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Abstract 
 

 

The majority of preterm-born infants now survive beyond the perinatal period. However, 

this has been accompanied by increases in neurodevelopmental impairment not explained 

by the presence of focal lesions on conventional magnetic resonance imaging (MRI). 

Diffusion tensor imaging (DTI) is a quantitative MRI technique with the potential to 

assess micro-structural brain abnormalities. This project examines the developing preterm 

brain using computational analysis of DTI data. 

 

Tract-based spatial statistics (TBSS) is a method for registering diffusion-derived 

fractional anisotropy (FA) data to allow objective investigation of cerebral white matter 

tracts. FA maps from term-born control infants and preterm infants at term age with no 

evidence of focal white matter abnormality on conventional MRI were used to assess the 

feasibility of using TBSS with neonatal DTI data, and then to investigate the effects of 

preterm birth on white matter microstructure at term. FA was found to be reduced in the 

preterm group in numerous white matter regions, with the most immature-born infants 

displaying more extensive regions of FA reduction. 

 

The effects of various clinical variables on FA data processed using TBSS were assessed 

in another cohort of preterm infants imaged at term. This demonstrated for the first time 

that acute and chronic lung disease are independently associated with localised cerebral 

white matter abnormalities in the genu of the corpus callosum and the left inferior 

longitudinal fasciculus respectively. 

 

Whilst using TBSS, only major white matter tracts can be studied. To enable analysis of 

whole brain DTI data, optimisation of a nonlinear registration algorithm based on basis-

splines for retrospective unwarping of echo planar DTI data is presented. 
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This work provides new insights into the microstructural neuro-imaging correlates of 

preterm birth, and suggests a method that may allow subsequent voxelwise analysis of 

diffusion data from more regions of the developing brain than can currently be studied. 
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Chapter 1 
 

Introduction 
 

 

1.1 Motivation 
 

The incidence of preterm birth throughout the developed world is increasing, and 

advances in perinatal care now mean that the majority of these infants will survive 

(Moser et al., 2007). These improvements have been most pronounced amongst infants 

born extremely preterm, but have been accompanied by increasing awareness of 

subsequent neurodevelopmental deficits amongst this group, which may continue beyond 

childhood and adolescence and into adulthood. 

 

Following preterm delivery, the architecture of the developing brain is often assessed 

using cranial ultrasound. This is useful for detecting a range of lesions including 

intraventricular and parenchymal haemorrhage, post-haemorrhagic ventricular dilatation 

and cystic periventricular leukomalacia. However, there have been concerns that 

ultrasound is unable to detect some of the more widespread subtle abnormalities of 

cerebral white matter that are seen on conventional magnetic resonance imaging (MRI) 

amongst infants born preterm (Maalouf et al., 2001; Childs et al., 2001; Miller et al., 

2003; Debillon et al., 2003), which have been shown to predict adverse neurological 

outcome (Dyet et al., 2006). The non-invasive, non-ionising nature of MRI makes it an 

ideal tool for investigating the developing preterm brain. The advent of magnetic 

resonance methods such as diffusion weighted imaging (DWI) (Le Bihan et al., 1986) 

and diffusion tensor imaging (DTI) (Basser et al., 1994) that can measure the diffusion of 

water molecules within the brain and can therefore be used to probe tissue microstructure 
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has allowed the detection of even more subtle neurological abnormalities that cannot be 

seen with conventional MRI. Infants born preterm have been shown to have increased 

diffusivity of water at term-equivalent age compared to term-born control infants (Huppi 

et al., 1998; Counsell et al., 2006), which has been shown to correlate to adverse 

neurological outcome at two years of age (Krishnan et al., 2007). 

 

Diffusion-derived MRI data has traditionally been analysed using region of interest (ROI) 

techniques, whereby regions are manually placed on the images and the diffusion 

parameters noted. There are, however, a number of limitations in performing ROI 

analyses of data, particularly when performing group-wise comparisons of data from 

multiple subjects. ROIs are subjective and involve massive data-reduction which impedes 

the power of any group-wise analysis. Equally there are problems with how well the ROI 

represents the tissue of interest, with questions about partial-volume effects and accuracy 

of placement. This has lead to the search for objective and observer-independent methods 

for investigating diffusion data, which pose their own challenges but are now becoming 

more and more widely used. 

 

 

 

1.2 Aim 
 

The aim of this work was to investigate the developing preterm brain using objective 

group-wise analysis of diffusion tensor imaging data and to relate neuroanatomical 

features to clinical variables using robust statistical methods. Two different approaches 

were attempted: first to study white matter changes using the technique of Tract Based 

Spatial Statistics, and second to develop an improved registration technique for whole-

brain diffusion studies. 
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1.3 Hypothesis 
 

In the absence of focal lesions on conventional MRI, objective group-wise analysis of 

diffusion tensor imaging data will reveal differences in brain microstructure between 

preterm infants imaged at term corrected age and term-born control infants which are 

related to clinical variables. 

 

 

 

1.4 Thesis outline 
 

In order to address the aims of the thesis, the following chapters are included: 

 

1.4.1 Chapter 2: Background - Magnetic Resonance Imaging, Diffusion 
MRI and Image Registration 
 
First, the physical principles underlying nuclear magnetic resonance (NMR) and 

magnetic resonance imaging are outlined. The principal intrinsic sources of tissue 

contrast in MRI are first introduced (proton density, the longitudinal relaxation constant 

(T1), the transverse relaxation constant (T2), and the time constant of the free-induction 

decay due to the loss of phase coherence (T2*)). Then the main extrinsic sources of 

contrast are addressed, including the repetition time between successive pulses (TR) and 

the time between the application of a pulse and the peak of the echo signal (TE). Spatial 

encoding of the NMR signal is discussed, along with the reconstruction required to 

transform the received electromagnetic signal into a magnetic resonance image. Echo 

planar imaging (EPI) is amongst the most popular fast imaging techniques used in MRI, 

and the basic underlying principles of this method are outlined. 

 

The concept of molecular diffusion is presented, and how the diffusion of water can be 

used as the main contrast agent in MRI using the Stejskal-Tanner Pulsed Gradient Spin 
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Echo sequence. Diffusion weighted imaging is then introduced, as is diffusion tensor 

imaging (DTI), which can provide rotationally invariant metrics of diffusion. 

 

EPI is the most widely used sequence for performing diffusion MRI, but poses a series of 

challenges that must be considered when collecting and analysing echo planar DTI data. 

The most important of these are reviewed and strategies for minimising and correcting 

for distortions in the data are described. 

 

Image registration, the process of aligning different images in order to achieve 

anatomical or functional correspondence, is introduced. The requirements for voxel-

based image registration algorithms are discussed, as well as the transformation models, 

interpolation methods, similarity metrics and optimisation methods commonly employed 

for registration of magnetic resonance images. The application of registration techniques 

for the correction of distortions arising from acquiring diffusion data is then discussed, as 

are the requirements for using registration methods to perform population-based analyses 

of MRI data. Finally, some commonly used affine and nonlinear registration tools 

included in MRI data analysis packages are briefly described, including the free-form 

deformation based on B-splines that was optimised to register neonatal DTI data to 

anatomical images in this work. 

 

 

1.4.2 Chapter 3: Background - The Developing Brain and Preterm 
Birth 
 
The microscopic development of the brain from the first phase of cellular proliferation to 

the commencement of (and processes involved in) myelination of the brain are discussed. 

Next the incidence of, and various adverse neurological outcomes associated with, 

preterm birth are reviewed. The correlation between various focal and diffuse forms of 

brain injury and neurodevelopmental outcome is then considered. Finally, the 

contribution of conventional and diffusion MRI in elucidating the various stages of brain 

development and brain injury associated with preterm birth is presented. 
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1.4.3 Chapter 4: The Effect of Preterm Birth on Fractional Anisotropy 
at Term 
 
Diffusion-derived scalar maps from preterm infants at term-equivalent age and term-born 

control infants are compared. This is performed using a widely available software-

package for aligning fractional anisotropy (FA) data to allow for subsequent group-wise 

comparison. Despite the fact that neonates have smaller brains than adults and higher 

brain water content, this chapter shows that this technique, tract-based spatial statistics 

(TBSS) can be used with neonatal DTI data. In the absence of focal abnormalities on 

conventional magnetic resonance image, this work demonstrates for the first time that 

this objective, observer-independent method reveals local abnormalities in the cerebral 

white matter of preterm infants at term. Investigating the eigenvalues of the diffusion 

tensor revealed that this was due to elevated diffusivity perpendicular to the major white 

matter pathways, consistent with an oligodendrocyte and/or axonal abnormality. 

 

 

1.4.4 Chapter 5: Fractional Anisotropy Changes Associated with Lung 
Disease Amongst Preterm-Born Infants 
 
A different cohort of preterm infants born at a range of gestational ages was also 

processed with TBSS to assess the effects of acute and chronic lung disease, gender and 

premature rupture of membranes (PROM) on FA at term-equivalent age. Having 

regressed out the effects of prematurity at birth and age at scan (both of which were 

highly linearly correlated with FA) using a general linear model, it was found that acute 

lung disease was associated with a highly localised region of reduced FA in the genu of 

the corpus callosum, whilst chronic lung disease status correlated with an FA decrease in 

the left inferior longitudinal fasciculus, a major white matter association fibre. 

Comparisons between gender and between positive and negative PROM status did not 

reveal any differences in FA. Highly localised associations between lung disease and 

white matter microstructural measures have not previously been documented, and it is 

interesting to speculate the clinical significance of these findings. It is currently unclear 
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whether these results are unique to this cohort or are can be generalised, but may help to 

predict potential adverse outcome and may act as a biomarker for different forms of 

neonatal intervention. 

 

 

1.4.5 Chapter 6: Optimisation of a B-Spline Based Registration 
Algorithm for Retrospective Correction of Geometric Distortions in 
Neonatal DTI Data 
 
The method used in the previous chapters restricts group-wise analysis of diffusion data 

to major white matter pathways. In order to extend this analysis to the whole of the brain, 

the data need to be correctly standardised prior to voxelwise analysis. Unfortunately, as 

diffusion data are most often acquired with an EPI readout, ensuring correct image 

alignment is challenging. In this chapter, a partial optimisation of an image registration 

algorithm using a free-form deformation model based on B-splines is presented that 

improves the correspondence between anatomical MRI data and diffusion data acquired 

with EPI. This is validated by comparing the distance between corresponding landmarks 

on the two images before and after registration, and compared to two other widely-used 

image registration algorithms. The potential and the limitations of this work are 

discussed, before some suggestions for future work are presented. 

 

 

1.4.6 Chapter 7: Summary and Final Remarks 
 
Provides an overall summary of the results presented in this thesis. Finally, the challenges 

that lie ahead in enhancing our understanding of the effects of preterm birth and 

associated clinical variables on white matter microstructure using automated analysis of 

whole brain DTI data are considered. 
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Chapter 2 
 

Background - Magnetic 
Resonance Imaging, 

Diffusion MRI and Image 
Registration 

 

 

2.1 Magnetic resonance imaging 
 

Magnetic Resonance Imaging (MRI) is a non-invasive, non-ionising imaging technique 

based on the principles of Nuclear Magnetic Resonance (NMR) (Bloch, 1946; Purcell et 

al., 1946). An image is generated by placing an object in a strong external magnetic field, 

applying energy to the system at given frequency and measuring the way in which the 

energy is released. MRI offers exquisite soft tissue contrast and three-dimensional 

anatomical images can be obtained that allow multi-planar reformatting if required. These 

advantages resulted in MRI becoming an important clinical and research tool in medical 

imaging, particularly of the brain. The following sections present a brief overview of 

MRI and the nuclear magnetic resonance phenomenon relevant to the understanding of 

subsequent chapters. A more complete description can be found in a number of different 

sources including Haacke (Haacke et al., 1999) and Nishimura (Nishimura, 1996), from 

which many of the figures in this chapter have been adapted. 
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2.2 Nuclear magnetic resonance 
 

Nuclei with a non-zero spin number (i.e. with an odd number of protons and/or neutrons), 

such as 1H, the most commonly used nucleus in MRI, possess an intrinsic spin angular 

momentum. In classical terms, they can be seen as a rotating charged sphere, possessing 

an intrinsic magnetic moment (Figure 2.1a). The vector sum of all the magnetic moments 

in a sample is its net magnetization. In the absence of an external magnetic field, the 

magnetic moments of the individual nuclei are randomly oriented and so the net 

magnetisation is zero (Figure 2.1b). 

 

 

 
Figure 2.1: Classical interpretation of nuclear magnetic resonance (NMR) 
A nuclear spin can be thought of as an infinitesimally small charged sphere spinning 
about its axis (a). An ensemble of such spins are randomly orientated in space (b). When 
a static magnetic field, B0, is applied the spins tend to align in the direction of the field, 
resulting in a net magnetization M (c). 
 

 

However, when placed in a static magnetic field (B0 ez), the magnetic moments of the 

nuclei will, in a classical perspective, align themselves with the B0 field (Figure 2.1c). 

Some will be parallel to the field and others, fewer, anti-parallel, thus creating a net 
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magnetization vector parallel to B0. The proportion of nuclei in each state can be changed 

by providing energy to the system, through the application of an external electromagnetic 

field at the resonant frequency. This is the same frequency at which, when disturbed from 

its equilibrium position, the net magnetization will precess around the direction of the 

field B0. It can be shown that this frequency (called the Larmor frequency, ω0) is given 

by: 
 

00 Bγω =  [2.1] 
 

where γ is the gyromagnetic ratio, a constant typical of every nucleus. For a proton in a 

water molecule, ω0 = 128 MHz at a field strength of 3 Tesla, and is therefore in the radio-

frequency (RF) spectrum. For this reason, the externally applied magnetic field rotating at 

the Larmor frequency that is used to perturb spins precessing around the static magnetic 

field is often called the RF (B1) field. 

 

 

 
Figure 2.2: Magnetisation vectors and frames of reference 
The application of the field B1 induces rotation of the magnetisation towards the 
transverse plane. In the laboratory frame of reference the magnetisation vector follows a 
spiral trajectory (a). In the rotating frame of reference it is simply tipped onto the 
transverse plane (b). 
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If an external transverse magnetic field (B1) in resonance with the system (i.e. rotating at 

the Larmor frequency) is applied to the system, the effective magnetic field will change 

so that the magnetic moment will start precessing around a different direction (defined by 

the vector sum of both B0 and B1 – Figure 2.2a). To more easily visualise this motion, a 

new frame of reference is introduced which rotates with angular frequency ω0 around ez. 

