. Furthermore, these models would assist the better inter-
pretation of MR image sequences. They could also be used for classifying images and
segmenting images. For example, \det al. used a probabilistic atlas of the heart
to enable the segmentation of cardiac MR images [108]. Moreover, the atlases will also
enable statistical and computational comparisons between individuals and groups to be
performed making them important clinical tools.

In order to build a cardiac model from MR images describing both the cardiac anatomy

and function of a healthy heart the following research issues must be addressed:

e How to compare the cardiac anatomy and dynamics for an individual subject, be-
tween different subjects and between different group of subjects. Current approaches,

enable the comparison of only the cardiac anatomy or the cardiac dynamics.

e How to build a model of the heart which captures statistical information regard-
ing variability of both the cardiac anatomy and dynamics across a population of
subjects. Current approaches enable the construction of cardiac models of only

the cardiac anatomy or the cardiac dynamics. No approach presently exists which
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combines information regarding the cardiac anatomy and dynamics into a single

model.

1.2 Obijectives of the thesis

The following are the main objectives of this thesis:

e To develop new registration methods which enable the mapping of cardiac MR im-
age sequences into a common spatial and temporal coordinate system. Mapping
only the cardiac anatomy, as most cardiac registration approaches do, is not enough
since the heart is undergoing spatially and temporally a varying degree of motion
during the cardiac cycle. The spatio-temporal mapping will allow the direct com-
parison between the cardiac anatomy and function of a number of image sequences
to be made. In order to achieve this, novel methods for the spatial and temporal

alignment of cardiac MR image sequences are required.

e To develop new methods for building probabilistic and statistical models of the
cardiac anatomy and function. These models will contain statistical information
regarding the variability of both the anatomy and function of the heart across a
population of subjects. The spatio-temporal registration methods will be used in
order to align a number of cardiac MR image sequences, used for the construction
of the models, to the same spatial and temporal coordinate system enabling direct

comparisons between their cardiac anatomy and function to be made.

1.3 The cardiovascular system

For a better understanding of the remainder of this dissertation, a brief review of the
anatomy and function of the human cardiovascular system as well as its imaging modal-
ities is given in the next two sections. For a more detailed analysis of the cardiovascular

system see [18] and for MR imaging see [117].
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The cardiovascular system is one of the most vital systems in the body. Its prime
responsibility is the circulation of blood to cells throughout the body. The blood provides
oxygen from the lungs to the cells and transfers carbon dioxide from the cells to the lungs.
The circulation of the blood is achieved by the heart which forces the blood through the
blood vessels. The circulation of the blood can be divided into two stageputimnary
circulation and thesystemic circulation During thepulmonary circulationthe blood is
carried out from the heart to the lungs. In the lungs oxygen is absorbed and carbon dioxide
is removed from the blood. During theystemic circulatiorthe blood is pumped by the
heart to the cells in the body. It is obvious that if the heart stops pumping blood, the cells
of the body will not be able to survive without the necessary oxygen and death will be the

eventual consequence.

Aorta

/ Pulmonary artery

Superior vena cava Pulmonary vein

Left atrium

Aortic valve Bicuspid atrioventricular valve

Left ventricle

Right atrium

Tricuspid atrioventricular
Valve

Papillary muscle

Inferior vena cava

Right ventricle Pulmonary Myocardium
valve

Figure 1.1: A schematic figure of the heart (adapted from [18].

The heart is composed of two pumps. A schematic diagram of the heart is shown in
figure 1.1. The left part of the heart is responsible fordygemic circulatioand the right
part is responsible for theulmonary circulation Each side of the heart has two chambers
(theatrium and theventriclg. Theatriumreceives blood from the veins and aids its flow
into the ventricle which forces it into the arteries. Therefore, the blood coming from

the body enters the riglatrium, flows to the rightventricle (RV) and exits towards the
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lungs. After absorbing the necessary oxygen, the blood returns to the heart through the
left atrium and then it is propelled to the body by the leéntricle(LV). The walls of the
ventriclesare composed of a muscular tissue which contracts and thus pumps the blood
out of theventricles The muscular tissue in thentricular walls is themyocardium

The inner surface of themyocardiumis theendocardiumwhile the outer surface is the
epicardium Theatria can also contract like theentriclesbut their main function is to

act as reservoirs which are filled with blood flowing back through the veins to the heart.
The heart is enclosed by tipericardiumwhich separates it from thepicardiumby the
pericardial fluid.

The ventriclesand theatria are connected by thatrioventricular (AV) valves (the
tricuspid and themitral valves). Attached to the free margins of these valves are the
tendinous cordsvhich are attached to projectionswantricularmuscles known agapil-
lary musclesThe exit from the righventricleinto thepulmonaryartery is guarded by the
pulmonary semilunar valvend the exit from the leftentricleinto the aorta is guarded
by theaortic semilunar valve

The main role of the blood vessels is to carry blood through the entire body. The
blood vessels are divided intrteriesandveins The arteriescarry blood away from
the heart while theveinscarry blood towards the heart. The large arteries are named
elastic arteriessince their volume is dynamically changed due to the large volume of
blood ejected from the heart. The elastic properties of these arteries have an important
role in the cardiovascular haemodynamics. They transform the rhythmic pulsating high
pressured blood flow coming from the heart into a more stable flow with significantly
lower pressure.

During the circulatory process the blood flows from the systemic circulation into the
right atriumvia the superior and inferiarena cavand from the pulmonary circulation to
the leftatriumvia the fourpulmonary veinsWhen the pressure of eaalriumis greater
than the pressure of the corresponduegtricle the AV valves open causing the blood to
flow towards theventricles When theventriclesare about 80% full, thatria contract and

propel blood into theventriclesto complete their filling. The high pressure increase in the
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ventriclescauses the AV valves to close preventing the blood flowing back tattiee

The contraction of the righdatriumwall causes the blood to flow from the righrium to

the rightventriclevia thetricuspid valve. The rightventriclecontracts forcing the blood
through thesemilunarvalve into thepulmonaryartery leading to the lungs where the
blood is saturated with oxygen. The high pressure increase in theveghticle causes

the tricuspid valve to close preventing the blood entering back to the raghtm. The
oxygenated blood flows back into the lattiumthrough thgpulmonaryveins. The blood
enters from the lefatrium the leftventriclewhen themitral valve opens. When the left
ventriclecontracts, the pressure of the oxygenated blood rises. When the pressure in the
left ventricleexceeds the one in tla®rta, theaortic semilunarvalve opens ejecting blood

with high pressure into thaorta.

1.3.1 Electrical properties of the heart

The cardiac muscle has the ability to contract without nervous input. The action potential
for each heart beat is generated by a pacemaker node in thatrgim and is transmitted
through the heart along specialised pathways (figure 1.2). The pacemaker is a small
area in the wall of the righatrium known assinoatrial node(SA). The action potential,
generated in the SA node, is carried from cell to cell along the plasma membrane through
the low electrical resistance of the intercalated disks. The conduction velocity throughout
theatrial muscle is increased by three pathways:dheerior band, theaniddleband, and
theposteriorband. These bands merge near the next nodattlwentricular nodgAvV
node). The AV node is located in ttarioventricular fibrousring on the right side of
theatrial septum From the AV node the action potential travels to bumdle of Hisand
from there to thd?urkinje network From there the action potential is spread throughout
the ventricularwall. Figure 1.2 provides a schematic description of the nodes and the
conduction pathways of the heart.

The cardiac action potential has different characteristics in different regions of the

heart. It has different characteristics in thgial muscle, in the SA and AV nodes, in
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Atrioventricular node
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Figure 1.2: The conducting pathways of the heart(reproduced from [18]).
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Figure 1.3: Shape, duration and sequence of cardiac output potential (reproduced from
[18]).

Purkinjefibres and in therentricularmuscle (see figure 1.3). The duration of the action
potential @ction potential duratiohalso varies in different regions of the heart (figure

1.3). The shortest duration occurs in the SA and AV nodes and alsattiaé muscle
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Figure 1.4: Cardiac potentials in thventricleand SA or VA nodes (reproduced from
[18]).

(200-250nseg, while the longest duration occurs in tRairkinje fibres(300-400nseg

[18]. In thebundle of Histhe duration of the action potential is within the range of 250-
300msec The action potential characteristics of the following areas are (figures 1.3 and

1.4) [18]:

¢ In the ventricularmuscle the resting membrane potential is steady, approximately
at -90mV (Phase 4 in figure 1.4). The action potential has a rapid depolarisation
(Phase 0), reaches its peak at approximately2@nd afterwards it has a rapid
but short decline (Phase 1). Then, the action potential has a prolonged shoulder

(Phase 2). At the end, the membrane repolarises very quickly (Phase 3).

e The action potential of thatrial muscle has similar characteristics with trentric-
ular muscle. As figure 1.3 shows, it has less obvious plateau (phase 2) and longer

repolarisation.

¢ IntheSAandAV nodes the cells have less negative resting membrane potential than
other heart cells. In between action potentials, their membrane potential (Phase 4 in
figure 1.4) is also unstable and depolarises at approximatehyZ@rom around -
70mVto around -5€nV). The cells in these nodes have slower depolarisation (phase
0 in figure 1.4) than the cells in theentricularmuscles. This slow depolarisation

is called thepacemaker potentialThe action potential reaches its peak at around
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OmV and repolarises with speed similar to @ieial muscle (phase 3). This can be

seen in figure 1.3.

1.3.1.1 The Electrocardiogram (ECG)

The synchronised deporalisation spreading through the heart causes currents in the extra-
cellular fluid that establish field potentials over the entire body. These potential differ-
ences can be detected by placing electrodes on various places on the body’s surface. The
detected signal is called thedectrocardiogram(ECG). Prior to recording, the detected
signal needs to be amplified. Figure 1.5 provides a schematic figure of a standard ECG

record at resting heart rate.
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Figure 1.5: A standard ECG record (reproduced from [18]).

The pattern on the ECG signal depends in the position of the electrodes. However,
certain features are always present (figure 1.5). Fiveaveis produced by the spread
of electrical activity during thatrial depolarisation. Th€@RS complexs produced by
ventriculardepolarisation. Th& waveis produced byentricularrepolarisation. When
no repolarisation or depolarisation occurs, there is not potential difference in the ECG

record (theasometric ling. Theatrial depolarisation occurs during tii@RS compleand
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Figure 1.6: The depolarisation and repolarisation of the heart and the resulting ECG
record (reproduced from [18]).

does not produce any visible wave in the ECG signal. Theaveis longer than the

QRS complebut smaller in amplitude because tentricularrepolarisation is less well
synchronised than theentricular depolarisation. ThePQ interval (or thePR interval)

in figure 1.5 is the time required for excitation to spread througlatha, the AV node

and thebundle of His The time required for excitation to spread through teatricle

is denoted by th€Sinterval. TheQT interval measures the duration of thentricular

action potential, while thB Sinterval measures the duration of the action potential. Figure
1.6 shows the depolarisation and repolarisation of the heart and the resulting ECG record

[18].

1.3.2 The cardiac cycle

In normal conditions the human heart beats between 65 to 75 times per minute, which
means that each heart beat lasts aroundse@9ach heart beat is considered as a car-
diac cycle which is separated into a contraction phaget¢l¢ and a relaxation phase
(diastolg of the atria andventricles In order to analyse the cardiac cycle in more de-

tail it latter is separated into seven phases ([91]). Figure 1.7 provides an example of the



1.3 The cardiovascular system 30

Phase
1 2 3 4 5 6 7
. . L= . . :
f L 7 Lo . Aortic
120 : : : : oL . Pressure
: 1 <7 T /
q4 : : : ~ o
80 —| :
Pressure
(mmHg) : )
b Lo Left Ventricular
: Alrial Rressure
40 — : Pressure :
O —|
© end-diastolic volume
120 — /
LV Volume
(ml)
80 —
] end-systolic volume :
40 —
ECG 3
0 0.4 08
Time(sec)

Figure 1.7: An example of the pressure and volume of the heart during the cardiac cycle
(adapted from [91]).

volume of the leftventricleduring each phase of the cardiac cycle. In addition, it shows
the relationship between the ECG signal, Wieatricularvolume and the cardiac pressure

during the cardiac cycle. The seven phases of the cardiac cycle are:
e Theatrial contraction
e Theisovolumetric contraction

e Therapid ejection
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e Thereduced ejection

e Theisovolumetric relaxation
e Therapid ventricular filling

e Thereduced ventricular filling

Theatrial contractionis initiated by the electrical depolarisation of thiia (P wave
of figure 1.5). As theatria contract, the pressure within tlagrial chambers increases.
The pressure gradient which is generated across the open AV valves causes a rapid flow
of blood into theventricles(figure 1.7).

Theisovolumetric contractiors initiated by theventriculardepolarisationQRS com-
plexof figure 1.5). During the isovolumetric contraction all the valves are closed and the
volume of theventriclesremains the same. However, there is a rapid increase in the
intraventricularpressure due to depolarisation of thentricle

In therapid ejectionphase thentraventricular pressures exceed the pressures within
theaorta andpulmonaryartery. This causes theortic andpulmonicvalves to open and
blood is ejected out of theentricles

After therapid ejectionphaseyentricularrepolarisation occurd(waveof figure 1.5)
causing theventriculartension to fall and the rate @entricularemptying to be reduced.
This is called theeduced ejectiophase. In this phase thentricularpressure falls below
the blood pressure in the outflow tracts. However, the blood continues to flow due to its
kinetic energy.

When the total energy of the blood within tkientriclesis less than the energy of the
blood in the outflow tracts, theortic andpulmonicvalves closei§ovolumetric relaxation
phase). During this phase, thientricular pressures decrease. However, dltwal pres-
sures continue to rise due to venous return (figure 1.7). The volumes wéthecles
remain constant since all the valves are closed. The volume of the blood which remains
in the ventricleis called theend-systolicvolume. In the leftventricle the end-systolic

volume is about 5@l.
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The rapid ventricular filling occurs when theventricular pressures fall bellow the
atrial pressures. Then, the AV valves open andwaetricular filling begins. Theven-
tricles continue to relax, despite blood inflow, which causgsaventricular pressure to
continue falling by a few additionahmHg The opening of the AV valves and the rapid
flow of blood cause a rapid fall in thegrial pressure (figure 1.7).
In reduced ventricular fillingphase theentricularpressure rises as tiventriclesfill
with blood. This reduces the pressure gradient across the AV valves so that the rate of the

filling falls. The aortic pressure (angulmonary arterialpressure) continue to fall.

1.3.3 Relationship between cardiac volume and pressure

The performance of the cardiac muscle is affected by the extent to which it is stretched
during diastole, its current state of contractible energy andathal pressure against

which the blood has to be ejected [18]. The performance of the heart can be studied
by examining the relationship between the cardiac volume and the cardiac pressure. An

example of a volume-pressure curve of the \efitricleis given in figure 1.8.

240

160

Ventricular pressure (mmHg)

60 130
ESV EDV
Ventricular volume (ml)

Figure 1.8: Leftventricularvolume-pressure curve of a normal cardiac cycle (reproduced
from [18]).

During the diastole the heart fills with blood, increasing its volume (from an end-

systolic volume of 6fnl to an end-diastolic volume of 18tl). At this phase there is an
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increase in the pressure in the ledintriclefrom 5mmHgat point A (figure 1.8), where the

AV valve opens (apid ventricular filling phasg to around 16hmHgat point B where the

AV valve closes isovolumetric contractiophase). During thesovolumetric contraction
there is a rapid increase in the pressure (point C on figure 1.8). If at this phaserthe

was clamped so that blood could not escape, the pressure would rise to'pomfigure

1.8. This is themaximum systolic ventriculgressure. The pressure at C depends on the
diastolic pressures of thmorta. At C theaortic valve opensrapid ejectionphase) and
blood is ejected from the heart. During the ejection of the blood the ventricular pressure
increases from about &mHgto about 126hmHgand then declines reaching point D

(at this point the aortic valve closes) at about M®OHg The contraction phase from
point C to D is referred to aguxotonicbecause it is occurring against the afterload of

a varying aortic pressure. The aortic valve closes at D, where isovolumetric relaxation
occurs and the pressure drops from D to A. The area enclosed under the volume-pressure
loop (ABCDA) is a measure of thexternal workdone by the heart.

A number of measurements are important in clinical practice.stio&e volumés the
difference of theventricular volumes at the end-diastole (EDV) and end-systole (ESV).
The stroke volumemultiplied by the heart rate is theardiac output The ratio of the
stroke voluméo theend diastolicvolume is theejection fraction[4]. The volume of the
left ventricle theejection fractionand the wall thickness are the most important indices
of cardiac performance [132]. Table 1.1 provides representative values for these cardiac

measurements at rest and after exercising [18].

Cardiac output | Heartrate | Stroke volume | EDV | ESV
(Lmin™1) (beatsmin=1) (ml) (ml) | (ml)
Non-athlete
Rest 5 70 70 130 | 60
Max. exercise 21 190 110 130 | 20
Trained athlete
Rest 5 40 120 200 | 80
Max. exercise 34 190 180 200 | 20

Table 1.1: Representative values of cardiac measurements at rest and after exercising.
Values for trained athletes and non-athletes are provided (adapted from [18]).
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1.3.4 Cardiovascular diseases

According to the American Heart Association, 54% of deaths in United States in 2002
resulting fromcardiovascular diseasg€VDs) are due to theoronary heart diseasg].
Furthermore strokeresults to 18% of deaths caused by CVDs, whitegestive heart
failure and high blood pressure cause the 6% and 5% of deaths resulting from CVDs.
Finally, diseases of the arteries account for 4% of the deaths caused by CVDs. Figure 1.9

provides the percentage breakdown of deaths caused by CVDs [2].

Il Coronary Heart Disease
[ Stroke

Il Other

Il Congestive Heart Failure
[ High Blood Pressure
Il Diseases of the Arteries

4%
5%

13%

54%

Figure 1.9: Analysis of deaths caused by cardiovascular diseases (adapted from [2]).

Coronary heart diseasemre caused by the occlusion of coronary arteries. Occlusion
in the arteries can be caused from the build up of fatty tissue. If a coronary artery is
occluded, part of the cardiac muscle receives a restricted supply of oxygen. This causes
the loss of cardiac function which can even lead to death. Stiekedoes not affects
the heart but the arteries leading to and from the braistrékeis caused when a vessel
carrying blood to the brain is blocked by a clot. The consequences sfirbleare very
serious and result in the death of a part of the br&@ongestive heart failures the result
of the weakening of the heart by a chronic disease. Diseases of the arteries are most often
caused by a condition known atherosclerosisAtherosclerosiss caused by the buildup

of a plague in the arteries. The plaque consists of fatty substances, cholesterol, cellular
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waster products and other substan@gberosclerosiseduces the blood flow through the

artery and can cause it to lose its elasticity.

1.4 Imaging of the cardiovascular System

The main imaging modalities of the cardiovascular system>&Ray Ultrasound (US)
Positron Emission Tomography (PEBingle Photon Emission Computed Tomography
(SPECT) Computed Tomography (C&hdMagnetic Resonance Imaging (MR more
detailed description of the imaging methods can be found by Suetens [188] and by Webb
[203]. Each imaging modality provides a different type of information and is used for

specific purposes [122].

1.4.1 X-Ray

In X-Rayimaging of the heart a radio-opaque medium is injected into the blood in the
heart. The contrast medium is injected directly intodlrgal muscle yventriclesor vessels

of the heart by means of the cardiac catheter. After introducing the medium a recording
of the chambers or the vessels of the heart is made. The recoatigg¢ardiogram

is made by using a rapid-sequence digital subtraction technique. In this technique, one
image of the heart is acquired before the contrast medium is added and one after the
injection of the medium. Then, the first image is subtracted from the contrast enhanced
image allowing the anatomy of the blood vessels and the blood supply of an organ to be
imaged with high spatial (Orfim) and temporal (20-50se¢ resolution. An example of
coronary angiography is shown in figure 1.10.

Angiocardiography is commonly used in diagnosis of cardiac diseases and in planning
the surgical treatment of the heart. It allows clinicians to assess the status of the coronary
arteries inschemialisease, the function of the cardiac valves, the congenital heart lesions
and the abnormalities of the great vessels. Furthermore, it allows clinicians to measure

the volume of the cardiac chambers.



1.4 Imaging of the cardiovascular System 36

Figure 1.10: An example of coronary angiography.

1.4.2 Ultrasound

Ultrasound(US) employs pulsed, high frequency sound waves. When an ultrasound wave
meets an interface of differing echogenicity, the wave is reflected, refracted and absorbed.
The reflected sound waves are sensed by the transducer (which also emits the sound
waves) and then, processed to produce the image. The ultrasound beam can be aimed
at specific directions and obeys the laws of optics with regards to refraction, reflection
and transmission. The intensity of the ultrasound beam decreases as it travels away from
the ultrasound source due to divergence, absorption, scatter and reflection of the wave
energy at tissue interfaces. Stronger reflections are returned when the ultrasound beam is
perpendicular to the imaged structure. Fig 1.11 shows an example of a cardiac ultrasound
image.

Ultrasoundproduces high resolution images and is capable of resolving fine anatomi-
cal structures. The thickness, size and location of various soft-tissue structures in relation
to the origin of the ultrasound beam can be calculated at any point in time.

Ultrasoundis frequently used for the imaging of the heaatljocardiography There
are three types aéchocardiographyM-modeUS, B-mode(brightness) US anBoppler

mode US. TheM-modeprovides one dimensional view (depth) into the heart. Bhe
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Figure 1.11: An example of cardiac ultrasound.

modeUS uses an array of transducers which allows a plane of tissue to be imaged, thus
making the anatomical relationships between different structures easier to appreciate than
with the M-modeimaging. Dopplerimaging allows evaluation of blood flow patterns
(direction and velocity) by detecting frequency changes occurring when ultrasound waves
reflect off individual blood cells moving towards or away from the transducer.

The recent advances in the developmentitfasoundimaging enable the acquisition
of 3D images which overcome some limitations of the conventiondUREasoundimag-
ing. 3D Ultrasoundimaging [57] has the potential to provide real time 3D visualisations
of the heart.

Echocardiographyis more frequently used to evaluate cardiac chamber size, wall
thickness, wall motion, valve configuration and motion and the proximal great vessels.
Ultrasound has a high temporal resolution and is widely used because it is more portable
and less expensive than other modalities. However, the signal to noise ratio of the US
images is low. The fact that it is operator dependent also leads to significant artifacts

especially in 3D imaging.
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1.4.3 Nuclear imaging

In nuclear imaging a tracer containing radioactive isotopes is administrated to the patient
prior to the imaging procedure. The isotopes reach the organs as part of its metabolic
process and emit gamma ray photos which are used to reconstruct maps of the concen-
tration of the tracer over time. Two kinds of imaging can be performed depending on the
tracer module:Positron Emission Tomographgnd Single Photon Emission Computed

Tomography

1.4.3.1 Positron Emission Tomography

Positron Emission Tomograpli?ET) has improved the understanding of the biochemical
basis of normal and abnormal functions within the body. Positrérg @re positively
charged electrons. They are emitted from the nucleus of some positively charged ra-
dioisotopes (excessive number of protons). In positron emission the nucleus is stabilised
by converting a proton into a neutron (i.e. by removing a positive charge). During the
conversion the element formed from positron decay is not radioactive. When a positron
comes in contact with an electron, the mass of the two particles is turned into two 511-
KeV gamma rays which are emitted with 180 degree angle to each other. These rays
escape from the human body and can be recorded by a number of detectors. The detec-
tion of the two rays is called a coincidence line. The coincidence line provides a unique
detection scheme for forming tomographic images with PET.

Positron Emission Tomography (PET) provides valuable information regarding the
physiology of the heart. It provides a unique tool for biochemistry and physiology mea-
sure of the cardiac muscles. It can be used to localise and describe coronary artery dis-

eases and also to identify injured but zoetic myocardium.

1.4.3.2 Single Photon Emission Computed Tomography

In Single Photon Emission Computed TomografBRECT), radioactive tracers are in-

jected to the subject. The radioactive tracers emit radiation within the organs. The SPECT



1.4 Imaging of the cardiovascular System 39

camera is a large scintillation crystal connected to multiple photo-multiplier tubes which
can detect the radiation emitted from the body. The technology of SPECT arises from
positioning the camera head at a large number of angles around the body accumulating as
many as 180 views of a specific organ.

There are techniques for the direct imaging of the myocardium or the imaging of the
blood pool. Nuclear-tagged compounds are used for selection of the correct radioactive
material for a specific type of tissue. For example for myocardial imaging, compounds
such as Thallium 201 are used. SPECT imaging is similar to PET but only one gamma-ray
is emitted per nuclear disintegration while in PET imaging two gamma-rays are emitted.

SPECT is used to assess the location and extergchEmiain the heart resulting
from coronary heart disease. This modality provides a 3D density map of blood in the
myocardium. In order to identifyschemi¢ infarcted and normal tissues, a stress-rest
study is performed. In the stress-rest study images are acquired while the patient is at rest
and while the patient heart is under stress (by exercising). If the density distributions in the
two perfusion maps are normal in the stress and rest images the state of the myocardium
isnormal The state of the myocardiumischemidf the density distribution in the stress
perfusion map is low but normal in the rest perfusion map. The state of the myocardium

is infarctedif the density distribution in both the rest and stress images are low.

1.4.4 Computed Tomography

Computed Tomograph{CT) is a technique based on x-rays. The resulting images are
formed by x-ray absorption of tissue. The technique uses a narrowly collimated x-ray
beam to irradiate a slice of the body. The amount of radiation transmitted along each
projection line is collected by a number of photo-multiplier tubes. The image is formed
by rapidly acquiring a large number of views by rotating the tube and the detectors around
the body. In cardiac imaging the advantage of CT is its ability to image the cardiac
arteries. CT provides anatomical images with a high spatial resolution and with a good

contrast between bone structures and soft-tissue structures. However, the contrast between
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different types of tissue is very poor and can be only enhanced using contrast materials.

Figure 1.12 shows an example of a CT image of the heart.

Figure 1.12: An example of cardiac CT.

The motion artifacts due to respiratory movement affect the quality of CT images.
These artifacts occur when one or more slices acquired in different breathholds are dis-
placed due to the breathing motion of the patient. One major disadvantage of CT modal-
ities is the use of x-ray radiation. Even though a large number of measures have been
taken to reduce the amount of radiation during a CT scan, it is generally not considered
acceptable to expose a patient to such an amount of radiation unless when it is absolutely
necessary. The main applications of CT in cardiac imaging are the evaluation of cardiac

masses and the evaluation of aortic and pericardial diseases.

1.4.5 Magnetic resonance imaging

Magnetic Resonance ImagifiyIR) plays an increasingly important role for the imaging

of the cardiovascular system. The physical principles of MR are more complex than any
of the previous tomographic modalities. MR uses strong magnetic fields to produce maps
of atomic nuclei. Hydrogen is the most commonly atomic nucleus in the human body. In
the human body, hydrogen atoms are contained in water and fat molecules. The spin of
the atomic nuclei could be considered as a magnetic vector, causing the proton to behave

like a magnet. The image acquisition involves an initial sequence of exciting pulses and
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the recording of the emitted signal. The amplitude of the signal is used to generate maps
showing the anatomy of the heart.

The advantage of MR modality is the high resolution imaging of the cardiac anatomy
in tomographic planes of any desired position and orientation. MR imaging allows not
only the acquisition of 3D images describing the anatomy of the heart but also the acquisi-
tion of 3D image sequences (3D + time) describing the cardiac anatomy and function. The
high tissue contrast enables the assessment and measurement of different cardiac struc-
tures. A detailed discussion regarding the principles of MR imaging is outside the scope
of this thesis. For more detailed analysis of the MR imaging see [24, 195, 117, 97, 118].

The quality of cardiac MR images can be affected by a large number of factors:

e The constant motion in all three dimensions that the heart undergoes during the

cardiac cycle.

e The motion artifacts due to respiratory movement. These can occur when one or
more slices acquired in different breathholds are displaced due to the breathing

motion of the patient.

e The partial volume effects. This problem occurs when a voxel contains two or more
types of tissue and as a result the edges of the images are blurred. This problem is
usually caused due to the anisotropic resolution of the images. The in-plane resolu-

tion can be high (hm) but the through-plane resolution is usually low ).

Conventional MR imaging techniques require a sequence of excitations to reconstruct
the image. These excitations need to be triggered away at the same part of the cardiac cy-
cle. In order to achieve this the electrocardiogram is used resulting in a technique known
ascardiac gating There are two main techniques for synchronising the measurement of
MR data with the cardiac cycld2rospective gatingechniques wait for the trigger signal
to start acquisition of data. The data are acquired using excitations at a fixed time points in
the cardiac cycle. The data collection is paused at the end of the cardiac cycle and and the

sequence waits for the next trigger signal. As mentioned in section 1.3.1Rlvilaeeof
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the ECG signal corresponds to the beginning of the contraction phase of the heart. After a
small time intervalt .4, the first frame of the image sequence is acquired (figure 1.13).
After the acquisition of the first frame, frames are acquired evgy..msec In retro-
spective gatinglata collection is done continuously throughout the entire cardiac cycle.
Then, the recorded trigger signal is used to retrospectively assign the data to the different

positions in the cardiac cycle.

l

diastole — i— systole— - diastole —

time

Figure 1.13: An example of an ECG-gated acquisition of a cardiac MR image sequence:
The parametety.,,, describes the delay after tiewaveafter which the MR acquisition
starts whilet, rrs.; describes the temporal resolution of the image sequence.

Conventional ECG-gatedpin echoand gradient echotechniques were the first to
be applied in the imaging of the heart. However, these techniques are slow and cause
degradation in the image resolution. Rapid acquisition and improvement in the image
contrast are of growing importanc®ual Echq Fast Spin EchdFSE) andTurbo Spin
Echo(TSE) are variants of the firspin echaechniques. They are normally used for the
anatomic delineation of mediastinum and great vesselst Low-Angle ShafFLASH),
Turbo-FLASH Turbo Field EchdTFE) andEcho Planar ImagindEPI) are also variants
of the firstgradient echdechniques. They are commonly used for coronary artery imag-
ing, ventricular function assessment, myocardial perfusion assessment, valvular motion
and for valvular regurgitation assessment. The differences between these techniques and

the conventional ECG-gated techniques is that they use lower flip angles.
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In order to enable cardiac motion studies to be performed, magnetisation tags within
the heart walls are introduced in the images (tagged images) [7, 4, 5]. Tagging is achieved
by reducing the magnetisation in limited regions within the cardiac wall. These regions
appear different if the image data are acquired before the magnetisation of the perturbed
areas. In addition, if the cardiac wall moves between the tagging and imaging times, the
magnetisation tag will follow the tissue [4]. The most commonly used magnetisation se-
guences areSpatial Modulation of MagnetisatiaisPAMM) [7, 6, 207],Complementary
Spatial Modulation of MagnetisatioqfC SPAMM) [58] andDelays Alternating with Nuta-
tions for Tailored Excitatior(DANTE) [129]. MR imaging can also be used for analysis
of the blood flow. Inphase-contraséR imaging velocity data is additionally acquired in
the form of three different images;, V,, V., corresponding to the Cartesian coordinates
of the the velocity vectol” [142].

Ultrafast methods such &multaneous Acquisition of Spatial Harmon{&MWASH)

[184] andsensitivity encodingSENSE) [164] have been investigated to reduce the effects
of the cardiac motion to the image quality. These methods use combination of signals
from an RF coil array to acquire multiple lines of k-space.

MR imaging is also used to access blood perfusion in the myocargiarfuS§ionMR
imaging). Blood perfusion in tissues can by studied by using contrast agents. Perfusion
MR techniques use both exogenous tracers and endogenous contrastet@hef31]
developedr'l Fast Acquisition Relaxation Mappirf@1-FARM) to obtain single-slice T1
maps of the heart using exogenous tracers. In techniques using endogenous contrast only
indirect measures of the blood flow can be obtained. The endogenous contrast techniques
are categorised a&pin-labeling205], magnetisation transfer contrafit61, 9] andblood-
oxygen dependent contrd406].

A recent development, the steady state free precession imaging with balanced gradi-
ent (TrueFISP), has been shown to be less susceptible to artifacts caused by slow flow
[155, 156]. TrueFISP also provides significantly enhanced blood-myocardial contrast in

comparison with the conventiongtadient echanechanism.
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1.4.5.1 Imaging planes

MR images are acquired in standard imaging planes (coronal, sagittal and transverse).
However, these planes are not suitable for the imaging of the LV of the heart because
its location can lead to varying obliquity which may cause significant artifacts. When
imaging the heart, planes that are oriented parallel or perpendicular to the long-axis of the
left ventricleare used instead of the standard planes. These planes are called horizontal
and vertical long-axis and short-axis views. The short-axis and the vertical and horizontal
long-axis planes are shown in figure 1.14. Examples of such planes can been seen in
figure 1.15. In this figure, the left image is a short-axis view of the heart, the image in
the middle is the horizontal long-axis and the image on the right is the vertical long-axis.
The space correspondence between the short-axis and the long-axis is also displayed in

the figure.

A
O

" ﬁ Base Apex

Vertical long
axisview

Apex
w é 3
Right Base Left

Figure 1.14: The cardiac imaging planes [27].

1.4.6 Comparison of imaging modalities

This chapter has provided a description of the cardiovascular system and its imaging

modalities. Each image modality has its own properties and provides different types of
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Long axis hori zontal

Short axis Long axis vertical

Figure 1.15: Two different MR imaging views of the heart. On the left is the short-axis
view, on the middle is the horizontal long-axis view and on the right is the vertical long-
axis view. The space correspondence between the short-axis and the long-axis views is
also displayed by the rectangular boxes.

information. O ’'Dellet al. describe a number of criteria for the objective comparison
between image modalities [132]. These criteria include the signal quality (indicated by
signal to noise ratio (SNR)), the degree of difficulty in distinguishing the myocardium
from its neighbouring tissue (indicated by the contrast to noise ratio (CNR)), the temporal
and spatial resolution, the susceptibility to image blurring and artifact, the acquisition and

analysis time, the relative cost and ease of use. Table 1.2 provides a comparison between

the properties of the above imaging modalities.

Imaging properties
X-Ray us PET SPECT | CT MR
Invasive Yes No Yes Yes No No
2D/3D 2D 2D/3D | 3D 3D 3D 3D
Resolution || 0.1mm <1.5mm| <5mm <15mm | <Imm ~1mm(in X,y)
and 5-10nm
(in z)
CNR Low Low High High

Table 1.2: Comparison between different cardiac image modalities.

1.5 Contributions

In recent years, with the development of new sufficient computational methods for the

analysis of cardiac MR images, MR imaging has emerged as an important modality for
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the imaging and understanding of the cardiovascular system. MR imaging is becoming
the modality of choice due to its flexibility and versatility. It is safe, non-invasive and can
acquire both 3D and 4D images with high spatial and temporal resolution. Even though
the use of MR imaging in clinical practice is rapidly increasing, cardiac MR imaging a
new technology primarily limited to specialised imaging centers.

The focus of the research presented in this thesis is the development of spatio-temporal
registration methods and methods for modelling the cardiac anatomy and function. The

work presented in this thesis makes the following main contributions:

e A new method for the simultaneous spatial and temporal alignment of cardiac MR
image sequences to the same coordinate system is presented. Initially, the presented
registration algorithm had the ability to correct spatial misalignment of affine nature
between the image sequences and also temporal misalignment which could be the
result of differences in the length of the cardiac cycles of the subjects and in the
temporal acquisition parameters. Then the registration method is extended by the
introduction of adeformablespatial transformation model which not only corrects

global spatial shape differences but also local differences in the cardiac anatomy.

e The registration method for the simultaneous spatial and temporal alignment of
cardiac MR image sequences is extended by the introductioniefcamableem-
poral transformation part. Therefore, this spatio-temporal registration method has
the ability to correct spatial misalignment between the images caused by global and
local shape differences. Furthermore, it has the ability to correct temporal misalign-
ment caused by differences in the length of the cardiac cycles and in the dynamic

properties of the hearts.

e Another method for the spatio-temporal alignment of cardiac MR image sequences
is presented. As with the earlier method, this method also corrects spatial mis-
alignment between the images caused by global and local shape differences and
temporal misalignment caused by differences in the length of the cardiac cycles

and in the dynamic properties of the hearts. The major difference compared to the
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previous method is that this method optimises the temporal and spatial components
separately. The temporal mapping of the image sequences is based on a normalised
cross-correlation measure, while the spatial mapping is based on image information
from only the first frames of the sequences. This registration method is significantly
faster than the previous methods. Moreover, this registration method can be used to
enable only the temporal alignment of cardiac MR image sequences, since it does
not require the cardiac image sequences to be aligned in the spatial domain in order

to find their temporal correspondence.

e A 4D probabilistic atlas describing the cardiac anatomy and function (only in terms
of how the cardiac anatomy changes over the cardiac cycle) is developed. The
probabilistic atlas contains information regarding the anatomy and function of a
healthy heart in the form of tissue probability maps. Separate probabilistic atlases
for theleft ventricle theright ventricleand themyocardiumhave been developed.
Modelling the cardiac anatomy function addresses the limitations of current prob-
abilistic atlases of the heart which are limited only to the cardiac anatomy and not

the cardiac function.

e A statistical atlas containing information regarding the anatomy of a healthy heart
and how the anatomy of the heart changes during the cardiac cycle has been also
constructed. In order to build the statistical atlas the distribution space of the car-
diac shape is subdivided into two subspaces. The first distribution space describes
the changes in the cardiac shape caused by different subjects. The second distribu-
tion space describes the changes in the cardiac shape caused by the cardiac cycle.
Two separat@rincipal component analys(®CA) have been performed in order to
calculate the most significant modes of variation of each subspace. As in the prob-
abilistic atlas, separate statistical atlases for each of the three anatomical structures

have been constructed.

e A possible use of the statistical atlases for the classification of cardiac data is

demonstrated. The statistical atlases of the myocardium are used for the classifica-
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tion of image sequences from normal subjects as well as subjects with hypertrophic

cardiomyopathy.

1.6 Overview of the thesis

The dissertation is divided in two main parts and the final conclusions. The first part of
the dissertation includes this chapter and two chapters describing the areas of registration
of cardiac images and modelling of anatomy. Chapter 2 describes the underlying theories
behind image registration and presents an overview of different registration techniques
and their application in cardiac imaging. Chapter 3 describes the underlying theories for
anatomy modelling and presents an overview of different modelling methods.

The second part presents the contributions of this dissertation. Chapter 4 presents a
method for the spatio-temporal alignment of cardiac MR image sequences. The method
corrects spatial misalignment of affine nature between the image sequences and also tem-
poral misalignment which may be the result of differences in the length of the cardiac
cycles of the subjects. Later in the chaptededormablespatial transformation model is
introduced enabling the correction of local differences in the shape of the hearts as well
as global differences. The methods described in chapter 4 have been published in [152],

[153];

e D. Perperidis, A. Rao, R. Mohiaddin, and D. Rueckert. Non-rigid spatio-temporal
alignment of 4D cardiac MR imageB Second International Workshop on Biomed-
ical Image Registration (WBIR '03)Lecture Notes in Computer Science, LNCS
2717, pages 191-200, 2003.

e D. Perperidis, A. Rao, M. Lorenzo-Vad, R. Mohiaddin, and D. Rueckert. Spatio-
temporal alignment of 4D cardiac MR imagés Functional Imaging and Mod-
eling of the Heart (FIMH '03) Lecture Notes in Computer Science, LNCS 2674,
pages 205-214, 2003.
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Chapter 5 presents two registration methods fodéfermablespatio-temporal align-
ment of cardiac MR image sequences. These methods correct spatial misalignment be-
tween the image sequences caused by global and local shape differences. In addition, they
have the ability to correct temporal misalignment caused by differences in the length of
the cardiac cycles and in the dynamic properties of the hearts. The methods described in

chapter 5 have been published in [151], [150], [147], [148]:

e D. Perperidis, R. Mohiaddin, and D. Rueckert. Spatio-temporal free-form registra-
tion of cardiac MR image sequencel Medical Image Analysjs9(5):441-456,
2005.

e D. Perperidis, R. Mohiaddin, and D. Rueckert. Fast spatio-temporal registration
of cardiac MR image sequencesn Functional Imaging and Modeling of the
Heart (FIMH’05), Lecture Notes in Computer Science, LNCS 3504, pages 414-
424, 2005.

e D. Perperidis, R. Mohiaddin, and D. Rueckert. Spatio-temporal free-form regis-
tration of cardiac MR image sequencds.Seventh Int. Conf. on Medical Image
Computing and Computer- Assisted Intervention (MICCAI,@&cture Notes in
Computer Science, LNCS 3217, pages 911-919, 2004.

e D. Perperidis, R. Mohiaddin, and D. Rueckert. Spatio-temporal free-form registra-
tion of cardiac MR image sequences Proc. of Medical Image Understanding

and Analysis '04pages 157- 160, 2004.

Chapter 6 presents a method for building a probabilistic atlas of the cardiac anatomy
and function as well as a method for building a 4D statistical atlas of the cardiac anatomy.

The methods described in chapter 6 have been published in [149], [145], [146]:

e D. Perperidis, R. Mohiaddin, and D. Rueckert. Construction of a 4D statistical atlas
of the cardiac anatomy and its use in classificatibmEight Int. Conf. on Medi-
cal Image Computing and Computer- Assisted Intervention (MICCA| 10&jture

Notes in Computer Science, 2005.
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e D. Perperidis, M. Lorenzo-Vaék, R. Chandrashekara, A. Rao, R. Mohiaddin, G.
I. Sanchez- Ortiz, and D. Rueckert. Building a 4D atlas of the cardiac anatomy
and motion using MR imaging.In IEEE International Symposium on Biomedical

Imaging pages 412-415, 2004.

e D. Perperidis, M. Lorenzo-Vaik, R. Chandrashekara, A. Rao, R. Mohiaddin, G.I.
Sanchez- Ortiz, and D. Rueckert. Building a 4D atlas of the cardiac anatomy and
motion using MR imagingln Proc. of Medical Image Understanding and Analysis

'04, pages 9-12, 2004.

Chapter 7 discusses the presented algorithms, their limitations and the conclusions
which can be drawn from this work and proposes potential directions for future work in

this area.



Chapter 2

Image registration

Image registration is an active research area in computer vision, image processing and
medical image processing. Reviews on image registration techniques can be found in
[21, 208], on medical image registration in [77, 104] and on cardiac image registration in
[116]. This chapter provides a description of medical image registration techniques and

in particular cardiac image registration techniques.

2.1 Image registration

The goal of image registration is to calculate a mappifigwhich relates each point

of one imagel to a corresponding anatomical point in the reference imagd-igure

2.1 provides an example of the image registration. Images usually have two dimensions
x = (z,y), three dimensions = (z,y, z) or four dimensionx = (x,y,z,t) . If the
images can be defined as arrays (two, three or four dimensional) of a given size denoted

by I and, then the mapping between them can be expressed as ([21]):
I'(x) = g(I(T(x)) (2.1)

wherex is a vector of the point’s locatior](x) and/(x) is the intensity of imagé’ and
I in positionx, g is the intensity transformation arndis the coordinate transformation.

The transformatioril’ can have several forms. In this thesis the following types of
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Figure 2.1: A schematic figure of the image registration.

transformation are considered: rigid, affine and non-rigid transformations. A rigid trans-
formation allows only rigid operations to be performed (rotation and translation) i.e. op-
erations that maintain distance between points. An affine transformation (rotation, trans-
lation, scaling and shearing) maps parallel lines to parallel lines. A non-rigid transforma-
tion allows the object additionally to deform. Finding the best transformaliprcan be

broken into the following tasks [21]:
e Selection of the feature space
e Selection of the similarity measure
e Selection of the type of the transformation
e Selection of the optimisation strategy

Maintz et al. described a classification approach for registration methods [114]. The

main classification criteria are the following:
1. Dimensionality of the images: 1D/1D, 2D/2D, 2D/3D, 3D/3D, 4D/4D, etc.
2. Feature space

(a) Extrinsic
(b) Intrinsic

(c) Non-Image Based
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3. Nature of the transformation

(a) Rigid
(b) Affine

(c) Non-rigid
4. Domain of the transformation
5. Interaction
6. Optimisation procedure
7. Modalities involved

(a) Monomodal

(b) Multimodal
8. Subject

(@) Intra-subject
(b) Inter-subject

(c) Atlas

Monomodakegistration methods use images acquired by the same imaging modality
(for example MR, SPECT, CT) whilenultimodalregistration methods combine images
acquired by two different types of modalities (for example MR/SPE@itya-subject
registration approaches register images from the same subject (for example before and
after treatment), whilenter-subjectregistration approaches register images from two dif-
ferent subjectsintersubjectregistration methods are frequently used in the construction
of models of anatomical structureatlas basedegistration approaches register an atlas
to a specific subject or a medical atlas to another afidlas basedegistration methods

are frequently used for the segmentation of medical images.
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2.2 Feature space of the registration

One of the first steps when registering two images is to decide upon the feature space
to use during the approach. This may be the image itself (i.e. intensity values), other
features of the images (edges, contours, surfaces, etc.) and foreign objects inserted to the
image space. The registration methods can be classified according to their feature space

as:

e Extrinsicregistration methods. These methods calculate the optimal transformation
using information provided by foreign objects which are introduced into the image
space. For example medical imaging methods use artificial fiducials attached to
the patients. The fiducials need to be well visible in order to be very accurately
detectable. The most commonly used fiducials in brain imagingsi®i@otactic
framewhich is screwed rigidly to the patient’s outer skull. The stereotactic frame is
considered as the "gold-standard” for registration accuracy. Other artificial markers
include objects screwed to the bones. The advantaggtohsicregistration meth-
ods is that is easy and fast to calculate the image transformation mapping. However,
the quality of the transformation mapping will always depend on the correct plac-
ing of the markers. Furthermore, in cardiac imaging it is impossible t@xismsic

registration methods since invasive markers cannot be placed on the heart.

e Intrinsic registration methods. These methods calculate the optimal transformation
using information contained within the images. In these methods the registration
procedure can be based on identified salient features (landmarks and edges), on
segmented structures, on extracted surfaces or directly on measures computed from
the intensities of the images. Calculating salient features and obtaining segmented
structures can be done manually or by using automated approaches. Manual land-
marking and segmenting images is a very time consuming task prone to errors. A
number of approaches have been developed which use image registration methods
to automatically segment cardiac images [109] and to automatically identify land-

marks in cardiac images [63].
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¢ Non-image basedegistration methods. These methods calculate the image map-
ping without using image information. For example in cases where the coordinate
systems of two images are calibrated with respect to each other, the mapping can

be found without using image information.

2.3 Transformations

As mentioned above, the transformation model can have a large number of forms de-
pending on the specific application. The transformation model imposes mathematical
constraints on the type of geometric distortions that can be imposed during the registra-
tion procedure. The number of parameters needed to describe a transformation are often
called degrees of freedomThe number ofdegrees of freedordepends on the type of
transformation type and also on the dimensionality of the images. For example if the
transformation utilises only translation and the images are 3D, then the transformation
will have threedegrees of freedorftranslation along the x-axis, y-axis and z-axis). The
domain of the transformation gobal if the transformation applies to the entire image

andlocal if the transformation applies to a part of the image.

2.3.1 Linear transformations

Using homogeneous coordinates a linear transformation can be expressed as matrix mul-

tiplications. In 3D, a linear transformation has the following form [206]:

x Qo1 Ap2 Qo3 Ay X
/

Yy ai; Qaiz2 a13 Ay Yy

/ / /
Tlinear(x Y,z ) = = (22)

/!

z Q21 Q22 Q23 Ay z

1 0 0 0 1 1

The linear transformation is defined by the parameigts
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2.3.1.1 Rigid transformation

The rigid body model is the most constrained transformation model in the area of medical

image registration. It ensures that distances and internal angles within an image structure

will not change during the registration. As the name suggests, the rigid body model

allows only operations which maintain the shape and size of the anatomical structures,

i.e. translation and/or rotation. The rigid body transformation model in 3D lueg)ees

of freedormand has the following form:

Trigid(xla yla Z,) =

To1r To2
i Ti2

21 Ta2

0 O

13

23

703 ta
ty
ts

0 1

(2.3)

The parameters form a3 x 3 matrix which rotates the image around in the x-, y- and

z-axis while the parametetdranslate the image along the x-, y- and z-axis. A transfor-

mation utilising only translation can be expressed as:

P
Ttranslation (:E Yy Y,z ) =

(2.4)

Furthermore using the same matrix notation, a rotation around the x-axis can be ex-

pressed as:

Trotation(xla yla Z,) =

1 0
0 cosf

0

sind

0 —sinfd cosb

0 0

0

(2.5)

where the parametéris the rotation angle. Similarly, rotations around the y- and z-axis
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Cardiac Images
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Figure 2.2: Examples of 2D linear transformations.

can be expressed in matrix form.

2.3.1.2 Affine transformations

A more general class of transformations is the affine transformation. The affine transfor-

mation model allows rotation, translation, scaling and shearing. In 3D, it has the following

form:
x 011 012 bz 014 z
! 0 0 0 0
Taffme(ilfl, y,’ z’) _ Yy _ 21 U22 U2z Uaoa Yy (2.6)
2z 031 Oz O3 O34 z
1 0 0 0 1 1

where the coefficienté parameterise the twehdegrees of freedowf the transformation.
The affine transformation model ensures that lines which are parallel before the transfor-
mation will remain parallel after the transformation. Figure 2.2 provides examples of 2D

linear transformations.
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Cardiac Images

Figure 2.3: Example of a 2D non-linear transformation.

2.3.2 Non-linear transformations

The above transformations (rigid and affine) preserve straightness of lines but they can-
not model the change in the shape of an object which has undergone local deformation.
For example several applications require a transformation which can accommodate tissue
deformation or the substantial anatomical variability across individual subjects (e.g. the
variability in the shape of a healthy heart). Linear transformations preserve straightness
of lines while non-linear transformations deform the image structures. Hence, non-rigid
transformations are suitable for this kind of applications because they allow the objects to
deform. Figure 2.3 provides an example of a 2D non-linear transformation.

Unlike the rigid and affine transformations, non-rigid transformations are still sub-
ject of ongoing research activity. An overview on hierarchical non-linear registration
approaches for medical images can be found in [104] while an overview of common reg-

istration approaches is given in [74].
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2.3.2.1 Spline based transformations

The term splines originated in engineering. In order to model ships and planes, the engi-
neers used to employ long flexible strips of wood or metal, the splines. The strips were
bent to the desired shape by applying a set of weights at particular places. This is the
main idea behind the use of splines to model an image transformation. In spline based
transformations, the applied weights correspond to the displacement of a particular point.
A detailed description of the usage of splines in signal and image processing can be
found in [196]. Many registration techniques which use splines based transformations
assume that a set of corresponding landmarks;ahé&ol pointsof the spline based trans-
formation, can be identified in both images. The transformation either interpolates or
approximates the displacement required to map each control point of the reference image
to the corresponding control point in the other image. Furthermore, a spline based trans-
formation provides a smooth varying displacement field between these control points.

The interpolation condition can be written as:

T(¢:) =¢, i=1,...n (2.7)

whereg; is the location of the control point in the reference image @nid the location
of the corresponding control point in the other image. There is a large number of ways to
determine the control points. For example, anatomical landmarks which can be identified
in both images can be used to define the spline based transformation. An alternative
approach is to identify the control points to have equal spacing along the two images
forming a rectangular mesh [45]. In such case, the control points are referpseéado-
landmarksand they are only used as a parameterisation of the transformation.

Thin-plate splines are a family of splines based on radial-basis functions. They have
been formulated by Duchon [52] and Meinguet [124] for the surface interpolation of scat-

tered data and they have also been used in a large number of image registration approaches
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[68, 15, 16]. They can be defined as a combination tddial functiong(s):

tx,y, 2) = o+ onx + gy + auz + Y bio(|¢; — (x,y,2))) (2.8)
j=1
The transformation is defined as three separate splines(t,, t,,t3)*. The coefficients
« characterise the affine part of the transformation while the coeffichaatitaracterise the
non-affine part. There aB interpolation equations (equation 2.7). In order to determine
3(n+4) coefficients uniquely, 12 additional equations are required. These equations must
guarantee that the sum of the coefficiehis equal to zero and that their cross-product is

equal to zero as well. This can be expressed with the following matrix form:

® ¢ b P’
= (2.9)

®T 0 a 0
In the above equatiom,is an x 3 matrix of non-affine coefficientsy is a4 x 3 vector
of affine coefficients an® is the kernel matrix witt®,;; = (|¢; — ¢,|). The solution for

« andb is a thin-plate spline transformation which interpolates the displacement at the

control points. The radial basis function of a thin-plate spline is defined as:

s|?log(ls|), in2D
o 10

s, in 3D

2.3.2.2 Free-form deformations

Radial basis functions have infinite support. Therefore, each control point has a global
influence on the entire transformation. This is undesirable in cases where local defor-
mations need to be modelled. Furthermore, the computational complexity of a thin-plate
spline is high and not efficient.

Free Form Deformation§FFDs) have been introduced by Sederberg and Parry [179]
and are used to model local deformations. This approach requires a rectangular mesh

of control points with uniform spacing to be placed on the image. An FFD deforms an
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object by manipulating the underlying mesh of control points. To define an FFD the
spatial domain of the image volume is denotedas= {(z,y,2) |0 <2z < X,0<y <

Y,0 < z < Z}. Let® denote ar, x n, x n, mesh of control points; ; , with uniform
spacing). Then, the displacement fieldcan be evaluated by the trivariate tensor product

of Bernstein polynomials:
l m n
u(z,y,2) = Z Z > BiB]Bi1 - )t (1 —y)" Uy (1 - 2) 2 (2.11)
k=0

whereg; ; . IS a vector containing the Cartesian coordinates of the control points. The
polynomials are defined by! = (j)2'(1 — x)"~" where(j) is a binomial coefficient

(figure 2.4):

Boo(z) = 1

Boa(z) = (1—x)
Byi(z) = =

Boa(r) = (1—2x)?
Bis(z) = 21 —a)x
Bas(z) = 2°
Bos(r) = (1—=x)°
Bis(z) = 3(1—2)%
Bos(z) = 3(1—x)?

Bg}g(l’) = ZE3

An FFD could also be formulated as the 3D tensor product of B-Splines instead of the
non-tensor product of Bernstein polynomials [179]. The most commonly used B-Spline

function is the cubic B-Spline [99, 100]:

Tlocal(xv Y, Z) = Z Z Z Bl(U)Bm(U)Bn(w)¢i+l,j+m,k+n (212)

=0 m=0 n=0
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Figure 2.4: Graphical representation of some of the first Bernstein polynomials

0.7

Figure 2.5: Graphical representation of B-Splines.

wherei = [ =] —1.j=[2]-Lk=[Z]-Lu=2-[tlv=2L—[t]w=

Z L
nz Ny Ny Ny

== Lnizj and whereB, represents theth basis function of the B-Spline (figure 2.5):

Bo(u) = (1—u)*/6
Bi(u) = (3u®—6u®44)/6
By(u) = (—3u®+3u*+3u+1)/6

Bs(u) = u*/6

B-Splines are locally controlled which makes them computationally efficient even for

a large number of control points. In particular, the basis functions of cubic B-Splines have
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a limited support, i.e. changing a control paint; ;, affects the transformation only in the
local neighborhood of that control point.
Rueckertet al. introduced a transformation model which consists of a global part and

a local part [174]:

T(x/7 y’? Z/) = Tglobal(xy ya Z) + Tlocal(x, y, Z) (213)

The global transformatiorl' ;;,,,;, describes the overall differences between the two
subjects (i.e. differences due to translation, rotation, shearing and scaling) [174]. An
affine transformation ( equation 2.6) was used as a global part. The local differences
in the shape of the two subjects are modelledily.,; which is an FFD based on cubic
B-Splines (equation 2.12).

An example of the FFD can be seenin figure 2.6. Infigure 2.6, (a) is the identity FFD,
(b) is a deformed FFD and (c) is the same deformed FFD with smaller control spacing

Dentonet al. [48] compared and evaluated a number of registration methods for
breast MR images based on rigid, affine and FFD transformations. The study contained
54 MR breast scans from which 27 MR scans were reported as normal and 27 with an
abnormality. The images were registered using the above registration methods and the
results were assessed by two experienced radiologists. Their results showed significant
improvement on the registration of the data with the FFD model compared to other two
models. They also showed that there was no significant improvement when using the

affine model instead of the rigid model.

2.3.3 Physical models of deformation

A large amount of research interest has been focused on non-rigid registration techniques
based on FFDs. In addition to B-Splines based registration techniques, there is significant
research interest on non-rigid registrations methods which use elastic and fluid transfor-

mation models.
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(b)

Figure 2.6: Examples of FFDs. (a) shows the initial FFD (identity), (b) shows how the
FFD deforms after the registration of two subjects and (c) shows the same FFD with
smaller control point spacing.

2.3.3.1 Elastic transformation

The use of elastic transformation models for image registration was first proposed by
Broit [20] and has been extended by Bajcsy and Kovacic [8, 74]. They have been initially
used for matching a brain atlas with a CT image of a human subject. The underlying idea
behind the elastic transformation models is to represent the deformation of an image into
the reference image by a process which is similar to stretching an elastic material like
rubber. This process is driven by two separate forcegnteenal and theexternalforces.
Theinternal force models any forces which deform the elastic body from its equilibrium
state. Theexternalforce models any forces acting on the elastic body. The deformation
of the elastic body stops only when the two acting forces form an equilibrium solution.
The behavior of the elastic body can be described by the Navier linear elastic partial

differential equation:

pVu(r,y,2) + A+ @) V(V-u(z,y,2) +f(2,y,2) =0 (2.14)

whereu describes the displacement fiefds the external forcéy is the gradient operator
while V2 denotes the Laplace operator. The behavior of the elastic body is defined by the
constants\ and ;. (Lame’s elasticity constants). These constants are often interpreted

in terms of Young’s modulug’;, which relates the strain and the stress of the object,
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and the Poisson’s ratift,, which is the ratio between lateral shrinking and longitudinal

stretching:
o 3N+ 2u B A
LD 27T 2(u+ N

(2.15)

The equation 2.14 can be solved by finite differences and successive over relaxation
(SOR) which yields a discrete displacement for each voxel. Davatzikos [43] proposed an
extension of this elastic registration in which certain anatomical structures are allowed to

deform more freely than others.

2.3.3.2 Viscous fluid transformation

One disadvantage of the elastic transformations is that they cannot model large localised
deformations since the deformation energy increases proportionally with the stress of the
deformation. Viscous fluid transformation models can handle a large amount of defor-
mation while preventing any folding in the resulting deformation fields. These transfor-
mation models are popular in intersubject registration tasks where large shape variability
exists. However, they have a large numbedegrees of freedomhich makes it more dif-
ficult to find the optimal transformation and the scope for misregistration becomes larger.
Fluid deformations are described irEallerian reference frame, i.e. with respect to
their final position, while elastic deformations are described with respect to their initial
position, theLagrangianreference frame. In thEulerianreference frame, the deforma-

tion of fluid is characterised by the Navier-Stokes differential equation:

uVAiv(z,y, 2) + A+ p)V(V - v(z,y,2) + f(z,y,2) =0 (2.16)

Equation 2.16 is similar to equation 2.14 except that the differentiation is carried out
on the velocity fieldv rather than on the displacement fieldand it is solved for each
time step. The relationship between the displacement field and the Eulerian velocity is

given by:
ou(x,y, z,t)

5 +v(z,y,2,t) - Vu(z,y,2,1) (2.17)

v(z,y,z,t) =
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Christenseret al. [32] proposed to solve equation 2.16 by using a successive over
relaxation method. However, this approach is slow and requires significant processing
time. A faster approach has been suggested by Bro-Nielsah [19]. In this approach
the equation 2.16 is solved by deriving a convolution filter from the eigenfunctions of
the linear elasticity operator which is similar to a regularisation by a convolution with a

Gaussian filter [19].

2.4 Similarity measures

The similarity measure provides a way to assess how similar two images are. This section
describes the basic similarity measures which have been widely used in image registra-

tion.

2.4.1 Point based methods

Point registration methods rely on the identification of corresponding sets of points in the
two imagesx; : i € 0,1..N andy; : ¢ € 0,1..N. The sets of landmarks af andy could
be extrinsic(foreign objects which have been introduced to the image spadeiyrimisic
(anatomical features). The identification of the point sets can be manual or automatic.
Alignment is achieved by minimising the distance between the corresponding landmarks

of x and the landmark of segt:
D= w}|xi—T(y;)]|’ (2.18)

whereT(y;) is the transformed landmark; andw? are weight coefficients that mea-

sure the degree of confidence in which the points features have been located. For rigid
transformations a least square fitting method can be used [3]. Furthermore, methods exist
for spline based transformations and for affine transformations (with isotropic and non-
isotropic scaling) [59].

Landmark based registration of the heart is a very difficult task because there are
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few spatial anatomical landmarks which could be accurately identified. Moreover, these
landmarks can be less visible in certain modalities and as well as under a number of

pathological conditions.

2.4.2 Surface based methods

Surface based registration methods require the identification and extraction of surface
features in the images. In these methods registration is achieved by finding the transfor-
mation, T, which aligns corresponding points of surface features present in the images.
Surfaces tend to be more distinct than landmarks and can be accurately identified by a
number of segmentation methods. Trharching cubeslgorithm [107] is often used to
extract contours from images and to generate a triangulation of the surface. Scletoeder
al. presented an approach for the decimation of the triangle meshes [178]. This approach
is useful in cases where the generated surfaces contain a large number of vertices. Peliz-
zari and colleagues [143, 105] proposed a method for surface based registration using the
head and haalgorithm. In this method two surfaces are identified in the two images. The
high resolution surface is represented as a stack of diséa( The second surface is
represented by a list of unconnected 3D poithigt The optimal rigid transformation
is calculated as the one that minimises the square distance between each poitiabf the
and the closest point of the head surface towards the direction betmwscentroid.
Theiterative closest point algorithifiCP) is another surface based registration method
which finds the optimal transformation between two surfaces [12]. In ICP the surfaces
being registered are represented as point sets: one surface point set is kept fixed during
the registration while the other surface point set is moving. The optimal transformation
is found using an iterative approach. In each iteration, the algorithm establishes point
correspondence by identifying for each point of the moving surface the closest point in
the fixed surface. Then, the two surfaces are registered (using a point based registration

method) and the transformation is applied to the moving surface point set.
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2.4.3 Intensity based methods
2.4.3.1 Cross-correlation

Cross-correlation is one of the first intensity based similarity methods used on image
registration methods [170]. Th&oss-correlationmeasure of two images is defined by
[162]:

R=> I'(x)-I(T(x)) (2.19)

z€e)
where(? is the spatial domain of overlap of the imagésnd/ andx is a column vector
of a particular image position (e.g. in 3D case= (z,y, 2)7). As this measure stands
it is affected by changes in the image contrast and brightness. These are linear intensity
transformations of the type:

I''x)=a-1x)+0 (2.20)

In order to make the cross-correlation insensitive to contrast changes it can be nor-

malised resulting in theormalised cross-correlation

> xeal'(®) = I') - (I(T(x)) — 1)

R = = -
VS keaI'() = )2+ \[S2 co(I(T(x)) = T2

(2.21)

wherel’ is the average intensity of the reference imdgandI is the average intensity
of the source imagé. Equation 2.21 will have a maximum value when the two images

are the same.

2.4.3.2 Sum of squared differences

The idea behind the use of teem of squared differencéSSD) or theEuclidean distance
as a similarity measure is simple. If the two images are the same then the sum of the
squared differences between their pixels’ intensity will be equal to zero. In this case the

optimal transformationy’, is found by minimising:

B =Y (I'x) — I(T(x)))? (2.22)

x€eQ
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The above equation is expanded to:

E* =73 (I'(x)*+ Y (I(T(x)* —2(3_(I'(x) - [(T(x))) (2.23)

x€eQN xEN xEN

The first term of equation 2.23 is independentlb&nd can be eliminated since the
goal is the minimisation oF with respect tdI'. This means that in order to minimige
the third term of the equation 2.23 has to be maximised. However, the last term of the
equation is the cross-correlation of the images (equation 2.19). Therefore, minimising
the sum of the squared differences is similar to maximising the cross-correlation of the
images. The SSD is the optimum similarity measure when the images differ only by
Gaussian noise [199, 59].

Another similarity measure is treum of absolute differenc€SAD). In this case the
absolute intensity difference is calculated instead of the squared intensity difference. Hoh
et al. compared the two methods by simulating various defects and misalignments using
cardiac PET images [80]. No significant differences in the resulting errors, obtained by
the two similarity measures, in translation and rotation were found [80].

Similar to equation 2.19, equation 2.22 is also affected by contrast and brightness

changes. It can be normalised in the same ways as the cross-correlation, resulting in:

o Zmdﬂ)—ﬂ()ﬁ

NS ILEI EYS SN IGREI))E (2.24)

2.4.3.3 Entropy and mutual information

Entropy based similarity measures do not depend on a specific functional relationship
between the intensity distributions in the images, making them patrticularly suitable for
multimodalregistration methods. Thentropysimilarity measure is closely related to pre-
dictability. A predictable random variable has low entropy while a totally unpredictable
random variable has high entropy [198]. The average information provided by the inten-

sity values of an image can be measured byntlagginal entropy The marginal entropy
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Combined Image 1 Combined Image 2 Combined Image 3

Figure 2.7: A schematic figure of the entropy of the combined image.

of a pair of imaged and!’ is given by [186]:

H(I)= - Zp{z’}log(p{z‘}) (2.25)
H(I') = - Z p{i'Hog(p{i'}) (2.26)

wherep{i} andp{:'} are the marginal probabilities dfand/’ (i.e. the probability of a
voxel of imagel to have a value).