In the rotating frame, the motion of the net magnetization is simply a rotation from the 

direction of B0 towards the plane transverse to it (Figure 2.2b). By the end of the 

application of the B1 field, the angle the magnetization describes with relation to B0 is 

called the flip angle. A flip angle of 90° will therefore correspond to a rotation to the xy 

plane. The excitation B1 fields are applied during short periods and due to their 

frequencies are called RF pulses. 

 

2.2.1 Relaxation 
 
After the application of the RF pulse, the magnetisation gradually returns to its 

equilibrium state, in a process called relaxation. The time-varying signal generated is 

called free induction decay (FID), and represents the basic signal recorded in an NMR 

experiment. 

 

The longitudinal component of magnetisation (i.e. the component parallel to the B0 field) 

returns to its original value, while the transverse component decays away. These 

processes are characterised by the relaxation time constants T1 and T2 respectively. 

Longitudinal (T1) relaxation is accomplished through energy exchange with the 

surrounding lattice and is therefore also called spin-lattice relaxation. Transverse (T2) 

relaxation (spin-spin relaxation) is dominated by the interaction between neighbouring 

spins and is therefore also called spin-spin relaxation. It can be shown (Bloch, 1946) that 

both relaxation processes are well modelled by exponential curves (Figure 2.3). Consider 

an example where a 90o RF pulse has been applied. T1 is the time taken for the 

magnetization in the longitudinal plane (Mz) to return to approximately 63% of its value 

prior to the application of the RF pulse (M0z), and T2 the time taken for the 
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magnetization in the transverse plane (MT) to fall to 37% of its original (maximum) value 

(M0T) after the pulse. 

))

)

 

(( 10 /exp1 TtMM zz −−=  [2.2] 
 

( 20 /exp TtMM TT −=  [2.3] 

 

 

 
Figure 2.3: Longitudinal and transverse relaxation following a 90° RF pulse for grey 
and white matter 
The longitudinal magnetization, Mz, recovers towards equilibrium as described in 
Equation 2.2 with a tissue dependent recovery constant T1 (a). The transverse 
magnetization decays towards zero with a tissue dependent decay constant T2 as 
described in Equation 2.3 (b). 
 

 

In the presence of a static external magnetic field, the transverse magnetization decays 

faster than through the interactions with other spins only. This transverse relaxation 

constant is dubbed T2* and is dependent on scanner characteristics such as the 

inhomogeneity of the B0 field. T2* is always less than T2. 

34 



2.2.2 Signal reception 
 
By placing coils of wire with their axis perpendicular to B0, the variation of the direction 

of the transverse component of the magnetization can be detected according to Faraday’s 

law of electromagnetic induction: 
 

dt
dΦ

−=ε
 [2.4] 

 

where ε is the electromotive force and Φ is the flux of the magnetic field. 

 

 

 

2.3 Magnetic resonance imaging 
 

The first image obtained using NMR techniques was reported by Lauterbur (Lauterbur, 

1973). The processes that underlie image formation in NMR are briefly outlined below. 

A more complete treatment of this subject can be found in Nishimura (Nishimura, 1996). 

For biological tissues, it is possible to generate images with good anatomical contrast 

based on differences in the T1, T2 and proton densities of the different tissues. 

 

2.3.1 Image formation 
 
In order to be able to obtain an image from the NMR signal, it is necessary to be able to 

distinguish the contribution from each point in the object in the observed signal. This is 

usually accomplished through the application of spatially varying magnetic fields, usually 

called magnetic field gradients (G). The magnetic (B) field seen by every nucleus is now 

the sum of the main magnetic field (B0) and the gradient fields: 
 

rGBB .0 +=  [2.5] 
 

and the Larmor frequency of the spins is now also a function of position 
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( rGBB .000 +== )γγω  [2.6] 
 

If a field gradient is applied along the x axis, all spins that lie at a particular value of x 

will precess at the same frequency ω(x). The signal picked up in the receive coils will 

contain contributions from all the frequencies in the sample. After the removal of the 

Larmor frequency (ω0) from the signal (demodulation), a mathematical operation called 

Fourier transform can be used to retrieve the number of spins spinning at a given 

frequency (i.e. lying at each plane on the x axis). This forms the basis of a spatial 

encoding technique called frequency encoding (Figure 2.4). 

 

 

 
Figure 2.4: Frequency encoding 
In the presence of a spatially varying gradient field along the x axis (Gx), two points 
along this field will precess at slightly different frequencies. Fourier transformation of the 
two different resonance frequencies allows the determination of their relative position 
along Gx. 
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The use of gradient fields also allows the location of spins to be determined based on the 

phase (φ) of the rotation they are undergoing. If a gradient Gy field is applied in the y 

direction from time 0 to time t, the frequency of the spins will vary along this direction 

(see Equation 2.6) and they will therefore have accrued a different rotation phase (φ) 

depending on their position along the y axis. Mathematically: 
 

∫ ∫ ∫+===
t t t

dyGytBddt
0 0 00 )()( τγωτγτωφ  [2.7] 

 

The differences in phase acquired after the application of a gradient can also be used to 

spatially encode the signal, in a process called phase encoding. In two-dimensional 

imaging, frequency encoding is used along one direction (conventionally named x) and 

phase encoding along the other (y). Slice selection is usually used along the z direction. 

Three-dimensional volumetric images can be generated by also applying phase encoding 

along a 3rd (z) direction to encode the spins in 3 dimensions. 

 

Selective excitation of a single slice (slice select) is achieved by applying a linear field 

gradient perpendicularly to the plane of the desired slice at the same time as a narrow 

band RF pulse. In this way, only the spins with resonance frequencies centred around the 

transmitting frequency and within the bandwidth (range of frequencies) of the RF pulse 

will be excited, as illustrated in Figure 2.5. If a gradient is applied along the z axis, the 

excited spins will be located within a transverse slice, perpendicular to this axis. By 

sequentially selecting slices centred at different z values, a 3D image can be built up. The 

thickness of this slice, Δz, will be related to the strength of the gradient Gz and the 

bandwidth (BW) of the pulse by: 
 

zG
BWz
γ

=Δ  [2.8] 
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Figure 2.5: Use of a field gradient for selective excitation of a slice 
By applying a field gradient Gz, the resonance frequency ω varies linearly with z. The 
application of an excitation pulse with a rectangular frequency profile will excite only the 
spins at locations z which match the range of frequencies in the bandwidth (BW). 
 

 

As explained above, the localization of the magnetic resonance signal is encoded in the 

frequency and phase of the received signal. However, in order to be able to relate the 

frequency and phase of the signal to their localization, it is necessary that gradient fields 

be applied in a given order. The timings of the application of gradient and RF pulses are 

usually displayed in a diagram called the pulse sequence (Figure 2.6). 

 

The phase acquired by the spins in the sample at a given time is a function of the 

gradients played out up to that moment in time. When analysing a pulse sequence, it is 

useful to consider the time integral of the gradient fields applied along each direction. 
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These define (apart from constants) the coordinates of the reciprocal Fourier-space also 

known as k-space (Figure 2.6). 

 

 

 
Figure 2.6: Pulse sequence diagram for a gradient echo image and corresponding 
trajectory in k-space 
 

 

To select a single slice in the sample, a slice select gradient, Gz, is applied at the same 

time as an excitation RF pulse. According to Equation 2.7, Gz causes the spins to 

accumulate a phase according to their position along the z direction. This is not desired 

and so, to refocus the spins, a negative Gz gradient with half of the area is subsequently 

played out. 

 

Afterwards, the signal is read out in the receiver coils at the same time that the readout 

gradient, Gx, is played out along the x direction. To ensure that the signal will be in phase 

half-way through the application of this gradient, a dephaser gradient, Gx’, with half the 
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area of the readout gradient is previously applied. In k-space, this corresponds to the 

acquisition of a kx line, as seen in Figure 2.6. 

 

To spatially encode along another direction, this experiment is repeated placing a phase-

encode gradient, Gy, between the slice select and the readout gradients. This corresponds 

to moving to a different point position in ky by an amount proportional to the phase-

encode gradient’s area. This means that during the readout a different kx will be acquired. 

By repeating the experiment with different Gy amplitudes, all of k-space can be 

populated and then be converted into an image following the application of a 2D Fourier 

transform (Figure 2.7). 

 

The interval between sampled points in k-space determines the image’s dimensions (field 

of view, FOV) and that, together with the number of k-space points acquired in each 

direction, determines the image’s resolution. 

 

 

 
Figure 2.7: The relationship between image space and k-space 
An image of a human head and its k-space representation. The image on the left was 
reconstructed from the acquired signal k-space (right) by application of a two-
dimensional Fourier transform. 
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2.3.2 Image contrast 
 
As explained previously, after the excitation the transverse component of the signal 

relaxes with a time constant T2*. The time between the excitation and the readout is 

called the echo time, TE, and its choice contributes to the contrast in the image. The 

repetition time, TR, the time between excitation pulses, determines the amount of 

longitudinal recovery the signal from each tissue experiences and can also be 

manipulated to generate the desired contrast. 

 

To refocus the dephasing caused by stationary fields and therefore allow the spins to 

dephase with a T2 rather than a T2* time constant during the time TE, a 180o excitation 

pulse can be introduced at time TE/2. This is called a spin echo pulse sequence (Figure 

2.8). 

 

 

 
Figure 2.8: Spin-echo formation 
 

 

The contrast in an image is a function of the tissues’ T1, T2 (or T2*) and proton densities 

(PD). By suitably manipulating TE and TR, one of these mechanisms can become the 
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main source of the contrast and it is said that the generated images are T1-, T2-, T2*- or 

PD-weighted. Table 2.1 shows a simplification of how the choice of TE and TR affects 

the weighting of the generated images, and Figure 2.9 shows examples of images with 

PD, T1- and T2-weightings. 

 

 

 Short TE Long TE 

Long TR PD-weighted T2-weighted 

Short TR T1-weighted  

Table 2.1: Tissue contrast in MRI with respect to TR and TE 
Key: TR, repetition time; TE, echo time; PD, proton density. 

 

 

 
Figure 2.9: Proton density-weighted (a), T1-weighted (b) and T2-weighted (c) 
images from a neonate scanned on a 3 Tesla MR system 
Compared to adult images, the relative contrast between grey matter and white matter in 
T1- and T2-weighted neonatal brain images is reversed. 
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2.4 Echo-planar imaging 
 

MR images acquired as described above usually take a few minutes to acquire, given that 

only one ky line is acquired every TR. Fast imaging techniques acquire a greater portion 

of k-space following every excitation. Echo planar imaging (EPI) (Mansfield, 1977) is 

one of the most popular fast imaging techniques. 

 

In single shot EPI, all k-space lines are acquired following a single excitation (Figure 

2.10). After an initial displacement to the bottom of k-space, resulting from the initial 

negative Gy lobe illustrated in Figure 2.10b, the scan “blips” upwards in the ky direction 

after traversing and reading out each kx line. The k-space trajectory of a single-shot echo-

planar sequence that completes the scan of k-space in a single readout is demonstrated in 

Figure 2.10a. This is one of the fastest types of MR scans and therefore places significant 

demands on the gradient and receiver hardware. 

 

 

 
Figure 2.10: Echo-planar imaging sequence 
k-space trajectory (a); Gradient waveforms during signal acquisition (b). 
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2.5 Diffusion MRI 
 

2.5.1 Diffusion 
 
In the 19th century, while observing particles of pollen in a water solution, Robert Brown 

noticed that the pollen grains were moving. This phenomenon, known as molecular 

diffusion or Brownian motion, is due to the random translational motion of water 

molecules, resulting from the thermal energy they carry. Diffusion weighted MRI utilises 

this phenomenon in order to probe the microstructure of tissues. A detailed description of 

the concepts involved in diffusion MRI can be found in Mori (Mori, 2007). 

 

In a homogeneous medium, there is no preferred orientation for molecular motion and 

diffusion is said to be isotropic. However, molecules diffusing within an anisotropic 

medium will tend to move more easily along certain directions in comparison to others. 

In the vicinity of white matter fibres in the brain, the presence of both the cellular 

membrane and of the surrounding myelin sheaths hinders the motion of water molecules 

perpendicular to the axis of the axons. Diffusion will hence occur preferably along the 

direction of the fibres rather than radially to this. By performing measurements of 

diffusion along different directions it is therefore possible to obtain information regarding 

the orientation of white matter fibres in the brain. The fact that this is done non-

invasively helps to explain the success of diffusion weighted imaging and its rapidly 

expanding use as a neuro-imaging research tool. 

 

The diffusion process can be described statistically. If P(r0; r, t) is the probability that a 

molecule initially at position r0 arrives at another position r after time t, then in an ideal 

homogenous fluid without boundaries, P is a Gaussian function such that; 
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where D is the diffusion coefficient and t is time. D is a measure of the movement of 

molecules within their environment and is measured in units of mm2/s. 

 

Figure 2.11 shows the distributions obtained for three different diffusion times in a case 

where all molecules are initially at the same position. From this figure it is demonstrated 

that the molecules, all initially placed in the origin, will progressively disperse and that 

the overall concentration in space will tend to become more homogeneous. 

 

 

 
Figure 2.11: Concentration distribution at different times for free, isotropic 
diffusion in the case when all the molecules are initially located at position r0 
 

 

From Equation 2.9, it is possible to derive the Einstein relation for free three dimensional 

isotropic motion: 
 

Dtl 6=  [2.10] 
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where l = root mean square distance travelled by a molecule in time t (Einstein, 1926). 

 

The above equation relates the root mean square displacement (RMS) with the diffusion 

coefficient D and the diffusion time t. In the case of water, the diffusion coefficient at 

room temperature is 2.3×10−3 mm2/s. The RMS displacement for a diffusion time of 1 

second is therefore in the order of 100 μm. 

 

Einstein also showed that the self diffusion coefficient depends on factors such as the size 

of the molecules, intermolecular interactions (viscosity) and temperature. According to 

the Stokes-Einstein equation, for spherical particles of radius r, the diffusion coefficient 

increases with temperature (T), due to the increased thermal energy of molecules, and 

decreases with viscosity (η) as the resistance to motion becomes greater: 
 

r
TkD B

πη6
=

 [2.11] 
 

where kB is the Boltzmann constant (~1.38x10-23 J K-1), which at the particle level relates 

energy and temperature. 