When the transformation, mapping corresponding features, combines two images,
then the information content of this combined view is given byjtiet entropyof the
images [186]:

H(I' ) ==Y pfi' iYlog(p{i}) (2.27)

el el
wherep{', i} is the joint distribution probability of” and .

The combined image can be considered as an image in which pairs of intensity values
occur together, where each pair of values corresponds to two values occurring in the two
images. The concept of the image correlation usingethteopyas a similarity measure
is simple. The information which the combined image provides will be minimum only
when the two images are registered correctly. Figure 2.7 shows that when the images are
correctly registered (combined image 3), there are no duplicated regions and hence the

amount of information provided by the combined image is minimum.
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Figure 2.8: Venn diagrams illustrating the relationship betwergropyandmutual infor-
mation(adapted from [186]).

The entropyof the combined image will be low under two conditions: when the im-
ages is predictable from the model and when the image is by itself predictable [199].
There are a number of problems using émeropyas a similarity measure. When the im-
ages have a limited field of view, then any measure of information content of the combined
image will be a function of the extent to which the fields of view overlap.

A commonly used similarity measure in medical image registration isvbgeual
Information(MI) [199, 198, 113, 186]Mutual informationwas initially used in informa-
tion theory as a measure of information between the transmitter and the receiver at either
end of a communication channel. It relates the changes in the value jirthentropy

H(I,I'), back to themarginal entropiesH (') and H(I), of the two images :
MI(I';T) = H(I') 4+ H(I)— H(I',I) (2.28)

If the entropiesH (I’), H(I) andH (I’, I) are substituted by equations 2.25, 2.26 and
2.27, the following equation can be derived [113]:
p{i, 1}

el el

The relationship between tmeutual informatiorand the joint entropy is provided by
the Venn diagrams of figure 2.8 [186]. There are two ways to calculate the joint prob-
ability distribution value{i,i'}. One approach is to form a continuous mathematical
estimate of the distribution by, for example, fitting a function to the data. The most com-

monly used continuous approach is using a Parzen Window [51]. Alternatively, the joint
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distribution probability values can be estimated by using a joint discrete histogram of the
images’ intensity values. The second approach is computationally less expensive since no
functional fit is required [79].

The mutual informatiorhas the following properties [113]:

Non negativity: M1(I’;1) >0

Independence:MI(I';1) = 0 = p{d',i} = p{i'} - p{i}

Symmetry: MI(I';1) = MI(I;1")

Self Information: MI(I;1) = H(I)

Boundedness:

MI(I';T) < min(H(I'), H(I))
< (H(I') 2+ H(I))
< maz(H(I'), H(I)) (2.30)

< H(I',I)

< H(I') + H(I)

e Data Processing:MI(I';1) < MI(I';T(I))

The representation of thautual informationn equation 2.29 relates the size of the
overlap of a pair of region®(i’,:}) to their total size¢{:'} andp{i}). A change in the
proportion of the image overlap may result in highmrtual informationvalues even if the
image registration is not improved. In order to take into account changes in the proportion
of the image overlap, the amount wiutual informationwith respect to the information
provided by the individual images is required. An approach for the normalisation of the
measure is to evaluate the ratio of jbant andmarginal entropie$186]:

MI(I';1) = (2.31)
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Other approaches for achieving the same goals have also been proposed. They include
theentropy correlation coefficiejiL86]:

_ 2MI(I'; 1)

Ce(l';1) = = T (2.32)

Another approach for measuring image similarity would be instead of usingitite
entropyfor image correlation, to use trentropyof the difference imagédi f [144, 22].
In this approach thentropyoperates on a single difference image which is created by
subtracting the reference image from the other image by using a suitable scalesfactor

Then, theentropyof the difference image is used instead of jihiat entropy

H(1dif) = =Y pf{itog(p{i}) (2.33)

2.4.3.4 Comparison of intensity based similarity measures

Penneyet al. [144] performed a comparison of a number of similarity measures used
in 2D/3D medical image registration. The measures under consideration incloded
malised cross correlatigrentropyof the difference imagemutual informatiorand gradi-

ent correlation. The similarity measures were evaluated by performing rigid registration
(6 degrees of freedoetween a CT scan and a fluroscopy image of a spine phantom. In
their research, theutual informatiorhad the worst performance among the considered
similarity measures while thentropyof the difference image was one of the best consid-
ered measures. A similar evaluation of the same similarity measures was later performed
by Russakofket al. [175]. The results of their research were substantially different from
those reported by Penneyal. [144]. Russakoftt al. found that themutual information

is one of the most reliable similarity measures. One possible explanation for the difference
in the performance afutual informationis that Russakofét al. used higher resolution
images. As a result a larger number of samples are used for the calculatiomdl
informationleading to more accurate estimates of the probability density functions and

image entropies. Therefonmutual informatiormay fail if the 2D histogram is relatively
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sparsely populated while thifference entropynay succeed because the corresponding
1D histogram will be much better populated. It should be noted that while Pextraty
used fluroscopy images of a spine phantom, Russakalf used only clinical data which
may have an effect on the results. Holdgral. also performed an evaluation of eight dif-
ferent similarity measures used for rigid body registration of serial MR brain scans [81].
In this evaluation it has been shown that the similarity measures basent@pyper-
formed more consistently than the other similarity measures. In partiem@opybased
similarity measures proved to be the least sensitive methods in the presence of extradural
tissue.

Despite its good performance and wide usetual informatiorhas also been shown
to lack robustness for certain registration problems [158]. Problems can arise when the
images are of a low resolution [158], when the overlapping part of the images is small
or as a result of the interpolation method used in the registration approach [159]. To
overcome this problem, Pluirat al. [158] suggested to include spatial information to
the measure by combiningutual informationwith a term based on the gradient of the
two images. The gradient term will seek to align locations which have a gradient with a
high magnitude and also similar orientation. Rueckerl. proposed the use of higher
ordermutual information171], which incorporates spatial information by forming four
dimensional intensity histograms. A survey of medical image registration methods based

on mutual informatiorcan be found in [160].

2.5 Optimisation approach

The optimisation approach attempts to find the optimal transformalipiat maximises

the similarity of the two images. This is achieved by finding the optimal parameters of
the transformationT, which control the correspondences between the images. Finding
the correct parameters of a transformation is not an easy task, especially when the trans-
formation has a large number d@égrees of freedonsually the optimisation approach is

an iterative process which in each step tries to improve the correspondence of the images.
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Figure 2.9 shows a schematic representation of the optimisation approach.

3 initial T _____ =~ transform
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Figure 2.9: A schematic representation of the optimisation approach (adapted from [81]).

The selection of the appropriate search space strategy is very crucial in order for the
optimal transformation to be found. For example, the search space may have a large
number of local minima which could trap the optimisation approach or the starting point
may be far away from the correct solution. The shape of the search space is affected
by the type of the similarity measure, the properties of the images and the type of the
transformation. There is extensive research on techniques used for searching such spaces.
For more details on optimisation methods and search strategies see [163]. Hierarchical
strategies are often used in order to increase the likelihood of finding a global optimum
match [104]. The multi-scale space techniques are a widely used type of hierarchical
strategies. These methods use stacks of images which contain increasingly simplified
versions of the initial images [104]. The optimisation approach starts using images in the

top of the stacks (the most simplified version of the initial images) to calculate a rough
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estimate of the transformation. Then the estimate of the transformation is improved by
using each successive level of the image stacks. In cardiac image registration, hierarchical

strategies are often used to find the optimal transformation [134, 14, 115].

2.6 Applications of cardiac image registration

This section provides an analysis on several cardiac image registration approaches for a
number of applications. It is worth noticing that cardiac image registration is an active
research area but no reference to a 4D cardiac MR image registration approach can been
found in the literature. A 4D cardiac MR image registration approach is considered to
be the one which provides a 4D mapping between two 4D cardiac MR images where the

fourth dimension is the time.

2.6.1 Image registration for analysis of the cardiac motion

Chandrashekaret al. [28, 29] used an extension of the FFD model (equation 2.13) to
analyse the motion of the myocardium using tagged MR cardiac images. The extension
of the FFDs is introduced by Schnalstlal. [177] where a number of single level FFDs

are combined to a multi-level one (MFFD):

T
T(x,t) = Y Theu(x) (2.34)
h=1

The estimation of the myocardial motion requires a sequence of registration steps.
Each imagel;, Vs, ....., V;, of the sequence is registered to the end-diastolic invggkn
order to recover the long-axis motion both short-axis and long-axis images were registered
at the same time. The registration involves the optimisation of a cost function based on the
normalised mutual informatiobetween the registered short-axis and long-axis images.
Because the similarity measure is evaluated on both short-axis and long-axis image sets,
a complete 3D motion field of the myocardium can be recovered. After registeritg

Vo, a multi-level FFD (MFFD) is obtained consisting of a single level representing the
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motion of the myocardium at time= 1. The registration o¥; to V; provides the next
level of the MFFD representing the motion of the myocardium at time2. The process
continues until all volumes in the sequence are registered.

The method was validated using a cardiac motion simulator to produce cardiac im-
ages with known motion and also by reconstructing the deformation field within the my-
ocardium on images acquired from 11 healthy volunteers. The technique was tested on
9 image sequences produced by the motion simulator. The relative RMS error in the re-
construction of the deformation fields reaches a maximum between 4.2-6.5% at the last
frame [29]. In order to assess how well the registration algorithm performed in track-
ing the motion of the myocardium for the volunteer data, the tag-intersection points in
three different SA slices and one LA slice for all time points between end-diastole and
end-systole were manually identified by an expert. Then, the RMS error in the in-plane
displacements estimated by the registration method and by the expert was measured. The
results showed that for all the image sequences the RMS error was smaller than a voxel
for most of the cardiac cycle. In seven image sequences the RMS error was approximately
2mmat end-systole while in the other four it was approximatethyn3

Carbayoet al. proposed a similar method for calculating the cardiac displacement
field in 2D ultrasound image sequences [98]. The basic idea of the method is similar to the
one introduced by Chandrashekataal. The cardiac displacement field is calculated by
registering all the images of the sequence to the first frame uslafpamableaegistration
model. However what makes this method different is the use of a spatio-temporal semi-
local deformation model. In this work the displacement figlés represented using a

time-space separable linear modgj:

g(t,x) =x+> Y djid;(x)i(t) (2.35)

leZ jezN

whereg;(x) influences the spatial deformation andt) influences the temporal coher-

ence of the deformation. B-Splines are used to model both the spatial and the temporal
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components:

g(x)=x+ Y Y dbx(x/h—j)Bi(t)s 1) (2.36)

I€Z jezN
where the basis functions, are placed on a rectangular grid in the spatial domain and
0, at regularly spaced time points. Moreover, the scale paramktargl s govern the
total number of parameter$ ;, the smoothness of the mapping and the knot spacing
between the control points of the B-Splines. The optimal displacement field is found by
optimising a global pixel-based criterion assessing the quality of the registration over the
entire image sequence at once. The method was tested using 4 simulated image sequence
models, 4 image sequences from healthy volunteers and 4 image sequendssteamic
patients. In the simulated images, the mean square error over the entire sequence for 85
selected points within the myocardium was found to be betweanr@ghd 0.83nm No
guantitative analysis on the method’s performance for the real sequences was reported.

Raoet al. [167, 166] used the FFD model in order to enable the direct comparison
between the motion extracted from cardiac MR image sequences within or across pa-
tients. This is achieved by using two registrations. Initially, the cardiac motion field is
calculated by using the method introduced by Chandrashekaa[28, 29]. Then, the
end-diastolic untagged images of each patient (the untagged images are acquired shortly
after the tagged images) are registered together using a non-rigid registration method
based on FFDs. This resulting transformation provides a way to map the motion fields
of each subject to the same coordinate system. This method provides a good approach
for the comparison of the cardiac motion patterns within subjects. Its use has potential
advantages including the comparison of changes in cardiac motion in patients and the
assessment of pharmacological or surgical intervention. The potential of the method was
demonstrated by visually assessing a small number of images. Figure 2.10 demonstrates
the method.

Petijeanet al. have also developed a similar approach for the direct comparison be-
tween motion extracted from cardiac MR image sequences within or across patients [154].

The key difference between the two approaches is thatdRab used a parametric non-
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Figure 2.10: Mapping cardiac motion fields across subjects (adapted from [166]).

rigid registration method over a free-form deformation space, while Petgeah used

f-information based non-rigid registration over a non-parametric transformation [154].

2.6.2 Image registration for cardiac motion correction

Turkingtonet al. developed a registration model to align images from dynamic cardiac
N — 13 ammonia positron emission tomography scans [194] used for measuring regional
myocardial blood flow. This type of study requires to acquire images for the first 2 min-
utes after the injection df N H;. The registration technique was used to correct artifacts

in the images introduced from breathing, motion of the heart and the overall motion of
the patient. The method corrected only translation differences across the images. It was
assumed that the orientation of the heart remained the same during the scanning. This
assumption is appropriate to a certain degree, but a small rotational motion could occur

during the acquisition of the images [194]. The registration was based on a number of
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templates. These templates are derived from a frame acquired around 10 minutes after
the injection of the contrast media. Three different templates were constructed: a my-
ocardial template, a blood pool template (which was used to match frames where the left
ventricle’s blood pool is dominant) and finally a modified blood pool template (which
reduced the affects of the right ventricle activity). Each image frame was assigned to a
template by visual inspection of the cardiac activity and registration was performed. The
method was tested on phantom data and resulted in translations of less than one voxel
which is consistent with the fact that the phantom was scanned at the same position. The
technique was also tested in a small number of human data (3 subjects). Even if quantita-
tive analysis in the performance of the method has not been provided, it has been shown
that the technique corrects for cardiac motion to a large degree. The fitting of the blood
pool template in the direction of the z-axis was not as good as in the direction of the x-
and y-axis. The authors explained that this may be the result of the fact that the blood
pool extends beyond the base of the myocardium [194].

In myocardial perfusion studies, a contrast media is injected before the acquisition of
the MR images. Due to the dynamic nature of the data and because the acquisition has
to be gated, it usually takes more than 3 minutes to obtain reliable information about the
perfusion and distribution of the contrast media. During this time it is impossible for the
subjects to hold their breaths. Therefore, motion artifacts are introduced due to breathing
during the acquisition procedure. Bidaattal. developed an automated registration ap-
proach for the correction of these artifacts during acquisition of dynamic MR images [14].
The approach uses sequences of short-axis views of the heart. A rigid two-dimensional
transformation model with 8egrees of freedorf? for translation and 1 for rotation) is
used for the correction of motion artifacts. In order to constrain the registration only to
the region of interest, a mask was applied to each frame encompassing the most likely
position of the heart. The mask was calculated by taking the maximum value for each
pixel over the entire sequence. A single early slice from the sequence was selected as a
reference image. Then, all slices were registered to the reference image by minimising

the pixel based squared differences between each frame and the reference frame. After



2.6 Applications of cardiac image registration 81

the registration of the entire sequence, a new reference image was defined as the aver-
age of all registered slices. The registration was then repeated in order to handle larger
displacements.

The method was evaluated by calculating the relative motion of anatomical landmarks
on individual slices before and after registration. For the evaluation of the method images
from eight ambulatory patients with stable coronary artery disease were used [14]. The
results show that the method improved significantly the overlap of the images even when
compared with manually aligned images. In addition the method was evaluated by using
a compartment model for estimating two myocardial perfusion parameters: the blood
to myocardium transfer constant};, and the Gd-DTPA distribution volumé/,. After
applying the method to the data, the variability of both parameters was reduced compared
to the variability obtained from the uncorrected images.

Ablitt et al. presented a technique for predictive cardiac motion modelling and cor-
rection [1]. The method uses a registration approach based on FFDs (equation 2.13)
to recover the cardiac deformation due to respiration. Then, it uses partial least square
regression to extract intrinsic relationships between the 3D cardiac deformation due to
respiration and multiple one-dimensional measurable real-time intensity tracers at chest.
This model is used to predict cardiac motion due to respiration. The method was tested
using cardiac MR images from 10 normal subjects. The accuracy of the motion pre-
diction method was assessed by performing cross-validation experiments (i.e. the data
were divided into two parts, one for training the model and one for testing the model).
The errors of the motion model were normalised with the residual errors achieved by 3D
free-form registration (the results of the free-form registrations were considered as the
gold standard for this study). These measurements demonstrated that with the model the
maximum/minimum error is consistently very small.

Klein et al. introduced an affine registration model for correction of respiratory motion
on respiratory-gated PET data [93, 92]. In this approach the use of an affine (12 dof)
global transformation model for the registration of different end-diastolic respiratory gates

in a PET sequence is investigated. In order to correct the respiratory motion, all images
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of the sequence are registered to the image acquired during end-expiration. The cost
function used during the registration procedure consisted of a least square difference term
and a temporal term. In order to ensure smoothly varying motion between adjacent image
frames, a priori knowledge model is used which assumes that the motion of the heart
from one frame to the next is likely to follow a smooth progression. The temporal part
of the cost function penalizes any departure from the prediction model. The method was
tested on images obtained from 10 subjects as well as on noisy phantom data [93] and was
compared to two similar methods. One of the methods used only a rigid transformation
model while the other method used an affine model without the temporal constraints. The
results indicated the use of an affine transformation and the temporal smoothing constraint
provides better performance than the other two methods.

McLeishet al. performed a study of the motion and deformation of the heart due to
respiration [123]. In their study, 3D cardiac MR images were used. The study included
images from 8 healthy volunteers and 10 patients. The healthy volunteers were scanned
into various time points between the end-expiratory and end-inspiratory positions. The
patients were scanned only at the end-expiratory and end-inspiratory positions. The im-
ages at maximum exhalation were selected as references and all the other images were
registered to them using rigid registration followed by non-rigid registration. The results
indicated that during inhalation the average movement of the heart is in craniocaudal di-
rection (CC) (by 12.4 5.9mn), in the anterior-posterior direction (AP) (by 4:3.7mm
towards the anterior direction) and in the left-right (RL) direction (by+2Q to the
right) [123]. Furthermore, the left ventricle deforms more at the apex than at its base. The
left ventricle has larger deformations than the right atrium and the right coronary artery.
Moreover, when going from an inhale to an exhale position, the outer right atrial wall and

the right coronary artery move outwards, while the left ventricle moves upwards.
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2.6.3 Image registration for cardiac segmentation

Image registration has also been used for the segmentation of cardiac MR images [109,
130]. In cardiac imaging, segmentation is used in a large number of applications in-
cluding the calculation of cardiac volume and blood ejection fraction, the analysis of
contraction and wall motion and the visualisation of the cardiac anatomy. In order to be
clinically valuable, the segmentation procedure has to be automatic. Lorenzes¥ald

al. developed a fully automated approach for the segmentation of the myocardium and
the ventricles of a cardiac MR image sequence [109]. Their approach uses a non-rigid
registration algorithm based on free form deformations (equation 2.12).

The key idea of the proposed algorithm is to reduce the segmentation of the entire
seqguence problem to one of manually segmenting the end-diastolic frame of the sequence
and then propagate the segmentation to the rest of the sequence’s frames. In order to prop-
agate the segmentation, each frame of the image sequence is registered to the end-diastolic
frame using a multilevel non-rigid registration method based on B-Splines. Furthermore,
an approach for the automatic segmentation of the end-diastolic frame is also presented.
In order to automatically segment the end-diastolic frame, two atlases are used.

A population specific atlas of the end-diastolic frame was constructed by registering
the manual segmentations of 14 diastolic cardiac MR images. The population specific la-
belled 3D atlas contained the left ventricle, the right ventricle and the myocardium. If the
mapping between the atlas and a specific end-diastolic image is known, the segmentation
can be propagated to the end-diastolic image. The robust and accurate segmentation of
this frame is crucial since it is propagated to the rest of the sequence’s images. A subject
specific atlas of the heart corresponding to the end-diastolic time frame is constructed.
The subject specific atlas is used instead of the end-diastolic image during the registration
with the population specific atlas. The subject specific atlas is constructed by registering
all time frames to the end-diastolic time frame, transforming each frame with the resulting
transformation and calculating the average image. This enables a better alignment with

the population specific since the subject specific atlas reduces the effect of image noise
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and poor contrast to the registration procedure.

The automatic segmentation approach was validated against the manual segmenta-
tions of nine 3D MR image sequences. All the segmentations contained the left ventricle
(LV), the right ventricle (RV) and the myocardium (MYQO). The volumes of the ventri-
cles and the myocardium were calculated and regression analysis was used to compare
the two methods. Two types of experiments were performed assessing how well the seg-
mentation can be propagated to the subsequent frames as well as the entire automated
approach. In the first experiment the transformations between different time frames were
applied to the manual segmentations of the end-diastolic frame instead of the subject-
specific atlas. The resulting volumes yield a good correlation between the manual and the
automated segmentation (LV=0.99, MYO=0.98, RV=0.96). In the second experiment the
image sequences were segmented by using the entire automated approach. In this case the
results showed a good correlation between the volumes of the corresponding structures
(LV=0.94, MY0O=0.83, RV=0.96).

Nobleet al. also used non-rigid registration for the segmentation of the endo-cardial
and epi-cardial surfaces of cardiac MR images [130]. Their method required the end-
diastolic endocardial and epicardial surfaces to be manually segmented. In this method
only three slices corresponding approximately to basal, mid and apical positions of the
heart are used instead of the entire image. The first step of the segmentation approach is
to calculate the centre of area of the ventricular blood pool in the segmented images for
all slices. Then all the images were re-sampled in a polar fashion around each slice’s cen-
tre. Two segmentation approaches have been developed [130]. The first registers all the
time frames to the manually segmented image (all to one), while the second registers each
adjacent frame (piecewise). To evaluate the method, images from 10 patients undergoing
cardiac MR for the investigation of coronary artery disease were used. The performance
of the two methods was compared to manual segmentations of the images and also to a
commercially available software package. The correlation coefficient between the epi-
and endo-cardial volumes produced by the manual segmentation and the above two seg-

mentation methods were compared. The results showed that the piecewise segmentation
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method correlates with the manual segmentation better than the other method.

2.6.4 Image registration for alignment of cardiac stress and rest SPECT
Images

Declercket al. proposed a method to enable the better visual or quantitative interpretation
of myocardial perfusion studies using SPECT imaging [47]. In a stress-rest study, two
perfusion maps of the cardiac muscle in the left ventricle are acquired. One image is
acquired before the injection of the tracer (at rest) and the other after the injection of the
tracer during maximal exercise.

The approach proposed by Declerekal. involves two major steps [47]. First, the
stress and rest pair of images are aligned using a point-based registration method. During
the registration of the rest and stress pair of images an affine transformation which defines
correspondence between a point in the stress image and a point in the rest image is used.
Then a non-rigid registration method based on B-Splines (equation 2.12) is used to map
the stress images to a template image. The template image is a single selected normal
image characterised by good contrast and low intensities on all non-cardiac features. Fi-
nally, the obtained transformation maps are used to resample both images to the geometry

of the template image.

2.6.5 Spatial and temporal registration of cardiac SPECT and MR
images

In cardiology more than one type of image modality can be acquired for a single patient.
Images from different modalities provide different kinds of information to clinicians. The
goal of multimodal image registration is to merge the information provided from these
images. Fabeet al. developed an approach for the spatial and temporal registration of
single photon emission computed tomography (SPECT) and magnetic resonance images
(MR) [55]. They have used high resolution MR images containing the left ventricle (LV)

of the heart and lower resolution SPECT images containing information regarding my-
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Figure 2.11: Method for the spatial and temporal registration of SPECT and MR images
(adapted from [55]).

ocardial perfusion. When the images are registered, the exact anatomic location of the
perfusion can be identified and its effects on the cardiac motion and wall thickening can
be studied.

The first step of the algorithm involves the application of a surface detection algorithm
to both the MR images and the SPECT images. The surface detection algorithm fits the
images’ intensity gradients to a model of the LV. The output of the detection algorithm is
a set of 288 points on the endocardial surface of the LV. The end-systolic (ES) and end-
diastolic (ED) frames are determined from the segmented surfaces. A rigid registration
method is used to determine the best transformakiavhich maps both the end-diastolic
and end-systolic SPECT surfaces to the end-diastolic and end-systolic MR surfaces. The
registration method aims to minimise the distance between corresponding surfaces. After
the registration of the ED and ES surfaces, linear interpolation is used to create SPECT
frames corresponding to the MR frames [55]. A graphical representation of the registra-
tion is presented in figure 2.11.

The algorithm was evaluated using images from 3 healthy subjects and one subject
with coronary artery disease. The subjects were studied in both MR and SPECT perfusion
imaging while three of them underwent stress perfusion imaging as well (7 studies in
total). The mean distance between the surfaces before the registration waswbie
after the registration it was 21im No evaluation of how much the surface detection

algorithm affects the performance of the registration method is provided. In addition,
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the temporal mapping between the SPECT and MR images is provided only for the end-
systolic and end-diastolic frames. This does not mean that the same temporal relationship
will be valid for the frames between them since the dynamic properties of the hearts may

change from one scanning session to the other.

2.7 Conclusions

This chapter has provided an overview of medical image registration. Image registration
is an essential tool for the analysis of cardiac images. The following issues affect the
registration procedure and need to be addressed in order to accomplish the registration of

two images:

e The nature of the data to be registered.The nature of the data are described in
sections 2.1 and 2.2. Depending on the imaging modalities used to acquired the
images, the data can be points, surfaces or intensities. In case of point or surface
based registration, features need to be extracted during the registration procedure.
In the case where image intensities are used, a preprocessing step may be used to
enhance image features and to improve image quality. The nature of the data is
a very important factor on deciding on the similarity measure as well as on the

optimisation approach.

e The similarity measure to use during the registration. A large number of simi-
larity measures have been described in section 2.4. The selection of the similarity
measure depends on the nature of the data to be registered. Euclidean distance
measures can be used when registering surfaces and points. A large number of sim-
ilarity measures which could be used for intensity based registration approaches

have been presented in section 2.4.

e Type of transformation. Details regarding the different types of transformations
are provided in section 2.3. Depending on the application, the type of transforma-

tion can be linear or non-linear. Linear transformations maintain the shape of the
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structures and are usually used to combine information from a number of image
modalities. Non-linear transformations provide a better mapping between anatom-
ical structures by deforming the images. They are commonly used in applications
in the analysis of cardiac images (for example tracking of cardiac motion), due to

the variability in the shape of the heart of different subjects.

e The optimisation procedure. The selection of the correct optimisation procedure
is crucial in order to find the optimal parameters of the transformation with the least
number of calculations. Usually the optimisation approach is an iterative process
which in each step tries to improve the correspondence of the images. Details on

the optimisation approach are provided in section 2.5.

Since the heart is undergoing spatially and temporally a varying degree of motion
during the cardiac cycle, 4D cardiac image registration methods are required when reg-
istering cardiac MR image sequences. Contrary to most of the methods reviewed in this
chapter, the work presented in this thesis aims to align a number of cardiac MR image
sequences not only to the same spatial but also to the same temporal coordinate system.
Thus, the transformation model used during the spatio-temporal registration addresses dif-
ferences in the spatial domain as well as differences in the temporal domain of the image
sequences. Furthermore, the registration methods presented in this thesis are automatic
(except initialisation) and require no segmentation in order to determine temporal fea-
tures in the cardiac cycles. Table 2.1 summarises the cardiac image registration methods

considered in this section.
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Method Dimensionality | Modality Registration | Area
Chandrashekara 3D MR Non-rigid Analysis of car-
et al.[28, 29] diac motion
Carbayo etl al. 2D+time Ultrasound | Non-rigid Analysis of car-
[98] diac motion
Rao et al. [167, 3D MR Non-rigid Comparison  of
165] cardiac  motion

across subjects
Petijean et al. 3D MR Non-rigid Comparison  of
[154] cardiac motion
across subjects
Turkington et al. 3D PET Only transla-| Cardiac motion
[194] tion correction
Ablitt et al.[1] 3D MR Non-rigid Cardiac motion
correction
Bidaut et al. [14] 2D MR Rigid Cardiac motion
correction
Klein et al. [93, 3D PET Affine Cardiac motion
92] correction
McLeish et al. 3D MR Non-rigid Motion and de-
[123] formation of the
heart due to respir
ration
Lorenzo-Valdés 3D MR Non-rigid Image segmenta
et al.[109] tion
Nobleetal.[130] 3D MR Non-rigid Image segmenta
tion
Declerck et al. 3D SPECT Non-rigid Comparison  of
[47] stress and res
images
Faber et al. [55] 3D+time SPECT/MR| Rigid Spatial and tem-

poral registration
of two modalities

Table 2.1: Overview of cardiac image registration applications.



Chapter 3

Modelling of anatomy

Applications assisting the automatic interpretation and understanding of MR images
are of high importance for increasing the clinical use of MR imaging. Computational
anatomy enables the construction of models describing the anatomy and function of
anatomical structures. Moreover, these anatomical models can represent information re-
garding anatomical and functional variability in the population. Models of anatomical
structures enable clinicians not only to interpret medical images but also to better under-
stand anatomical structures. A model provides a better visualisation of the anatomical
structure since medical images suffer from artifacts (e.g. noise, poor contrast to signal
ratio, etc). Furthermore, different visualisation methods will allow clinicians to visu-
alise different properties of the modelled anatomy and function. In addition, collecting
information from a large number of subjects to a single model will enable the better un-
derstanding of the anatomical structure and its variation within the population. Finally,
modelling anatomical structures with certain pathologies will enable the better under-
standing of the pathology, i.e. how the anatomical structure is affected, how the pathology

progresses, etc. This chapter reviews on methods for modelling anatomical structures.
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3.1 Anatomical atlases

Computational anatomy is an active research area [70]. Anatomical atlases are very simi-
lar to geographical atlases as both contain information regarding the anatomy of a physical
reality. However, geographical atlases describe a constant physical reality (for example
a continent) which can be described by a large number of abstract representations (e.g.
population, rainfall, temperature). On the other hand, anatomical atlases do not describe
a single constant reality since the shape, size and function of a particular anatomical
structure differs across the population. In order for anatomical atlases to be meaning-
ful and representative of the population, they must deal with the fact that an anatomical
structure might have a large number of physical realities. Traditional anatomical atlases
contain anatomical and functional information from a single subject and focus primarily
on the human brain [176, 190]. These atlases do not contain any information regard-
ing the anatomical and functional variability across the entire population and are suitable
for anatomical structures without large inter-subject variability. However, they are less

suitable for anatomical structures with large variability across the population.

3.2 Probabilistic atlases

Population based atlases provide a solution to this problem by incorporating informa-
tion from a lager number of subjects. Population based atlases can be used to guide
knowledge based image analysis algorithms and also to support pathology detection in
individual subjects or groups [192]. In order for an atlas to be representative of the popu-
lation, the variability must be captured in an appropriate framework. Probabilistic atlases
retain information regarding variability in the form of tissue probability maps (i.e. each
voxel of the atlas is assigned with a value that describes its probability to belong to a
certain structure). They have a number of advantages over conventional atlases, most im-
portantly their ability to retain information regarding anatomical and functional variance.

Furthermore, the probabilistic framework enables calculations between the morphometry
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of different subjects or atlases to be performed efficiently. Moreover, it also enables sta-
tistical and computational comparisons between individuals and groups making the atlas
an important clinical research tool. Building a probabilistic atlas should be thought as of
an ever-evolving process. It should be relatively easy to add new data to the atlas. The
more data is added to the atlas the more representative of the population the atlas will be.

During the last few years a number of approaches have been developed for the cre-
ation of probabilistic atlases describing the anatomy and function of anatomical structures
as well as the variability across the entire population. The majority of these atlases focus
on the anatomy and function of the human brain [121], [119], [120], [168], [50], [131],
[35]. Probabilistic atlases of the human brain have been successfully used to investigate
the structural and functional differences in the human brain as parts titdraational
Consortium for Brain Mapping121], [119], [120]. The aim of theénternational Con-
sortium for Brain MappingICBM) is to develop a voxel based probabilistic atlas of the
human brain. The atlas will contain information from a large number of subjects with a
wide ethnic and racial distribution and various imaging modalities. Furthermore, it will
describe the brain anatomy and function in a 3D spatial domain as well as a temporal one
modelling the age of subjects. The images acquired during this work have been separated
into target brain and reference brain sets. The target brain set is the dataset, derived from
a small number of individuals from whom the richest collection of data exists. The target
brains have been segmented into several anatomical structures. They are used in several
applications including automatic segmentation of brain subjects (by registering them with
unlabelled data). Contrary to the target brain set, the reference brain set is derived from
a large number of subjects (the aim of this work is to include more than 7000 subjects).
This dataset provides information regarding the variance of the population and could be
used for calculation of population and sub-population statistics.

Figure 3.1 provides illustrations of probabilistic atlases developed as part bi-the
ternational Consortium of Brain Mappin0]. These atlases are constructed using T1-
weighted MR scans from 452 subjects. The reference space of the atlas is the average

position, scale and shear from all the individual subjects. Figures 3.1 (a), (b), (c) show
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the probabilistic atlases of the gray Matter (GM), the white matter (WM) and the CSF.

@ (b)

Figure 3.1: Examples of probabilistic atlases of the human brain (a) gray matter atlas, (b)
white matter atlas, (c) CSF Atlas. These atlases are developed as partrdéthational
Consortium for Brain Mapping60].

The following steps are used for the construction of the probabilistic brain atlases

(analysis pipeline) [119, 120]:

e Screening of the data to find incomplete studies or studies with artifacts.

Intensity normalisation of the data (in all three dimensions).

Registration of the data across studies within the same subject.

Tissue classification (i.e. GM, WM, CSF).

Removal of extracerebral structures.

Spatial normalisation of each subject to a target subject.

Extraction of surface features.

Visualisation of the atlas.

The intensity of the data is normalised in order to assist the tissue classification proce-
dure.Spatial normalisation of each subject to a target brain enables the automatic segmen-
tation of the subjects. Different image segmentation methods could be used to segment

the brain images to particular anatomical structures. The development of novel image
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registration methods is very important for the construction of probabilistic atlases. Reg-
istration is not as simple as equating the origin of similar coordinate systems. The reg-
istration methods must accommodate for diverse types of image data each with different
spatial resolution and coverage [192]. Furthermore, image registration is also an essential

for the further use of the atlases [120], [192]:

e Mapping all the images to a common coordinate system enables the construction
of the atlas. The type (rigid, affine, non-rigid) of the registration method depends
on the application of the atlas. Registration methods which maintain the shape
(i.e. methods which use linear transformations) of the anatomical features are used

during the construction of most atlases.

e Deformableregistration methods enable the registration of the atlas to an individual
subject. Adapting the shape of an atlas to an individual subject allows the construc-
tion of individualised atlases. Information from an atlas can be transferred to the
individual subject while maintaining the intricate patterns of structural variation in
the subject’'s anatomy. Hence, non-rigid registration of an atlas to a subject can be
used to produce valuable information regarding abnormalities [191]. Furthermore,
non-rigid registration methods can be used to determine morphometric variability
which exists in the data [36]. Moreover, registration of an atlas to an individual

image enables the segmentation of the image [109].

e Registration between individual subjects can be used to transfer physiological data
from different individuals to a single anatomical template enabling their comparison
without the confounding effects of their anatomical shapes. For example, rigid
registration [66], [103], [81] and non-rigid registration [65], [169] can be used for

the comparison of humans brains in a normalised reference space.

e Image registration can be used to compare atlases from different populations and
help identify significant anatomical and functional differences between different

population groups.
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The visualisation of the atlas can be separated into two forms [119, 120]. The first
concerning the visualisable aspect of the atlas (3D renderings, etc) and the second one
relating the atlas to a database containing clinical information regarding the region of
interest.

The Montreal Neurological Institut¢35] has developed a probabilistic atlas of the
human brain. In order to build this atlas, MR images from 305 subjects were mapped into
the same stereotactic space then, intensity normalised and averaged on a voxel-by-voxel
basis. More recently, Mazziottt al. have built a four-dimensional probabilistic atlas of
the human brain which includes both macroscopic and microscopic information on the
function and structure of the human brain [119]. At the current stage, the brain atlas is
constructed from more than 1000 subjects, aged 18 to 90 years old. However, the aim of
this work is to include more than 7000 subjects of different ages and countries.

Dinov et al. have used a probabilistic atlas of the human brain in order to develop a
subvolume thresholding method for the analysis of positron emission tomography (PET)
and single photon emission CT data of the brain [50]. The atlas is also used to determine
the statistical significance of the effects of motor simulation on brain perfusion. Nowinski
et al. have also used a brain atlas to assist a method for localisation analysis of functional
images [131]. This technique has a number of limitations mostly due to the nature of the
atlas. The brain atlas they used, an enhanced and extended electronic Talairach-Tournoux
brain atlas [189, 190], is one of the first electronic brain atlases. However, it has significant
limitations due to the fact that it is based on a single subject. Rasskhave developed
a nonlinear registration technique to project the Brodmann areas of the brain onto 3D co-
registered functional MR datasets [168]. Similar to the Nowisnkdial. approach, this
method uses a single subject based MR atlas.

Parket al. produced a probabilistic atlas of the abdomen using 32 noncontrast ab-
dominal computed tomography scans acquired from patients [140]. The probabilistic
atlas consisted of four organs (liver, kidneys and spinal cord). In order to construct the
atlas all the images were manually segmented. One subject was selected as reference and

all the other images were registered to the reference subject udigipenableregistra-



3.2 Probabilistic atlases 96

tion method based on thin plate splines [140]. Care was taken to ensure that the reference
subject was a normal representative of the population. The information provided by the
atlas was incorporated into a segmentation framework in order to aid the automatic seg-
mentation of abdominal images.

In brain imaging there is very complex structural variability between normal individ-
uals and particularly between different population groups [192]. Therefore, a single brain
atlas may fail to serve as a faithful representation of the population. In this case, cus-
tomised atlases for specific population groups could be more faithful representations of
the group. Hillet al. have recently presented a novel approach for building dynamic at-
lases [78]. In this approach a dynamic atlas can be customised to meet particular criteria,
for example: age, sex, etc. The method enables the specification a number of criteria for
the subjects used to build the atlas. The advantages of dynamic atlases is that they can be
tailored to meet particular needs of the research question of interest.

In cardiac image analysis, probabilistic cardiac atlases have been develop@ibiogh
et al. [111]. In this work a probabilistic atlas of the cardiac anatomy using MR images
has been constructed by combining information from standard short- and long-axis im-
ages. The atlas was built from 25 healthy subjects. The images were segmented into
atria, ventricles and epicardium by fitting a 3D surface model to both short- and long-
axis images simultaneously . The main steps in the construction of the atlas were: the
affine registration of the segmented subjects to the reference subject, the blurring of the
registered images with a Gaussian kernel and the averaging of the blurred images [111].
Lorenzo-Val@set al. have also constructed probabilistic atlases of the cardiac anatomy
and function from 14 MR image sequences of healthy volunteers [108]. Lorenzésvald
et al. developed separate probabilistic atlases of the left and right ventricles as well as for
the myocardium. The main differences between these two approaches igtjoaehet
al. address the issue of the poor image resolution in the direction orthogonal to the slice by
using both short- and long-axis images, while Lorenzo-&aéd al. used only short-axis
images. Moreover, &tjonenet al. model only the cardiac anatomy at end-diastole while

Lorenzo-Val@éset al. model both the cardiac anatomy and function. During the con-
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struction of the probabilistic atlas, Lorenzo-Vaget al. map the image sequences only
to the same spatial coordinate system and not to a spatio-temporal coordinate one. This
introduces artifacts into the atlas since image frames from different temporal positions in

the cardiac cycles would be averaged.

3.2.1 Reference space of the atlas

The selection of the reference space of the atlas is very crucial. In the case where one
subject of the population is randomly selected to be the reference subject, care must be
taken to ensure that it is a normal representative of the entire population. The Talairach
coordinate system [189, 190] was derived from the brain of a 60 year old woman and was
one of the first coordinate systems used in brain atlases. The Talairach coordinate system
was initially developed to help interpret brain stem and ventricular studies acquired using
pneumoencephalography [189]. It has become an international standard for reporting
functional activation sites in PET studies.

In order to avoid bias towards a specific subject, iterative registration approaches can
be used to calculate the reference space of the atlas. Such a reference space can be con-
structed by [192]: (1) using automated linear registration to align the data to a randomly
selected image; (2) intensity averaging the aligned data; and (3) recursively re-registering
the data to the resulting average image. The resulting average image is then adjusted to
have the mean affine shape for the group [192jtjdnenet al. used a similar method to
calculate the reference space of the atlas [111], while@gdtal. have randomly selected
one of subjects to be the reference space [108]. Guinevadl presented a convergence
study for calculating average brain models [71]. Their approach consists of the following

steps:

1. Evaluation of the global intensity and shape differences by calculating an affine

transformatioril¥'*** between each subjeftand the reference subjekt

2. Use of non-rigid registration to map each imagdg to the referencel’, using the

obtained affine transformatioﬂ?,fl"bal, as an initial estimate. This step provides the
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resulting matched imagéB>“*(I;) and the resulting non-rigid displacement field

T{ocal.
3. Calculation of the mean intensity image by averagingreat® (I;) .

4. Production of the mean deformation field by calculating the vectorwise average of

the deformation fieldgioc+!,

5. Application of the mean deformation to the average intensity image to produce the

mean average intensity and shape model.

These steps are repeated using an iterative approach in order for the method to converge

to a reference image close to the centroid of the population.

Reference’s coordinates
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Figure 3.2: Examples of an atlas coordinate systems. (a) The atlas is defined in the
coordinate system af,. (b) The atlas is defined in the natural coordinate system.

Rueckertet al. constructed an atlas of the brain using pairwise registration between
each subject and the reference subject [173]. The mean deformation is then applied to
the atlas to obtain a model in it&tural coordinategthe coordinates of the mean shape)
[173]. Bhatiaet al. created an atlas directly in tmatural coordinatedy using a method
for groupwise non-rigid registration of brain MR images [13]. The natural coordinate
system is calculated implicitly by constraining the sum of all deformations from the ref-

erence space to each subject to be equal to zero [13]. Figure 3.2 shows how an atlas is
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constructed using an individual subject as a coordinate system (a) and the natural coordi-

nate system (b).

3.2.2 Encoding variability

The methods for creating probabilistic atlases fall into three main categories [192]. Each

category differs in its conceptual foundations. The three categories are:

e Intensity based approaches In these approaches the average representation of

anatomy is calculated by averaging the intensity of corresponding voxels.

e Segmented based approachedn these approaches the data are segmented into
anatomical structures. The probability map for each segmented structure is con-
structed by determining the proportion of subjects assigned to a given anatomic

label at each voxel position.

e Deformation based approachesin these approaches probabilistic information is
locally encoded from the deformation maps. The deformation maps are produced
by using non-rigid registration and enable determination of the magnitude and di-

rectional biases of anatomic variation.

The main difference in the three categories for the construction of probabilistic at-
lases is how the statistical distribution is modelled and analysed. Random vector fields
are analysed on deformation based approaches, while random scalar fields are used to
model intensity statistics in the intensity based approaches and binary labels in space in
the segmentation based approaches [192]. One problem with the intensity and segmen-
tation based methods is that averaging after linear registration introduces blurring in the
boundary definition of structures with spatial variability in the population. This could
destroy information regarding small structures (e.g. the gyral feature of the cortex in the
brain) [192]. A solution to this problem is to use a non-linear registration method which

will enable a better boundary definition of anatomical structures.
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3.3 Statistical modelling

Probabilistic atlases contain information about the degree of variability at every voxel
of the atlas. However, they cannot provide information regarding the type of variabil-
ity. Statistical atlases enable the calculation of additional information regarding the type
variability which exists in anatomical structures. The construction of statistical models
of shape usually requires the identification of a set of landmarks on every image of the
population. The landmarks are placed on strong image features like boundaries and points
with high curvature. Statistical analysis is performed on the landmark locations enabling
the calculation of the average shape and also its significant modes of variation. Figure 3.3
provides an example of statistical shape modelling. In order to perform statistical analysis
on the location of the landmarks, correspondence between the landmarks in each image

has to be established.

Shape 1 Shape 2 Shape 3 Shape24 Statistical

1 2 1 2 Analysis | Modesof
I 2 :. 1 I shape variation
D Mean Shape
3

4

Figure 3.3: Statistical modelling of shapes.

3.3.1 Statistical shape models

There have been a number of attempts to build statistical shape models of the cardiac
anatomy [40, 38, 64, 112] and statistical models of the appearance of the heart [17, 128,
126, 197]. Active Shape Models (ASM) and Active Appearance Models (AAM) are ex-
amples of statistical approaches for modelling cardiac anatomy and appearance. Active
shape models have been introduced by Coeteal. [40] for modelling the shape of
anatomical structures by gathering statistical information from a large set of images. The

construction of an active shape model requires all sets of landmarks to be aligned with
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the corresponding reference landmark set. The alignment aims to correct scaling, trans-
lation and rotation differences and is performed using an iterative approach based on the

Procrustes method [69]. The alignment method is the following [40]:

e Align (utilising rotation, translation and scaling) each shape with the first shape of

the population.
e Repeat:

— Calculate the mean shape from the aligned shapes.
— Normalise the orientation, scale and origin of the mean to suitable defaults.

— Realign every shape of the population with the current mean.
e Until: the process converges.

After the shape alignment, a correspondence between each point of each set can be
established. The resulting alignment is the model space{xet = 0...N} denoteN
shapes. Each shape consists08D landmarks{p; = (p1;,p2j,ps;);j = 1....m}. Each
vectorx; consists of the landmark®1, pa1, P31, P12, P22, P32, -y Plms D2m, P3m)- After
the alignment into a common coordinate system, each skapan be represented by a
single point in a&3m-dimensional space.

A Point Distribution Model(PDM) which models the variation in the coordinates of
the aligned shapes’ landmarks can be generated. The variation is assumed to be ellipsoidal
and its centre and major axis are calculated. Calculating the centre provides the mean
shape, while finding the major axes of the ellipsoidal gives a way of moving around the

shape distribution space. The mean shape is calculated as:

i:iX}i (3.1)

The aim of the statistical analysis is to approximate the distribution of the landmarks
with a linear model of the form:

x = % + ®,b, (3.2)
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wherex is the average landmark vectar, is the shape parameter vector of the model,
and®, is a matrix of eigenvectors. The matux is obtained by performing Brincipal

Component Analysi@®CA) [87] to the3m x 3m covariance matriss:

1 N
S=+ ;(xi — %) (x; — %) (3.3)

During theprincipal component analysithe principal components &fare calculated as
its eigenvectorg; and the corresponding eigenvalugsare sorted (such that < A;,1).

New shape examples can be generated by varying the pararhgtd#requation 3.2.
Assuming that the distribution of the data follows a multidimensional Gaussian distri-
bution, the variance of thigh parameter obg across the training set is given By. If
limits in the variation ob,; are applied such that; < +3./)\;, then it is ensured than the
generated shape is similar to those contained in the training class.

A similar technique could be used to model the appearance as well as the shape. Active
Appearance Models (AAM) have also been introduced by Coeted. [37], [39]. In
order to build a statistical model of the appearance, each image of the population is warped
so that its control points (landmarks) match the mean shape. The images are warped to
match the mean shape using a triangulation algorithm [37, 39]. Intensity information
from the shape normalised images is sampled over the region covered by the mean shape.
The samples can be further normalised to reduce the effect of variation in global lighting.
Then PCA can be applied to obtain a linear model of appearance similar to the one defined
by equation 3.2:

whereg is the mean normalised grey-level vectd, is the eigenvector of appearance
variation andb, is the model's parameters [37, 39]. Therefore, the shape and the ap-
pearance of a subject can be described by the vebtoamdb,. Since there might be
correlations between the shape and the appearance of a subject, the vectors are concate-

nated by applying an additional PCA to both shape and intensity. The following model is
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obtained [37, 39]:

SbS S
b = W = Q c=Qc (3.5)

bg Qg
where Wy is a diagonal matrix of weights for each shape parameter, allowing for the
difference in units between the shape and intensity modé@ss a set of orthogonal
modes ana is a vector of parameters controlling both the shape and the appearance of
the model.

An alternative approach for modelling shape and appearance is timdegendent
Component Analysif85], [86] (ICA) instead of PCA. In PCA the objective is to find
modes of shape variation which explain the maximal amount of variance in the population.
In ICA on the other hand, the objective is to find modes of shape variation which are
statistically independent. ICA enables the modelling of input data which do not have
Gaussian distribution and can also describe localised variation. ICA is widely used for
separation of mixed signals.

Assume thak is a shape vector which come from a mixture of signals of the form:

x=A"S (3.6)

where A is a matrix containing the mixing parameters @hdhe source shape. Then,
the goal of ICA is to calculate the original shape from the mixed signal. Therefore, ICA

calculates the de-mixing matri¥:

S=U-x (3.7)

The matrixU is found by calculating a cost function. Theint Approximated Di-
agonalization of Eigenmatricesgorithm (which is based on the joint diagonalisation of
the cumulant matrices) can be used to calculate the m&itfiz3]. Uziimdi et al. [197]
used ICA to build an Active Appearance Model of the heart using 2D MR images. The

model was used for cardiac MR segmentation. One major disadvantage of ICA compared
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to PCA is that the resulting vectors of shape deviation are not ordered and a method for
ordering the independent components is required [197].

Mitchell et al. have developed a multistage hybrid active appearance model of cardiac
MR images. They use the model for the segmentation of the left and right ventricles of
cardiac MR images. Hemarneh al. have developed 2D spatio-temporal active shape
models (ASMM) [75], while Sonkat al. presented an active appearance motion model
[102, 127, 185] (AAMM) which captures the cardiac dynamics as well as the image ap-
pearance of the heart. In their framework, shape correspondence was defined in a similar
way to the conventional ASM approaches, while temporal correspondence was defined
by normalising the cardiac cycle of the images. The temporal normalisation is achieved
by selecting a fixed number of frames covering the entire cardiac cycle and using nearest
neighbour interpolation to generate image information between these frames. The con-
tour points from the phase normalised images were then concatenated to form a vector.
Standard PCA analysis and AAM intensity normalisation schemes were applied to cap-
ture the model statistics. Bosd@t al. have also developed AAMs which capture the
spatial and temporal information of echocardiographic sequences [17]. In their frame-
work, correction for non-Gaussian intensity distribution of the appearance is used prior to
the construction of the model.

Shape modelling needs a large number of landmarks to be identified in all the images
used for the construction of the model. This is a very difficult task which is prone to
errors. An exemption to this is the work by Frargial. [63], [64], [61]. In this approach,

a set ofpseudo-landmarkare used instead of real anatomical landmarks. g$eudo-
landmarksare generated using tmearching cubeslgorithm [107] to generate a dense
triangulation pseudo-landmarBf the boundary surfaces of each anatomical structure.
The automatic landmarking of each image is achieved by using a non-rigid registration
algorithm based on B-Splines to propagate pseudo-landmarkfom the landmarked
atlas to each image of the population. The resulting model included the left and right

ventricles.
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In order to evaluate how well the propagation of landmarks is performed, Fetabi
used images from 14 healthy volunteers [64]. Three experienced observers were asked
to identify seven landmarks on each subject and also on the atlas. The observers iden-
tified the seven landmarks twice in two different sessions. The algorithm was able to
automatically place the landmarks with an average accuracy of aboutrad a pre-
cision of about 1..am In the same experiments they found that the precision of manual
landmarking was about i@ [64].

Lotjonenet al. used the method developed by Fraegil. [64] to develop statisti-
cal shape models of atria, ventricles and epicardium [112]. Their statistical models were
constructed using short- (SA) and long-axis (LA) MR images from 25 healthy volunteers.
The use of long-axis images in the construction of the atlas provides more information in
the direction orthogonal to the short-axis slice. A typical short-axis cardiac MR image has
out-of-plane resolution several times larger than in-plane resolution. Therefore, the use
of both long- and short-axis cardiac images enables the more accurate localisation of the
ventricles in the basal and apical levels. The mapping between the short- and long-axis
images was calculated using information, contained in the image files, regarding the coor-
dinate system of the images. An algorithm for the correction of movements in the images
was applied prior to the construction of the atlas. The movement correction algorithm
optimises the normalised mutual information (NMI) between the SA and LA volumes.
The algorithm assumes that the displacement of each slice is independent from the dis-
placements of the other slices. One slice is randomly selected from the SA and LA stack
and it is moved to the direction which optimises the NMI [112]. The atria, ventricles and
epi-cardium were manually segmented from each image by a clinician. In this approach,
instead of registering the grey-level images, the segmented data were utilised. Intensity
volumes were generated from the surface data. One volume was selected as the reference
and other volumes were aligned to the reference using translation, rotation and isotropic
scaling. The variability in the shape was modelled using several analysis methods: PCA,

ICA, LPDs (landmark probability distribution).
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Horkaewet al. developed an approach for the construction of dynamic statistical mod-
els for complex topological shapes. Their method uses a harmonic embedding method to
establish optimal global correspondence between a set of dynamic surfaces [82], [84]. The
proposed method eliminates the need for shape partitioning and introduction of artificial
structures to the parameterisation domain. The strength of the method was demonstrated
by constructing a statistical model of the left side of the heart that includes the left ventri-

cle, left atrium, aortic outflow track and the pulmonary veins.

3.3.2 Statistical deformation models

Statistical deformation models (SDMs) are very similar to statistical models of shape. One
of the key ideas here is to carry out statistical analysis directly on the deformation fields
which describe a dense correspondence between the anatomies of two images. There are
two main advantages of performing statistical analysis on the deformation fields rather
than the shape [173]. Firstly, the resulting statistical model is not limited to a single
anatomical structure. It can instead describe the intra- and inter-structure variability across
a population. Secondly, the deformation fields can be obtained by non-rigid registration,
eliminating the need for segmentation of the images. Rueakest. used non-rigid
registration based on B-Splines to construct a 3D statistical deformation model of the
brain using MR images from 25 different subjects [173]. The registration algorithm uses
a transformationT, consisting of a global and a local part (this transformation model is

described in detail in section 2.3.2.1):
T (2, v, 2") = Tgobar (%, Y, 2) + Tioear (2, Y, 2) (3.8)

The global transformation describes the overall differences of the images and is rep-
resented by an affine transformation. The local transformation describes the local shape

differences and is represented bgteformablemodel based on B-Splines:

Tlocal(l‘y Y, Z) = Z Z Z Bl(U)Bm(v)Bn(w)¢i+l,j+m,k+n (39)
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where¢ denotes an, x m, x m, lattice of control points. The resulting transformation

T maps each point of the reference subjEdb the corresponding point in the anatomy

of subject/;. The goal of SDMs is to perform statistical analysis of the deformations re-
quired to map’ to eachl;. However, the effects of the global transformation component,

T 510001, Which are the result of differences in position, orientation and overall size of each
subject’'s anatomy, have to be removed prior to statistical analysis. In order to remove
any dependency of the local transformation to the global transformation, the following

displacements are calculated:

d(x,y,z) = Jlto Tiocal(X,y, 2)
3 3 3 (3.10)
- Z Z Bl(U)Bm(U)Bn(w)J_1¢i+l,j+m,k+n

wherelJ is the Jacobian matrix of the global transformation. The Jacobian matrix of the

affine transformation, with coefficients; is:

Qo1 Ap2 Qo3

J=(an an ay (3.11)

Q21 d22 Q23

Suppose that there andree-form deformations described as control po@is...., C,,.
Each vector of control point€; corresponds to a concatenationmof x m, x m, 3D
control pointsC; = (¢4, ...., ¢y ). These points produce a free-form deformation mapping
the anatomy of the reference subjécto subject/;. The goal of SDMs is to approximate
the distribution ofC using a parameterised linear model [173], similar to the one defined
by equation 3.2:

C = C + ®4bg (3.12)

whereC = 1 3" | C; is average control point vectdsg is the model’s parameter vector

and®4 is the matrix of eigenvectors. As in the statistical shape modelling, the columns
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of @4 are formed by performing PCA analysis on the covariance matrix:

Sa=-)Y (Ci—C)(Ci—-C) (3.13)

=1

Joshi [88] and Geet al. [67] have also perform statistical deformation modelling of
the brain. These approaches are closely related to the approach developed FRuatkert
[173] but differ in one important aspect. Rueckettal. performs statistical analysis on
the control points of the free-form deformation rather than directly on the deformation
fields. The control points parameterise the deformation fields providing a very compact
representation. Cseransy al. have used SDMs for the analysis of the hippocampal
shape [42] and Wanet al. for the analysis of hippocampal asymmetry [202]. Moreover,
Davatzikoset al. employed a non-rigid registration algorithm to calculate 2D deformation
fields of the corpus callosum. Then, statistical analysis of these deformation fields is used
to quantify changes between two population groups (in this case male and female subjects)
[44]. In a similar way, Booksteiet al. studied the shape variability of corpus callosum
in patients with schizophrenia and normal control subjects by analysing the deformation
maps based on thin-plate splines [15], [49].

Lappet al. combined the concepts of SDMs to AAMs to develop a 4D Active Appear-
ance model of the heart. In this method all corresponding frames of the image sequences
are registered to the same coordinate system using non-rigid registration. The resulting
deformation fields are assembled to a pseudo 4D deformation fields. Then PCA analysis
is performed on the obtained deformation fields [94, 95]. The appearance of the heart is
modelled similarly to the AAMs. The images are warped to same coordinate system using
the obtained deformation fields and then PCA analysis is performed on their appearance
vectors [94, 95]. The temporal misalignment between the image sequences has not been

corrected during the construction of the models.
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3.4 Atlases of the cardiac function

Raoet al. [167, 165, 166] have developed an atlas of the cardiac motion by using MR
image sequences of the heart from nine volunteers. The method for extracting the cardiac
motion and mapping the motion fields across subjects is described in detail in section
2.6.1. As described in section 2.6.1, the cardiac motion fields are calculated using the
method described by Chandrashekatral. [29]. Then a non-rigid registration algorithm

is used to calculate the mapping between end-diastolic frames of each untagged image
sequence. Petijeaat al. [154] developed a similar atlas of the motion of the heart. The
key difference between the two approaches is that whiledab.s approach produces

a parametric atlas, this approach produces a non parametric motion atlas which has the
ability to preserve the statistical diversity of the motion content of MR data during the
contraction phase of the heart [154]. Moreover, Petigtai. performed PCA analysis on

the motion data calculating not only the average deformation field but also the significant
modes of motion variation. Both approaches provided a temporal correction only for
the length of the cardiac cycles [154]. This may not be enough since each heart may
have different dynamic properties (one heart may have a longer contraction and a shorter
relaxation phase). In another publication Chandrashekaiapresented a new technique

for tracking the movement of the myocardium by the use of a statistical model derived
from the cardiac motion fields of several healthy volunteers [30]. The approach for the
construction of the statistical model consists of three steps. Firstly, the motion fields
are extracted for all subjects between end-diastole and end-systole using the previously
mentioned approach [29]. Secondly, the extracted motion fields are mapped to the same
coordinate system using Rabal.s approach [167]. Finally, (PCA) is performed on the

motion fields in order to calculate the significant modes of variation in the motion fields.
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3.5 Other modelling approaches

In recent years a large number of approaches have also been developed for the geometric
and biomechanical modelling of the heart. A comprehensive review of these approaches
can be found in Franggt al. [62]. A major difference between geometric approaches and
probabilistic and statistical approaches for modelling anatomical structures is that geo-
metric models do not contain any information regarding the shape and function variability
within the population. This section provides a brief description of such methods. Detailed
analysis of geometric modelling methods is outside the scope of this thesis. Etahgi
categorise the geometric modelling methods depending on the way in which the models

are geometrically represented [62]:
e Surface modelling
e \olumetric modelling
e Deformable modelling

In early studies of 2D echocardiography images, the left-ventricle is modelled as a
simple ellipsoidal [200], [53]. More advanced approaches which use 3D acquisition to
reconstruct the LV using global and hierarchical parameterised models have also been
developed. Approaches which use global parameterised models are based on simple ge-
ometric models which enable a rough shape approximation of the anatomical structure
[62]. Cauvinet al. used a combination of an ellipsoid and a cylindetr(acated bullex
to model the left ventricle [26], while Metaxas and Terzopoulos propssedrquadrics
to model simple objects with a limited number of parameters [125]. Paak extended
the superquadricsnodel by introducing parameter functions like radial and longitudinal
contraction, twisting and long-axis deformation [141]. Bardieeal. used a combina-
tion of a superquadricand free-form deformations to model the LV [10, 11]. In their
approach, superquadrianodel is used to fit the inner and outer surfaces of the left ven-
tricle and then a free-form deformation model is used to refine the crude approximation of

the superquadrionodel. The method is applied in order to estimate the LV wall motion
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[10]. This is achieved by deforming the entire mod&igerquadricand FFD) to match
the anatomy of the first frame and modifying only the FFD in the subsequent frames.

Hierarchical parameterised models contain hierarchical representation of the model,
where each level describes the model in more detail. Gustaessdnfor instance, used
a truncated ellipsoid to obtain a coarse position of the left ventricle from contours drawn
into the short-axis and three apical views of ultrasound images [72]. The model is refined
using cubic B-Splines curves which approximate the manually segmented contours in
multiple views.

There are also surface models which incorporate temporal and spatial variation of the
LV shape. Tuet al. introduced a 4D model-based LV boundary detector for 3D CT im-
age sequences [193]. The method applies a spatio-temporal gradient operator in spherical
coordinates which is only sensitive to moving edges. An iterative approach refines the
boundaries of the model by discarding edge points which are far away from the global
model. Spherical harmonics are used to parameterise the model as the refinement ap-
proach proceeds. Faberal. [56] uses a discrete 4D model to segment the left ventricle
from SPECT and MR images using a relaxation labelling scheme [90]. In this approach,
the endocardial and epicardial surfaces are modelled as a discrete template which is de-
fined in a mixed spherical/cylindrical system co-axial with the long-axis of the left ven-
tricle. Each point in the template represents a radius connected to the long-axis. During
the segmentation procedure, information from neighbouring points in both the spatial and
temporal domains is used. More recently, Declegtlal. introduced a 4D continuous
planispheric transformation which enables the tracking of LV motion [46]. The plani-
spheric transformations have the advantage that they are continuous in both spatial and
temporal domains. Sermesattal. have developed deformablebiomechanical model
of the heart by combining information from various imaging modalities [180, 181]. The
construction of the model involved three main stages: generation of the geometrical mesh,
non-rigid registration of the mesh in images of various modalities and finally retrieving

information from each volumetric image to the volumetric mesh.
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In recent years the trend is moving away from surface based modelling of the heart
to more accurate volumetric based modelling of the cardiac motion [54]. A review on
imaging three-dimensional cardiac function and on analysis of cardiac deformation can
be found by O’Dell and McGulloch [132]. Skt al. extended an earlier surface modelling
approach [182] to produce a biomechanical model by combining surface and motion in-
formation from magnitude and phase-contrast MR images respectively [183]. Etaber
al. developed a model of biventricular geometry using finite elements [73]. Papademetris
et al. developed a cardiac biomechanical modelling approach using a deformation model
inspired by continuum mechanics [136, 138, 135, 137]. In this approach a dense tri-
angulation field is calculated using point correspondence which is obtained by using an
extension of the work developed by Sftial. [183]. A linear elasticity model is used for
the estimation of a dense motion field. The model accounts for the muscle fiber direc-
tions in the left ventricle. The motion field is used to calculate the deformation of the left

ventricle’s wall in terms of strain in cardiac specific directions [137].

3.6 Conclusions

There are three main methods for modelling the shape and function of the Redra-

bilistic atlasescontain information regarding the shape and function of structures in the
form of tissue probability maps (i.e. the probability of a voxel to belong to a certain
anatomical structure). A disadvantage of probabilistic atlases is that they can not provide
information regarding the type of variabilit@$tatistical atlasegnable the calculation of
additional statistical information regarding the type of variability. The main categories of
statistical models which have been reviewed in this chapter are: the statistical shape and
appearance models and statistical deformation models. In statistical shape models, anal-
ysis on the shape of the heart is performed. Statistical models of appearance go one step
further by analysing not only the shape of the heart but also its appearance. Statistical de-
formation models are very similar to statistical models of shape. One of the key ideas here

is to perform statistical analysis directly on the deformation fields which describe a dense
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correspondence between the anatomies of two images. Furthermore, there are approaches
for the construction of statistical atlases of the cardiac motion. Finally, in recent years a
large number of approaches have also been developed inclgelamgetric modellingnd
biomechanical modellingf the heart. A major difference between these models is that
they do not contain information regarding the shape and function variability within the
population.

Contrary to most of the methods reviewed in this chapter, the work presented in this
thesis aims to build 4D probabilistic and statistical atlases of the cardiac anatomy and
function. In this chapter a number of approaches for building atlases of the cardiac
anatomy and function have been presented. However, none of the above approaches cap-
tures information regarding anatomical and functional variability into a single model. The
probabilistic and statistical atlases presented in this thesis contain information regarding
anatomical variability and functional variability. These models describe the shape of a

healthy heart and how the shape of the heart changes over the cardiac cycle.



Chapter 4

Spatio-temporal alignment of cardiac

MR image sequences

This chapter presents a novel method for the spatio-temporal registration of 3D cardiac
MR image sequences. The algorithm uses a 4D transformation model which is separated
into decoupled spatial and temporal components. Firstly, a registration algorithm is pre-

sented which has the ability to correct spatial misalignment of affine nature between the

image sequences. It also has the ability to correct temporal misalignment which may be
the result of differences in the length of the cardiac cycles of the subjects and in the tem-

poral acquisition parameters [152]. Secondlgedormablespatial transformation model

is introduced which enables the better spatial registration of the image sequences. With
the introduction of the spatialeformabletransformation model, the algorithm corrects

not only global spatial shape differences but also local differences in the shape of the

hearts [153].