 

 

2.5.2 Diffusion weighted imaging 
 
The equations shown above rely on the assumption of free diffusion. This assumption is, 

however, no longer valid for diffusion within brain tissue as the presence of barriers 

reduces the overall mobility of water. For this reason the diffusion coefficient measured 

by MRI is not simply a measurement of intrinsic diffusion and is therefore commonly 

known as apparent diffusion coefficient (ADC). The value measured for the ADC will be 

a function of the diffusion time. For a very short diffusion time, the ADC will be close to 

the self-diffusion coefficient, as the molecules are not given enough time to interact with 

the barriers. However, as time increases the effect of the barriers becomes apparent, 

resulting in a lower ADC. As the diffusion time increases and enough time is given for 

the molecules to probe their environment, the ADC eventually reaches a steady value. 
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A widely used technique to measure diffusion using MRI is the Stejskal-Tanner pulsed 

field gradient diffusion weighted spin echo (PGSE) sequence, shown in simplified form 

in Figure 2.12. During the first diffusion gradient, spins accumulate a phase shift which 

depends on their position. A 180o pulse is applied to invert the spins. A second diffusion 

gradient is applied which is equal in amplitude to the first. Stationary spins do not lose 

signal as the phase shifts are equal, but due to the 180o pulse they have the opposite sign 

and cancel each other out. However, moving spins are not completely refocused, 

resulting in a loss of signal. 

 

 

 
Figure 2.12: Pulse diagram for the PGSE sequence suggested by Stejskal and 
Tanner (Stejskal and Tanner, 1965) 
The diffusion gradients are shown in the axis Gd and their relative timings labelled. G = 
amplitude of diffusion gradients, δ = duration of the pulsed gradient; Δ = time interval 
between the leading edges of the two pulsed gradients. 
 

 

In the presence of a spatially varying magnetic field, random motion of protons in 

diffusing water molecules results in dephasing of the magnetic resonance signal, 

producing a reduction in its amplitude. Since spatially varying magnetic fields are used 
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for slice selection and spatial encoding in all MR images, diffusion of water molecules 

results in a reduction in signal intensity in all images, although the effect is normally 

quite small. In order to obtain a reliable measure of diffusion, large magnetic field 

gradients are deliberately applied, making it the dominant image contrast mechanism. 

 

The apparent diffusion coefficient, D, can be calculated from Equation 2.12: 
 

bDeSS −= 0  [2.12] 
 

where S = signal in the diffusion weighted image, and S0 = signal in the reference image 

(i.e. the image with no diffusion weighting). b, the strength of the magnetic diffusion 

gradient, is given by Equation 2.13: 
 

 [2.13] 
 

)3/(222 δδγ −Δ= Gb

where γ = gyromagnetic ratio for protons, G = amplitude of the pulsed gradient, δ = 

duration of the pulsed gradient; Δ = time interval between the leading edges of the two 

pulsed gradients (Le Bihan et al., 1986). 

 

During typical diffusion times of 50-100 ms, water molecules in brain tissue move over 

distances of around 1-15 μm, bouncing, crossing and interacting with many tissue 

components, such as cell membranes, fibres and macromolecules. These processes 

impede motion so that, in tissue, the distance travelled by a water molecule due to 

diffusion is less than that in free water (at the same temperature). Hence, the diffusion of 

water molecules in vivo provides information regarding structural features and tissue 

organisation. 

 

In a homogenous medium diffusion of water molecules is equal in all directions; that is to 

say, diffusion is isotropic. However, diffusion in tissue is not necessarily the same in all 

directions and so the measured apparent diffusion coefficient depends on the direction of 

diffusion sensitisation with which the rate of diffusion is measured. For this reason, data 

is acquired in a number of different directions of diffusion sensitisation. 
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Figure 2.13 shows four diffusion weighted images acquired with diffusion gradients 

applied in different directions. If the gradients are applied parallel to the local white 

matter tract direction, then water molecules diffusing along this direction will be 

incompletely refocused following the second gradient. This will lead to signal 

attenuation, as can be seen in (a), where the direction of the applied diffusion gradient is 

left-right and the genu of the corpus callosum appears dark. If diffusion is highly 

restricted in this direction then signal attenuation is minimal, as shown by the high signal 

intensity along the optic radiations. In (b) the diffusion gradient has been applied in the 

anterior-posterior direction, and the genu of the corpus callosum now appears bright 

whilst the anterior limb of the internal capsule, the external capsule and the optic 

radiations look dark. Grey matter has approximately the same intensity in all of the 

images ((a), (b), (c) and (d)), since diffusion here is isotropic at the resolution probed by 

diffusion weighted imaging (DWI). Diffusion is also isotropic within the ventricles, but 

these appear much darker than grey matter as there is very little restriction to diffusion, 

and so there is significant signal attenuation regardless of the direction of the applied 

diffusion gradient. 
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Figure 2.13: Diffusion weighted images 
Example diffusion weighted images at the level of the thalamus of a preterm infant born 
at 30 weeks gestation and imaged at term-equivalent age. In each case the b-value is the 
same (750 s/mm2), but the diffusion gradients are applied in different directions. 
 

 

As the measured ADC frequently depends on the direction of the applied diffusion 

gradient (Figure 2.13), one method to obtain a mean measure of diffusion consists in 
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acquiring DWIs in 3 directions of diffusion sensitisation (x, y and z) and calculate a mean 

ADC value using Equation 2.14: 

 

3
zyx ADCADCADC

ADC
++

=
 [2.14] 

 

 

2.5.3 Diffusion tensor imaging 
 
As already mentioned, in the most general case diffusion may not necessarily be the same 

along every direction. In that situation, instead of using a scalar coefficient diffusion can 

be described using a tensor. The probability that a particle initially at position r0 will be 

at position r after a time t will now be given by: 
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As in the previous case, this equation applies to free diffusion. If motion is hindered, the 

shape of the diffusion ellipsoid may no longer be Gaussian. In order to take this into 

account, and similarly to before, diffusion tensor imaging (DTI) is often used to estimate 

an effective diffusion tensor, Deff, in each voxel. 

 

DTI provides a measurement of diffusion in tissues, which is independent of the direction 

of the applied diffusion gradients and the choice of laboratory frame of reference. A 

minimum of seven measurements are required to fully characterise the diffusion tensor, 

six linearly independent measurements obtained using diffusion sensitizing gradients and 

one obtained without any diffusion weighting. D is given by Equation 2.16: 
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where bij is the component of the ith row and jth column of a 3 x 3 symmetric b matrix, 

b; Dij is the corresponding component of the 3 x 3 symmetric matrix of the effective 

diffusion tensor, D. S(b) is the signal intensity for a gradient sequence with b matrix, b; 

S(b = 0) is the signal intensity for a gradient sequence in which b is zero (Basser et al., 

1994). 

 

Since the eigenvalues of this tensor represent the diffusivities along the main axes, the 

tensor has to be positive definite. The tensor must also be symmetrical. Both of these 

conditions ensure that the principal eigenvectors (also called of principal diffusion 

directions) are orthogonal to each other and may therefore be used to form a local 

orthogonal coordinate system. The relationship between the tensor, its eigenvectors εi and 

eigenvalues λi may be written in the following way: 
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This D tensor describes an ellipsoid, whose surface represents the root mean square 

diffusive displacement. As the tensor is symmetrical (Dij = Dji), instead of nine elements, 

only six are independent (Basser et al., 1994). It has nine elements and is symmetric, 

which means that Dij = Dji, so only six of the values are independent: 
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Dxx, Dxy, Dxz, Dyy, Dyz, Dzz are the independent elements. A frame of reference, called the 

“principal frame” can be defined so that the axes are coincident with the principal axes of 

the diffusion ellipsoid and the off-diagonal elements of the diffusion coefficient 

disappear. In this rotated system, the diffusion tensor is diagonal. The directions of the 

principal axes are specified by the eigenvectors of the diffusion tensor. When D is 

expressed in the principal frame, the diagonal matrix elements are the principal 

diffusivities of the rotated coordinate system: λx′, λy′ and λz′, the eigenvalues of the 

52 



diffusion tensor. The six scalars that represent the diffusion tensor can be expressed in 

terms of the three eigenvalues, λx′, λy′ and λz′, which are rotationally invariant, i.e. the 

eigenvalues are properties of the diffusion ellipsoid rather than of a particular coordinate 

system, such as that defined by the gradient system in the MRI scanner. The principal 

direction of diffusion is given by the eigenvector that corresponds to the largest 

eigenvalue (Basser, 1995). 
 

In order to visualise the tensor, the surfaces of iso-probability are normally considered. 

For an isotropic tensor where all three diffusivities have the same value λ, this surface 

will correspond to a sphere, whereas an ellipsoid will be obtained for the anisotropic case 

(Figure 2.14). 
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Figure 2.14: Diffusion ellipsoids 
The tensors used to describe diffusion can be represented as ellipsoids, with the three 
main axes describing an orthogonal coordinate system. The directions of the main axes 
represent the eigenvectors and their lengths represent the eigenvalues of the tensor. The 
longest main axis of the diffusion ellipsoid represents the value and direction of the 
principal diffusion direction, whereas the shortest axis denotes the value and direction of 
minimum diffusion. If the tissue is isotropic at the scale probed by DTI, diffusion is the 
same in all directions and the ellipsoid will be spherical (a). The tensor is diagonal with 
all diffusivities equal to the scalar diffusion coefficient D; In an anisotropic medium, 
diffusion along one direction may be preferred over others. In this case the surface of iso-
probability is an ellipsoid. If the laboratory frame coincides with the principal directions 
of the ellipsoid, the tensor will be diagonal with diffusivities λ1, λ2 and λ3 along each of 
the three axes (b); In general the principal axis of the ellipsoid will not coincide with the 
laboratory frame and all elements will be necessary to characterise the tensor (c). 
 

 

Although the assumption of Gaussianity is not always valid throughout the brain, from 

the tensor it is possible to extract useful parameters to summarise diffusion properties. 

The advantage of using invariant scalar parameters instead of reporting the full tensor is 
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that those do not depend on the frame used. A measurement of the average diffusivity in 

space may be obtained by using the trace of the tensor: 
 

321)( λλλ ++=DTrace  [2.19] 

 

Several indices can also be used to express the tensor’s level of anisotropy, the degree to 

which diffusion along one direction is preferred over others. On maps generated by these 

parameters, white matter tracts, which exhibit a high anisotropy index, appear bright. 

Grey matter and cerebrospinal fluid, on the other hand, are represented by dark shades 

according to their low or absent anisotropy. The most commonly used index is the 

fractional anisotropy (FA), which measures the fraction of the effective diffusion tensor 

that can be ascribed to anisotropic diffusion: 
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where <λ> is the mean diffusivity = (λ1 + λ2 + λ3)/3. 

 

A value of 0 corresponds to a perfectly isotropic tensor while an FA of 1 corresponds to 

the limit of infinite anisotropy. 

 

In addition to calculating mean diffusivity and diffusion anisotropy, DTI can be used to 

investigate the nature of diffusion parallel (axial diffusion, λ1) and perpendicular (radial 

diffusion, (λ2 + λ3)/2) to white matter tracts. Analysing DTI data in this way helps to gain 

an understanding of the causes behind changes in anisotropy. 

 

As mentioned, theoretically it is possible to determine the tensor by acquiring one non-

diffusion weighted image plus six diffusion weighted images, provided that the diffusion 

gradients have been chosen to lie in non-collinear directions. In practice, as the images 

are noisy, a higher number of images tends to be acquired. For this reason, data sets with 

15, 32 or even more directions are commonly acquired, especially if the final goal is to 

perform fibre tracking. Figure 2.15 shows the fifteen direction diffusion gradient scheme 
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used to acquire DTI data in this work. This scheme samples diffusion fairly isotropically 

in space. In general, the diffusion tensor is then estimated by fitting the DWIs using 

linear least squares fitting. This is a mathematical procedure for finding the best fitting 

line to a given set of points by minimising the sum of the squares of the residuals of the 

points from the line, and is often used to find an approximate solution to an over-

determined system of linear equations. 

 

Figure 2.16 shows some of the scalar maps that can be derived from DTI data. 

 

 

 
Figure 2.15: Sample 15 direction diffusion gradient scheme 
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Figure 2.16: Scalar maps that can be derived from DTI data 
A number of different scalar maps can be derived from DTI data. Amongst the most 
widely used of these indices of diffusion are (a) ADC; (b) λ1, the eigenvalue 
corresponding to the magnitude of diffusion along the major axis of diffusion; (c) λ2, the 
eigenvalue corresponding to the magnitude of diffusion along the intermediate axis of 
diffusion; (d) λ3, the eigenvalue corresponding to the magnitude of diffusion along the 
minor axis of diffusion; (e) FA, the magnitude of the effective diffusion tensor that can be 
attributed to anisotropic diffusion. 
 
 

2.5.3.1 Limitations of the diffusion tensor model 
 
There are two major assumptions in the DTI model that do not necessarily hold within 

the brain: 

1. that diffusion is Gaussian (that is, the diffusion characteristics of water molecules 

can be represented by a Gaussian distribution); and 

2. that it is sufficient to characterise diffusion within each voxel using a single 

diffusion tensor. 

However, it has been shown that the fact that diffusion within the brain is restricted and 

divided into different compartments means that it is not Gaussian (Assaf and Cohen 

2000; Beaulieu 2002; Assaf and Basser 2005; Alexander et al., 2002; Jensen et al. 2005; 

Assaf and Pasternak, 2008), though this is only manifest when using very high b values 

(>2500 s/mm2) (Assaf and Cohen 2000; Beaulieu 2002; Cohen and Assaf 2002; Assaf 

and Pasternak, 2008). The second assumption, however, is less valid; a single diffusion 

tensor is often inappropriate to represent the many thousands of different water 

compartments (including extracellular water as well as water within neurons and glial 
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cells) in a typical imaging voxel in the brain. The measured diffusion tensor is an average 

of these compartments, and if a voxel contains contributions from different brain tissue 

classes or two or more non-parallel fibre pathways then the DTI model will be inadequate 

(Papadakis et al. 2002; Tuch et al. 2002; Jansons and Alexander 2003; Assaf and 

Pasternak, 2008). 

 

There have been numerous approaches proposed to overcome these problems. Multiple 

tensor models, such as those suggested by Tuchs (Tuch et al. 2002), Jansons (Jansons and 

Alexander 2003) and Pasternak (Pasternak et al. 2004, 2006) overcome the partial 

volume effect, but still assume Gaussian diffusion (Assaf and Pasternak, 2008). This 

assumption is not required with diffusion spectrum imaging and q-space imaging 

methods, but these are very time consuming and computationally demanding, and are not 

currently appropriate for clinical imaging. 

 

 

2.6 Echo-planar diffusion weighted imaging 
 

In order to make DWIs sensitive to the microscopic motion of water molecules, they 

inevitably become sensitised to any other type of motion. Traditional spin echo methods 

of acquiring DWIs are relatively lengthy, taking several minutes to acquire data in one 

direction of sensitisation. During this time, motion such as blood flow, tissue pulsation 

related motion or macroscopic motion of the head can result in inconsistencies between 

different data segments, leading to artefacts in the images. This is clearly a great 

disadvantage when imaging uncooperative neonates. As explained in Section 2.4, EPI 

(Mansfield, 1977) is able to provide images after only a single radiofrequency (RF) 

excitation and thereby enables imaging in a fraction of the time of conventional MRI. 