4.1 Why spatio-temporal registration is needed

Since the heart is undergoing spatially and temporally a varying degree of motion during
the cardiac cycle, 4D cardiac image registration algorithms are required when registering

two cardiac MR image sequences. Spatial alignment of corresponding frames of the im-
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age sequences (e.g. the second frame of one image sequence with the second frame of the
other) is not sufficient since these frames may not correspond to the same position in the
cardiac cycle of the hearts. This is due to differences in the acquisition parameters (trig-
ger offset from R-wave and different intervals in the acquisition of consecutive frames),
differences in the length of cardiac cycles (e.g. one cardiac cycle may be longer than the
other) and differences in the dynamic properties of the hearts (e.g. one heart may have
a longer contraction phase and a shorter relaxation phase). Figure 4.1 shows an example
of how differences in the trigger offset;(;,,), in the frequency of the acquisition of con-
secutive frames and in the length of the cardiac cycles affect the temporal alignment of
two image sequences. An affine temporal transformation can correct for differences in the
acquisition parameters and in the length of the cardiac cycles. However, the correction
for the differences in the dynamic properties of the hearts requires more complex trans-
formations. The spatio-temporal alignment enables comparison between corresponding
anatomical positions and corresponding positions in the cardiac cycle of the hearts. This
can be seen from the volume curves of the left ventricles in figure 4.2. In 4.2(a) there is
no temporal registration between the image sequences. This may lead to the comparison
of frames in different positions in the cardiac cycle (the position were one heart is at peak
contraction while the other heart is still during the contraction phase). What is needed is
to find the temporal relationship between the two image sequences in order to compare
corresponding positions in the cardiac cycles (figure 4.2 (b)).

The method developed by Ra al. [167, 165, 166] for the direct comparison of
motion fields between different subjects suffers from the problem mentioned above. The
deformation fields calculated for each subject contain the deformation between adjacent
frames. When non-rigid registration is used to map the deformation fields to the same
reference system, the mapping is performed only in the spatial domain. However, the
size of motion fields from one frame to the next will depend on the offset.(:) in
the acquisition of consecutive frames. The larger this acquisition offset is, the larger
the cardiac motion between adjacent frames would be. Therefore, comparing a number of

motion fields without knowing the temporal relation between the cardiac cycles introduces
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errors in the observations.
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Figure 4.1: An example of two MR image acquisitions with different initial delay in the
acquisition of the first frame and offset in the acquisition of consecutive frames. The
image sequences have different numbers of frames. It is clear that comparison between
corresponding frames is not sufficient since these frames correspond to different positions
in the cardiac cycles of the heart. Temporal registration is needed to establish correspon-
dence between these frames.

4.2 Contributions

This chapter makes the following contributions:

e The development of a new method for the spatial and temporal alignment of a num-
ber of cardiac MR image sequences to the same coordinate system. The registration
method uses a 4D transformation mapping decoupled into separate temporal and
spatial components. This spatio-temporal transformation mapping enables the di-

rect comparison of the anatomy and function of cardiac MR image sequences to be
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Figure 4.2: An example of why spatio-temporal registration is needed. (a) the identity
temporal relation has been assumed, (b) the temporal relation provides a mapping between
corresponding positions in the cardiac cycle.

made. The registration method aims to minimise any patient specific temporal and
spatial variability which is caused as a result of spatial differences in the position,
size and orientation of the cardiac anatomies and temporal differences in the length

of the cardiac cycle of the hearts.

e The extension of the spatio-temporal registration method with the introduction of
a deformablespatial transformation. This extension enables the correction of any
specific temporal and spatial variability which is caused as a result of spatial local
shape differences between the cardiac anatomies in addition to the global spatial

and temporal differences.

4.3 Spatio-temporal registration of cardiac MR image se-

quences

The proposed registration approach uses information provided only by the intensity of
the image sequences. There is no need to identify feature positions in the cardiac cycles
(e.g. the positions of the peak contraction) of the hearts and also no need to segment the

images.
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A 3D cardiac image sequence can be represented as an ordered sequer8i® of
imagesSi(z, y, z) with a fixed field of viewS2s, and an acquisition time,, ¢, < t;1,
in the temporal direction. The resulting image sequence can be viewed as 4D image
S(x,y, z,t) defined on the spatio-temporal domélg, x [t;,%,]. The goal of 4D image
registration is to relate each point in one image sequence to its corresponding point in the
reference image sequence. In this case the transforniBitiofx, y, z,t) — (2/,y/, 2/, ')
where(z', /', 2/, t') = (x +u,y + v, z + w, t + 7) maps any point of one image sequence
S(z,y, z,t) into its corresponding point in the reference image sequétiag, v/, 2/, t').

In general, the 4D mappir§ can have the following forms:
1. T(x,y,zt) = (' (x,y, 2, 1),y (z,y, 2, 1), (x,y, 2, t), ' (z,y, 2, 1))
2. T(z,y,z,t) = (2 (x,y,z,t),y (x,y, 2, 1), 2 (x,y, 2, t'), ' (1))
3. T(z,y,2,1) = (2(z,y,2),y/ (2,9, 2), ' (z,y,2), (1))

The first type of 4D mapping is under-constrained and it would be very difficult to
find the optimal transformation mapping without introducing additional constraints or
employing heuristic algorithms to reduce the search space. Furthermore, this mapping is
undesirable due to the fact that two points from the same temporal frame can correspond
to two points in two different time frames in the source image sequence. This is not intu-
itive or desirable. The second type of 4D mapping allows a different spatial mapping for
each frame of the image sequences. Such a 4D mapping is preferable when the differences
in the shape of the hearts are not constant within the cardiac cycle. However, finding the
optimal transformation of such type would have a very high computational complexity.
The last form of 4D mapping separates the temporal alignment of the image sequences
from the spatial alignment. Hence, this form of 4D mapping decouples the misalignment
caused by spatial differences from misalignment caused by temporal differences. Further-
more, its computational complexity is substantially lower than that of the previous type
of transformation mapping since a common spatial transformation for each frame of the

sequences is required.
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Image Sequence A

Image Sequence B

Figure 4.3: The mapping has to ensure that different regions in a 3D image will not be
warped differently in the temporal direction (dashed line). Each voxel in the temporal
framet of the image sequence B will map to another voxel in frahtd image sequence

A.

The 4D mapping used in this thesis is of the form:

T(z,y,2,t) = (2'(2,y,2), (2,9, 2), 2/ (2,9, 2), (1)) (4.1)

It can be of a subvoxel displacement in the spatial domain and of a sub-frame displace-
ment in the temporal domain.

Since the temporal and the spatial domains are different, the 4D mapping can be re-
solved into decoupled spatial and temporal compon@hts;i.; and Tpporar reSpec-

tively, where

Tspatial<x> Y, Z) = (I'/(ZE, Y, Z)a y/(xa Y, Z)a Z/(ZL', Y, Z)) (42)

and

Ttemporal<t) - t/(t) (43)

One consequence of this decoupling is that each temporal ftam@nage sequence

S will map to another temporal framé in image sequencg’, ensuring causality and
preventing different regions in a 3D imagg(z,y, z) to be warped differently in the
temporal direction byl';.,.,p0ra (figure 4.3). Another advantage of the decoupled model
is the ability to interchange easily the type of the temporal transformatjgn,,... and

spatial transformatiof s, ;q:-
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Image A Image B Image Sequence A Image Sequence B
O 1=1~»O
t=2 — O
t=3 ———
O z1—— ()
5—C0
Possible Alignments Possible Alignments
O
O
O O

Figure 4.4: The spatio-temporal mapping can help to solve spatial ambiguities (adapted
from [25]).

A similar spatio-temporal registration approach has also been used byeTatgor
the registration of different video sequences [25]. In this approach a decoupled spatio-
temporal transformation model is used to establish spatial and temporal correspondence
between two 2D video sequences (2D+time). The algorithm uses an affine temporal
model correcting for different offsets between the sequences and different frame rates.
The spatial model is a 2D projective transformation correcting for different internal and
external camera parameters. Two optimisation methods have been developed. The first is
based on the trajectories of segmented objects while the second one on intensity informa-
tion only.

The use of spatio-temporal registration has a number of potential advantages. The
registration could be based not only on information provided by each frame but also on
subframe information. Furthermore, introducing a temporal transformation can help to
solve a number of spatial ambiguities. An example of spatial ambiguities is shown in
figure 4.4. In figure 4.4 (a) there are two images of two spherical objects. There is a
number of possible alignments between them. In figure 4.4 (b) the same spherical objects
are displayed over time. It can be seen how much easier it is to find a mapping between

the objects if temporal information is available. However, introducing the temporal trans-
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formation can also result in spatio-temporal ambiguities. These occur when the temporal
alignment corrects for spatial differences or the spatial alignment corrects for temporal
differences [25].

As mentioned above, in this thesis the spatio-temporal alignment of image sequences
is enabled using only image information. Alternative ways for the temporal alignment of
image sequences include the use of the ECG signal and the ventricular pressure. The ECG
signal records the electrical activations of the heart which can be related to the phases of
the cardiac cycle (figure 1.7). However, during the MR image acquisition the ECG signal
is distorted due to the presence of a strong magnetic field. Recently, Kachelrigss
presented a technique for the extraction of information about the cardiac motion directly
from the measured raw data of spiral CT of the heart [89]. The measure is called the
kymogramand is a local measure of the heart motion as a function of timeas a
function of projection angle.. The kymogramcan be used to detect the beginning and
the end of the contraction but it does not provide enough information regarding the other
phases of the cardiac cycle. The ventricular pressure could also be used to find temporal
correspondence between two cardiac cycles. However, the pressure information tends not

to be recorded and is usually not available in clinical practice.

4.4 Affine spatio-temporal registration

4.4.1 Spatial alignment of 4D image sequences

The aim of the spatial part of the transformation is to relate each spatial point of an im-
age to a point of the reference image, i€, : (z,y,2) — (2',y,2') maps any
point (z,y, z) of a particular time frame in one image sequence into its correspond-
ing point (2, 3/, ') of another particular time framg of the reference image sequence.
The simplest choice of';,.;«; is a rigid transformation which has sdegrees of free-
domcorresponding to translation and rotation. In this approach an affine transformation

is selected which is a more general class of transformations witte@&es of freedom
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utilising scaling and shearing in addition to translation and rotatiode@ees of free-
domfor rotation, 3 for translation, 3 for scaling and 3 for shearing). Such a 3D affine

transformation can be written as:

011 912 913 X 914
Tg;f)?zlz(lzl (ZL‘, Y, Z) = 921 922 923 Y + (924 (44)
031 Ozp 033 z O34

where the coefficient® parameterise the twehdegrees of freedowf the transformation.

4.4.2 Temporal alignment of 4D image sequences

The temporal alignment of two image sequences aims to find the transformation func-
tion T'\...,0ra1 Which establishes a correspondence betweentiimene image sequence
and the corresponding tim¢ in the reference image sequence, thereby establishing a
correspondence between corresponding time points in two cardiac cycles. In addition
to differences in the length of the cardiac cycle, the temporal alignment of two image
sequences is further complicated by the fact that the acquisition of cardiac MR image se-
guences typically depends on two parameters (figure 4.1): the first parameter describes
the delayt .14, , after which the MR acquisition starts while the second paramgier,,,
describes the temporal resolution of the image sequence.

In the current approach the temporal transformatiBp,,,.r«; : (t) — ('), is repre-

sented as an affine transformation of the following form:

Ttemporal(t,) = at + ﬁ (45)

Herea accounts for scaling differences between the two image sequences (different length
of cardiac cycles or different temporal resolution) whilaccounts for translation differ-
ences between the two image sequences. Translation differences may be introduced by

the acquisition parametey.;,, and by missing frames.
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4.4.3 Similarity and optimisation

The optimal transformatiofl” is found by maximising a voxel similarity measure, nor-
malised mutual information (NMI) [187], as a measure of spatio-temporal alignment of
the image sequences. Normalised mutual information has previously been used success-
fully in mono- and multi-modal image registration approaches [33, 113, 157, 204]. The
use of a voxel-based similarity measure eliminates any need for any feature detection and
segmentation of structures as the epi- or endo-cardial surfaces. The normalised mutual

information between two image sequences is defined as:

NMI(S',S) =

(4.6)

whereH (-) denotes the marginal entropy of each image sequencéfand) is the joint
entropy of two image sequences. The normalised mutual information can be calculated
directly from the joint intensity histogram of the two sequences over their spatio-temporal
domain of overlagls x [tgr,ts.] [ T(Qs x [ts,,ts,])- Figure 4.5 provides an example

of the joint intensity histogram over the spatio-temporal domain of overlap of two image
sequences. The temporal transformatioi,,,...;, has only 2degrees of freedonvhile

the spatial one has 12. Therefore, the spatio-temporal registration higgfees of free-
domin total. A simple iterative uphill method can be used to optimise the transformation.

The optimisation is carried out to calculate the optimal transformation :
argmﬁagNMI(S’,T(S)) 4.7)

whereS’ is the reference image sequence 8hd&) is the transformed image sequence
S. The method is the same as the one described by Studholme [186].

Listing 1 describes the algorithm. The idea behind this optimisation approach is to use
a large step size to obtain a rough estimate of the optimal transformation and then, reduce
the step size to obtain a better estimate. However, care must be taken when selecting

the step size. A small step size may not be enough to reach the optimal solution and
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the optimisation procedure may become stuck into a local minima, while a large step
may move the transformation far away from the optimal solution (figure 4.6) . In figure

4.6 is shown that a small step size is not enough to overcome the local minima, while a
large step size moves the transformation far away from the correct solution, trapping the

optimisation procedure in another local minima.

Listing 1 The uphill descent optimisation approach.
1: Given a current estimate of the transformatid@y, = T.

2: repeat
3:  repeat
4 evaluate the similarity measure for a set of 29 transformati@ndr’,,). This

set consists of the transformations resulting by increasing and decreasing each
degree of freedorof the current estimate by a certain stepand the current
transformation {4dofs x 2 + 1)

5: selectthe best estimate of the transformation with respect to the similarity NMI:
T = > {(NMI(S', T 4.
nt1 TQ%%%,,,){( (5", T(5))} (4.8)

6 if T,,.; results to a greater value in the similarity measure fhanthen
7 T, .1 becomes the current estimat®, = T, ;

8: end if

9: until maximum number of iterations
10:  subdivide step sizes
11: until maximum number of subdivisions

During the optimisation new voxel values are generated in the temporal domain using
linear interpolation and trilinear interpolation in the spatial domain. Linear interpolation
has high computational efficiency. The use of a more advanced interpolation method, like
sinc interpolation and B-Spline interpolation, will make the registration process slower
without substantially improving its accuracy. A review on interpolation methods in med-

ical image processing can be found in [101].
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Parameter Setting
No. of bins 64
No. of iterations 20
No. of steps 4
Length of spatial steps 5mm
Length of temporal steps| 5msec

Table 4.1: Registration parameters used for the affine spatio-temporal registration.

Table 4.1 contains the parameters used for the registrations:

e Number of bins: the number of partitions of the histogram for estimating the sim-
ilarity measure. Practical evaluation has shown that the value of 64 bins is a good
choice for cardiac MR images. A larger number of bins will make the registra-
tion process slower without improving accuracy. Furthermore, a smaller number of
bins will adversely affect the results since intensity information from a number of

different types of tissue could correspond to the same bin in the histogram.

o Number of steps:the number of times the optimisation process has to be repeated.
In each iteration the length of step is halved. If the length of the final step is less than

the dimensions of the sequence’s voxels then, subvoxel accuracy can be achieved.

e Number of iterations: the maximum number of times that the optimal transforma-

tion estimate’l’,, . |, is calculated for a certain step size.

e Length of steps: the initial length of the step. The length of the step is defined in

mmin the spatial domain anghsedn the temporal domain.

4.4.4 Evaluation of the method

To evaluate the affine spatio-temporal registration algorithm, cardiac MR image se-
guences from seven volunteers have been acquired. All image sequences used in the
experiments were acquired on a Siemens Sonata 1.5T scanner using a TrueFisp pulse

sequence. For the reference subject 32 different time frames were acquired (the length
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Figure 4.6: An example of cost function and the optimisation step. A small step is not
enough to pass the local minima. A large step will trap the optimisation in another local
minima.
of the cardiac cycle was 95te¢. The frames of the reference sequence had a resolu-
tion of 256x 192x 46 with a pixel size of 0.9Mmx0.97mmand a slice thickness ofi@n
The other six 4D cardiac MR images were registered to the reference subject. These
sequences had a pixel size between @& 1.3Gnmand 1.48hmx1.48nmand a slice
thickness of 16hm For these subjects 15-20 different time frames were acquired (car-
diac cycles’ length between 60ecto 800nseg. In one image sequence the temporal
acquisition parameters were estimated because the real parameters were unknown. An
initial estimate of transformation was provided due to the large differences in the length
of the cardiac cycle of each image and also due to the large variety in the position and
orientation of the cardiac anatomies. The temporal part of the transformation was initially
calculated in order to match the temporal ends of the 4D cardiac MR images. The initial
estimate of the spatial part was calculated from the rigid registration of three manually
selected cardiac anatomical positions in the first frame of the image sequences. These
anatomical positions are the apex of the left ventricle, the anteroseptal at the base of the
heart and the inferoseptal at the base of the heart.

Figures 4.7 and 4.8 show examples of the affine spatio-temporal registration of two
random subjects . In the first row of figures 4.7 and 4.8 are the short-axis (a) and the

long-axis (b) views of particular slices of the reference sequence and a temporal view of a
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short-axis line of the reference sequence (c). The second row of figures 4.7 and 4.8 shows
the corresponding views before the registration (without mapping the temporal ends of the
image sequences). The third row of figures 4.7 and 4.8 shows the corresponding views
before the registration (after mapping the temporal ends of the image sequences). Finally,
the bottom row of the figures shows the corresponding views after affine spatio-temporal
registration. The isolines of intensity of the reference subject are overlayed on every
image. The figures show a large improvement in the alignment of the images after the
registration. In figures 4.7 and 4.8 (j)-(I) the spatio-temporal overlap of the two image
sequences has been substantially improved after their spatio-temporal affine registration.
Figure 4.9 shows another example of registration of a subject to the reference image
sequence (the figure shows the registration over the cardiac cycle). Figure 4.9 (a) shows
different frames of the two image sequences (the top part of each frame is the reference
image sequence) before the registration, while 4.9 (b) shows the corresponding frames
from the same two image sequences after affine registration. Before the registration the
two image sequences follow different motion patterns, while after affine spatio-temporal
registration they follow similar motion patterns.

In order to evaluate how well the temporal alignment has been performed, the volume
of the left ventricle in each frame was measured before the registration and after the reg-
istration. Figure 4.10 (a) contains the same volume curves of the left ventricles before the
registration, while figure 4.10 (b) contains the volumes of the left ventricle over time after
spatio-temporal registration. Before the registration, the contraction and relaxation prop-
erties of each heart are completely different (figure 4.10 (a)). For example, the position
of the peak contraction has large variability. In contrary, after affine 4D registration the
hearts have similar contraction and relaxation properties (figure 4.10 (b)).

The quality of the registrations in the spatial domain has also been assessed quanti-
tatively by calculating the volume differences of the left ventricle between each subject

and the reference subject (before and after registration). The volume difference of the left
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ventricle between two images is defined by [34]:

Avolume(Ilyl) = V},‘/_ Vi x 100% (49)
I/

whereA,..me 1S the absolute volume difference between the two im&geis the vol-

ume of the left ventricle of the reference image afnds the volume of the left ventricle

of the other image. In order to calculate the volume difference for the entire image se-
quencesA oiume(S’, S), the meam\,,.me (5%, S;) for each pair of corresponding frames

is calculated. The volumes of the left ventricle are calculated by the use of the manually
segmented images (the segmentation was performed by an expert). The quality of the
registration was also evaluated by calculating the volume overlap between the ventricles
and the myocardium of each subject and the reference subject. The volume overlap for an
objectO is defined as:

_2><\S’ﬂS|

A(S = 1 4.10
(5, S) 515 19] x 100% (4.10)

HereS” denotes the voxels in the reference (target) image part of objecid S denotes
the voxels in the other image part of objé2t In order to calculate the volume overlap

for the entire image sequences, the madn’, S;) for each pair of corresponding frames

is calculated.
Volume overlap || Before registration | After registration
Left ventricle 54.43% 79.94%
Right ventricle 54.32% 74.53%
Myocardium 47.39% 67.93%

Table 4.2: The mean volume overlap before and after the 4D affine registration.

Table 4.2 shows the mean volume overlap before and after the registration for the
left ventricle, the right ventricle and the myocardium (the mean volume overlap is cal-
culated over their temporal domain of overlap). The mean volume difference of the left
ventricle (calculated over their temporal domain of overlap) between the image sequences
was 29.55% before the registration and has been reduced to 13.90%. The mean error in

mapping the positions of the left ventricles’ peak contraction wasst@before the reg-
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istration (taking into account that the temporal resolution of the reference image sequence
was 30nsedhis error corresponds to 2.6 frames) while after the registration it is reduced
to 40msec(which corresponds to 1.3 frames). This can be also observed in figure 4.10.
The figure clearly shows that the temporal features of the volume curves are substantially
better aligned after the spatio-temporal registration even though no segmentation of the
left ventricle was used during the registration.

It is not expected that the images would be perfectly aligned either in the temporal
domain or in the spatial domains. This is due to the nature of the temporal and spa-
tial components of the 4D transformation. For example mapping the cardiac anatomy
of two different subjects most likely requires a non-rigid transformation. These spatial
differences can be modelled to a certain extent by the cuffgnt;,;. Furthermore, the
temporal transformation (equation 4.5) can only be applied to the entire cardiac cycle and
not parts of it. Therefore, it is not possible to address the temporal misalignment caused
by differences in the dynamic properties of the contraction and relaxation phases of the
cardiac cycle (e.g. one heart may have a longer contraction phase than relaxation phase).
An example of a temporal misalignment that cannot be recovered by the cligps. ..
can been seen in the volume curves (figure 4.10). In this figure, the volume of the left ven-
tricle of the reference image sequence (figure 4.10 (a), (b)) appears stable after a certain
time period which means this heart has a long isovolumetric relaxation phase. However,

this is not true for all the other images (figure 4.10 (a)).
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(@ (b)

Figure 4.7: Results of the 4D affine cardiac MR registration algorithm: (a) the short-
axis view of the reference subject, (b) the long-axis view of the reference subject, (c) a
temporal view of a short-axis line of the reference subject, (d)-(f) the corresponding views
before the registration (without mapping the temporal ends of the image sequences), (9)-
(i) shows the corresponding views before the registration (after mapping the temporal ends
of the image sequences), (j)-(I) show the corresponding images after the 4D registration.
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Figure 4.8: Results of the 4D affine cardiac MR registration algorithm: (a) the short-
axis view of the reference subject, (b) the long-axis view of the reference subject, (c) a
temporal view of a short-axis line of the reference subject, (d)-(f) the corresponding views
before the registration (without mapping the temporal ends of the image sequences), (9)-
(i) the corresponding views before the registration (after mapping the temporal ends of
the image sequences), (j)-(I) the corresponding images after the 4D registration.
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Figure 4.9: An example of affine spatio-temporal registration of two image sequences:
(a) frames of the reference image sequence (above half) with a particular subject before
the registration; (b) the corresponding frames after the registration.
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Figure 4.10: The volume of the left ventricle of the reference image and the other sub-
jects over time: (a) before the 4D affine registration (mapping the temporal ends of the
sequences), (b) after the 4D affine registration . The thick line is the volume curve of the
reference subject.
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4.5 Introduction of a non-rigid spatial translation

As mentioned above, the affine spatial alignment allows only translation, scaling, rotation
and shearing operations to be performed. These operations are not enough to correct
the misregistration caused by local shape differences of the cardiac anatomy. In this
section the affine spatio-temporal cardiac MR image registration method [152] is extended
by the introduction of a non-rigid spatial paff,....;, based on B-Splines [153]. The
temporal part of the spatio-temporal registration approach remains the same. i.e. an
affine temporal transformation (equation 4.5) is used correcting scaling and translation

differences between the image sequences.

4.5.1 Non-rigid spatial transformation

The spatial part of the 4D transformatidh,....; contains a global and a local part:
Tspatial(x> Y, Z) = Tgﬁﬁle(% Y, Z) + Tlsifc%ial(‘T? Y, Z) (411)

The global partT?°**  will correct differences in the size, orientation and alignment

spatial?
of the hearts while the local paff>ce , will address the differences in the shape of the

1spatial

cardiac anatomy. An affine transformation was selected as the global part (equation 4.4).
A free-form deformation (FFD) model based on B-Splines is used in order to describe

the differences in the local shape of the hearts. To define a spline based FFD, the spatial

domain of the image volume is denoted(as= {(z,7,2) |0 <z < X,0<y <Y,0 <

z < Z}. Let® denote a, x n, x n, mesh of control points; ; , with uniform spacing.

Then, the FFD can be written as the 3D tensor product of the familiar 1D cubic B-Splines

[174]:

3 3

3
Tipataa(0::2) = 32 3, D Bl)Bn(0)Bal)dictgiompsn (412

=0 m=0 n=0

Wherei:L%j—l,j:LyJ—Lk:LiJ_l?u:L_LLLU:i_'—%J’w:

Ny Ny Ny Ny
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= — | =] and whereB; represents théeth basis function of the B-Spline ([99, 100]):

z

Bo(u) = (1—u)*/6
Bi(u) = (3u®—6u®+4)/6
Bo(u) = (=3u®+3u®+3u+1)/6

Bs(u) = u*/6

One advantage of B-Splines is that they are locally controlled which makes them
computationally efficient even for a large number of control points. In particular, the
basis functions of cubic B-Splines have a limited support, i.e. changing a control point
affects the transformation only in the local neighbourhood of that control point. This
spatial transformation model based on free-form deformations has been introduced by
Rueckertet al. [174]. It has also been used for a number of applications [29, 174, 172,
63, 61, 28, 167, 165, 109].

4.5.2 Optimisation approach

There is no need to optimisE;.,,,pora aNdTY 2%

atia. SINCE they have been previously opti-

mised. The only part of the transformation which needs to be optimised Bifffg,. In

order to find the optimal'><. , information from the entire image sequences is used. As
before, normalised mutual information is used as a similarity measure. The normalised
mutual information was calculated directly from the joint intensity histogram of the two
image sequences over their spatio-temporal domain of ov@dap [ts, s ] [ T(2s X

[ts,,ts,]). The optimisation approach calculates the optimal transformation:
/
arg max, NMI(S",'T(S)) (4.13)

whereS’ is the reference image sequence di{d) is the transformed image sequerite
As mentioned abovey, 3, © have been already optimised using a simple iterative uphill

method.



4.5 Introduction of a non-rigid spatial translation 137

The free-form deformation has a large numbedegrees of freedortin this case:
number of control points 3). Thus, a simple iterative uphill method will not be sufficient
in order to find the optimal parametebs An iterative gradient descent method is used to
find the optimalT’>w! , . The method is similar as the one used by Rueakeat. for the
optimisation of the FFDs [174].

In order to find the optimal parameters, a cost function containing two competing
terms is minimised. The first term represents the cost associated with the image similarity

measureN M. The second goal of the cost function ensures the smoothness of the

transformation:
C(O,0) = —NMI(S',T(5)) + MComooth(Tspatiar) (4.14)

whereC,,...¢1 1S @ penalty term regularising the transformation [174] ansithe weight-

ing parameter which defines the tradeoff between maximising the alignment of the im-
ages and the smoothness of the transformation. The smoothness constraint is described
by Wahba [201].

Rueckertt al. suggest that a value af= 0.01 provides a good compromise between
the two terms in the cost function [174]. The regularisation term in the cost function be-
comes important when the spacing of the control points is small. This is due to the fact
that the FFD’s ability to model localised deformation increases as the the spacing of the
control points of the B-Spline function decreases [174]. In the experiments reported in
this chapter)\ = 0. Therefore, the optimisation approach relies on the intrinsic smooth-
ness of the B-Spline deformation fields. This is sufficient for this type of application since
the spacing of the control points used during the registration is not very small. The op-

%j’l) with a

timisation procedure steps in the direction of the gradient vector=
certain step siz@ [174]. Listing 2 describes the algorithm.
As mentioned aboveTl'> | has a large number afegrees of freedomTherefore,

using very small spacing between the control points and also very high resolution images

will make the registration approach very slow. Hence, in this method the space of the
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Listing 2 The gradient descent optimisation approach
1: initialise the control pointspb

2: repeat

3.  repeat

4: repeat

5 calculatethe gradient vector of the cost function in equation 4.14 with respect

to the non-rigid transformation parametdrs

oCc(e, dh)
VC = ool
6: while ||[VC|| > ¢ do
7: recalculatethe control pointsh = ® + ey
8: recalculatethe gradient vecto¥C
9: end while
10: increasethe control point resolution by calculating new control poi@ts!
from &'
11: increasethe image resolution
12: until finest level of resolution is reached

13:  until maximum number of iterations
14:  subdivide steps size:
15: until maximum number of subdivisions

FFD’s control point was set to 2@m(resulting in 1176degrees of freedom This con-
trol spacing allows to us@ = 0 without affecting the results. Table 4.3 contains the

parameters used for these registrations.

Parameter Setting
No. of bins 64
No. of iterations 20
No. of steps 4
o for finite difference approximation of gradient | 5mm
A 0

Table 4.3: Registration parameters used for the spatio-temporal registration with a non-
rigid spatial part.

45.3 Evaluation of the method

The method has been evaluated using the same seven image sequences as the ones usec
in the spatio-temporal affine registration method.

Figures 4.11 and 4.12 show examples of the registration. In the first row of figures
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Figure 4.11: Results of the non-rigid spatial 4D MR registration algorithm: (a) the short-
axis view of the reference subject, (b) the long-axis view of the reference subject, (c) a
temporal view of a short-axis line of the reference subject, (d-f) the images after the affine
registration, (g)-(i) the corresponding images after the non-rigid registration.

4.11 and 4.12 are the short-axis (a) and the long-axis (b) views of particular slices of the
reference sequence and a temporal view of a vertical short axis line (c) of the reference
image sequence. The middle and the bottom rows contain the corresponding views of
the corresponding slices after the optimisatiofof,,,.r.. andT%e, (i.e. after spatio-

temporal affine registration) and after the optimisatioﬂ%@lm,. On the images of the

middle and bottom rows isolines of intensity of the reference subject are also overlayed.
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Figure 4.12: Results of the non-rigid spatial 4D MR registration algorithm: (a) the short-
axis view of the reference subject, (b) shows the long-axis view of the reference subject,
(c) a temporal view of a short-axis line of the reference subject, (d-f) the correspond-
ing images after affine registration, (g)-(i) the corresponding images after the non-rigid
registration.

It can be seen from the figures that the introduction of a non-rigid spatial part improves
substantially the spatial alignment of the image sequences.

The volume overlap (equation 4.10) was also used to measure the quality of the reg-
istrations. Table 4.4 shows the mean volume overlap for each anatomical region after

non-rigid registration and after affine registration. These measures also indicate that the
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introduction of the non-rigid spatial part results in a substantial improvement in the over-

lap of the image sequences.

Anatomical region || Non-rigid 4D registration | Affine 4D registration
Left ventricle 86.68% 79.94%
Right ventricle 77.16% 74.53%
Myocardium 71.15% 67.93%

Table 4.4: The mean volume overlap after the affine 4D registration and after non-rigid
4D registration.

The introduction of the non-rigid spatial pdit,,....;, provides a significant improve-

ment in the spatio temporal cardiac MR image registration. However, it is still not ex-
pected that the image sequences would be perfectly aligned due to the nature of the tem-
poral transformation. The temporal transformation cannot address misalignment caused
by differences in the dynamic properties of the contraction and relaxation phases of the
cardiac cycle (for example one heart may have a longer contraction phase than relaxation
phase). The optimisation approach may also try to use the spatial transformation to cor-
rect for temporal differences. The registration of the image sequences will be significantly
improved by the introduction of a temporal transformation which can address temporal

misalignment due to different cardiac motion patterns.

4.6 Conclusions

In this chapter a spatio-temporal registration method for the alignment of cardiac MR
image sequences has been presented. The method has a number of advantages over the
registration methods presented in chapter 2. It enables comparison between the anatomy
and function of a number of cardiac image sequences to be made. The method (except
initialisation) is automatic. Furthermore, contrary to the method introduced by Etler

[55], no segmentation is required in order to determine the end-diastolic and end-systolic

frames.
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A 4D transformation model which consists of decoupled spatial and temporal compo-
nents is used by the registration method. Initially, an affine spatial transformation model
and an affine temporal transformation model was used. This spatial model corrects global
shape differences (translation, rotation, scale and shearing) while the temporal transfor-
mation model corrects global differences in the length of the cardiac cycles and also in
the temporal acquisition parameters. Later in the chapteefarmablespatial trans-
formation model based on B-Splines which enables the better spatial registration of the
image sequences has been introduced. Both registration methods were tested using MR
cardiac image sequences from normal subjects. The results demonstrate that the spatio-
temporal registration method not only enables the spatial mapping between two cardiac
images but also the temporal mapping between their cardiac cycles. However, the current
temporal mapping cannot address temporal differences due to different temporal dynam-
ics. The introduction of a temporal transformation in the next chapter addresses temporal
misalignment due to different temporal dynamics will provide a better spatio-temporal

alignment between the image sequences.



Chapter 5

Spatio-temporal free-form registration

of cardiac MR image sequences

In this chapter two registration algorithms for the spatio-temporal alignment of cardiac
MR image sequences are presented. Both algorithms have the ability to correct spatial
misalignment between the image sequences caused by global and local shape differences.
In addition, they have the ability to correct temporal misalignment caused by differences
in the length of the cardiac cycles and in the dynamic properties of the hearts. The al-
gorithms use a 4@eformabletransformation model which is separated into spatial and
temporal components. The first registration algorithm optimises the spatial and tempo-
ral transformation models simultaneously, while the second registration algorithm opti-
mises the temporal transformation component before optimising the spatial component.
The combined optimisation of the transformation components provides better accuracy
than the method which optimises the transformation components separately. However,
the method which optimises the transformation components separately has substantially
lower computational complexity. Furthermore, two experiments are performed aiming to
test how the use of an initial estimation of the temporal transformation may affect the
performance (in terms of accuracy and computational complexity) of the spatio-temporal

registration which optimises the transformation components simultaneously.
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5.1 Whydeformablespatio-temporal registration is needed

In the previous chapter, a method for the spatial and temporal alignment of cardiac MR
image sequences was presented. The method has the ability to correct spatial misalign-
ment caused by both global and local differences in the shape of the cardiac anatomy.
It addition, it can correct temporal misalignment caused by differences in the length of
the cardiac cycles and in the temporal acquisition parameters. However, this method
cannot correct any temporal misalignment caused by different contraction and relaxation
patterns.

In chapter 1 it has been presented that the cardiac cycle is separated into 7 phases (the
atrial systole isovolumetric contractionrapid ejection reduced ejectionisovolumetric
relaxation rapid ventricular filling and reduced ventricular filling [91]. Figure 5.1
shows an example of how the pressure and volume of the heart changes during each
phase.

The length of each of these phases varies from heart to heart. Therefore, using only
an affine temporal transformation to provide a mapping between the temporal character-
istics of two image sequences will not be enough in most cases. Figure 5.2 provides an
example of such a case. The figure shows the volume curves of the LV of two subjects
over their cardiac cycle. The length of each phase of the cardiac cycle varies in each
subject resulting in different contraction and relaxation patterns. There is no temporal
transformation utilising only scaling and translation which will provide correct temporal
mapping between these two image sequences. What is requireefisranableemporal
transformation to deform the cardiac motion of one subject in order to map the cardiac
motion of the other subject.

The registration methods presented in this chapter extend the 4D cardiac MR image
registration method presented in chapter 4 [152, 153, 145], by introduaeépamable
temporal transformation model. Hence, both temporal and spatial components use more
sophisticatedleformabletransformation models which allow the better spatio-temporal

registration of cardiac MR image sequences. This transformation model corrects spatial
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Figure 5.1. An example of the pressure and the volume of the heart during the cardiac
cycle (adapted from [91]).

misalignment between the image sequences caused by global and local shape differences.
Furthermore, it also corrects temporal misalignment caused by differences in the length of
the cardiac cycles and in the dynamic properties of the hearts. This allows a direct com-
parison between both the cardiac anatomy and function of different subjects to be made.
Two different approaches for the optimisation of the non-rigid spatio-temporal registra-
tion of cardiac MR image sequences are presented. The first approach finds the optimal
spatio-temporal mapping by optimising of the spatial and temporal components simulta-

neously. The second approach optimises each component separately (first the temporal
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Figure 5.2: An example wheredeformablespatio-temporal registration is needed.

component and then the spatial component).

5.2 Contributions

The contributions of this chapter are:

e The development of a method for the simultaneous spatial and tentedoamable
registration of MR image sequences. This registration method has the ability to cor-
rect spatial misalignment between the image sequences caused by global and local
shape differences. Furthermore, it has the ability to correct temporal misalignment
caused by differences in the length of the cardiac cycles and in the dynamic prop-

erties of the hearts.

e The development of another method for theformablespatio-temporal alignment
of cardiac MR image sequences. The major difference compared to the previous
method is that this method optimises the temporal and spatial components sepa-
rately. In this method, the temporal registration of the image sequences is based
on a normalised cross-correlation measure, while the spatial mapping is based on

image information from only the first frames of the sequences. This registration
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method is substantially faster than the previous method. Moreover, it can be used to
enable only the temporal alignment of cardiac MR image sequences, since it does
not require the cardiac image sequences to be aligned in the spatial domain in order
to find their temporal correspondence. Furthermore, two experiments are performed
aiming to test how the use of this method to calculate the temporal transformation
may affect the performance (in terms of accuracy and computational complexity)

of the first spatio-temporal registration method.

5.3 Spatio-temporal registration

As before, a 4D cardiac image sequence can be represented as an ordered sequence of
n 3D imagesSi(z, y, z) with a fixed field of view(2s, and an acquisition timé, with

tr < ti11, In the temporal direction. The resulting image sequence can be viewed as 4D
imageS(z, y, z, t), defined on the spatio-temporal dom&g, x [¢,t,]. The goal of 4D

image registration described in this section is to relate each point of one image sequence
to its corresponding point of the reference image sequence. In this case the transformation
T: (z,y,2,t) — (2,y, 7, t') maps any point of one image sequels¢e, v, z, t) onto its
corresponding point in the reference image sequéticé, v/, 2/, t'). The mapping used

in this section is the same as in chapter 4 and it has the following form:

T(x7 y’ Z7 t) - (x/(x7 y’ 2)7 y,(I7 y’ Z)7 Z/(x7 y’ Z)’ t/(t)) (5'1)

This mapping can be of a subvoxel displacement in the spatial domain and of a sub-frame
displacement in the temporal domain. The 4D mapping can be resolved into decoupled

spatial and temporal componefits, i, and T cpnpora reSpectively where:

Tspatial(-r7 Y, Z) = (.73/(33, Y, Z)a y/(xv Y, Z)a Zl(.fE, Y, Z))

and

Ttemporal<t) = t/(t)
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5.3.1 Spatial alignment

The aim of the spatial part of the transformation is to relate each spatial point in an image
to a point of the reference image, i.&,,.a : (2,y,2) — (2,9, 2') maps any point
(x,y, z) of a particular time frame in one image sequence into its corresponding point
(«',y', 2") of another particular time framé& in the reference image sequence. As in
section 4.5.1, the transformatidn,..;,; consists of a global transformation and a local

transformation:
lobal oca
Tspatial(xa Y, Z) = Tgpatml (ZE, Y, Z) + Tlspatlml (ZE, Y, Z) (52)

The global transformation addresses differences in the size, orientation and transla-
tion of the hearts while the local part addresses differences in the shape of the cardiac

anatomies T9/°*%

watial 1S N affine transformation with 1@egrees of freedomtilising scal-

ing, shearing, translation and rotation:

O Oho Ois x 014
Ti’éibﬁil (z,y,2) = Oo1 Oz O3 y |+ | 0u (5.3)
031 O3 033 z O34

A free-form deformation (FFD) model based on B-Splines is used to describe the
differences in the local shape of the cardiac anatomies. To define a spline based FFD the
spatial domain of the image volume is denotedXgs= {(z,y,2) |0 <z < X,0<y <
Y,0 < z < Z}. Let ® denote au, x n, x n, mesh of control points, ; , with uniform
spacing. Then the FFD can be written as the 3D tensor product of the familiar 1D cubic

B-Splines [174]:

3 3 3
T‘ls(écailial (.T, Y, Z) = Z Z Z Bl(u)Bm<v)Bn(w)¢i+l,j+m,k+n (54)

=0 m=0 n=0

wherei = 2| —1j=|£|-Lk=|2Z] - Lu==2—|Z|v==%—|L]w=

Ny

= - Lnizj and whereB, represents théth basis function of the B-Spline [99, 100](see
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section 4.5.1).

5.3.2 Temporal alignment

In contrast to chapter 4.4.2, the temporal part of the transformation consists of a temporal

global part,T¢.>» . and atemporal local parfiec -
lobal local
Ttempora,l(t) = TfefnZoral(t) + th%zpm"al (t) (55)

lobal
mporal?

As before, the global part of the transformati addresses global differ-
ences in the size of the cardiac cycles and differences in the acquisition parameters. The
local part of the temporal transformatigh‘oc addresses local differences between

temporal?

the motion patterns of the hearts. An affine transformation is used as a global part:

Tglobal (t/) — at +6 (56)

temporal

Herea accounts for scaling differences between the two image sequences (different length
of cardiac cycles or different frequency in the acquisition of each frame) whalzounts

for translation differences between the two image sequences. Translation differences may
be introduced by different acquisition parameters (for example the trigger offset) and by
missing frames.

The local temporal transformatiofs |, is modelled by a free-form deformation
using a 1D B-Spline and corrects for temporal misalignment caused by different cardiac
dynamic properties (differences in the length of each of the cardiac phases (figure 5.1),
e.g. one heart may have a longer contraction phase and a shorter relaxation phase, dif-
ferent motion patterns, etc.). To define a spline based temporal free-form deformation,
the temporal domain of the image sequence is denotéf as{(¢) | 0 < = < T'}. Let

®, denote a set of; control pointsg; with a temporal spacing;. Then the temporal

free-form deformation can be defined as a 1D cubic B-Spline:
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3

Tyt () =Y Bi(w)éy,,, (5.7)

=0
wherei = || — 1, u = .- — |;-| and B, represents the I-th basis function of the
B-Spline.

T . deforms the temporal characteristics of each image sequence in order to
follow the same motion pattern as the reference image sequence. The combined 4D trans-
formation model (equation 5.1) is the spatio-temporal free-form deformation (STFFD)
based on a 4D B-Spline model.

The temporal transformaticl;.,..,.-«:(t) (€quation 5.5) needs to be non-decreasing,
i.e. whenever; <ty thenT . porai(t1) < Tiemporai(t2), in Order to preserve causality
of events between the two cardiac cycles. In order to ensurélthat, . (t) is non-
decreasing itis ensured that the derivativel'gf,,,....;(t) at the positions of control points,

¢4, 1S always positive or zero. In practice this restriction will ensure that equation 5.5 is

non-decreasing.

5.3.3 Optimisation of the transformation components

Two registration algorithms for finding the optimal transformatibrhave been devel-
oped. The first optimisation algorithm optimises the spatial and temporal transformation
components simultaneously, while the second registration algorithm optimises the tem-

poral transformation component before optimising the spatial component.

5.3.3.1 Combined optimisation of the spatial and temporal components

In this registration method the optimal transformatiBms found by optimising the tem-
poral Tyepmporar @nd the spatidl’s,,.,; transformation components at the same time using
image information only.

The optimal transformatioff’ is found by maximising a voxel based similarity mea-
sure. The use of a voxel-based similarity measure eliminates the need for any feature

detection and segmentation of structures such as the epi- or endo-cardial surfaces dur-
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ing the registration procedure. As before, normalised mutual information (NMI) [187]
is selected as a measure of the spatio-temporal alignment. This similarity measure has
been previously used successfully for mono- and multi-modality image registration. The

normalised mutual information of two image sequences can be written as:

NMI(S',S) =

(5.8)

where H(-) denotes the marginal entropy of an image sequencef&nd) is the joint
entropy of two image sequences. The normalised mutual information of the two image se-
guences can be calculated directly from the joint intensity histogram of the two sequences
over the spatio-temporal domain of over@p x [ts,ts ] [ T(2s X [ts,,ts,]). Dur-
ing the optimisation new voxel values are generated in the temporal domain using linear
interpolation and trilinear interpolation in the spatial domain.

In the first part of the optimisation procedure, NMI is optimised as a function of
T9%! “and TY°"  using an iterative uphill descent algorithm (described in section

spatial tempo

4.4.3). In the second part, NMI is optimised as a functio{gf.,, and T .. In

order to find the optimal parametebg and® a cost function similar to equation 4.14 is

minimised. As in equation 4.14, the cost function contains two competing goals.
C(0,0,a,3,®)=—NMI(S", T(S)) + XConooth(Tspatiar) (5.9)

The terms\ andC,,,...:, have been described in section 4.4.3. The optimisation pro-

cedure steps in the direction of the gradient veces— 2©:2) andve, — %ﬁé’%

with certain step sizeg andy,. Listing 3 describes the optimisation method.

As previously mentionedl'>e. , has a large number afegrees of freedonirhere-
fore by using very small spacing between the control points and image sequences with
high resolution image sequences the registration approach will be very slow. Hence, in
this method the space of the FFD’s control points was set nomi&nd 10nm (resulting

to 2400 and 756@egrees of freedomespectively). This control spacing allows to use
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A = 0 without affecting the results. Table 5.1 contains the parameters used for these

registrations.

Listing 3 The spatio-temporal gradient descent optimisation approach.

1: initialise the control pointsb and®,

2: repeat

3. repeat

4 repeat

5: calculatethe gradient vectors of the cost function in equation 5.9 with respect

© ® N

10:
11:

12:
13:
14:
15:

to the non-rigid transformation parameté@rand®,:

_oc(e,d)

VC = —8<I>l
~ dC(a, 3, o)
VO ="%¢

while ||[VC|| > e or ||VC,|| > ¢ do
recalculatethe control pointsh = & + i 2S:

lIvey
recalculatethe control pointsp, = &, + ut%
recalculatethe gradient vectory’C andV ¢,
end while

increasethe control point resolution by calculating new control poifts!
from &' and®.™ from !
increasethe image resolution

until finest level of resolution is reached
until maximum number of iterations
subdivide steps size, and;

16: until maximum number of subdivisions

Parameter Setting
No. of bins 64
No. of iterations 20
No. of steps 4

o for finite difference approximation of gradient | 10mm

o, for finite difference approximation of gradient | 50msec

A 0

Table 5.1: Registration parameters used for the spatio-temporal free-form registration of
image sequences (combined optimisation of the transformation parts).
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5.3.3.2 Separate optimisation of the spatial and temporal components

The computational complexity of the previous spatio-tempdedbrmableregistration
method is very high. However, it can be reduced by optimising each transformation com-
ponent (the temporal and the spatial one) separately. This optimisation approach opti-
mises the temporal componéRly,,,,,....; of the transformatiofT first and then the spatial

componentT,..;;. The global temporal compone/ >

emporal

is calculated to align the
temporal ends of the image sequences while the local temporal compﬁﬁg;mal is

a temporal free-form deformation (equation 5.7) which aligns limited temporal feature
positions of the cardiac cycleT}> , aligns the feature position of the peak contrac-
tion of the left ventricle, the end-diastolic feature position and the beginning and end of
the cardiac cycles (as in figure 5.3). In order to detect these temporal feature positions in

each image sequence, the normalised cross-correlation coefficient of the first and each of

the frames of the sequence is calculated:

> 2y 2o (So(@,y, 2) = So) - (Si(x,y,2) — Si)

CcC = — —
Ve 3y (S0l 9,2) = 502 /32, 32, Y. (S, ) — S0

(5.10)

wheres, is the first frameS, the mean intensity of the first frams, is theith frame of
the sequence ans} the mean intensity of that frame.

The idea behind this approach is that during the contraction phase of the cardiac cycle
each consecutive image will appear less similar to the first image and during the relax-
ation phase of the cardiac cycle each consecutive image will appear more similar to the
first image. The end-systolic image should have the highest degree of dissimilarity with
the first image since the heart has a different shape and size due to the contraction. Sim-
ilarly, assuming periodicity of the cardiac cycle, the end-diastolic image should have a
high degree of similarity with the first image since the heart at these positions of the
cardiac cycle has similar size and shape. There is a wide choice of similarity measures
which could be used for this application. In practice it is found that the normalised cross-

correlation coefficient works well for this application. Figure 5.4 provides an example of
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the displacements of the control pointsBf<* required to align the 4 feature posi-

empora

tions of the cardiac cycles. The position of the control poigtsof T} |, is calculated
by using linear interpolation between the displacements required to align the 4 identified
feature positions. Thugi>«@ also enables the alignment of temporal features between

tempora

these 4 determined feature positions.

Start of the cardiac End—diastole End of the cardiac cycle
cycle

[}

E / \

=

§ Maximum

> Contraction

Time(sec)

Figure 5.3: The temporal positions in the cardiac cycle used for the temporal alignment
between two image sequences.

A similar technique based on cross-correlation has been used by Letrshn[96]
for the recovery of temporal information from cardiac cine MRI. The purpose of this
work was to develop a negelf-gatedacquisition technique by extracting the motion syn-
chronisation signal directly from the cardiac MR images. Three different strategies using
radial k-space sampling are proposed for deriving temporal information from the MR
images [96]. Among these techniques are the peak magnitude, the kymogram [89] and
the 2D correlation. A comparison of the results showed that the image quality obtained
by these techniques is similar to the image quality obtained by conventional ECG gating
techniques.

Figure 5.5 (a) shows the plot of the calculated normalised cross-correlation curve

for a particular image sequence, figure 5.5 (b) shows the second derivative of the cross-
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Figure 5.4: An example of the temporal mapping between two image sequences using
T . Which aligns the 4 positions of the cardiac cycles.

correlation curve while figure 5.5 (c) shows the volume of the left ventricle of the same
image sequence over time. It is clear from figure 5.5 that the cross-correlation and the
volume curves are very similar. The feature position of peak contraction is found by the
minimum cross-correlation value. In order to find the end-diastolic position, the minimum
value of the second derivative after the location of peak contraction is used (figure 5.5
(b)). The second derivative is calculated using finite differences between neighbouring
time frames.

The optimal spatial transformatidh,,.;.; is calculated using the non-rigid 3D regis-
tration (equation 5.2) of the first frames of the image sequences. In thiSE4&g), is
an affine transformation correcting translation, rotation, shearing and scaling differences
between the first framesT'>. , is a free-form deformation (equation 5.4) deforming
the sequence’s first frame to map the reference sequence’s first frameTﬁﬁm and
T'lecal  are optimised using normalised mutual information (NMI). However, in this case

spatial

NMI is based on the intensity histogram of the spatial domain of overlap of the two first
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Figure 5.5: The cross-correlation between the first frame and each consecutively frame
(a), the second derivative of the cross-correlation (b) and the volume of the left ventricle
of the same subject over time (c).
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frames and not on the spatio-temporal domain of overlap. The normalised mutual infor-

mation of the first frames of two image sequenc¢€sandS, can be written as:

H(S) + H(S))
H(Siasl)

(S}, 8,) = (5.11)

Tl is optimised using a simple iterative uphill method. The optimisation is carried

spatial

out to calculate the optimal transformation:
arg max NMI(SY, Tspatiar(S1)) (5.12)

Tlecal is optimised using an iterative gradient descent method which is the same as

spatial

the one described in section 4.4.3. The following cost function, is minimised:
C(@, (I)> = —NMI(S{, T(Sl)) + )\Csmooth(Tspatial) (513)

Equation 5.13 is the same as equation 4.14 with the exception of the domain where
the normalised mutual information is calculated. Table 5.2 contains the parameters used

in these registrations.

Parameter Setting
No. of bins 64
No. of iterations 20
No. of steps 4
o for finite difference approximation of gradient | 10mm
A 0

Table 5.2: Registration parameters used for the spatial free-form registration of the first
frames.
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5.4 Results

To evaluate the spatio-tempodformableegistration algorithm, cardiac MR image se-
guences from fifteen healthy volunteers have been acquired. All image sequences used for
these experiments were acquired on a Siemens Sonata 1.5T scanner using TrueFisp pulse
sequence. For the reference subject 32 different time frames were acquired (cardiac cycle
of length 950Gnse¢. Each 3D image of the sequence had a resolution ok29@x 46
with a pixel size of 0.9imx0.97mmand a slice thickness ofi@n Fourteen 4D cardiac
MR images were registered to the reference subject. These image sequences had a pixel
size between 1.36mx 1.36nmand 1.481mx 1.48nmand a slice thickness of iim For
these subjects 15-20 different time frames were acquired (cardiac cycles’ length between
600msecto 800mseg. In one image sequence the temporal acquisition parameters were
estimated because the real parameters were unknown. Figure 5.6 contains a short-axis
and a long-axis views of the reference image and of another subject. In both registration
methods the global temporal transformation was calculated in order to compensate the
differences in length of the cardiac cycles of the subjects (by matching the first and the
last time frames of the image sequences). This is a fair assumption since all image se-
guences almost contained the entire cardiac cycles. Furthermore, an initial estimate of the
global spatial transformation was also provided due to the large variety in the position and
orientation of the hearts. The initial estimate was calculated from rigid registration of six
manually selected cardiac anatomical positions in the first frames of the image sequences.
These anatomical positions are: the apex of the left ventricle, the apex of the right ven-
tricle, two landmarks on the myocardium at the base of the heart, the anteroseptal at the
base of the heart and the inferoseptal at the base of the heart (figure 5.7).

The registrations were qualitatively evaluated by visual inspection. Furthermore, the
quality of the registration in the spatial domain was measured by calculating the volume

overlap for the left and right ventricles as well as for the myocardium (as in section 4.4.4).
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(b) (©) (d)

Figure 5.6: The short-axis (a) and (c) and the long-axis (c) and (d) views of the reference
and of an another subject.

Figure 5.7: The six manually selected landmarks which are used to calculate the initial
estimate of the spatial transformation.

The volume overlap for an obje€t is defined as:

C2x[9NS|

A(S’ = 1 5.14
(5",9) ST 9] x 100% (5.14)

Here S’ denotes the voxels in the reference (target) image part of objecid S denotes

the voxels in the other image part of obj&et The mean surface distance of the above
anatomical regions was calculated after the affine anddéiermable4D registration.

In order to calculate the overlap of the anatomical structures, the surface distance and
the volume curves, segmented images were used. The segmented images were obtained
using the EM algorithm developed by Vaisiet al. [110]. In order to calculate the mean

surface distance between an anatomical structure of two image sequences (the reference



5.4 Results 160

and another one), the boundary surfaces (of the anatomical structures) in all of frames of
the segmented image sequences are generated. Then, the Euclidean distance transform of
the anatomical structure in all of the frames of the reference sequence is also calculated.
Finally, the position of the boundary surface is compared to the corresponding position in

the calculated distance map (for all frames of the image sequences).

5.4.1 Separate optimisation of the transformation components

5.4.1.1 Qualitative evaluation

Figure 5.8 (a) shows the volume curves of the left ventricles after affine spatio-temporal
registration, while figure 5.8 (b) shows the corresponding volume curves after separate
optimisation of the transformation componeft§#o " andT'ec. . Itis clear from this
figure that with the introduction of théeformableransformation components the hearts
are substantially better aligned in the temporal domain.

Figures 5.9 - 5.14 provide examples of deformablespatio-temporal registration.
The images in the top rows are the short-axis (a), the long-axis (b) and the temporal
(c) views (the temporal view is a short-axis line over time) of a frame in the middle
of the image sequence after optimisation of the global transformation components (i.e.
affine spatio-temporal registration). The lines in the images represent iso-contours of the
reference image sequence. The images in the bottom rows (d-f) of the figures are the
same images after spatio-tempodaformableregistration (separate optimisation of the
transformation components). It is clear from the figures that with the introduction of the
deformabldemporal and spatial transformations there is a substantial improvement in the
alignment of the image sequences both in the spatial and in the temporal domain. The

dark areas in the long-axis views are caused by the a smaller field of view in the current

subject.



5.4 Results 161
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Figure 5.8: The volume curves of the left ventricle for all subjects after affine spatio-
temporal registration (a) and after spatio-tempdetbrmableregistration (with separate
optimisation of the transformation components) (b). The spacing of spatial control points
is 10mm The thick line is the volume curve of the reference subject.
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Figure 5.9: Results of the 4D cardiac MR registration algorithm. (a) The short-axis , (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (separate optimisation of the transformation components).



5.4 Results 163

Figure 5.10: Results of the 4D cardiac MR registration algorithm. (a) The short-axis , (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (separate optimisation of the transformation components).
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Figure 5.11: Results of the 4D cardiac MR registration algorithm. (a) The short-axis , (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (separate optimisation of the transformation components).
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Figure 5.12: Results of the 4D cardiac MR registration algorithm. (a) The short-axis , (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (separate optimisation of the transformation components).
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Figure 5.13: Results of the 4D cardiac MR registration algorithm. (a) The short-axis , (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (separate optimisation of the transformation components).
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Figure 5.14: Results of the 4D cardiac MR registration algorithm. (a) The short-axis , (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (separate optimisation of the transformation components).
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5.4.1.2 Quantitative evaluation

The error in the estimation of the peak contraction and end-diastolic positions in the
cardiac cycle was calculated by determining manually where these positions appear and
comparing them with positions identified by the algorithm. The mean error in the detec-
tion of position where peak contraction appears is 1.2 frames while the mean error of the
detection of the end-diastolic position is 0.93 frames.

Tables 5.3 and 5.4 show the mean overlap and the mean surface distanog (oal-
culated over all subjects and time frames) for each anatomical region after affine spatio-
temporal registration (simultaneous optimisation of the transformation components) and
after spatio-temporal free-form registration (separate optimisation of the transformation
components). The spacing of the control points in the spatial domain was {fdble
5.3) and 15hm(table 5.4). The affine spatio-temporal registration method is similar to
the one described in the previous chapter [152]. It is clear from the figures that the
introduction of thedeformablemodels substantially improves the overlap of the anatom-
ical features. Furthermore, the computational complexity of this optimisation approach
remains low. The volume overlap of the left ventricles at two specific locations in the
cardiac cycle has also been calculated. The first location is the position of peak contrac-
tion and the other location is the position where the relaxation phase of the heart ends
(end-diastole) and the iso-volumetric relaxation phase starts. Table 5.5 shows the mean
volume overlap of the left ventricles (calculated over all subjects) at these two positions.

In order to evaluate the quality of the temporal alignment, the mean absolute error
in the temporal mapping of the same specific locations in the cardiac cycle has been
measured. These temporal positions were manually determined for each image sequence.
Table 5.6 shows the temporal error after affine 4D registration and after spatio-temporal

deformableregistration.
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5.4 Results
Volume overlap Surface distance inmm
Affine | Non-rigid || Affine Non-rigid
Anatomical region 4D 4D 4D 4D
Left ventricle 76.16%| 82.38% 4.16 3.41
Right ventricle 77.39%| 83.56% 4.95 3.93
Myocardium 70.57%| 71.62% 4.77 4.21

Table 5.3: The mean volume overlap and surface distance after spatio-temporal free-form
registration (separate optimisation of the transformation components) and after affine
spatial-temporal registration (combined optimisation of the transformation components).

The control spacing in the spatial domain is1ii

Volume overlap Surface distance inmm
Affine | Non-rigid || Affine Non-rigid
Anatomical region 4D 4D 4D 4D
Left ventricle 76.16%| 82.80% 4.16 3.37
Right ventricle 77.39%| 83.43% 4.95 3.73
Myocardium 70.57%| 71.62% 4.77 4.98

Table 5.4: The mean volume overlap and surface distance after spatio-temporal free-form
registration (separate optimisation of the transformation components) and after affine
spatial-temporal registration (combined optimisation of the transformation components).

The control spacing in the spatial domain is1irf

Volume overlap at specific positions in the cardiac cycle
ds 1anm ds 15mm
Affine | Non-rigid || Affine | Non-rigid
Temporal position 4D 4D 4D 4D
Peak contraction || 74.72%| 72.88% | 74.72%| 74.42%
End-diastole 69.27%| 84.63% || 69.27%| 84.75%

Table 5.5: The mean volume overlap at a specific position in the cardiac cycle after affine
4D registration and after spatio-tempodaformableregistration (separate optimisation

of the transformation components).

Error in the temporal mapping of two specific positions in the cardiac cycle
dt 90msec

Temporal position || Affine Non-rigid

Peak contraction || 73.72nsec 46.86nsec

End-diastole 93.5Mnsec 30.352nsec

Table 5.6: The mean absolute error in the temporal mapping of specific positions in the
cardiac cycle after affine 4D registration and after spatio-templefakrmableaegistration
(separate optimisation of the transformation components).



5.4 Results 170

5.4.2 Combined optimisation of the transformation components

5.4.2.1 Qualitative evaluation

Figure 5.15 (a) shows the volume curves of the left ventricle after the optimisation of
the spatio-temporal affine transformation, while figure 5.15 (b) shows the same volume
curves and after the optimisation of the spatio-tempdesbrmableransformation. The
volume of the left ventricles was calculated using the EM algorithm developed bgs/ald

et al. [110]. As with figure 5.8, it is clear that with the introduction of tieformable
components the hearts are substantially better aligned in the temporal domain. All the
hearts in figure 5.15 (b) show very similar volume curves.

Figures 5.16 - 5.21 provide examples of the spatio-tempieadrmableregistration
(combined optimisation of the transformation components). The images in the top rows
(a-c) are the short-axis, the long-axis and the temporal views (the temporal view is a short-
axis line over time) of a frame in the middle of the image sequence after the optimisation
of the global transformation components (affine spatio-temporal registration). The lines
in the images represent the intensity iso-lines of the reference image sequence. The im-
ages in the bottom rows of figures 5.16 - 5.21 are the same images after spatio-temporal
deformableaegistration. The introduction of theeformabldemporal and spatial registra-
tion resulted in a substantial improvement in the alignment of the image sequences both in
the spatial and in the temporal domains. The dark areas in the long-axis views are caused

by the smaller field of view in the current subject.
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Figure 5.15: The volume curves of the left ventricle for all subjects after affine spatio-
temporal registration (a) and after spatio-tempdefbrmableegistration (combined op-
timisation of the transformation components) (b). The spacing of the spatial control point
is 10mm The thick line is the volume curve of the reference subject.
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(d)

Figure 5.16: Results of the 4D cardiac MR registration algorithm. (a) The short-axis, (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (combined optimisation of the transformation components).
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Figure 5.17: Results of the 4D cardiac MR registration algorithm. (a) The short-axis, (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (combined optimisation of the transformation components).
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Figure 5.18: Results of the 4D cardiac MR registration algorithm. (a) The short-axis, (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (combined optimisation of the transformation components).
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Figure 5.19: Results of the 4D cardiac MR registration algorithm. (a) The short-axis, (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (combined optimisation of the transformation components).
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Figure 5.20: Results of the 4D cardiac MR registration algorithm. (a) The short-axis, (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (combined optimisation of the transformation components).
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Figure 5.21: Results of the 4D cardiac MR registration algorithm. (a) The short-axis, (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (combined optimisation of the transformation components).
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5.4.2.2 Quantitative evaluation

Tables 5.7 and 5.8 show the mean volume overlap and the mean surface distamcg (in
(calculated for all subjects and at all time frames) for each anatomical region after spatio-
temporal affine registration and after the spatio-tempdefbrmableregistration. Table
5.9 shows the same overlap and surface distance measures after 3D non-rigid registration
of the first frames (by matching the first and the last time frames of the image sequences).
The spacing of the control points in the spatial domain wamrh@nd 13nm(tables 5.7
and 5.8). In order to measure how well the images are registered in the temporal domain,
the volume overlap of the left ventricles at two specific locations in the cardiac cycle
has been measured. The first location is the position of peak contraction and the other
location is the position where the relaxation phase of the heart ends (end-diastole) and the
iso-volumetric relaxation phase starts (in which the volume of the heart remains roughly
the same). The better the temporal alignment, the better the overlap will be in these two
locations. Table 5.10 shows the mean volume overlap of the left ventricle (calculated
over all subjects) at these two positions after spatio-temporal affine registration, non-rigid
registration of the first frames and after spatio-tempdedbrmableregistration. Figure
5.22 shows an example of the volume overlap of the left ventricles over time after spatio-
temporaldeformableregistration and after non-rigid registration of the first frames. The
volume overlap of the left ventricles remains almost constant with the introduction of
thedeformableéemporal model, while without theeformableemporal model the image
sequences become more misaligned as the hearts contract. These results indicate that
the use of theleformablespatial and temporal parts provides a substantial improvement
in the quality of the registration compared to the two methods described in the previous
chapter.

Furthermore, the quality of the temporal alignment has been evaluated by calculat-
ing the mean absolute error in the temporal mapping of the two specific locations in the
cardiac cycle (as previously). Table 5.11 contains the temporal error after non-rigid 3D

(mapping the temporal ends) registration and after spatio-temgefaimableregistra-
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tion.