Diffusion weighted images are usually obtained using EPI techniques, and multiple 

images of the whole brain, sensitive to different diffusion directions can be acquired 

within a few minutes. Therefore, this technique is highly suited to obtaining diffusion 

weighted MRI in neonates. 
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2.6.1 Problems with echo planar imaging 
 
However, data acquired with an EPI readout many contain a number of significant 

artefacts. These can be seen in Figure 2.17 and Figure 2.18 and include: 

• Distortions associated with inhomogeneities in the B0 field; 

• Image blurring; 

• Nyquist ghosting; 

• Fat artefacts; 

• Eddy current effects. 

These artefacts, which are common to all EPI data, are described in the following section. 

 
 

2.6.1.1 Geometric distortion artefacts associated with 
inhomogeneities in the B0 field 
 
The long readout times required by EPI make it extremely sensitive to inhomogeneities in 

the static magnetic (B0) field. The low bandwidth of EPI in the phase-encoding direction 

causes a much less manageable artefact in shape distortion in this direction. 

 

Even in the presence of a perfect magnet, field variations will exist due to differences in 

the magnetic properties of distinct types of tissue within the sample. The magnetic 

behaviour of a substance can be represented through its magnetic susceptibility. While 

the magnetisation created within a paramagnetic substance (with a positive magnetic 

susceptibility) will reinforce the magnetic field applied, opposition to the magnetic field 

occurs for a diamagnetic substance, one with a negative magnetic susceptibility. The 

most significant differences in susceptibility observed in the head are located at air-tissue 

boundaries. As air is slightly paramagnetic, while brain tissue is mildly diamagnetic, field 

variations may be observed close to these boundaries. Given that the field variations 

induced are proportional to the magnetic field applied, the inhomogeneities are especially 

pronounced at higher field strengths such as 3 Tesla. Indeed, the MR frequency may 

differ from point-to-point in regions of air-bone-tissue interfaces by more than 125 Hz at 
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this field strength. This results in inaccuracies in the spatial localisation of the magnetic 

resonance signal, and can lead to areas of signal void and corresponding regions of signal 

pile up in the images, particularly near the sinuses. 

 

 

 
Figure 2.17: Signal loss and pile up resulting from inhomogeneities in the B0 field 
Transverse EPI image acquired from an adult at the level of the frontal sinuses (a) and the 
optic radiations (b) show the effects of tissue magnetic susceptibility differences on the 
spatial localisation of signal. There is a signal void (white arrow) immediately posterior 
to the frontal sinuses, and the signal has instead been localised to a region posterior to its 
true location, resulting in signal pile-up in this area. 
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2.6.1.2 Blurring 
 
Because of the long acquisition times, different k-space points will have experienced 

different amounts of transverse decay. This leads to image blurring, particularly along the 

phase-encoding direction. 

 
 

2.6.1.3 Nyquist ghosting 
 
A replica of the image is generated, shifted from the main image by half a field of view in 

the phase encode direction (Figure 2.18a). This is caused by a mismatch in the sampling 

pattern or in the gradients applied when acquiring kx lines in different directions (from 

left to right or from right to left). 

 
 

2.6.1.4 Fat artefact 
 
Due to their different electronic environments, protons in fat molecules have a slightly 

different resonance frequency from those in water. Signal from fat is therefore misplaced 

in MR images. In echo planar images, due to the short acquisition bandwidth along the 

phase encode direction, if not suppressed the fat that surrounds the skull can be misplaced 

by tens of voxels along the phase encode direction (Figure 2.18b). 
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Figure 2.18: Nyquist ghosting and fat artefacts in echo-planar images 
Nyquist ghosting results in a replica of the acquired image shifted by half a field of view 
along the phase encode direction (a). Fat artefacts arise because protons in fat and water 
have different resonance frequencies when placed in an external magnetic field, leading 
to incorrect signal localisation (b). These can be improved by suppressing the signal from 
fat by applying an additional ‘presaturation’ pulse prior to each slice selection pulse. 
 

 

2.6.1.5 Eddy current effects in diffusion tensor EPI 
 
As diffusion tensor calculations are performed on a voxel-by-voxel basis, it is essential 

that all the diffusion weighted images are correctly aligned to the image with no diffusion 

weighting applied. The generation of eddy current fields upon the application of the 

diffusion gradients complicates this task. As the fields persist during the readout window 

of an EPI acquisition, different geometric distortions will be induced in the images, 

depending on the direction along which diffusion is being measured. If the effect of these 

fields is not taken into account, the spatial resolution of the images computed from this 

set of data will be degraded, and inaccurate estimates of the diffusion parameters 

obtained around tissue boundaries will result. 
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Eddy currents arise as a consequence of the rapid and powerful pulsing of the gradient 

coils. The eddy current fields are induced in the presence of conducting structures and 

oppose changes in the main magnetic field in accordance with Faraday’s law of 

electromagnetic induction. 

 

The fields generated by the diffusion gradients are particularly significant as, in order to 

obtain diffusion contrast in the minimum echo time possible (to minimise blurring 

effects), the diffusion gradients tend to be as strong and short as possible. In the presence 

of eddy currents, the shape of the gradients effectively applied will differ from that 

prescribed, with the ramping up and down occurring in a smoother way (Figure 2.19). 

 

 

 
Figure 2.19: The effect of eddy currents on gradient waveforms 
In the presence of eddy current fields the shape of the gradients is distorted. An ideal 
rectangular-shaped gradient is shown on the left. On the right is shown how the eddy 
currents distort the ideal shape (hatched line), producing smoother transitions (solid line). 
 

 

Depending on the intensity and duration of the diffusion gradients, the eddy current fields 

may still be considerable during the readout window. The effect of these residual fields 

on diffusion weighted EPI images was first described by Jezzard and Balaban (Jezzard 

and Balaban, 1995). 

 

The amplitude of the eddy currents will depend on the magnitude, duration and 

separation of the diffusion gradients. The direction of the eddy current may not coincide 
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with that of the gradient which has produced it, as cross-terms may be present. A gradient 

applied along, for example, the x axis may also produce a y-component in addition to the 

expected x term. 

 

The phase accrued by the spins determines which voxel they are mapped onto in the 

image. If extra undesirable gradient fields are present, additional phase accumulation will 

occur. This will lead to an incorrect assignment of the position of the affected spins and 

ultimately to geometrical distortions of the images. The nature of the effect of the eddy 

current fields on EPI images will depend on their orientation relative to the imaging 

gradients. The distortions occur primarily along the phase encode (PE) direction due to its 

low bandwidth. 

 

An eddy current along the readout direction will shift each line of k-space by a different 

amount depending on its coordinate ky along the phase encode direction. These 

differential shifts will result in shearing of the image as shown in Figure 2.20. 

 

If the eddy current field is oriented along the phase encode direction, the size of the phase 

encode blips will either increase (causing the object to be magnified as the field of view 

is reduced) or decrease (causing shrinkage of the object). This effect is represented in 

Figure 2.20. 

 

One of the effects of an eddy current field in z is to cause signal loss. The additional field 

makes the resonance frequency of the spins vary along the slice direction, leading to 

signal dephasing. Eddy currents along the slice direction also result in a global translation 

of the image along the phase encode direction due to the extra phase accumulated. The 

amount of translation depends on the distance from iso-centre as the strength of the static 

field is made to vary along the z direction. 

 

Therefore, in summary, depending on the nature of the eddy currents, their effect on the 

image is: 

• shearing in the image plane; 
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• scaling in the PE direction; 

• signal loss and translation along the PE direction; 

• translation along the PE direction. 

 

 

 
Figure 2.20: Distortion resulting from eddy currents, from Le Bihan (Le Bihan et 
al., 2006) 
(a) Undistorted image; (b) contraction; (c) shift; (d) shear. 
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2.6.1.6 Additional challenges 
 
The rapid switching of gradients required by echo-planar diffusion tensor imaging places 

significant challenges on the MRI hardware, and can lead to artefacts such as spikes and 

other forms of experimental noise distorting the data. Single-shot EPI minimizes head 

motion artefacts, but artefacts associated with respiratory motion and cardiac pulsatility 

may still be problematic. 

 

Finally, despite their numerous advantages, single-shot EPI techniques are limited in the 

resolution that they can provide and provide poorer tissue contrast compared to 

anatomical imaging. This can be a limitation when studying the neonatal brain with its 

inherently smaller size than the adult brain. 

 

 

 

2.6.2 Correction of errors in echo planar imaging data 
 
As already mentioned, the diffusion tensor calculation relies on the assumption that a 

given voxel corresponds to the same anatomical location in the b = 0 s/mm2 image and all 

the diffusion weighted images in a DTI dataset. Eddy currents lead to image mis-

alignement between measurements corresponding to different diffusion gradient 

directions. For this reason, the calculated anisotropy values may have large errors or the 

direction of the highest diffusion supposed to correspond to fibre direction may be 

incorrect (Netsch and van Muiswinkel, 2004). The distortion is overwhelmingly in the 

phase-encoding direction due to the long time between the acquisitions of two adjacent 

samples in this direction, and in the neonatal brain, the brainstem and cerebellum are 

particularly affected by distortion from local magnetic field inhomogeneities. 
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2.6.2.1 Correction for distortions arising from B0 inhomogeneity 
effects 
 
Numerous strategies have been proposed to correct for the spatial displacements and 

intensity modulations arising from field inhomogeneities in the main magnetic field. 

Acquiring two rather than one set of echo planar images with opposite phase-encoding 

directions make regions that appear compressed due to signal pile-up in one image easily 

distinguishable in another, as displacements in the phase-encode direction in the images 

will have identical magnitude but opposite polarity. This allows the reconstruction of an 

image with significantly reduced distortions (Andersson et al., 2003; Jones et al., 1999). 

 

Measuring the B0 field across the field of view (also known as acquiring a field map) and 

using this to unwarp the EPI data was first proposed by Jezzard and Balaban (Jezzard and 

Balaban, 1995), and has been shown by Hutton (Hutton et al., 2002), to improve 

correspondence with an undistorted anatomical MR image acquired during the same 

scanning session. Generally, these methods involve acquiring two images with different 

echo times using a gradient echo or spin echo sequence. The measured difference in 

phase at a particular voxel in the images is proportional to the difference in echo time as 

well as the local inhomogeneity in the B0 field. The derived B0 field values are used to 

approximate the signal loss and geometric distortion and to then compensate for these 

artefacts. These unwarping strategies have since been incorporated into diffusion data 

analysis packages (http://www.fil.ion.ucl.ac.uk/spm/toolbox/fieldmap; 

http://www.fmrib.ox.ac.uk/fsl/fugue/index.html). 

 

Standard shimming refers to the process of applying additional small correction gradients 

on top of the main magnetic field to make the field more uniform. Scanners often have 

first order shim coils that are on all the time and can remove linearly varying gradients in 

the main magnetic field. However, since the resolution in the through-slice direction is 

usually coarser than in-plane resolution, intravoxel dephasing is most common in this 

direction. As a result, applying z-shimming, whereby an extra gradient along the z-axis is 
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applied for a short period after excitation to compensate for this intravoxel dephasing has 

also been suggested (Frahm et al., 1988; Gu et al., 2002; Glover, 1999; Song, 2001). 

 

 

2.6.2.2 Correction for distortions arising from residual eddy current 
effects 
 
Several approaches have been suggested in the literature to either correct for or minimise 

eddy current effects. The effect of eddy currents can be corrected either by acquiring 

extra data to estimate these fields (Calamante et al., 1999) or by estimating them 

retrospectively from the images themselves (Andersson and Skare, 2002). Modifications 

to the standard single spin-echo sequence have also been suggested to minimise the eddy 

currents at source (Alexander et al., 1997; Reese et al., 2003), as well as achieving a more 

rectangular gradient waveform by re-adjusting the gradient pre-emphasis unit (Papadakis 

et al., 2000; Schmithorst and Dardzinski, 2002). 

 

If the eddy currents are approximately constant during the EPI acquisition, their effects in 

both k-space and image domain are linear. Each eddy current component can be 

estimated by acquiring a series of profiles along the corresponding direction (Jezzard et 

al., 1998). Once the eddy current components are estimated for each slice and diffusion 

orientation, the actual data can be corrected accordingly. Using this method, it is also 

possible to correct for time varying eddy currents, which can be done by comparing the 

estimates obtained using different pairs of echoes. If the eddy currents were constant in 

time, the same value should be obtained in all cases, except for noise. By fitting a 

polynomial to the estimates obtained from consecutive pairs of echoes, the time 

dependence can also be taken into account (Jezzard et al., 1998). However, the main 

disadvantage of the method is that it requires an increase in acquisition time; when using 

a single-shot sequence the scanning time is increased by a factor of three. 

 

An alternative approach consists of estimating the amount of distortion generated from 

the images themselves. Haselgrove and Moore (Haselgrove and Moore, 1996) first 
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proposed using image registration, described in Section 2.7, to correct for distortions 

induced by eddy currents, whereby each diffusion weighted image is individually mapped 

to an undistorted spin echo T2-weighted imaged acquired during the same scan. The 

authors used iterative cross-correlation (Section 2.7.3.1.2) as their image similarity 

measure, but a difficulty with this approach is that the contrast of the images changes as 

the amount of diffusion-weighting increases, and the cerebrospinal fluid, in particular, 

appears bright on the T2-weighted images, but becomes increasingly darker as the b-

value is increased. Cross-correlation does not perform well when the contrast of the 

images being aligned differs significantly, and Bastin (Bastin, 1999) found that this 

method is unsuitable for images acquired with a b-value of more than 300 s/mm2. One 

possibility to estimate the amount of translation and scaling induced in the images is 

therefore to use a method to compare an image with moderate diffusion-weighting with 

the reference T2-weighted image (on a phase-encode column-by-column basis) and then 

extrapolate these parameters to higher b value images. This procedure is very 

computationally demanding, though, and the subject may move between acquisitions and 

therefore this method is not frequently used to correct for distortions produced by eddy 

current effects. 

 

Horsfield (Horsfield, 1999) suggested estimating the eddy current fields by acquiring 

images with diffusion-weighting along each of the three axes of the laboratory frame of 

reference. Superposition can then be used to estimate the corrections required for any 

given diffusion direction and slice orientation. As above, however, this method is 

requires a lot of computation, with a reported processing time for a six-direction diffusion 

dataset of approximately one day (Horsfield, 1999). 

 

A faster post-processing method, which has the advantage of simultaneously correcting 

for both motion and image distortions was suggested by Andersson and Skare (Andersson 

and Skare, 2002). When fitting the data with the tensor model, increased residuals should 

be obtained in the presence of both motion and eddy current distortions. The authors 

therefore proposed to determine the set of parameters that minimises the sum of the 

squares over all voxels of the errors between the estimated and measured signal 
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intensities. The set of transformations considered include both rigid body motion and 

shear, scaling and translation along the phase encode direction. To account for the spatial 

variability of the eddy current induced distortions, these are allowed to vary from slice to 

slice in a smooth way. This approach is, however, incomplete in that the reference (non-

diffusion weighted) volumes are not used. To correct for any discrepancies between these 

volumes and the diffusion weighted ones the authors suggest using a multi-modality 

registration method. 

 

More recently, Rohde (Rohde et al., 2004) has suggested a method to align the diffusion 

weighted images to a T2-weighted image that simultaneously corrects for subject motion 

and eddy current effects. In this approach, the diffusion data is transformed using a 

combination of translations, rotations, scales and shears in a way that that maximises the 

similarity (the authors used mutual information (Section 2.7.3.2.1) as their similarity 

metric) between each individual diffusion weighted volume and the reference volume. 

 

All the post-processing methods described above assume that eddy current fields lead to 

geometric distortions which can be corrected for using translations, rotations, scales and 

shears (affine transformations). This would be true if the eddy current fields remained 

constant throughout the entire acquisition window, however temporally varying eddy 

currents are also present, both short-lived (which produce image blurring that cannot be 

corrected for by image registration strategies), and longer-lived. Shen and colleagues 

(Shen et al., 2004) have shown that although most of the distortions can be corrected for 

using affine transformations, some residual errors do persist, and proposed combining 

data from pairs of images with diffusion sensitising gradients reversed to correct for 

higher-order distortions. In the absence of this additional data, however, there is much 

active work in developing retrospective correction models for DWI/DTI data that include 

nonlinear transformation models and so can address some of these spatially varying eddy 

current effects (Kybic et al., 2000; Studholme et al., 2000; Netsch and van Muiswinkel, 

2004). 
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2.6.2.3 Correction strategies for motion-related artefacts 
 
As a by-product of diffusion sensitisation, diffusion weighted images are sensitive to any 

kind of motion. Diffusion data acquired with EPI is largely insensitive to bulk head 

motion, however, since each individual diffusion weighted image can be acquired as 

rapidly as 150 ms. However, some authors have suggested that incorporating cardiac 

gating may improve the diffusion tensor estimation (Pierpaoli et al., 2003; Skare and 

Andersson, 2001), but this is not normally employed and has an associated time penalty, 

which can be only partially reduced by acquiring different image slices at different 

phases of the cardiac cycle (Nunes et al., 2005). 

 

 

 

2.7 Image registration 
 

2.7.1 Introduction 
 

Medical image registration is the process of determining a mapping between the 

coordinates in a source image and a reference (or target) image in order to achieve 

biological, anatomical or functional correspondence (Crum et al., 2004; Hajnal et al., 

2001) and so can aid clinical interpretation and/or analysis. In the context of neuro-

imaging, registration allows different brain images from either the same subject (intra-

subject registration) or different subjects (inter-subject registration) to be combined into a 

common frame of reference. Commonly used applications of image registration 

methodologies include longitudinally tracking changes related to brain maturation and 

ageing, characterising size and shape variations amongst different subjects or study 

populations, and fusing data from different imaging modalities in which corresponding 

structures may have different intensities (inter-modality registration). 

 

Image registration algorithms can generally be divided into two main groups: 
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1. voxel-based, which aim to estimate and improve the geometrical correspondence 

between two images based on the intensity values in each image, and 

2. feature-based, whereby the same features are extracted in each image and the 

registration is driven by attempting to bring these into spatial correspondence. 

 

In a broad study of various inter-modality brain image registration approaches, it was 

reported that voxel-based methods are on the whole more reliable and accurate for rigid 

registration than feature-based algorithms (West et al., 1997), and are now much more 

widely-used amongst the neuro-imaging community. The following descriptions will 

therefore focus on this first group of image registration algorithms. 

 

In order to determine a mapping between a reference (or target) image and a source 

image that maximises the similarity between the images, the model of a typical voxel-

based registration algorithm requires the following components: 

1. A transformation (or deformation) model that deforms the source image to 

target space. 

2. A regularisation method that constrains any transformation to be smooth and 

therefore not to break topology. 

3. An interpolation method to estimate image intensities in locations that do not 

coincide with any of the source image’s voxel locations. 

4. A similarity measure to calculate the similarity of the images when the 

transformation is applied. 

5. An optimisation method to select the transformation that gives the best 

similarity. 

 

Figure 2.21 gives an overview of the steps involved in an image registration algorithm. 

Maximising the correspondence between the images entails finding the best 

transformation under the model used, represented by the set of transformation parameters 

that provide optimal similarity between the images. 
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Figure 2.21: Image registration algorithm 
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An image registration algorithm first requires the source data to be transformed into 
reference (target) space using a transformation model. Since the location in a source 
image which is mapped to the corresponding location in the target image may not 
coincide with any of the source image’s voxel locations, the intensity at this location then 
needs to be estimated using an interpolation method. A similarity measure evaluates the 
correspondence between the source and target images under the transformation, before 
new parameters are estimated by maximising the similarity. 
 

 

The following section briefly reviews rigid, affine and nonlinear transformation models, 

before describing in more detail the voxel-based registration model used in this work. A 

more comprehensive discussion of image registration methodologies can be found in 

Hajnal (Hajnal et al., 2001). 

 

 

2.7.2 Transformation models 
 

The alignment of a pair of images requires finding the transformation that correlates the 

position of features in one image to the position of features in the other image. Modelling 

the transformation with respect to a fixed frame of reference, the transformation that 

maps a position x in one image to position x’ in another image is given by: 
 

( )xxx Τ=Τ ': a  [2.21] 
 

In general, transformation models can be divided into broad categories based on their 

geometric properties. Rigid transformations preserve distances between points. These are 

a subset of affine transformations, which map straight lines to straight lines but also allow 

for scales and shears, and so angles and distances may not be preserved. The term global 

is frequently used to describe rigid or affine transformations, since all the voxels in the 

source image undergo the same transformation. Nonlinear transformations, however, 

allow for more localised deformations, which can be useful if the images to be registered 

vary in anatomy or in local levels of distortion. 
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The application required for image registration affects the choice of the type of 

transformation model used. If the data to be registered are brain images from the same 

neonatal subject imaged at the same timepoint but with different modalities, then in the 

absence of image acquisition artefacts a rigid transformation is appropriate. This is due to 

the constraints placed upon brain movement by the skull, which can be considered to be 

rigid. However, the difference between two brain images of the same child acquired at 

different timepoints would be better represented by an affine transformation, as there 

would be changes in brain size over time. In this second case, however, or if one or both 

of the images to be registered contain local deformations in the image, there may be local 

differences after the application of a global transformation, which may require an 

additional nonlinear step to attain improved correspondence. 

 
 

2.7.2.1 Rigid transformations 
 
Rigid transformations preserve distances and angles, and therefore allow for rotations and 

translations. In three dimensions this gives six degrees of freedom (i.e. six free 

parameters): translations in the x, y and z directions and rotations about the same three 

axes. A rigid transformation is given by a rotation R followed by a translation t and maps 

a point x = (x, y, z) to a point x’ = (x’, y’, z’) and can be written as: 
 

tRxx +a  [2.22] 
 

where 
 

{ } { }3,2,1,, ∈= jirR ij  
 

is the matrix describing the rotational component of the transformation and 
 

( )zyx tttt ,,=  
 

is the vector describing the translational component. 
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Using homogeneous coordinates, the transformation Τ can therefore be described by the 

following matrix: 
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For translation only, the matrix simplifies to: 
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For a rotation α about the x-axis, the transformation is given by: 
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2.7.2.2 Affine transformations 
 
Rigid-body transformations are a subset of a more general group of transformations 

which include also scaling and shear parameters in the transformation matrix. As a result, 

parallel lines are still maintained, but the angles between lines can change. 
 

tAxx +a  [2.26] 
 

where 
 

{ } { }3,2,1,, ∈= jiaA ij  
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is the matrix describing the rotational, shear and scale components of the transformation 

and 
 

( )zyx tttt ,,=  
 

is the vector describing the translational component. Affine transformations in two-

dimensions can be represented by the following matrix: 
 

( )
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

′
′
′

=Τ

110001
333231

232221

131211

z
y
x

taaa
taaa
taaa

z
y
x

x
z

y

x

affine

 [2.27] 

 

Figure 2.22 demonstrates the types of transformation that can be obtained from rigid-

body and affine deformation models. 

 

 

 
Figure 2.22: Affine transformations (from Crum et al., 2004) 
Rigid transformations (top row) allow transformations and rotations to map the 
coordinates of the source image (in yellow) to the coordinates of the target (reference) 
image (in red). Transformations can be applied from, and rotations can be applied about, 
each of the coordinate axes. As a result, in three-dimensions a rigid transformation allows 
six degrees of freedom (DOF). If there are differences in size or in the angles between 
lines in the two images, however, then the images can be brought into increased 
correspondence by allowing scaling or shearing of the source image (bottom row). Scales 
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can be applied along each of the coordinate axes and shears along each of the image 
planes, so affine transformations can be described by twelve independent parameters. 
Although these transformations can be used to correct for global differences in shape 
and/or size, they cannot be used to achieve correspondence between pairs of images that 
contain localised differences, such as when aligning images from different subjects or 
images distorted by artefacts arising from data acquired with an EPI readout. 
 
 

2.7.2.3 Nonlinear transformations 
 
The transformation matrix described by an affine transformation can be used to take into 

account global differences in size, shape and orientation between a pair of images. In 

order to provide a dense correspondence between images where the transformation needs 

to vary from one part of the image to another, the transformation needs to be 

characterised by more than just the parameters used to define a rigid or affine 

transformation. In other words, the effect of the transformation needs to vary locally 

across the image. 

 

Nonlinear transformations can be represented as smooth displacement fields. These 

require a smooth assignment of vectors to each location in an image. One of the most 

widely used methods of achieving this is to use spline-based registration techniques, 

described in Section 2.7.8.4.1. These generally require a set of corresponding control 

points or landmarks to be identified in the images. The landmarks can be manually placed 

in the source and target images to represent corresponding locations, can be automatically 

selected using feature-recognition algorithms or be equally spaced throughout the image 

on a regular lattice aligned with the coordinate system of the images. The location of the 

control points in the target image is then mapped to the corresponding point in the source 

image, and between these control points splines are used to interpolate deformation 

vectors at the control points. 

 

Popular alternatives to spline-based registration techniques include elastic models 

(Bajcsy et al., 1989) and viscous fluid models (Christensen et al., 1994; Christensen et al., 

1996; Bro-Nielsen et al., 1996). The former consider a source image to be a linear, elastic 

solid and register this to a target by finding an equilibrium between an external image 
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matching force and an internal force that constrains the registration. However, the 

assumption of linear elasticity may be invalid for large deformations so that grossly 

different images cannot usually be adequately registered (discussed in Crum, 2004). The 

viscous fluid model proposed by Christensen (1994) allows larger and more localized 

deformations, but may also increase the potential propensity for inaccurate registration 

due to the expansion of one region instead of the shifting or distorting of another (Crum, 

2004). 

 

Finite element registration models subdivide an image into a number of different cells, 

and label each of these depending on the type of tissue present within that element. An 

image of the head, for example, may be split into numerous elements containing 

predominantly bone, cerebrospinal fluid or nervous tissue, which are usually labelled as 

rigid, fluid or elastic respectively. Each cell within the source image is then deformed in 

relation to its label in order to achieve maximal voxel similarity or landmark 

correspondence with the target image (see Miga et al. (1999) and Ferrant et al. (2000) for 

examples of applications of finite element brain registration models). 
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2.7.3 Similarity measures 
 
As described above, the aim of image registration is to match a source image to a target, 

or reference, image. In order to do this, some measure of similarity between the images 

under a transformation Τ is required. Presented here is a brief overview of some 

commonly used voxel-based and entropy-based image similarity metrics. A more 

comprehensive review can be found in Hajnal (Hajnal et al., 2001). 

 
 

2.7.3.1 Voxel-based metrics 
 
Voxel-based metrics of similarity quantify a measure of the difference between voxel 

intensities at corresponding locations in two images. Given a target I1, a source I2 and a 

transformation Τ, the overall similarity of these images is given by the sum of the 

differences at each corresponding voxel location x over the image domain Ω. 

 
 

2.7.3.1.1 Sum of squared difference (SSD) 
 
The sum of squared distances between a source and a target image is given by: 
 

( ) ( )( )( )∑
Ω∈

Τ−=
x

xIxISSD 2
21

 [2.28] 
 

where I2(Τ(x)) = I2(x’) is the intensity of voxel x in the source image under the 

transformation Τ. 

 

The SSD similarity metric assumes that a pair of images will be identical when 

registered, except for the presence of noise in the data. As a result, it is only used when 

performing intra-modality registration, when each tissue class will have identical 

intensity ranges in both images. SSD can be strongly affected by a few voxels in an 

image pair that have large intensity differences, and can drive a registration algorithm 

using this measure as a similarity metric to a suboptimal result. 
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2.7.3.1.2 Cross-correlation 
 
The cross-correlation similarity metric is given by: 
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where ( )xI1  and ( )xI2  represent the mean image intensities in the target and source 

images respectively. 

 

Cross-correlation assumes a linear relationship between corresponding intensities in an 

image pair. Unlike SSD, their dynamic ranges might differ but an intensity scaling and 

shift can be used to map intensities at corresponding locations, with any residuals again 

being due to noise. 

 
 

2.7.3.2 Entropy-based metrics 
 
The variability of intensities in different MRI modalities means that corresponding 

structures in different images need not have the same voxel intensities. If the intensity 

pairs are viewed as entries in the joint probability density function of the image pair, 

however, entropy-based similarity metrics, which use information from the whole image, 

can be used (for a review of entropy-based registration, see Pluim et al., 2003). 

 

It is possible to provide estimates of the probability p(I1) of the occurrence of a particular 

intensity I1 in the target image, the probability p(I2) of intensity I2 occurring in the source 

and the probability p(I1, I2) of their occurrence at corresponding voxel locations. The 

marginal (or Shannon) entropies, which represent the information content of an image, 

are defined to be: 
 

( ) ( ) ( )111
11

log IpIpIH
Ii
∑
∈

−=
 [2.30] 
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The joint entropy, H(I1,I2), given by: 
 

( ) ( ) ( ) ( )21
,
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−==
 [2.32] 

 

where p(I1, I2) represents the joint probability density function of the images I1 and I2. 