The comparison of the results of tables 5.7 vs. 5.3 and tables 5.8 vs. 5.4 suggests
that the simultaneous optimisation of the transformation components provides better over-
lap measures than those produced by separate optimisation. One reason for this is that
the temporal free-form deformation described in section 5.3.3.2 aligns a limited number
of temporal positions in the cardiac cycles. On the other hand, the temporal free-form
deformation described in section 5.3.3.1 provides a better temporal alignment between
these temporal positions. Moreover, the optimisation of the spatial transformation de-
scribed in section 5.3.3.2 is based only on the first frames of the image sequences while

the combined optimisation approach is based on image information from the entire image

sequences.
Volume overlap Surface distance inmm
Affine | Non-rigid | Affine Non-rigid
Anatomical region 4D 4D 4D 4D
Left ventricle 76.16%, 85.57% 4.16 2.96
Right ventricle 77.39%| 84.67% 4.95 3.60
Myocardium 70.57%,| 73.18% 4.77 4.16

Table 5.7: The mean volume overlap and surface distance after affine 4D registration and
after spatio-temporal deformable registration (combined optimisation of the transforma-
tion components). The control spacing in the spatial domainngié@nd in the temporal
domain 9@nsec

Volume overlap Surface distance inmm
Affine | Non-rigid || Affine Non-rigid
Anatomical region 4D 4D 4D 4D
Left ventricle 76.16%| 84.95% 4.16 3.05
Right ventricle 77.39%| 84.34% 4.95 3.51
Myocardium 70.57%| 72.56% 4.77 4.14

Table 5.8: The mean volume overlap and surface distance after affine 4D registration and
after spatio-temporaleformableregistration (combined optimisation of the transforma-
tion components). The control spacing in the spatial domainngiand in the temporal
domain 9@nsec
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Volume overlap Surface distance inmm
ds 10nm | ds15mm || ds 1dnm | ds 15mm
Non-rigid | Non-rigid || Non-rigid | Non-Rigid
Anatomical region 3D 3D 3D 3D
Left ventricle 80.97% 81.66% 3.56 3.47
Right ventricle 83.38% 83.18% 3.93 3.73
Myocardium 71.63% 71.66% 4.21 4.02

Table 5.9: The mean volume overlap and surface distancedafiemmable3D registration
of the first frames (matching the temporal ends of the sequences). The control spacing in
the spatial domain is XOmand 15nm

Volume overlap at specific positions in the cardiac cycle
ds 10mm ds 15mm
Affine Non-rigid Affine Non-rigid
Temporal position 4D 3D 4D 4D 3D 4D
Peak contraction || 74.72%| 72.75%| 82.33%/| 74.72%| 73.99% | 80.18%
End-diastole 69.27%| 77.41%| 85.62% | 69.27% | 79.61%| 85.32%

Table 5.10: The mean volume overlap at a specific position in the cardiac cycle after affine
4D registration, after thdeformable8D and after spatio-tempordéformableaegistration
(combined optimisation of the transformation components).

Error in the temporal mapping of two specific positions in the cardiac cycle
dt 90msec
ds 10nm ds 15mm
Non-rigid | Non-rigid || Non-rigid Non-rigid
Temporal position 3D 4D 3D 4D
Peak contraction || 73.72nsec| 58.03nsec|| 73.72nsec 62.76nsec
End-diastole 93.5Mnsec| 31.84nsec| 93.5Mnsec 27.3Imsec

Table 5.11: The mean absolute error in the temporal mapping of specific positions in
the cardiac cycle after non-rigid 3D registration (mapping the temporal ends) and af-
ter spatio-temporaleformableregistration (combined optimisation of the transformation
components).

5.4.2.3 Using the cross correlation based method to calculate the temporal align-

ment

Similar experiments with the same image sequences have been performed in order to
investigate if the cross-correlation based method (described on section 5.3.3.2) can be

used to calculate an initial estimate of the temporal transformation during the combined
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Figure 5.22: The volume overlap over time of the left ventricles of two image sequences
after 4D non-rigid registration (combined optimisation of the transformation components)
and after non-rigid registration of the first frames (matching the first and last frames of
the image sequences).

optimisation method. More precisely the aim of the experiments is to test how the use of a
better initial estimation of the temporal transformation may affect the performance of the
current spatio-temporal registration method. Two experiments using the cross-correlation

based method were performed:

e The aim of the first experiment was to investigate the effects of a better initial es-
timation of the temporal transformation on the performance of the spatio-temporal
deformableregistration algorithm which optimises the transformation components
simultaneously. Hence, before optimising ttheformablepart of the spatial and
temporal transformations, an initial estimate of the temporal transformation using
the cross-correlation based method was calculated. This method is referred to as

experimentA.
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e The aim of the second experiment was to improve the computational efficiency
of this spatio-temporal registration algorithm which optimises the transformation
components simultaneously. The computational complexity of this algorithm is
very high due to the large number @égrees of freedomf the transformation and
to the large number of voxels in the image sequences. A typical combined opti-
misation takes more than 24 hours. The performance of the registration algorithm
was investigated when the cross-correlation based method is used to calculate the

and onlyT!lec!

spatial

temporal transformatiofloc®

temporal

is optimised. This method is

referred to as experimet

Tables 5.12 and 5.13 provide the volume overlap and the surface distance measures
for the above two experiments (with spatial control point spacingrh@nd 15nm). Fig-
ures 5.23 - 5.28 provide examples of the non-rigid registrations obtained by using the
method as previously described for (experimaint The results of these figure are very
similar to figures 5.16 - 5.21. As expected, there is no substantial difference between
the results. The algorithm converges to a similar solution whether an initial estimate of
the temporal transformation has been used or not. The mean volume overlap of the left

ventricles at specific temporal locations is described in table 5.14.

Volume overlap Surface distance inmm
Experiment | Experiment || Experiment | Experiment
A B A B
Anatomical region 4D 4D 4D 4D
Left ventricle 85.91% 85.70% 2.97 3.16
Right ventricle 84.84% 84.79% 3.72 3.74
Myocardium 73.35% 73.26% 4.16 4.14

Table 5.12: The mean volume overlap and surface distance after STFFD registration using
a temporal initial estimate and after using the cross-correlation based method to calculate
the temporal part and optimising only the spatial part. The control spacing in the spatial

domain is 10nm

The mean absolute error in the temporal alignment of specific feature location of the

cardiac cycle was also measured for experindeniable 5.15 shows the errorimsec A

comparison of the temporal error measurements of table 5.15 to those of table 5.11 indi-
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Volume overlap Surface distance inmm
Experiment | Experiment || Experiment | Experiment

A B A B
Anatomical region 4D 4D 4D 4D
Left ventricle 85.12% 84.85% 3.06 3.13
Right ventricle 84.21% 84.29% 3.57 3.55
Myocardium 72.74% 72.45% 4.09 4.14

Table 5.13: The mean volume overlap and surface distance after STFFD registration using
a temporal initial estimate and after using the cross-correlation based method to calculate
the temporal part and optimising only the spatial part. The control spacing in the spatial

domain is 15nm

Volume overlap at specific positions in the cardiac cycle

ds 10mm ds 15mm
Experiment | Experiment || Experiment | Experiment
A B A B
Temporal position 4D 4D 4D 4D
Peak contraction 83.15% 81.92% 81.22% 79.86%
End-diastole 85.63% 86.17% 85.19% 85.79%

Table 5.14: The mean volume overlap at specific position in the cardiac cycle after STFFD
registration using a temporal initial estimate and after using the cross-correlation based
method to calculated temporal part and optimising only the spatial part.

Error in the temporal mapping of two specific positions in the cardiac cycle

dt 90msec
Experiment A
Temporal position || ds 10nm ds 15mm
Peak contraction || 56.85msec 54.69nsec
End-diastole 35.89nsec 34.22nsec

Table 5.15: The mean absolute error in the temporal mapping of specific positions in the
cardiac cycle after the STFFD registration using a temporal initial estimate.

cates that there are no substantial differences, between the two methods, in the temporal

alignment of these two specific feature positions. This also indicates that the algorithms

converge to a similar solution in both cases.
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(d)

Figure 5.23: Results of the 4D cardiac MR registration algorithm. The short-axis (a),
the long-axis (b) and the temporal (c) views after the affine alignment. The correspond-
ing (d) short-axis, long-axis (e) and temporal (f) views after using the cross-correlation
based method to calculate an initial estimate of the temporal part followed by combined
optimisation of the transformation components (experimrdgnt

5.5 Discussion

The results reported on tables 5.6 and 5.11 and in figure 5.30 indicate that calculating
the temporal transformation using either the cross-correlation based approach or the com-
bined optimisation approach provides similar results. Figure 5.30 shows the temporal
mapping of the cardiac cycles of six randomly selected image sequences and the refer-
ence image sequence. This figure presents the resulting temporal mdﬁﬂﬁ,’j@%l and
Ty . after combined optimisation arf2c! ., after separate optimisation. The tem-

poral mappings after separate optimisation and after combined optimisation have similar

shapes. However, the temporal mapping after the combined optimisation aligns better
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Figure 5.24: Results of the 4D cardiac MR registration algorithm. The short-axis (a),
the long-axis (b) and the temporal (c) views after the affine alignment. The correspond-
ing (d) short-axis, long-axis (e) and temporal (f) views after using the cross-correlation
based method to calculate an initial estimate of the temporal part followed by combined
optimisation of the transformation components (experimrdgnt

the temporal details between the two image sequences. The differences in the resulting
temporal mapping towards the end of the cardiac cycle are mainly caused by the long
iso-volumetric relaxation of the reference subject. As seen from the volume curves of the
left ventricles in figure 5.15 the reference subject has a long iso-volumetric relaxation
phase where the shape and the volume of the heart remains almost the same. This creates
a small degree of ambiguity for the temporal alignment since all frames in this cardiac
phase are very similar.

The volume curves in figures 5.8 and 5.15 show that the contraction phase of the
hearts is better aligned than the relaxation phase. The corrected curves appear to have a

long end-diastolic phase and a rapid filling phase. The main reason for this is the temporal
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Figure 5.25: Results of the 4D cardiac MR registration algorithm. The short-axis (a),
the long-axis (b) and the temporal (c) views after the affine alignment. The correspond-
ing (d) short-axis, long-axis (e) and temporal (f) views after using the cross-correlation
based method to calculate an initial estimate of the temporal part followed by combined
optimisation of the transformation components (experimrdgnt

ambiguities which are generated by the long iso-volumetric relaxation of the reference
subject. When the registration approach attempts to align this part of the cardiac cycles,
it is forced to compress the relaxation phase.

Optimising the spatial part of the transformation based only on information from the
first frame of the sequences (tables 5.3 and 5.4) does not result in as good a spatial
alignment as the one based on information from the entire image sequences (tables 5.7
and 5.8). This suggests that the shape differences between two cardiac anatomies do not
remain constant over the cardiac cycle. The results of table 5.5 show that the volume over-
lap between two cardiac anatomies decreases during the contraction phase. Therefore, the

cardiac anatomies become more misaligned in the spatial domain during the contraction
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Figure 5.26: Results of the 4D cardiac MR registration algorithm. The short-axis (a),
the long-axis (b) and the temporal (c) views after the affine alignment. The correspond-
ing (d) short-axis, long-axis (e) and temporal (f) views after using the cross-correlation
based method to calculate an initial estimate of the temporal part followed by combined
optimisation of the transformation components (experimrdgnt

phase. At the end-diastolic position the volume overlap of the image sequences is similar
for both the separate and combined optimisation of the transformation components (tables
5.5and 5.10).

Optimising the spatial part of the transformation based on information from the entire
image sequences, and not only from the first frames, takes into consideration the fact
that the spatial differences of the hearts are not constant over the cardiac cycle. Hence,
the mean volume overlap and surface distance measures provided in tables 5.12 - 5.14
(experimenB) are better than the ones intables 5.3 - 5.5 even though the Bamg, .;
used in both methods.

The importance of the results of tables 5.12 - 5.14 is that using the cross-correlation
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Figure 5.27: Results of the 4D cardiac MR registration algorithm. The short-axis (a),
the long-axis (b) and the temporal (c) views after the affine alignment. The correspond-
ing (d) short-axis, long-axis (e) and temporal (f) views after using the cross-correlation
based method to calculate an initial estimate of the temporal part followed by combined
optimisation of the transformation components (experimrdgnt

based method to calculate the temporal transformation and optimising only the spatial
transformation provides similar spatio-temporal registration to the method which per-
forms combined optimisation. However, in this case the computational complexity of
the algorithm is substantially reduced since the gradient vector of the cost function (equa-

tion 5.9) with respect to the non-rigid transformation parametersvC, = ac(gfl’q)i),

is not calculated during the optimisation approach. Figures 5.31 - 5.36 provide exam-

ples of the non-rigid free-form spatio-temporal registration by using the cross-correlation

method to calculate the temporal part and optimising only the spatial part (expeBment
Figure 5.29 shows the overlap of the left ventricles by the methods described in ex-

perimentA and in experimenB. These results are very similar to those reported for the
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Figure 5.28: Results of the 4D cardiac MR registration algorithm. The short-axis (a),
the long-axis (b) and the temporal (c) views after the affine alignment. The correspond-
ing (d) short-axis, long-axis (e) and temporal (f) views after using the cross-correlation
based method to calculate an initial estimate of the temporal part followed by combined
optimisation of the transformation components (experimrdgnt

spatio-temporal free-form registration by using combined optimisation of the transforma-
tion components (figure 5.22).

Optimising the temporal and spat@dformablecomponents simultaneously results in
a very good spatio-temporal registration. However, the computational complexity algo-
rithm is very high due to the large numberasgrees of freedom the transformation and
to the large number of voxels in the image sequences. A typical combined optimisation
takes more than 24 hours. Optimising only the spatial part of the transformation and us-
ing the already calculated temporal transformatiogg’ ., reduces the computational
complexity of the algorithm while still providing a good spatio-temporal registration.

The computational complexity can be further reduced by optimising the transforma-
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Figure 5.29: The volume overlap of the left ventricles over time after the STFFD registra-
tion using a temporal initial estimate (experimé)tand after using the cross-correlation
based method to calculate the temporal part and optimising only the spatial part (experi-

mentB).
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Figure 5.30: Temporal alignment between six image sequences and the reference im-
age sequence. The plots show the temporal mapping between the image sequences after
optimising the global temporal transformation component, after optimising the local tem-
poral transformation component (using simultaneous optimisation) and after optimising
the local temporal transformation component (using separate optimization)
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tion components separately. However, in this case the results of the registration are not as
good as those obtained by the other methods. An additional advantage of calculating the
temporal transformation by using the method described in section 5.3.3.2 is that a tempo-
ral alignment between two cardiac image sequences can be generated without having to
perform image registration. There is no need for the image sequences to be registered in

the spatial domain in order to calculate the temporal transformation.

(d)

Figure 5.31: Results of the 4D cardiac MR registration algorithm. The short-axis (a), the
long-axis (b) and the temporal (c) views after the affine alignment. The corresponding
short-axis (d), long-axis (e) and temporal (f) views after using the cross-correlation based
method to calculate the temporal part and optimising only the spatial part (expeBment
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Figure 5.32: Results of the 4D cardiac MR registration algorithm. The short-axis (a), the
long-axis (b) and the temporal (c) views after the affine alignment. The corresponding
short-axis (d), long-axis (e) and temporal (f) views after using the cross-correlation based
method to calculate the temporal part and optimising only the spatial part (expeBment
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Figure 5.33: Results of the 4D cardiac MR registration algorithm. The short-axis (a), the
long-axis (b) and the temporal (c) views after the affine alignment. The corresponding
short-axis (d), long-axis (e) and temporal (f) views after using the cross-correlation based
method to calculate the temporal part and optimising only the spatial part (expeBment
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Figure 5.34: Results of the 4D cardiac MR registration algorithm. The short-axis (a), the
long-axis (b) and the temporal (c) views after the affine alignment. The corresponding
short-axis (d), long-axis (e) and temporal (f) views after using the cross-correlation based
method to calculate the temporal part and optimising only the spatial part (expeBment
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Figure 5.35: Results of the 4D cardiac MR registration algorithm. The short-axis (a), the
long-axis (b) and the temporal (c) views after the affine alignment. The corresponding
short-axis (d), long-axis (e) and temporal (f) views after using the cross-correlation based
method to calculate the temporal part and optimising only the spatial part (expeBment
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Figure 5.36: Results of the 4D cardiac MR registration algorithm. The short-axis (a), the
long-axis (b) and the temporal (c) views after the affine alignment. The corresponding
short-axis (d), long-axis (e) and temporal (f) views after using the cross-correlation based
method to calculate the temporal part and optimising only the spatial part (expeBment
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5.6 Conclusions

In this chapter two spatio-tempordéformableregistration methods for cardiac MR im-

age sequences have been presented. The registration approaches correct spatial misalign-
ment caused by different acquisition parameters and spatial misalignment caused by dif-
ferences in the local shape of the cardiac anatomies. Furthermore, the approaches correct
temporal misalignment caused by differences in the length of the cardiac cycles and tem-
poral misalignment caused by different dynamic properties of the hearts. The first regis-
tration approach calculates the spatial and temporal components of the transformation si-
multaneously, while the second approach calculates first the temporal transformation and
then the spatial one. In the latter, a novel approach based on normalised cross-correlation
was used to calculate the temporal component of the transformation. The spatio-temporal
registration algorithms have been evaluated by measuring the volume overlap and the sur-
face distance of corresponding anatomical structures and by visual inspection. A number
of experiments were performed to investigate the performance of both methods. The re-
sults indicate that the use of the spatio-temporal free-form deformation model results in
a substantial improvement in the temporal and spatial alignment of the image sequences.
Furthermore, performing combined optimisation of the temporal and spatial parts of the
transformation results in better registration rather than when these are calculated sepa-
rately. However, in this case the computational complexity is much higher. Moreover,
the experiments indicated that calculating the temporal transformation using the cross-
correlation based method provides a close approximation to the temporal transformation
that resulted from the combined optimisation approach. Evidently, it only aligns a limited
number of feature positions in the cardiac cycles, while optimising the transformation
components simultaneously provides a better temporal alignment between these cardiac

positions.



Chapter 6

Construction of an atlas of cardiac

anatomy and function

This chapter presents two novel methods for the construction of 4D probabilistic and
statistical atlases of the cardiac anatomy and function using cardiac MR imaging. The
probabilistic atlas captures information regarding the cardiac anatomy and function in the
form of tissue probability maps. The method for the construction of the probabilistic atlas
enables the spatio-temporal modelling of tissue probability maps.

The statistical atlas describes the cardiac anatomy and how the cardiac anatomy changes
during the cardiac cycle. The method for the construction of the statistical atlas divides the
distribution of the cardiac shapes into two subspaces. One distribution subspace accounts
for changes in cardiac shape caused by inter-subject variability. The second distribution
subspace accounts for changes in cardiac shape caused by deformation during the cardiac
cycle (i.e. intra-subject variability). Principal component analysis (PCA) has been per-
formed in order to calculate the most significant modes of variation of each distribution
subspace.

In order to build the atlases 30 cardiac image sequences from healthy volunteers have
been used. The resulting statistical atlas has been used to differentiate between cardiac

image sequences from patients with hypertrophic cardiomyopathy and normal subjects.
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6.1 Introduction

A large number of approaches have been developed for the volumetric modelling of the
heart. A comprehensive review of these approaches can be found by Etaigj62].
Biomechanical models of the heart have been developed by combining surface informa-
tion and motion information [183] and by using a deformation model inspired by contin-
uum mechanics [135]. These models do not usually contain any information regarding the
variation met in the population. In contrast to these biomechanical models a number of
researchers have developed statistical models of the cardiac anatomy (e.g. Active Shape
Models) [112] [83] and statistical models of the appearance of the heart (e.g. Active Ap-
pearance models) [128] [126]. For example, Fragigal. have presented an approach

for the construction of three-dimensional statistical shape models of the cardiac anatomy
[64]. This approach eliminates the need for landmarking by using non-rigid registration
to propagate the landmarks from an automated landmarked atlas to the rest of the images.
The resulting model includes the left and right ventricles. The approach developed by
Lotjonenet al. goes one step further: in this work, statistical shape models of the atria,
ventricles and epicardium from short-axis and long-axis MR images are constructed and
used for the segmentation of cardiac images [111]. In addition, a variety of methods which
model shape variability have been explored including PCA [87], ICA [85], [86] and LPD.
However, in both cases the statistical shape models only describe the 3D cardiac anatomy
at a single time point and ignore the shape variation during the cardiac cycle. Although
cardiac modelling of the anatomy is relatively well investigated, very few attempts have
been made to build a computerised atlas which captures functional variability of the heart
across a group of subjects. Rabal. suggested a framework for building an atlas of the
myocardial motion [167] by using tagged MR image sequences to calculate the cardiac
motion fields. Then the calculated motion fields of different subjects are mapped into the
same coordinate system using a vector field transformation technique which accounts for

differences in the size, orientation and shape of the heart.
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6.2 Contributions

This chapter presents a novel method for building a probabilistic atlas of the cardiac
anatomy and function as well as a method for building a 4D statistical atlas of the cardiac
anatomy. The probabilistic atlas contains information regarding the cardiac anatomy and
function in the form of tissue probability maps. The 4D statistical atlas describes the car-
diac anatomy and how the cardiac anatomy changes during the cardiac cycle. During the
construction of the statistical atlas the need for manual landmarking of the cardiac images
is eliminated by using a non-rigid registration algorithm to propagate a set of pseudo-
landmarks from an automatically landmarked atlas to each frame of all image sequences.
The key contribution of this chapter is the extension of the statistical and probabilis-
tic modelling of the heart in 4D. In particular, the contributions of this chapter are the

following:

e The construction of a probabilistic atlas of the cardiac anatomy and function which

enables spatio-temporal modelling of the cardiac anatomy.

e The construction of a 4D statistical model of the heart that subdivides the distribu-
tion space of the cardiac shape to two subspaces: one distribution space accounts
for changes in cardiac shape due to deformations throughout the cardiac cycle and
the other distribution space accounts for changes in the cardiac shape due to inter-

subject variability.

e The use of a non-rigid registration method to propagate a set of pseudo-landmarks
from an automatically landmarked atlas to all frames of the image sequences used
during the construction of the statistical model. Contrary to the method presented
by Frangiet al. [64], this approach propagates pseudo-landmarks not only to a

single frame but to entire image sequences.

e The application of 4D statistical models to differentiate between cardiac image se-

guences from patients with hypertrophic cardiomyopathy and normal volunteers.
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6.3 Building anatomical and functional atlases of the heart

Figure 6.1 summarises the steps in the construction of the atlases. The first steps in the

construction of both the probabilistic and statistical atlases are identical:

e The image sequences are registered into a common spatio-temporal coordinate sys-
tem. This enables direct comparison between the cardiac anatomy and function of

a number of cardiac MR image sequences to be made.

e The image sequences are segmented into left and right ventricle as well as my-
ocardium using an automated segmentation algorithm [109]. An example of cardiac

MR images and their segmented tissue maps can be seen in figure 6.2.

e Shape-based interpolation [76] is used to resample the spatial domain of the seg-

mented image sequences into isotropic voxels of smerd Immx 1mm

e The segmented image sequences are transformed to the common spatio-temporal

coordinate system.

e The transformed segmented image sequences are blurred with a Gaussian filter with
o = 2mm The use of blurring during the construction of the atlas compensates for
the low out-of-plane resolution of the images. /A= 2mmwas chosen because
it compensates for the low out-of-plane resolution without introducing substantial

blurring which can destroy information regarding anatomical detail.

After these steps, the probabilistic atlas can be constructed by averaging the trans-
formed segmented image sequences. Before calculating the average image sequence,
each segmented image sequence is separated into three separate image sequences con
taining the left ventricle, myocardium and right ventricle. The result is a spatio-temporal
map of probabilities of left ventricle, myocardium and right ventricle.

The construction of the statistical atlas requires the following additional steps:

e The surfaces are extracted from all the segmented frames of every image sequence

using themarching cubeslgorithm [107].
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e A non-rigid registration method is used to automatically propagate a set of pseudo-

landmarks from an automated landmarked atlas to the rest of the image sequences.

e Statistical analysis in the form of PCA is performed on the position of these land-

marks.

The following sections explain these steps in more detail.

6.3.1 Spatio-temporal registration of cardiac MR image sequences

As mentioned in the previous chapters, since the heart is undergoing spatially and tempo-
rally a varying degree of motion during the cardiac cycle, 4D cardiac image registration
algorithms are required when comparing two cardiac MR image sequences. Comparison
of the corresponding frames (by using only spatial alignment) is not enough since these
frames may correspond to different positions in the cardiac cycles (figure 4.2).

In order to register the image sequences, a spatio-temporal registration method similar
to the ones presented in chapters 4 and 5 [151], [147], [153], [152] is used. In these
methods the 4D transformation mappilihas been decoupled into a spafla),.:;., and
a temporalT'.,..,or.; COMponent ensuring causality and preventing different regions in a
3D imageS;(z, y, z) from being warped differently in the temporal directionBy.,,,p0ra1-

The aim of the spatial part of the transformation is to relate each spatial point of
a particular frame of one image sequence to a point in another particular frame of the
reference image sequence. However, since the models need to explain the variability in
the local shape of the hearts, the spatial transformation part needs to preserve the local

shape of the hearts. It therefore only contains a global part:

Tpatiat (Y, 2) = Tt (2,y, 2) (6.1)
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The global spatial transformation is an affine transformation witb@ees of freedom
addressing differences in the size, orientation and alignment of the hearts (equation 4.4)
The aim of the temporal part is to relate corresponding positions in the cardiac cycle
of the two hearts. As previously mentioned, in order to relate corresponding positions in
the cardiac cycle of two hearts deformableemporal transformation is required. Thus,
the temporal transformation consists of a global and a local part:

Ttemporal(t) — Tglobal (tl) + Tlocal (tl)

temporal temporal

Tféﬁs;fml is an affine transformation which corrects for differences in the length of the
cardiac cycles and differences in the acquisition parameters (equationT%@),,., is
modelled by a free-form deformation using a 1D B-Spline (equation 5.7) and corrects
for temporal misalignment caused by different cardiac dynamic properties (differences in
the length of contraction and relaxation phases, different motion patterns, etc). For more
information on the temporal free-form deformation see section 5.3.2.

The optimal transformation is found by maximising a voxel based similarity mea-
sure, the normalised mutual information (NMI) [187] calculated directly from the joint
intensity histogram of the two sequences over the spatio-temporal domain of overlap. In

al

the first part of the optimisation procedure, NMI is optimised as a functiaF?{jf?; and

Tgl"ba’ml using an iterative uphill descent algorithm. In the second part, NMI is optimised

tempo

as a a function o> by also using an iterative uphill descent method.

temporal

6.3.2 Segmentation of cardiac MR image sequences

The method developed by Lorenzo-Veskt al. [109] has been used to segment the
image sequences. In this method the first frame of each image sequence is segmented
manually and then the segmentation is propagated to the subsequent frames using a non-
rigid registration algorithm. The image sequences are segmented into three anatomical
structures: the left ventricle, the myocardium and the right ventricle. An example of this

is shown in figure 6.2.
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(©) (d)

Figure 6.2: The greylevel short axis (a) and the long axis (b) views of a cardiac MR image

(@) (b)

and the corresponding segmented tissue maps (c and d).

6.3.3 Building the probabilistic atlas of the heart

After aligning all the image sequences to the same spatio-temporal coordinate system,
the obtained transformations are used to map the segmented image sequences to the same
spatio-temporal coordinate system. The probabilistic aMasill have the same voxel
dimensions and number of frames as the image sequence used as a reference during
spatio-temporal registration. Each frafiA;;i = 0...n;} (wheren; is the number of

frames in the sequences) Af will be formed by averaging the corresponding frames of

the transformed segmented image sequefi€gs; k¥ = 0....n,, } (wheren,, is the number

of subjects used to construct the atlas):

1 &
AZ‘(ZL',y,Z) - n_zokz(m’yaz) (62)

P k=0

Before producing the average image sequence, each segmented image is blurred with
a Gaussian kernel with = 2. As mentioned above, the use of blurring during the con-
struction of the atlas is needed due to the low out-of-plane resolution which results in sig-
nificant partial volume effects in the segmentation. Blurring the images with a Gaussian

kernel addresses this problem by modelling this uncertainty in the tissue classification.



6.3 Building anatomical and functional atlases of the heart 207
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Figure 6.3: The mean image is calculated by averaging each slice separately. Calculating
the average image for each slice separately reduces the effects of different coverage of the

heart in the image.

A problem during the construction of the probabilistic atlas is that the image sequences
may not have exactly the same coverage of the heart. For example an image may not
include part of the apex or part of the base of the heart. The fact that information regarding
part of the anatomy might be missing needs to be taken into account when producing the
tissue probability maps. Hence, in order to reduce the effects of a different coverage of
the heart in each image, the tissue probability maps have been calculated by averaging

each image slice separately (figure 6.3).

6.3.4 Building a statistical atlas of the heart

As in the construction of the probabilistic atlas, during the construction of the statistical
atlas the images are also blurred with a Gaussian kernel to reduce the effects of low out-of-
plane resolution. In order to perform statistical analysis a set of anatomical landmarks are
required to be identified in each image. Usually these landmarks are manually identified
in each image. However, this is a time consuming task prone to errors. The approach
presented in this thesis eliminates the need from manual landmarking by using a method
similar to the one used by Frangjial. [64]. In this method a set of pseudo-landmarks are
propagated from an automatically landmarked atlas to all frames of each image sequence.

Lotjonenet al. [111] have also used a similar approach for landmark propagation.
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6.3.4.1 Landmark extraction and propagation

After blurring the image sequences with a Gaussian kernel wvith 2, the marching
cubeq107] algorithm is used to generate a dense triangulation of the boundary surface of
each anatomical structure (left ventricle, myocardium and right ventricle) of all the frames
of each image sequence. The vertices of the triangulation sepseaso-landmarkdn

order to perform any statistical analysis, correspondence between the pseudo-landmarks
of correspondent frames needs to be established. This is achieved by using a 3D surface
based registration method based on B-Splines [139]. The end-diastolic frame of the im-
age sequence used as a reference during the construction of the atlases is also used as
the reference surface in these registrations. The extracted surfaces from each frame of
all image sequences are registered to the reference surface using a non-rigid registration
method. The main difference between this approach the method proposed bydt@ngi

[64] is that the former propagates landmarks over the entire image sequences rather the
first frames only. Furthermore, this approach registers corresponding extracted surfaces
while the approach proposed by Fraegal. [64] registers the corresponding segmented
images. After registering all surfaces, the obtained transformations are used to propagate

the pseudo-landmarksf the reference surface to each frame (figure 6.4).

6.3.4.2 Modelling shape variability

Once landmark correspondence has been established between all shapes, modelling tech-
niques, such as principal components analysis can be used to analyse shape variability.
Let {qix;i = 0...ny;k = 0...ny} denoten shapes1, subjects withn; frames each).

Each shape consists of 3D landmarksp; = (p1j,p2;,p35;J = 1...m). Each vector

qix consists of the landmarks, pa1, ps1, P12, P22, P32 -++vs Plm, Pom, P3m- T he aim of the
statistical analysis is to approximate the distribution of the landmarks with a linear model

of the form:

q=q+ b (6.3)
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whereq is the average landmark vectdr,is the shape parameter vector of the model,
and ® is a matrix of eigenvectors. The matrix is obtained by performing principal
component analysis (PCA) [87] to the covariance mattixDuring the principal compo-
nent analysis, the principal componentdbére calculated as its eigenvectgtrsand the
corresponding eigenvalues are also calculated (such thgt< \; ;).

The aim of this statistical analysis is to identify what changes in the cardiac anatomy
occur due to the cardiac cycle and what changes occur due to inter-subject variation.
Therefore, the aim of this statistical analysis is to approximate the distribution of the

landmarks with two linear models similar to equation 6.3:
Quithin = q + (I)withinbwithin (64)

Qbetween = (_1 + (I)betweenbbetween (65)

Principal component analysis (PCA) will be used to find the estimate of two subspaces
of the overall distribution. In order to achieve this, two separate principal component

analyses are performed. The covariance matrix for the total shape distribution is given

by:
1

nnyp

i Z(Qik —@)(aw — @) (6.6)

i=1 k=1

Ctotal =

wheren; is the number of frames of each image sequengés the number of image
sequences anglis the mean shape.
The covariance matrix of the shape differences occurring across the cardiac cycle

(intra-subject) is given by:

Np T'Lf

Cuithin = ! Z Z(Qik — @) (ai — @i)" (6.7)

nm
R -

whereq; is the mean for the subjec{the image sequences contain the same number of
frames since they are registered in the temporal domainyanid the shape of frame

of subjecti.
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The covariance matrix which describes the shape differences occurring across the pop-

ulation (inter-subject) is given by:

Cbetween = ni Z((_L - (_l) ((_L - Q)T (68)

where, as in eq. 6.7, is the number of image sequences gnd the total mean.