As the images get better aligned, their joint entropy often decreases, indicating less 

disorder in the overlap. However, if for example the images are transformed in such a 

way that only background (and not anatomical structure) is aligned, this will still result in 

a good joint entropy. 

 
 

2.7.3.2.1 Mutual information (MI) 
 
An extension of the joint entropy metric of similarity is mutual information, which 

incorporates the individual entropies of the images. A registration using MI as a 

similarity metric, which needs to be maximised, then seeks a trade off between 

maximising the marginal entropies of the images while reducing their joint entropy. 
 

( ) ( ) ( )2121 , IIHIHIHMI −+=  [2.33] 

 
 

2.7.3.2.2 Normalised mutual information (NMI) 
 
MI can be used as a similarity metric to register images in which there is not a linear 

relationship between corresponding intensities. However, like joint entropy, MI is not 

overlap invariant: a reduction in overlap leads to an increase in mutual information but 

also causes an increase in misalignment. As a result, NMI has been proposed (Studholme, 

1999), which instead represents the ratio of the sum of the marginal entropies of the 

source and target images to the joint entropy and has been shown to be overlap invariant: 
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2.7.3.3 Histogram-based density estimation 
 
In order to use entropy-based metrics to measure similarity, an estimation of the 

probability density functions of image intensities in the target and source image is 

required. Kernel density estimations can be used to achieve this (Thevenaz and Unser, 

2000), but the most common approach is to construct a joint 2D histogram of the image 

intensities of the source and target images. This requires binning, the partitioning of a 

range of intensities in the target and source images into distinct intervals (bins) of fixed 

width. The joint probability that a voxel lies within a particular range of intensities is then 

given by the number of samples in the corresponding bin divided by the total number of 

samples in the histogram. The marginal probabilities can be similarity calculated, and the 

entropies calculated as above. 

 
 

2.7.4 Interpolation 
 
The voxel- and entropy-based similarity metrics described above are based on the 

correspondences in intensities between the target voxel locations and the transformed 

source voxel intensities. However, the source locations are not likely to coincide with the 

locations of the voxel centres in the source image. As a result, the source intensities need 

to be interpolated from the sampled source values before evaluating the similarity metric. 

 

Nearest neighbour, whereby the intensity at a point I2(x) is given by the intensity of the 

voxel centred nearest to that point, is the simplest interpolator, but more sophisticated 

interpolation schemes such as tri-linear interpolation (Thevenaz et al., 2000), B-spline 

interpolation (Unser, 1999) and sinc interpolation (Hajnal et al., 1994) are also used (for a 

survey, see Lehmann et al., 1999), with the choice dependent on the trade-off between 

cost of interpolation and the quality produced. 
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2.7.5 Regularisation 
 
The many additional degrees of freedom allowed by nonlinear registration methods over 

affine models may mean that a structure in the source image is warped to match a 

different structure in the target image. This is not because they anatomically correspond, 

but because they have related image intensities. As a result, an additional term is 

frequently incorporated into the registration optimisation that regularises (or constrains) a 

transformation to be smooth. If Csimilarity represents the similarity metric and Creg 

represents a measure of the plausibility or regularity of the transformation, then the 

overall objective cost function C is given by: 
 

regsimilarity CCC λ+−=  [2.35] 
 

where λ is a constant representing the relative contributions of the similarity and 

regularisation terms during the optimisation. A value of λ that is too low may still lead to 

implausible warps in the deformation field and a value too high may prevent the 

algorithm from sufficiently aligning the images, so the value of λ needs to be carefully 

chosen and is often empirically determined for the class of images to be registered. The 

registration problem then becomes one of minimising the cost function under the 

similarity metric and regularisation tool used. 

 

 

2.7.6 Optimisation 
 
In order to determine the transformation that maximises the similarity between a pair of 

images, a method of optimisation is needed. In general, the most appropriate methods for 

this are iterative strategies that improve image correspondence at each iteration until a 

maximum is found. 
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One of the most widely used of these iterative optimisation strategies is the gradient 

descent method. With this approach, the transformation parameters are individually 

perturbed by a chosen step size and the similarity metric is re-evaluated for each 

perturbation. The parameter giving the biggest increase in similarity is then selected and 

the transformation is updated by modifying this parameter, with the process repeated 

until no further increase in similarity is achieved. 

 

 

2.7.7 Applications of image registration 
 

2.7.7.1 Image registration for EPI distortion correction 
 
Before DTI data acquired with an EPI readout can be analysed, the individual diffusion 

weighted images need to be registered to the b = 0 s/mm2 image and the data fitted to the 

tensor model. Many current distortion-correction registration methods use registration 

algorithms limited to affine transformations (Mistry and Hsu, 2006; Jenkinson and Smith, 

2001), the implicit assumption being that the data simply need to be rotated and 

translated, scaled and sheared with respect to one another to achieve correspondence. 

However, the distortions produced in echo planar DTI data are more complex, and a 

recent study found that nonlinear registration of DWIs to a b = 0 s/mm2 image using the 

algorithm incorporated in the Automated Image Registration software package (Woods et 

al., 1998a) produces fewer distortions than affine registration alone (Kim et al., 2006). 

This resulted in decreased tensor fitting error and increased mean FA in the regions 

studied (Kim et al., 2006). There is much ongoing work in developing retrospective 

correction models incorporating nonlinear transformations (Kybic et al., 2000; Studholme 

et al., 2000; Netsch and van Muiswinkel, 2004). 
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2.7.7.2 Image registration for population-based analysis of MRI data 
 

2.7.7.2.1 Spatial normalisation 
 
In order to perform automated group-wise analysis of MRI data, it is necessary to 

spatially normalise different subjects’ images. That is to say, every subject’s data is 

reoriented into a particular reference frame, so that corresponding anatomy across 

subjects is represented at the same voxel location. This then allows voxelwise cross-

subject statistics to be performed, in order to compare data across subjects and/or 

between different population groups. This is the general approach employed by most 

voxel-based analysis tools proposed for analysing MRI data, such as the widely used 

voxel-based morphometry (VBM) technique as employed in the Statistical Parametric 

Mapping (SPM) package (Ashburner and Friston, 2000; Good et al., 2001). 

 

In order to use these approaches, however, it is important that 

a. An appropriate target (or reference) space is chosen; and 

b. An appropriate image registration algorithm is used. 

 
 

2.7.7.2.2 Target selection 
 
A number of different stereotaxic spaces with accompanying brain atlases have been 

proposed as targets for reporting MRI data. The Montreal Neurological Institute (MNI) 

152 template, the average of 152 adult brains registered to a standard space using affine 

transformations (Evans et al., 1992) is amongst the most widely used and has been 

adopted as the standard template by the International Consortium for Brain Mapping 

(http://loni.ucla.edu/ICBM). Single subject targets have also been suggested, including 

the ‘Talairach brain’, a dissected and photographed brain with approximately labelled 

Brodmann areas (Talairach and Tournoux, 1988), and the ‘Colin27’ brain, generated 

from the averaging of high-resolution MRI data from a single adult subject scanned 27 

times (Holmes et al., 1998). If the study population have different brains to the chosen 
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target, however, such as the presence of enlarged ventricles or reduced grey matter 

volumes in Alzheimer’s disease, it can be difficult to achieve appropriate normalisation. 

In that case, data from different subjects may not be in alignment and the dangers of 

analysing imperfectly registered MRI data with voxel-based techniques to make 

neuroanatomical inferences has been well documented (Bookstein, 2001). 

 

An alternative approach to spatial normalisation is to use a study-specific template as the 

registration target space. If carefully selected, this has the advantage of being more 

similar to the data being analysed, so images require less warping to be transformed into 

this space. One method for determining which image should be chosen as the target is to 

register each subject in the dataset to every other, and then to use as the final target the 

‘‘most typical’’ subject of the group, defined as the image which minimises the amount 

of warping required for all other subjects to align to it (e.g. in Smith et al., 2006). 

 

There remains, however, the problem that the chosen target image may not be truly 

representative of the population, especially if there a lot of anatomical variation between 

the subjects. This may be the case when analysing neonatal MRI data and the 

performance of a registration algorithm may be diminished if the images to be aligned are 

very dissimilar. As a result, registering the images to a new coordinate system at the 

average of a population has been proposed (Guimond et al., 2000; Studholme et al., 2003; 

Bhatia et al., 2004). 

 
 

2.7.7.3 Registering EPI data to an anatomical image 
 
Registration of DTI data acquired with an EPI readout to a common image template is 

difficult. As well as overcoming differences in anatomy, differences in distortion also 

have to be addressed. Spatial normalisation can be improved, however, by first 

coregistering the data to a high-resolution anatomical (i.e. T1- or T2-weighted) image. 

This allows for unwarping of some of the distortions, and makes subsequent alignment 

with the template image more robust. As a result, a two-step registration of EPI data to a 

template image prior to automated group-wise analysis is usually implemented: each 
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point x in EPI space is mapped to a corresponding point x’ in the same subject’s 

anatomical space with a transformation Τ, which is in turn mapped to a point in target 

space with transformation Τ’: 
 

( ) ( ) ''''' xxxxx =Τ=Τ aa  [2.36] 

 
 

2.7.8 Image registration software 
 
There are a number of brain image registration tools incorporated into image processing 

software packages that are freely available for download. Amongst the most widely used 

of these is the linear image registration software included in the Functional MRI of the 

Brain (FMRIB) Software Library (FSL), developed by collaborators at Oxford University 

(Jenkinson and Smith, 2001; Jenkinson et al., 2002). Usage of registration algorithms 

incorporating nonlinear transformations is also gaining prominence. The ‘align_warp’ 

tool developed by Woods and colleagues at the University of California at Los Angeles 

and incorporated in the Automated Image Registration version 5 (AIR 5.0) software suite 

(Woods et al., 1998a; Woods et al., 1998b) is a popular choice. Tract-based spatial 

statistics, a tool for processing diffusion tensor imaging data incorporates Rueckert’s B-

spline based nonlinear registration tool (Rueckert et al., 1999). The following section 

presents a brief overview of these methods and the image registration algorithms that 

they use to achieve spatial correspondence between pairs of images. 

 
 

2.7.8.1 FMRIB’s Linear Image Registration Tool (FLIRT) 
 
FLIRT is a voxel-based linear image registration tool that uses a “hybrid global-local 

optimisation technique” in conjunction with an apodised cost function in order to register 

a floating source image to a fixed reference image. The latest version of the software, 

release 5.4.2, is included as part of FSL 4.0. A full description of the algorithm used can 

be found in Jenkinson (Jenkinson and Smith, 2001; Jenkinson et al., 2002). The software 

allows the selection of cost functions appropriate for intra-modal (least squares and 
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normalised correlation) and inter-modal (mutual information and normalised mutual 

information) registration, and a choice of interpolation (nearest neighbour, trilinear, sinc 

and B-spline) required to calculate the cost function at corresponding points in the source 

and target image. The cost function is apodised (or modified) by deweighting 

contributions to the cost function calculation from locations at or near to the edge of 

overlapping regions between the source and target image. This helps to smooth local 

discontinuities in the cost function as the transformation parameters are smoothly varied, 

which arise because the degree of overlap changes as the source image is transformed, 

and can result in the in the optimisation method being stuck in a local minimum. 

 

In order to aid the efficiency of the search strategy, the global-local optimisation method 

uses prior knowledge about the physical dimensions of the data (including the voxel size 

and field of view) as well as the user inputted initial degree of correspondence between 

the images to be registered. As in Section 2.7.8.4, a coarse-to-fine approach is then used 

at four different scales: 8 mm, 4 mm, 2 mm and 1 mm. The source and target image are 

initially blurred with a Gaussian kernel of full width half maximum (FWHM) 7mm and 

then resampled at each scale. 

 

Though the algorithm can allow full twelve degree of freedom affine transformations, at 

the 8 mm and 4 mm scales the search is limited to the x, y and z rotation parameters 

followed by a full local optimisation of x, y and z translation parameters and global scale 

(i.e. seven DOFs). A coarse search over the rotation parameters is initially employed, 

followed by a full local optimisation of translation and global scale for each rotation tried 

using a set of N one-dimensional golden searches (Press et al., 2002). After a finer search 

over the rotation parameters with one cost function evaluated at each rotation, the full 

local optimisation of rotations, translations and scale at that resolution level for each local 

minimum of the cost function detected at the previous stage is carried out. 

 

In order to further reduce the possibility of converging to a local (rather than a global) 

minimum of the cost function at the second (i.e. the 4 mm scale) search stage, the best 

three transformation parameters from the first (8 mm scale) search stage are all 
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optimised. In addition, some perturbations of these initial candidate transformations are 

also performed, and these are locally optimised. The single best minimum cost solution 

from the optimisation results is then selected, and it is only this transformation that is 

optimised at the third (2 mm scale) search stage. At this stage, and at the final (1 mm 

scale) search stage, the registration solution is optimised for full twelve DOF affine 

transformations. 

 
 

2.7.8.2 Automated Image Registration’s alignlinear and align_warp 
 
Align_warp is a registration tool that uses a nonlinear model to estimate the 

transformation parameters between a source and a target image. It can use the parameters 

from alignlinear, an affine transformation tool as the starting estimate for a nonlinear 

registration, and is included as part of the fifth version of the AIR software package 

(http://bishopw.loni.ucla.edu/AIR5/). Outlines of both the affine and nonlinear 

transformation models used are given below. Full descriptions can be found in Woods 

(Woods et al., 1998a; Woods et al., 1998b). 

 
 

2.7.8.2.1 Alignlinear 
 
Figure 2.23 is a schematic diagram of the affine registration algorithm used in alignlinear. 

As is the approach employed by FLIRT, the algorithm uses a hierarchical registration 

approach, with the data first sampled at low density before the cost function is computed 

at progressively larger sampling densities. In other words, the cost function is initially 

computed using image intensity data from only a few voxels in the images, until finally 

all the voxels are used to determine the cost function. 
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Figure 2.23: Schematic diagram of the affine registration algorithm employed by 
AIR’s alignlinear, from Woods (Woods et al., 1998a) 
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The algorithm aims to match the reslice image (i.e. the source image) to the reference 
study (i.e. the reference, or target image). Following optional smoothing of the images 
with a Gaussian kernel (all boxes bordered by hatched lines represent optional 
procedures), the source image is resampled to match the target image, with the 
resampling based on the current parameters of the spatial transformation used. As 
described in Section 2.7.4, this requires an interpolation model, and by default a trilinear 
interpolator is used. A cost function is evaluated for this transformation and interpolation 
model, using either the standard deviation of the ratio of the resampled source and target 
images (Woods et al., 1992), least squares (Hajnal et al., 1995) or least squares difference 
(Alpert et al., 1996) as the similarity metrics. This is initially computed for only a limited 
voxel sampling in order to improve computational efficiency. The derivates of the cost 
function with respect to the spatial transformation are calculated, and used to compute 
new parameters. In this way, the cost function is minimised in an iterative manner, with 
two different termination criteria tested every iteration to evaluate whether to continue 
iterating. These termination criteria are: 

1. if the predicted change in the cost function associated with moving the current 
position in parameter space to the predicted minimum is positive, or 

2. if the number of iterations at a given sampling density reaches the maximum 
limit, or if successive iterations are performed without improvement in the 
calculated cost function at this sampling density. 

The parameters at this sampling density that resulted in the lowest actual value of the cost 
function is then saved and used as the initial parameter estimate at the next sampling 
density until the optimal transformation parameters are found at the highest sampling 
density. By default, the initial cost function is computed for every 81st voxel, with the 
sampling increased at subsequent levels to achieve a final sampling of every voxel. 
 

 

In order to speed up the registration process and avoid the matching of non-brain 

structures driving the registration parameter optimisation, a mask can be applied to the 

target image, with regions outside the mask excluded from the evaluation of the cost 

function. However, masking the target images in this way can lead to a tendency to align 

the edges of the mask, which may significantly affect the cost function optimisation. 

 

To partially eliminate this bias in the linear registration of a source image to a masked 

target image, the final transformation parameters are computed from averaging the final 

linear transformation parameters of the source  target registration and the inverse of the 

target  source registration. 
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Unlike FLIRT, AIR allows all model parameters to be adjusted from the first iteration. 

That is to say, if a full twelve DOF affine registration is being performed, then at the 

lower spatial sampling densities as well as rotations and translations, scale and shear 

parameters are also varied and are used to help minimise the evaluated cost function. 

 
 

2.7.8.2.2 Align_warp 
 
The align_warp tool can use the output from an initial affine registration of a source and 

target image as the initial transformation parameter estimates for a subsequent nonlinear 

registration of the images. In this way, global differences in orientations or scale between 

the images can be accounted for prior to matching local anatomy between the images 

using a voxel-based registration algorithm. 

 

The nonlinear model initially computes the coordinates of a voxel in the source image as 

a second order polynomial of its corresponding location in the target image, with a total 

of thirty spatial transformation parameters (i.e. thirty degrees of freedom) (Woods et al., 

1998b), with the choice of cost functions and interpolation models the same as for the 

affine registration tool. Successively higher order registration models with higher order 

polynomials can then be sequentially initialised with the optimal transformation 

parameters at the previous order polynomial. In the latest version of the software, twelfth 

order nonlinear models with 1365 degrees of freedom can be used. 

 

Nonlinear transformations cannot be analytically inverted and therefore the method used 

in align_warp for removing biases associated with defining one image as the target image 

and the other as the reference image cannot be used. Instead, the nonlinear algorithm also 

includes voxels outside the mask in the target image that are included in the 

corresponding voxel of the interpolated source image. The termination criteria for the 

iterative cost function optimisation is similar to that for the affine registration algorithm, 

but with different default values, with sparse sampling used to calculate the cost function 

at higher nonlinear models to allow reasonable computational times (Woods et al., 

1998b). As in the multi-level free-form deformation model based on B-splines used in 
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this work, linear transformations are analytically combined with nonlinear 

transformations prior to applying them to finally transform a source image into target 

space so that the source data is not interpolated more than once. 

 
 

2.7.8.3 Tract-based Spatial Statistics (TBSS) 
 
As mentioned in Section 2.7.7.3, registering DTI data to an anatomical image prior to 

spatial normalisation can help reduce inaccuracies in registration when aligning diffusion 

data from different subjects into a common reference frame. An alternative approach to 

analysing diffusion-derived FA data from multiple subjects has recently been proposed 

that avoids the challenges of registering DTI data to anatomical data as an intermediate 

step, and instead registers all the FA data directly into a common reference frame (Smith 

et al., 2006). In TBSS, this is performed using the B-spline based registration method 

introduced in Section 2.7.8.4.1 and implemented by Rueckert in the Image Registration 

Toolkit (ITK) software package ((Rueckert et al., 1999); 

http://wwwhomes.doc.ic.ac.uk/~dr/software). 

 

If no target image space is defined, initially each subject’s FA map is registered to every 

other subjects FA map using an affine (registration parameters: 3 resolution levels, 64 

bins, 20 iterations, 4 steps, 5 mm step length, similarity measure = cross correlation, 20 

mm initial control point spacing) followed by a nonlinear (registration parameters: 1 

resolution level, 64 bins, 20 iterations, 4 steps, 5 mm step length, similarity measure = 

cross correlation, 20 mm control point spacing) registration algorithm 

(wwwhomes.doc.ic.ac.uk/~dr/software). For all of the registrations to a particular infant’s 

diffusion space, the average (median) amount of nonlinear warping required to transform 

the other datasets into that target space is then calculated. The ‘most typical’ subject is 

then defined as the one requiring the least amount of warping to align all the other images 

to it. All subjects’ FA data is then aligned to this common space (Smith et al., 2006). In 

TBSS v1.0, all the data is then affine-transformed into 1 x 1 x 1 mm3 MNI152 space by 

default, though the program code can be modified to resample the data to produce 1 mm3 

isotropic voxels whilst remaining in the space of the ‘most typical’ subject. This is useful 
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if the study population (as in this work) is very different from MNI152 (adult) space. In 

that case, all subsequent processing is carried out using this space and resolution. 

 

The transformed FA images are then averaged to create a mean FA image (Figure 2.24a; 

Smith et al., 2006). This is used in turn to generate a thresholded image that only 

represents the centres of the major white matter pathways of the group, the so called 

mean FA skeleton (Figure 2.24a). This initially requires an estimation of the direction 

perpendicular to the local white matter tract surface at all voxels in the image (Figure 

2.24b-d), followed by non-maximum suppression in this direction (Smith, 2006). That is 

to say, along all voxels in the direction perpendicular to the local white matter tract a 

search is made, with the voxel with the highest FA value identified as the centre of the 

tract. 
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Figure 2.24: Creating the mean FA skeleton (from Smith et al., 2006) 
The original mean FA image (in greyscale) with the overlying final mean FA skeleton (in 
green) and the region of interest used in the remaining images; (b) The first stage of 
skeletonisation is achieved by using the local centre of gravity of FA values to estimate 
the local surface direction perpendicular to the white matter tract (shown in red); (c) 
Remaining perpendiculars to the local tract direction are then found by calculating the 
second derivative of the mean FA image; (d) The perpendicular direction vector image is 
finally smoothed by taking the mode of the directions in the local 3 x 3 x 3 
neighbourhood of voxels. 
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Finding the orientation of the local tract surface is achieved based on the assumption that 

if a voxel of interest lies away from the centre of a tract, then FA will be greater in 

neighbouring voxels on one side of the voxel than the other. The direction in which FA is 

highest then points towards the nearest tract centre. This is quantified by finding the 

centre of gravity of FA values of the local 3 x 3 x 3 voxel neighbourhood. The vector 

from the centre of the current voxel to the local centre of gravity should then point 

towards the tract centre (Figure 2.25). 

 

If the local centre of gravity of FA values is close to the centre of the current voxel, 

however, then the direction perpendicular to the local white matter tract surface is 

estimated by finding the direction of maximum FA change in the local 3 x 3 x 3 voxel 

neighbourhood. The mean FA value of each pair of voxels at opposite ends of the 

neighbourhood is subtracted from the FA value of the centre voxel, and the direction 

resulting in the maximum difference is assumed to be perpendicular to the local tract 

(Figure 2.25). 
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Figure 2.25: Identifying the local tract centre (from Smith et al., 2006) 
(1) Example of a voxel where the local centre of gravity points in the local tract 
perpendicular direction; (2) a voxel lying directly on the local tract centre. 
 

 

The robustness of the estimated local direction perpendicular to the white matter tract is 

improved by replacing every direction estimate with the most common direction of the 

local 3 x 3 x 3 set of estimated directions (Figure 2.23d). 

 

The mean FA skeleton is then generated by finding the centre of each tract (Figure 

2.24a). At each voxel, the FA value is compared with the two nearest voxels in the local 

direction perpendicular to the white matter tract; if the FA value is larger than that of both 

the neighbouring voxels then it forms part of the skeleton. Thresholding can then be 

applied to restrict analysis to the major white matter pathways of the brain. 
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The intensities at each voxel of the skeleton for each subject in the dataset are then 

determined by projecting the skeleton onto each subject’s aligned FA data (Figure 2.26). 

Rather than assuming that every voxel in the skeleton projects directly onto the centre of 

a white matter tract for every subject, however, at each voxel the method then searches 

perpendicular to the local tract direction in a manner similar to that used to generate the 

skeleton to determine whether FA is higher at a nearby voxel. If so, then that voxel is 

assumed to correspond to the true centre of the white matter pathway in that region, and 

the skeleton is filled with the FA value at that voxel rather than the voxel in the image 

that that part of the skeleton was first projected onto (Figure 2.26). This is constrained by 

forcing the search to stay nearer to the starting section of the skeleton than to any other 

section of the skeleton (Figure 2.27), and by limiting the maximum search distance by 

applying a Gaussian weighting function with a 20 mm full-width half maximum to the 

search. 

 

 

 
Figure 2.26: Projecting the mean FA skeleton onto each subject’s aligned FA map 
(adapted from Smith et al., 2006) 
A region of interest showing the projection of the mean FA skeleton (yellow) onto two 
different subjects’ aligned FA maps (greyscale). On the left, the FA map was well 
aligned, and at most voxels the mean FA skeleton was already directly projected onto the 
appropriate voxel at the centre of the white matter tract (red dots). On the right, the FA 
map was less well aligned, but the subsequent perpendicular search strategy ensured 
voxels from the true tract centre were found (red arrows). 
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Figure 2.27: An example of a mean FA skeleton ‘‘distance map’’ (from Smith et al., 
2006) 
The mean FA skeleton is projected onto each subject’s aligned FA map. Residual 
misalignment from each voxel in the skeleton is then corrected for by searching in the 
perpendicular tract direction to find the true tract centre and assigning its intensity value 
to the skeleton voxel. This is constrained by the skeleton “distance map”. The red–yellow 
overlay encodes, for each brain voxel, how far the nearest skeleton voxel is. This is used 
during the projection of individual FA maps onto the skeleton in order to ensure that 
values are only taken onto the nearest part of the skeleton. The underlying mean FA 
skeleton (in greyscale) can be seen where the distance is zero. 
 

 

This additional search step helps to minimise interpretation errors arising from the fact 

that automated voxel-based methods for analysing DTI data always raise the possibility 

that reported differences in intensity between groups may be due to misalignment 

between the images. This is particularly important when comparing data from preterm 

infants at term-equivalent age and term-born control infants. Gross differences in 

anatomy (preterm infants often have a more elongated brain shape in the anterior-

posterior axis and larger ventricles than their term-born peers) may lead to 

misregistration, particularly when only affine or low degree of freedom nonlinear 

transformations are used. The additional perpendicular search strategy has been shown to 
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improve the Gaussianity of the cross-subject distribution of FA values at each voxel 

(Smith et al., 2006). This would be expected if the method does actually take FA values 

from the centre of the same point of the same tract in all subjects. Voxelwise cross-

subject statistics can then be performed on the data to assess differences between or 

amongst groups of subjects. 

 
 

2.7.8.4 Registration models based on free-form deformations 
 

The technique of using regularly-spaced control points, so-called pseudo-landmarks, 

within an image lattice to be matched between a source and a target image is the 

approach used within the free-form deformation (FFD) model for nonlinear 

transformations (Rueckert et al., 1999). FFD models work by manipulating this 

underlying mesh of control points to produce a smooth transformation that deforms the 

source image into the space of the target image. This is achieved by using a locally-

controlled blending function that smoothly estimates the control point transformation 

vectors. 

 

Most of these models use a multi-level approach to determine the final transformation. 

Initially, the deformation field is estimated by using fairly few, widely separated control 

points, which allows for optimisation of the more global aspects of the nonlinear warp. 

Once this has been achieved, additional control points are added by subdividing the initial 

control point lattice and hence increasing the density of control points. The parameters 

for this lattice are subsequently optimised, allowing for the capture of the nonlinear 

differences between the images at a more local scale, and in turn can form the starting 

estimates for another optimisation step with an even finer control point spacing. This can 

diminish the risk of a registration algorithm converging towards a local rather than global 

optimum, particularly if the images are initially blurred to reduce high-frequency detail, 

and so such a coarse-to-fine multilevel approach is widely used (Rueckert et al., 1999; 

Schnabel et al., 2001; Shen and Davatzikos, 2002; Boardman et al., 2006). 
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2.7.8.4.1 B-splines 
 
The term spline originally referred to a pliable strip of wood or metal that was bent into a 

desired shape for drawing curves on paper. This concept has since been used in computer 

graphics to refer to a smooth curve that runs through a series of given points (for a 

review, see Unser, 1999). There are many different splines that can be used to smooth or 

interpolate data to be registered using FFD models, amongst the most popular of which 

are B-splines. Unlike thin-plate splines (Bookstein, 1989) or elastic-body splines (Davis 

et al., 1997) B-splines are locally controlled. That is to say, displacing a control point 

Φi,j,k only affects the transformation in the local neighbourhood of that particular control 

point and not the global mesh of control points, making B-spline-based methods highly 

computationally efficient. 

 

The FFD can then be written as the three-dimensional tensor product of one-dimensional 

cubic B-splines (Lee et al., 1996; Lee et al., 1997). If the domain of an image volume is 

denoted by 
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Smooth interpolation methods are used to calculate image intensities between control 

points. However, during the registration process an unconstrained deformation may allow 

for folding and tearing of the deformation field, and hence break topology. As described 

in Section 2.7.5, it is therefore important to regularise B-spline-based registration models 

to prevent matching of unrelated structures by constraining the transformation to be 

smooth. 
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Chapter 3 
 

The Developing Brain and 
Preterm Birth 

 

 

3.1 Brain development 
 

The brain is the most complex organ in the body and is involved in the coordination and 

regulation of all other organ systems. The following section reviews the microscopic 

development of the brain from the first phase of cellular proliferation. 