Figure 6.5 explains which changes in the cardiac shape are explained by the covari-
ance matrixCp.icen. @and which by the covariance matri®,,;;.;,- In order to find the
principal components of each subspace the eigenvalues and eigenvectors of each covari-
ance matrix (eq. 6.7 and 6.8) are calculated. The eigenvectdrs.of..,, are used to
form ®,.;.0cn, While the eigenvectors o, are used to forn®,,;;1,:.. A similar de-
composition of the total distribution space to subspaces has been used by & adtéor
the automatic extraction of the face identity-subspace [41]. New shape examples can be
generated by varying the parametb(s;;, andby.;..., Of equations 6.4 and 6.5. As-
suming that the distribution of the data follows a multidimensional Gaussian distribution,
the variance of théth parameter ob across the training set is given By. If limits in
the variation of; are applied such that < 43+/);, then it is ensured that the generated

shape is similar to those contained in the training class.
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6.3 Building anatomical and functional atlases of the heart
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Figure 6.5: The changes in the cardiac shape described by the covariance matriges
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6.4 Results

6.4.1 Materials

In order to produce the probabilistic and statistical 4D atlases, 30 untagged MR image
sequences from healthy volunteers have been acquired. The image sequences have been
acquired using a Siemens Sonata 1.5T scanner using TrueFisp pulse sequence in a form
of a series short-axis images. Seven of the image sequences were acquired using retro-
spective gating while the rest were acquired using prospective gating. One of the image
sequences was selected to be the reference subject for the spatio-temporal registration.
Care was taken by visual inspection to ensure that the reference subject was a normal rep-
resentative of the population. The image sequence of the reference subject had 18 frames
with in-plane resolution 0192 x 256 and pixel size of 1.48mx1.48nm Furthermore,

each frame of the reference subject contained 10 slices covering the heart from the apex
to the base. The thickness of each slice wash@which is the typical pixel size used

in these acquisitions). The length of the cardiac cycle of the subject wasw®5he

global temporal transformation was calculated in order to compensate for the differences
in the length of the cardiac cycles of the subjects (by matching the first and the last time
frames of the image sequences). This is a fair assumption since all image sequences con-
tained almost entire cardiac cycles. Furthermore, an initial estimate of the global spatial
transformation was also provided due to the large variety in the position and orientation of
the hearts. Most of the images covered the entire left ventricle from base to apex, while a
limited number of images did not include the apex of the heart. One image sequence was

excluded from the data set due to poor registration with the reference image sequence.

6.4.2 Probabillistic atlas

During the construction of the probabilistic atlas, all the image sequences were included
independent of whether the images covered the entire heart or not. The reason for includ-

ing images with different coverage of the heart is that, at the current stage, it is considered
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very important to include as many subjects as possible in the atlas. In the future, where
the population would be substantially increased (for example more than 100 subjects), it
would be possible to ensure that all the images have exactly the same coverage. As ex-
plained in section 6.3.3, in order to minimise the effects of different image coverage the
tissue probability maps are calculated by averaging each slice separately.

Figures 6.6 - 6.8 provide examples of the probabilistic atlases of the left ventricle,
the myocardium and the right ventricle. In the probabilistic atlases, the smaller the inten-
sity values, the smaller is the probability of a particular voxel belonging to a particular
structure (the intensity of 255 corresponds to a probability of 1, while the intensity O cor-
responds to a probability of 0). Figure 6.7, shows that the papillary muscles are more
blurred that the rest of the myocardium. Furthermore, the probability of a voxel to belong
to a certain anatomical structure is smaller towards the edges of the anatomical structures
(figures 6.6 - 6.8). This indicates that there is a large variation in the position and the
size of the papillary muscles and also in the local shape of the hearts. The registration
approach, described in section 6.3.1, uses only an affine spatial transformation model.
This transformation model addresses spatial difference caused by translation, orientation
and scaling. It cannot correct differences in the shape of the structures which results in a
high degree of blurring on the edges of the structures.

Volume renderings of the tissue probability maps have also been produced. The vol-
ume renderings were produced using Ysualisation Toolkitpackage (www.vtk.org).
Figures 6.9 - 6.11 show the volume rendering of the atlases of the left ventricle, the
myocardium and the right ventricle from two different views. In the volume renderings,
the smaller the probability of a voxel to belong to a structure the more transparent the
voxel is rendered. Similar to figures 6.6 - 6.8, the voxels near the sides of the anatomical
structures in figures 6.9 - 6.11 are rendered more transparent than the voxels in the centre

due to their smaller probability values.
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Left Ventricle
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Figure 6.6: The probabilistic atlas of the left ventricle.
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Myocardium
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Figure 6.7: The probabilistic atlas of the myocardium.
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Right Ventricle
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Figure 6.8: The probabilistic atlas of the right ventricle.
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Left Ventricle
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Figure 6.9: Examples of the volume renderings of the left ventricle viewed from two

different positions.
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Myocardium
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Figure 6.10: Examples of the volume renderings of the myocardium viewed from two

different positions.
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Right Ventricle
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Figure 6.11: Examples of the volume renderings of the right ventricle viewed from two

different positions.
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6.4.3 Statistical atlas

In the construction of the statistical atlas it is very important for all the images to include
the same area of the anatomy. Otherwise the most significant modes of shape variation
will describe the missing areas of some images. As mentioned above, during the con-
struction of the probabilistic atlas, the tissue probability maps are calculated by averaging
each image slice separately. In contrast, in the construction of the statistical atlas, PCA
analysis is performed on the surfaces extracted from the entire image rather than on each
separate slice. Three image sequences were further excluded from the data due to miss-
ing a significant part of the hearts towards the apex. Hence, the statistical atlases were

constructed using cardiac image sequence from 26 healthy volunteers.

6.4.3.1 Statistical model of the inter-subject variability

These models describe the significant changes in the shape of the left ventricle, the my-
ocardium and the right ventricle due to inter-subject variability. Figures 6.12 - 6.14
show the three most significant modes of variation for the left ventricle, the myocardium
and the right ventricle. For the left ventricle, the three most significant modes of shape
variation describe the differences in the size of the left ventricle (mode 1), the variation of
the position of the apex of the heart (mode 2) and the elongation of the apex of the heart
(mode 3). For the myocardium, the three most significant modes of variation describe
the size of the myocardium in the long-axis direction (mode 1), the size and thickness of
the myocardium (mode 2) and the direction of the myocardium long-axis (mode 3). For
the right ventricle the three most significant modes of variation describe the elongation of
the apex of the right ventricle (mode 1), the size of the right ventricle (mode 2) and the
shape of the right ventricle (mode 3). Table 6.1 provides a description of the three most

significant modes of shape variation.
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Figure 6.12: The significant modes of shape variation of the left ventricle due to inter-
subject variability.
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Figure 6.13: The significant modes of shape variation of the myocardium due to inter-
subject variability.
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Figure 6.14: The significant modes of shape variation of the right ventricle due to inter-
subject variability.

6.4.3.2 Statistical model of the intra-subject variability

These models describe the most significant changes in the shape of the left ventricle and
the myocardium which occur across the cardiac cycle (i.e. intra-subject variability). Fig-
ures 6.15 - 6.17 show the three most significant modes of variation of the left ventricle,
the myocardium and the right ventricle. For the left ventricle, the three most significant
modes of variation describe the differences in the volume of the left ventricle during the
cardiac cycle (mode 1), the twisting of the heart during the contraction phase (mode 2)
and the changes in the position of the apex of the left ventricle as well as the position of
the papillary muscles (mode 3). For the myocardium, the three most significant modes
of variation describe the changes in the size of the left ventricle and the thickening of
the myocardium (mode 1), the twisting of the myocardium during the contraction phase
(mode 2) and the changes in the size of the left ventricle in the direction of the long-axis

and the movement of the cardiac wall (mode 3). For the right ventricle, the first two most
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significant modes of variation describe the changes in the volume of the right ventricle
(mode 1) and the twisting of the right ventricle as well as the changes in the position of
the right ventricle’s apex (modes 2). Finally, the third most significant mode of variation

of the right ventricle’s shape also describes twisting of the right ventricle (mode 3). Table

6.2 provides a description of the three most significant modes of shape variation.
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Mode 1
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Figure 6.15: The significant modes of shape variation of the left ventricle due to intra-
subject variability.
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Figure 6.16: The significant modes of shape variation of the myocardium due to intra-
subject variability.
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Figure 6.17: The significant modes of shape variation of the right ventricle due to intra-
subject variability.
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Left Ventricle
Mode Shape Variance| Description
Mode 1 25.07% Size of the left ventricle
Mode 2 17.34% Position of the apex of the heart
Mode 3 11.63% Elongation of the apex of the heart
Myocardium
Mode Shape Variance| Description
Mode 1 20.31% Size of the myocardium in the long-axis direction
Mode 2 17.06% Size and thickness of the myocardium
Mode 3 12.54% Direction of the myocardium long-axis
Right Ventricle
Mode Shape Variance| Description
Mode 1 25.86% Elongation of the apex of the right ventricle
Mode 2 23.11% Size of the right ventricle
Mode 3 13.42% Elongation of the apex and shape of the right ventricle

Table 6.1: The three most significant modes of variation for the left ventricle, the my-
ocardium and the right ventricle due to inter-subject variability.

Left Ventricle

Mode Shape Variance| Description
Mode 1 71.48% Volume of the left ventricle during the contraction
Mode 2 3.87% Twisting of the heart during the contraction
Mode 3 2.30% Changes in the position of the

apex and the papillary muscles

Myocardium

Mode Shape Variance| Description
Mode 1 65.87% Size of the left ventricle and

thickening of the myocardium
Mode 2 4.69% Twisting of the myocardium during the contraction pha
Mode 3 2.13% Changes in the size of the left ventricle in

the direction of the long-axis and movement

of the cardiac wall

Right Ventricle

Mode Shape Variance| Description
Mode 1 42.45% Volume of the right ventricle during the contraction
Mode 2 8.93% Twisting of the right ventricle

and changes in the position of the apex
Mode 3 3.90% Twisting of the right ventricle

se

Table 6.2: The three most significant modes of variation for the left ventricle, the my-
ocardium and the right ventricle due to intra-subject variability.
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6.4.3.3 Discussion

Figure 6.18 shows the amount of shape variance explained by various modes of the two
shape distribution subspaces (inter-subject (a) and intra-subject (b)) for the left ventricle,
the myocardium and the right ventricle. In order to describe 90% of the left ventricle’s
inter-subject shape variability, 13 modes (out of 26) of shape variation are required. Fur-
thermore, 16 (of 468) modes of shape variation are required to describe 90% of the left
ventricle’s intra-subject shape variability. Similarly, for the myocardium 13 modes are
required to describe 90% of its inter-subject shape variability and 28 modes of shape
variation are required to describe 90% of its intra-subject shape variability. In order to de-
scribe 90% of the right ventricle’s inter-subject shape variability, 12 modes (out of 26) of
shape variation are required. Finally, 42 modes of shape variation are required to describe
90% of the right ventricle’s intra-subject shape variability. The inter-subject statistical
model has 26 modes while the intra-subject statistical model has 468. Therefore, in order
to enable direct comparison between the curves in figure 6.18 (a) and 6.18 (b) more sub-
jects need to be included in the statistical atlas. The inter-subject shape variability curves
are steeper than the intra-subject curves which indicates that the shape variability of the
cardiac anatomy is larger across different subjects than across the cardiac cycle.

During the construction of the atlases it is assumed that the distribution of the cardiac
shapes in both the inter-subject and intra-subject models is Gaussian. Unfortunately, this
assumption has some limitations as seen on figures 6.20 and 6.21. This limitation may
produce a difficulty in explaining a shape with a few modes of shape deviation. This will
lead to a suboptimal ability of the model to represent unseen instances of cardiac shapes
and to generate new instances of cardiac shapes that are similar to those in the training
set.

In order to construct the atlases the image sequences need to be registered both in
spatial domain and temporal domains. As previously mentioned, the shape of the hearts
has to be preserved while the temporal characteristics of each heart have to be deformed so

that every corresponding frame of the image sequences corresponds to the same position
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Figure 6.18: The cumulative variance of the left ventricle, the myocardium and the right

ventricle: (a) inter-subject and (b) intra-subject.
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in the cardiac cycle of the hearts. Figure 6.19 provides the volumes of the left-ventricle
of the subjects over the cardiac cycle and shows that after the spatio-temporal registration
the hearts follow a similar motion pattern (the volume curves have been separated into two
parts: figure 6.19 (a) and 6.19 (b) ) . However, it is not expected that the volume curves

will completely match since only affine differences are corrected in the spatial domain.

6.5 Differences between the probabilistic and the statis-
tical atlases

The probabilistic atlases contain information about the degree of variability at every voxel
of the atlas, i.e. each voxel contains a probability of belonging to a certain structure. How-
ever, the probabilistic atlases cannot provide information regarding the type of variability.
Furthermore, information regarding shape variability occurring across the population and
due to the cardiac cycle is combined to a single probability value. The statistical atlases
provide additional information regarding the variability of the cardiac shape. In particular,
performing statistical analysis in each shape distribution subspace allows the visualisation
of the average shape of the cardiac anatomy and also the identification of the most signif-
icant modes of variation in the cardiac shape due to inter-subject and intra-subject shape
variability.

As mentioned above, the first steps in the construction of both atlases are identical.
However, the probabilistic atlas is created directly from the segmented image sequences
(after mapping them to a common spatio-temporal domain), while during the construction
of the statistical atlases surfaces need to be extracted from the segmented images and also

exact correspondence between landmarks needs to be established.
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Figure 6.20: The distribution of all subjects’ myocardium using the inter-subject covari-
ance matrix.
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Figure 6.21: The distribution of all subjects’ myocardium using the intra-subject covari-
ance matrix.
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6.6 Classification of cardiac MR image sequences using
the statistical models

In this section a possible use of the statistical atlases for the classification of cardiac
data is demonstrated. The aim of this section is not to provide a detailed classification
approach but to demonstrate how the statistical models can be used for classification of
cardiac MR image sequences. The above statistical models have been used to classify
cardiac data from normal volunteers and patients with hypertrophic cardiomyopathy (a
condition in which the myocardium has an excessive thickening). In order to perform this
classification, six normal subjects have been excluded from the model (i.e. the model has
been constructed from only 20 healthy subjects) and cardiac MR image sequences from
10 patients with hypertrophic cardiomyopathy have been acquired. The subjects with
hypertrophic cardiomyopathy were not age and sex matched. In a more detailed study
of the disease it would be more appropriate to use subjects from the same sex and age
group. This forms a set of 16 image sequences to be classified. The same processing
steps for the registration and pseudo-landmark extraction and propagation were used for
these image sequences as those used for the construction of the statistical models (see
section 6.3). Then, for each image sequence, the mean surface (over the cardiac cycle)
was calculated. These mean surfaces were projected to the space of the statistical models.
Figure 6.22 shows the projections of the subjects’ myocardium to the space of the inter-
subject population atlas (a) and intra-subject atlas (b) . It is clear from the distribution of
the data that a simple classifier should enable the correct differentiation between normal
and hypertrophic subjects.

In order to classify the datakaweighted NN-classifidras been used. After projecting
the subject to be classified to the space of the statistical models, the classifier calculates its
distance from the 5 nearest subjects. Then two weighted sums of distances are calculated.
The first is the weighted sum of the subject’s distance to each of the normal subjects.
The second is the weighted sum of the subject’s distance to each of the subjects with

hypertrophic cardiomyopathy. The subject is classified depending on the smallest of the
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weighted distance sums. Two subjects were excluded from the experiments due to poor
registration with the reference subject. A leave one out experiment was performed using

the rest 14 subjects (the algorithm is described in listing 4).

Listing 4 The leave one out experiment usikgveighted NN-classifialgorithm.
1: repeat
2:  selecta subjectg;, to be used for classification
describes; using the model’s eigenvectors
describethe rest of the subjects using the model’s eigenvectors
calculatethe distancey;, betweens; and each subject
sort the subjects such thdt < d;
calculatethe weight factor for the first 5 nearest subjed¥s£ 5): w = >
calculatethe total distance of normal subjects:

i=N
i=0 d;

© No gk w

4

d; .. .
D, = Z - if © € normals
i=0

9: calculatethe total distance of hypertrophic subjects:

4
d; ., . .
D, = Z - if © € hypertrophics

=0

10: if D, < D;, then

11: s; IS normal

12.  endif

13: if D, < D,, then

14: s; has hypertrophic cardiomyopathy
15:  end if

16: until all subjects have been classified

The first 4 principal components were employed when using the statistical atlas de-
scribing the intra-subject cardiac shape variability, while the second and the third principal
components were employed when using the statistical atlas describing the inter-subject
shape variability. In this case, the first principal component was not used in the classifica-
tion since it describes the size of the myocardium in the long-axis direction. Furthermore,
the combination of these modes was also used for data classification. The classification
results are reported in table 6.3.

All the subjects with hypertrophic cardiomyopathy and 83% of the normal subjects
were classified correctly using the statistical model of the myocardium describing changes

in the cardiac anatomy due to intra-subject variation (model A). All the normal subjects
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Model A | Model B | Both
Normal 83% 100% | 100%
Hypertrophic cardiomyopathy 100% 87.5% | 87.5%

Table 6.3: Accuracy of the classification using the statistical atlas of the myocardium
describing changes due to intra-subject shape variation (model A), inter-subject shape
variation (model B) and a combination of both.

and 87.5% of the subjects with hypertrophic cardiomyopathy were classified correctly
using the statistical model of the myocardium describing changes in the cardiac anatomy
due to inter-subject variation (model B). The combination of the features of the two sta-
tistical models does not improve the results. This might be due to the limited size in the
two data sets. The fact the hypertrophic cardiomyopathy is a progressive disease could
affect the classification approach. This is especially true for subjects at the early stages of

the disease.

6.7 Conclusions

This chapter presented methods for building a 4D probabilistic atlas of the cardiac anatomy
and function and a 4D statistical atlas of the cardiac anatomy. The probabilistic atlas cap-
tures information regarding the cardiac anatomy and function in the form of tissue proba-
bility maps. However, the probabilistic framework cannot provide information regarding
the type of variability. The 4D statistical atlas describes the cardiac anatomy and how
the cardiac anatomy changes during the cardiac cycle. Contrary to probabilistic atlases,
the statistical atlases provide not only information regarding how much variability exists

in the data but also what the variability is. The method for building statistical atlases
separates the distribution space of the cardiac shape into two subspaces. One distribution
subspace accounts for the changes in cardiac shape caused by inter-subject variability.
The second distribution subspace accounts for the changes in cardiac shape caused by de-
formation in the cardiac cycle (i.e. intra-subject variability). Principal component analysis
(PCA) has been performed in order to calculate the most significant modes of variation of

each distribution subspace. Moreover, this method eliminates the need for manual land-
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Figure 6.22: Projection of the subjects’ myocardium to the space of the (a) inter-subject
atlas and (b) the intra-subject atlas (the circles on the graphs represent the subjects with
hypertrophic cardiomyopathy while the stars represent the normal subjects).
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marking of the cardiac images by using a non-rigid registration algorithm to propagate
landmarks from an automatically landmarked atlas to each frame of the image sequences.
Both atlases of the myocardium have been used to classify cardiac image sequences from
six healthy volunteers and ten patients with hypertrophic cardiomyopathy. The results
showed that the use of statistical atlas describing shape changes due to intra-subject vari-
ability enables 83% of the normal subjects and 100% of the hypertrophic subjects to be
classified correctly. The use of the statistical atlas describing shape changes due to inter-
subject variability enables 100% of the normal subjects and 87.5% of the hypertrophic

subjects to be classified correctly.



Chapter 7

Conclusions

Spatio-temporal registration and modelling of the cardiac anatomy and function using
cardiac MR imaging are challenging tasks. In this chapter, the principal contributions of
this thesis are analysed, the general limitations of the presented work are discussed and
a description of possibilities for future research is presented. Animation examples (of
spatio-temporal registration and the atlases) can be found at:

http://www.doc.ic.ac.uk/"dpl/Research/Thesis/

7.1 Contributions

Chapters 4 and 5 describe novel registration methods which enable the spatial and tempo-
ral registration of cardiac MR image sequences. Furthermore, chapter 6 describes meth-
ods for modelling the cardiac anatomy and function. In contrast to published methods for
building probabilistic and statistical atlases of the cardiac anatomy, the work presented in
chapter 6 aims to build probabilistic and statistical atlases which will describe not only
the cardiac anatomy but also how it changes over the cardiac cycle.

In chapter 4, a new method for the simultaneous spatial and temporal alignment of
cardiac MR image sequences to the same coordinate system is presented. The presented
registration algorithm has the ability to correct spatial misalignment of affine nature be-

tween the image sequences and also temporal misalignment which could be the result
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of differences in the length of the cardiac cycles of the subjects and in the temporal ac-
quisition parameters. The registration method has been extended by the introduction of
a deformablespatial transformation model which not only corrects global spatial shape
differences but also local differences in the cardiac anatomy.

In chapter 5, the registration method for the simultaneous spatial and temporal align-
ment of cardiac MR image sequences is further extended by the introductiodesf a
formabletemporal transformation part. Therefore, this spatio-temporal registration method
has the ability to correct spatial misalignment between the images caused by global and
local shape differences. Furthermore, it has the ability to correct temporal misalignment
caused by differences in the length of the cardiac cycles and in the dynamic properties of
the hearts. An alternative method for iheformablespatio-temporal alignment of cardiac
MR image sequences is also presented. The major difference compared to the previous
method is that this method optimises the temporal and spatial components separately. In
this method, the temporal registration of the image sequences is based on a normalised
cross-correlation measure, while the spatial mapping is based on image information from
only the first frames of the sequences. This registration method is significantly faster than
the previous methods. Moreover, this registration method can be used to enable only the
temporal alignment of cardiac MR image sequences, since it does not require the car-
diac image sequences to be aligned in the spatial domain in order to find their temporal
correspondence.

In chapter 6, a probabilistic atlas of the cardiac anatomy and function (in terms of
how the anatomy changes during the cardiac cycle) is presented. Modelling the cardiac
anatomy and function addresses the limitations of current probabilistic atlases of the heart
which are only limited to cardiac anatomy and not to the cardiac function. A statistical
atlas containing statistical information regarding the anatomy of a healthy heart and how
the anatomy of the heart changes during the cardiac cycle is also presented. This sta-
tistical cardiac atlas addresses the limitations of current statistical cardiac atlases which
describe either the cardiac anatomy or the cardiac function. In order to build the statistical

atlases the distribution space of the cardiac shape has been subdivided into two separate
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subspaces. The first distribution space describes the changes in the cardiac shape caused
by inter-subject variability. The second distribution space describes the changes in the
cardiac shape caused by the cardiac cycle. Two separnatdpal component analyses
(PCA) have been performed in order to calculate the most significant modes of variation
of each subspace.

In chapter 6, a possible use of the statistical atlases for the classification of cardiac data
is demonstrated. The statistical atlases of the myocardium are used for the classification

of image sequences from normal subjects and subjects with hypertrophic cardiomyopathy.

7.2 Conclusions

7.2.1 Spatio-temporal registration

The registration methods presented in chapters 4 and 5 enable the spatial and tempo-
ral comparison of cardiac MR image sequences. The resolution of the image sequences
and the spacing of the control points of the B-Spline transformation models used in this
thesis, enable spatio-temporal alignment of cardiac MR image sequences with sufficient
accuracy for building statistical and probabilistic models of the heart.

A linear spatial transformation model and a linear temporal transformation model are
not sufficient to provide complete mapping between the cardiac anatomy and function of
two cardiac MR image sequences. Several applications require a more detailed mapping
both in the spatial and temporal domain. For example, the construction of 4D models of
the cardiac anatomy and function requires the useddfarmabletemporal transforma-
tion model since a mapping between the cardiac anatomies at corresponding time points
in the cardiac cycles needs to be established. The evaluation of the registration methods
showed that the introduction of thieeformablespatial part, in the registration method de-
scribed in chapter 4, significantly improves the spatial alignment of the image sequences.
Furthermore, theleformabletemporal part (chapter 5) addresses the limitations of the

affine temporal model. The affine model can only scale and translate the entire temporal
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domain of the image sequences. Howeverdbi®rmablenodel can deform parts of the
temporal domain differently. Its use improves significantly the temporal mapping of the
image sequences by deforming the motion characteristics of each image sequence to map
the reference image sequence.

The calculation of the temporal transformation using the simultaneous optimisation
approach provides similar results as the cross-correlation based approach. The temporal
mapping after simultaneous optimisation aligns better the temporal details between the
two image sequences (figure 5.30). However, the cross-correlation based approach is
significantly faster and does not require the image sequences to be registered in the spatial
domain.

The results of chapters 5.4.1 and 5.4.2 showed that optimising the spatial part of
the transformation based on information from the entire image sequences and not only
from the first frames, results in a better spatial alignment (figure 5.22). This is due to
the fact that the combined optimisation approach takes into consideration that the spa-
tial differences of the hearts are not constant over the cardiac cycle and also can resolve
ambiguities.

The simultaneous optimisation of the transformation components provides better spatio-
temporal registration than optimising the transformation components separately. Using
the cross-correlation based method to calculate the temporal mapping and optimising only
the spatial transformation reduces the computational complexity of the combined optimi-
sation approach without affecting its performance significantly. The different approaches
for deformablespatio-temporal alignment of cardiac MR image sequences can be used
depending on the type of application (e.g. how fast the spatio-temporal mapping should

be calculated and how accurate it should be).

7.2.2 Models of the cardiac anatomy and function

The techniques presented in this thesis allow the building of 4D atlases containing infor-

mation regarding the anatomy and function (in terms of how the anatomy changes during
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the cardiac cycle) of a healthy heart. The probabilistic atlas contains information in the
form of tissue probability maps. However, the probabilistic framework cannot provide
information regarding the type of variability. The statistical atlases provide not only in-
formation regarding how much variability exists in the data but also what the variability

is. The method for the construction of the statistical atlas allows the decomposition of the
distribution space of the cardiac shape into two subspaces. This enables the construction
of two separate models: one describing changes in the cardiac shape caused by inter-
subject variability, and the other by intra-subject variability. The most significant modes

of shape variation of these models describe meaningful variations of the cardiac shape.

7.3 General limitations

The approaches proposed in this dissertation have a number of limitations. There are lim-
itations due to the underlying assumptions of the spatio-temporal registration. The type
of mapping,T(z,y, z,t) = (2'(z,y, 2), ¥ (z,y, 2), 2 (x,y, 2),t'(t)), used in the spatio-
temporal registration methods assumes that the spatial differences between two hearts are
constant over the cardiac cycle. However, in chapter 5 it has been shown that this as-
sumption has some limitations. This can been seen from the overlap measures (section
5.4.1.2) of the registration method which calculates the optimal spatial transformation us-
ing only information from the first frames of the sequences (separate optimisation). Fur-
thermore, figures 5.3 and 5.4 show that the hearts become more misaligned in the spatial
domain during the contraction phase of the cardiac cycle. Finally, the alignment of the
volume curves of figure 5.8 is not as good as the volume curves of figure 5.15 because
the optimisation of the spatial transformation is based only on the first frames and not
the entire sequences. Although the proposed registration methods cannot provide 100%
spatio-temporal alignment between different image sequences, they still provide a good
approximation to the problem. The simultaneous optimisation of the temporal and spatial
components is not able to completely separate the spatial differences from the temporal

differences. Therefore, the spatial mapping will compensate for temporal differences to a
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certain extent. Similarly, the temporal mapping will compensate for spatial differences to
a certain extent.

There are also limitations due to image acquisition and quality which could affect
the results. The quality of the resulting temporal mapping of the proposed methods will
depend on the temporal resolution of the image sequence. The more frames a sequence
has (i.e. temporal information), the better the temporal alignment will be. Furthermore,
the quality of the image sequences will also affect the results since the similarity measure
(normalised mutual information) used during registration is based only on image informa-
tion. However, the use of image blurring and the choice of normalised mutual information
as a similarity measure reduces the effect of image noise on the quality of the resulting
spatio-temporal registration.

The identification of features in the cardiac cycle using the cross-correlation based
method will also depend on the quality of the images and the temporal resolution of the
image sequences. Calculating the normalised cross-correlation between frames with low
signal to noise ratio may affect the resulting similarity values which could influence the
identification of the temporal features.

The low resolution in the through-plane direction (typical slice thickness is@30
affects the registration and the segmentation of the apex and the base of the heart. This
introduces artifacts in the probabilistic and statistical atlases making them less accurate in

the areas of the apex and base of the heart.

7.4 Future research

There are two main directions for future research. The first involves the development of
new methods for the spatio-temporal alignment of image sequences and for modelling
the cardiac anatomy and function. The use of a transformation mapping of the following

form could be investigated:

T(x7 y? Z7 t) = (I/(:'U7 y? Z7 tl)? y/(x7 y? Z7 tl)? Z’(‘/’E.? y? Z? tl)? t,<t>> (7'1)
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This type of 4D mapping does not assume that the spatial differences between two hearts
are constant over the cardiac cycle. It can provide different spatial alignment for different
frames of the image sequences. A 4D B-Spline transformation can be udeg,as.

In order to define a 4D B-Spline transformation, de, denote am,, n,, n., n, mesh of
control pointsy; ; . » With uniform spacing in the spatial domain ang} in the temporal

domain. Then the 4D spatial mapping can be written as:

3 3 3 3
Ti(;ccgial(x’ Yy, 2,t) = Z Z Z Z By(0) Bi(u) Bin (V) B (W) Prtsitt,j4mp+n  (7-2)

s=0 [=0 m=0 n=0

As mentioned in chapter 4, finding the optimal transformation of such type will be
significantly more computationally expensive than the type of transformation used in this
thesis. For example, a transformation consisting of a 3D B-Spline Witk 10 x 10
control points and a 1D temporal B-Spline with 10 control points will have 3Hfiees
of freedom On the other hand, a transformation consisting of a 4D B-Spline itk
10 x 10 x 10 control points and a 1D temporal B-Spline with 10 control points will have
30010degrees of freedomincreasing the spacing of the control points in the temporal
domain,d;, will reduce the number oflegrees of freedonm the 4D transformation. It
might be appropriate to calculatg such that it provides spatial alignment for a limited
number of temporal feature positions (e.g. for the beginning and ends of the cardiac cycles
and for the feature position of peak contraction). In this case, the 4D B-Spline based
transformation for the spatial alignment of the image sequences willlliavé0 x 10 x 3
control points and 90008egrees of freedom

A statistical deformation atlas of the cardiac anatomy and function could be con-
structed. As mentioned in chapter 3, the key difference of statistical deformation atlases
is that statistical analysis is performed directly on the deformation fields which describe
a dense correspondence between the anatomies and also cardiac function of two image
sequences. Statistical deformation atlases have mainly been developed for the human
brain [173]. The construction of a statistical deformation model from cardiac MR im-

age sequences will provide statistical information regarding the deformation required to
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map the anatomies of several hearts. It will also provide information regarding the tem-
poral deformation required to map the motion characteristics of several hearts. In order
to obtain these deformation fields (spatial and temporaflefarmablespatio-temporal
registration method will be used.

The second direction for future research is the development of new applications which
use the proposed methods. As mentioned in chapter 3, the construction of an atlas should
be seen as an ever evolving process. The more data an atlas has, the more accurate repre-
sentation of the population it will be. Hence, it is very important to add more cardiac MR
image sequences to the atlas to make it more representative of the population.

Different statistical and probabilistic atlases can be constructed for different groups
of the population. For example, statistical and probabilistic atlases can be constructed
for specific cardiovascular diseases. These atlases can be used in a large number of tasks
including for the segmentation of cardiac MR images. They can also be used to enable
the better understanding of the cardiovascular diseases and also the classification of im-
age sequences. Furthermore, the comparison of different atlases can enable clinicians to
assess qualitative and quantitative differences between groups (e.g. normal subjects and
subjects with hypertrophic cardiomyopathy).

The spatio-temporal registration methods can be used for the assessment of pharma-
cological and surgical intervention. The effect of pharmacological or surgical intervention
will be studied by comparing images prior and after to the intervention. Mapping a num-
ber of image sequences to a common spatio-temporal coordinate system (this coordinate
system could be defined by an atlas) will enable to study the effect of the intervention to
the cardiac physiology. It may also be possible to use the same methodology to study how
the cardiac anatomy and function changes due to aging.

The methods presented in this dissertation enable the spatio-temporal mapping of im-
age sequences with minimal user interaction. The methods (except an initialisation step)
are automatic and require no segmentation of anatomical features and also identification
of temporal features in the cardiac cycles. These methods are used to build atlases describ-

ing the cardiac anatomy and how the anatomy changes over the cardiac cycle. The use
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of atlases is expected to play a significant role in the interpretation of cardiac MR images
since they collect anatomical and functional information from a large set of the popula-
tion to a single model. The work presented in this dissertation provides the foundations
for the spatio-temporal mapping of cardiac MR image sequences and also for modelling
the cardiac anatomy and function. This will hopefully encourage many important new

developments still to come.
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