 

3.1.1 Microscopic development of the brain 
 
The first of the two main phases of cellular proliferation in the developing brain occurs 

from around 8 to 16 weeks GA and is associated with neuronal proliferation and the 

generation of radial (Bergman) glia. Glial cell proliferation characterises the second 

phase and occurs from around 20 weeks gestational age (GA). These cells are initially 

produced in the ventricular zone (germinal matrix), which initially contains "progenitor" 

cells, which divide to produce the postmitotic neurons and glia. Subsequent gliogenesis 

and neurogenesis is thought to take place in the subventricular zone (Volpe, 2001), a 

paired brain structure adjacent to the lateral walls of the lateral ventricles. Neural 

progenitor proliferation in these two germinal zones is reported to be regulated by the 

principal inhibitory (gamma aminobutyric acid, GABA) and excitatory (glutamate) 

neurotransmitters (Haydar et al., 2000). 
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The long processes of radial glial cells form a scaffold between the ventricular zone to 

the pial surface, along which newly generated neurons migrate towards the margins of the 

cerebral hemispheres to form the cortex. The earliest formed cells accumulate at the outer 

margin of the cerebral hemispheres to form the preplate. The preplate is then divided into 

the marginal zone, at the pial surface, and the subplate. More newly formed neurons then 

migrate to form the cortical plate, between the marginal zone and the subplate. The inner 

layer of the cortex is formed before the outer layers and migrating cells pass through 

earlier formed layers to the margin of the cortical plate to eventually form six 

histologically distinct layers parallel to the cortical surface. 

 

 

 
Figure 3.1: The development of the human cerebral cortex 
A schematic drawing of different stages of the development of the cortex, adapted from 
Bystron (Bystron et al., 2008). The figure shows the embryonic cellular zones that arise 
during corticogenesis. 
Key: CP, cortical plate; IZ, intermediate zone; MZ, marginal zone; SG, subpial granular 
layer (part of the marginal zone); SP, subplate; SVZ, subventricular zone; VZ, ventricular 
zone. 
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The subplate zone is a temporary layer of the cerebral wall that in humans develops at 

around 13 postovulatory weeks and gradually disappears after 32-34 postovulatory 

weeks. Neurons that form this layer travel to the marginal zone before true cortical 

neurons migrate to the cortical plate and are critical to cortical organization. At first they 

form part of the preplate zone, prior to its splitting into the subplate and marginal zones. 

Subplate neurons rapidly differentiate and develop a dendritic tree with spines expressing 

receptors for various chemical mediators, enabling them to form reciprocal connections 

to the thalamus and cerebrocortical sites. In this way, subplate neurones form a functional 

synaptic link for ‘waiting’ thalamo-cortical and cortico-cortical afferents, whose neuronal 

targets have not yet arrived at the cortical plate (reviewed in Kostovic and Jovanov-

Milosevic, 2008). 

 

The outgrowth of axons is at first mediated by the glycoproteins neural cell adhesion 

molecule (N-CAM) and neuronal-cadherin situated on the cell surface (Takeichi, 1988). 

Laminin, an extracellular matrix protein, interacts with integrins on the axonal surface to 

stimulate axonal extension and guide axons through the developing brain to target sites 

(reviewed in McKerracher et al., 1996). 

 

Inhibitors to axonal growth found on some axonal surfaces cause axons to group together 

to form bundles. These in turn develop into projection fibres (transmitting impulses 

between the cortex and locations elsewhere in the brain), association fibres (connecting 

cortical regions of the same hemisphere) and commissural fibres (linking corresponding 

regions of the two hemispheres) (Clarke et al., 1989), many of which are subsequently 

pruned. Astroglial cells and macrophages are first detected between 25 and 44 weeks 

gestation, prior to the full myelination of these structures (Carpenter and Sutin, 1983) and 

may be involved in the axonal fibre tract remodelling through apoptosis and pruning 

(Caviness Jr, 1989). 
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3.1.2 Oligodendrocyte development 
 
Oligodendrocytes are a class of glial cell whose main function in the brain is the 

myelination of axonal processes, which is crucial in the efficient propagation of electrical 

signals along the axon. They are the predominant glial cell type in the white matter of the 

central nervous system, and indeed their synthesis of myelin is the reason why white 

matter appears that colour to the naked eye. 

 

The cells arise from the oligodendrocyte precursor (or progenitor) cells generated in the 

proliferative ventricular and subventricular zones during the last months of gestation and 

the early postnatal period (Back et al., 2002; Niehaus et al., 1999). As these cells migrate 

away from these germinal zones and into the white matter, they first differentiate into 

pre-oligodendrocytes, then post-mitotic immature oligodendrocytes and finally into 

mature oligodendrocytes capable of myelination. 

 

 

3.1.3 Myelination 
 
Myelination begins around the start of the second trimester of pregnancy and continues 

into adulthood (Gilles et al., 1983). The process begins with the proliferation of a 

population of glial cells which differentiate into oligodendrocytes and align along 

neuronal axonal projections. The plasma membranes of these oligodendrocytes become 

the myelin membrane (Bunge, 1968), made up of a phospholipid bilayer containing large 

proteins including proteolipid protein, oligodendrocyte specific protein, myelin-

oligodendrocyte basic protein and myelin basic protein (Arroyo and Scherer, 2000). A 

flat, membranous process containing a network of microtubules and microfilaments 

extends outwards from the oligodendrocyte cell body and wraps around neighbouring 

axons in a spiral fashion. Myelin is initially laid down on the fibre closest to the 

oligodendrocyte cell body, but each oligodendrocyte is capable of myelinating tens of 

axons (Figure 3.2). 
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Figure 3.2: Myelination in the central nervous system (from 
http://homepage.psy.utexas.edu/HomePage/class/Psy308/salinas/Cells/oligo.gif) 
A single oligodendrocyte may myelinate many axons in the central nervous system. Loss 
of a small number of oligodendrocytes may therefore have pronounced neurological 
effects due to axonal conduction deficits. 
 

 

Histological studies have shown that myelination occurs in an ordered, systematic 

fashion. In the brain, sensory nerve root fibres myelinate before motor nerve root fibres. 

The first fibres to myelinate in the brain are the central fibres of the vestibular and 

cochlear systems of the brain stem, which are concerned with hearing, and myelination 

generally proceeds in a caudal-to-cranial and a posterior-to-anterior pattern (Reimer et 

al., 1999). 

108 



3.2 Preterm birth 
 

3.2.1 Incidence of preterm birth 
 
The World Health Organization defines preterm birth as birth prior to 37 completed 

weeks of gestation (Morrison and Rennie, 1997) and its incidence in England and Wales 

is rising. In 2005 preterm births made up 7.1% of all live births, up from 5.6% in 2000 

(Office of National Statistics, 2005). This mirrors a trend throughout the Western world, 

although there is considerable variability between countries and in the USA, for example, 

12.7% of births are preterm (Hamilton et al., 2006). The reasons for this are unclear, 

although some have argued that an increase in multiple births associated with in vitro 

fertilisation therapy is in part responsible (Blondel and Kaminski, 2002). Improvements 

in neonatal care, particularly in the use of antenatal steroids and postnatal surfactant to 

aid respiratory function and development, have had a dramatic impact on survival. 

Although outcomes vary widely across different neonatal intensive care units, around 

90% of these preterm infants will survive, including over half of infants born at 26 weeks 

GA and a quarter born at 24 weeks GA (Levene, 2004). 

 

 

3.2.2 Some clinical variables associated with preterm birth 
 
There are numerous clinical factors, antenatal insults and events that can precipitate 

preterm birth (for a review, see Goldenberg et al., 2008). Here some of the most relevant 

causes and consequences of prematurity are reviewed. 

 
 

3.2.2.1 Preterm premature rupture of membranes 
 
A significant risk factor for preterm births is preterm premature rupture of membranes 

(preterm PROM), defined as spontaneous rupture of the amniotic sac that takes place 

before 37 weeks of gestation. This occurs in 3% of pregnancies and accounts for around 
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one third of all preterm births (Mercer, 2003). PROM is an important cause of morbidity 

and mortality, particularly when associated with only brief delay between membrane 

rupture and delivery, infection in the perinatal period or compression of the umbilical 

cord (Mercer, 2003). 

 

The pathology of PROM is multifactorial, with infection and/or inflammation of the 

chorion and amnion thought to be important, especially if preterm rupture occurs early in 

gestation (Bendon et al., 1999). Skinner (Skinner et al., 1981) showed reduced collagen 

content in human amniotic membranes in females with PROM, and increases in amniotic 

fluid matrix metalloproteases with decreases in tissue inhibitors of matrix 

metalloproteases have been reported in this group (Vadillo-Ortega et al., 2002). Prior 

preterm delivery, previous cervical colonisation, uterine distension, vaginal bleeding, 

sexually transmitted infections and cigarette smoking have all been reported to be 

associated with preterm PROM (reviewed in Mercer, 2003). This is possibly due to 

stretching or degradation of the membranes, local inflammation or raised susceptibility to 

bacterial colonisation of the uterus. Although the evidence is not conclusive, it is thought 

by many that most cases of PROM without obvious cause are due to infection. 

 
 

3.2.2.2 Acute lung disease 
 
The majority of morbidity and mortality amongst infants born preterm arise as a result of 

respiratory complications. Following birth, the foetal route of gas exchange via the 

placenta is cut off, and the lungs must assume this role. However, these organs are 

amongst the last to mature during the prenatal stage, and infants born preterm usually 

have underdeveloped lungs. Acute lung disease (also called infant respiratory distress 

syndrome) requiring mechanical ventilation and surfactant therapy is common in this 

population, with an incidence of about 50% amongst those born at less than 30 weeks 

gestational age (Ramanathan, 2008). 

 

At a histological level, lung abnormalities include reduced functional surface area, 

insufficient alveolarisation and fibrin deposition in the air spaces (Sinha et al., 2008). The 
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principal physiological abnormality is reduced surfactant production, leading to increased 

alveolar surface tension and collapse, atelectasis and decreased lung compliance. This is 

now treated with considerable success by antenatal steroid therapy and postnatal 

surfactant administration. 

 

However the mainstay of respiratory therapy has been mechanical ventilation. Ventilation 

has been shown to reduce morbidity and mortality amongst infants born preterm 

(Birenbaum et al., 1983) but causes biotrauma to the lung tissue. This can cause long-

term pulmonary insufficiency, and 30-40% of these infants develop chronic lung disease. 

Abnormal respiratory function and the iatrogenic consequences of treatment can lead to 

periods when O2 and CO2 levels are above or below the normal range. This may 

precipitate retinopathy of prematurity (Kim et al., 2004) and interfere with normal growth 

and development (Sinha et al., 2008). 

 
 

3.2.2.3 Chronic lung disease 
 
Chronic lung disease, usually defined as supplemental oxygen requirement at 36 weeks 

gestational age, frequently arises when the immature developing lungs of preterm-born 

infants are subjected to repetitive injury. This is thought to result from hypo- or hyper-

inflation of the developing alveoli, leading to local inflammation and disruption of 

normal development. This can result in permanent reductions in alveolarisation and at 

least transient accumulation of fluid in the lung. Frequently, this injury arises from, or is 

exacerbated by, mechanical ventilation. 

 
 

3.2.2.4 Retinopathy of prematurity 
 
The vasculature of the retina, the light-sensitive layer at the back of the eye, is not fully 

developed until 36 weeks post-conception, and birth before this can result in retinopathy 

of prematurity (ROP). Believed to be caused by disordered vascular growth in the 
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postnatal period, ROP may result in retinal scarring and, in more serious cases, retinal 

detachment and blindness (Zin, 2001). 

 

Incidence varies strongly with the degree of prematurity. Hussain (Hussain et al., 1999) 

reported that 21.3% of a group of preterm infants born at 22-36 weeks gestation had ROP 

of any stage, but that none of the cohort delivered after 32 weeks did. Septicaemia, 

acidosis, vitamin E deficiency and intraventricular haemorrhage have all been implicated 

in the pathogenesis of ROP (reviewed in Gilbert, 1997), but the most important additional 

risk factor seems to be altered oxygenation levels (Mccolm and Fleck, 2001). It is though 

that mechanical ventilation and/or supplementary oxygenation leads to retinal hyperoxia, 

which in turn causes vasoconstriction and a downregulation in vascular endothelial 

growth factor, resulting in obstruction of vessel growth. The period of proliferation that 

follows produces vessels that are at a highly increased risk of rupture. More recently, 

fluctuating levels of oxygenation have also been reported to raise the incidence of ROP 

amongst infants with a birth-weight 1500 g (York et al., 2004). Though the mechanism 

by which this occurs remains incompletely defined, these findings have lead to moves to 

try and stabilize the delivery of oxygen to preterm infants. 

 

 

 

3.2.3 Brain injury in the preterm infant 
 
Antenatal factors coupled with the suboptimal environment to which preterm infants are 

exposed after birth can affect the development of the central nervous system, and render 

the developing preterm brain very susceptible to injury. There may be periods of 

hypo/hyperoxia, hypo/hypercarbia, acidosis, hypo/hyperglycaemia, arterial 

hypo/hypertension, impaired cerebral venous drainage, infection and inflammation, sub-

optimal nutrition, endocrine disturbance and increased noise, and preterm infants have a 

high risk of acquiring brain injury in the perinatal period. This may include germinal 

layer haemorrhage (GLH) and intraventricular haemorrhage (IVH), as well as the white 
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matter abnormalities of parenchymal haemorrhagic infarction and focal or diffuse 

periventricular leukomalacia, all of which are briefly described in the next section. 

 
 

3.2.3.1 Germinal layer haemorrhage 
 
The germinal matrix, the site of production of neurons and glial cells within the brain, is 

not fully involuted until 36 weeks gestational age. Until this time, the arterial supply to 

this structure, from the anterior cerebral artery, the middle cerebral artery and from the 

internal carotid artery are vulnerable to rupture (Takashima and Tanaka, 1978). The 

resultant haemorrhage may occur at any site along the immature ventricle wall, but is 

generally seen on ultrasound examination at the heads of the caudate nuclei. 

Haemorrhage is thought to initially occur into the sub-ependymal tissue, separating the 

ependymal layer from the neuropil; this is termed germinal layer haemorrhage (GLH). 

When bleeding penetrates the ependymal surface and blood enters into the ventricles it is 

termed intraventricular haemorrhage (IVH). GLH and IVH are the most common forms 

of intracranial neonatal haemorrhage, with the incidence of GLH/IVH increasing with 

decreasing birth weight (Volpe, 1989; Volpe, 1998). The pathogenesis of GLH/IVH is 

multifactorial and still unclear, but is thought to include decreases and increases in 

cerebral blood flow, and increases in cerebral venous pressure (Hambleton and 

Wigglesworth, 1976; Ment et al., 1981; Levene et al., 1982; Ment et al., 1984; Calvert et 

al., 1988; Bada et al., 1990). 

 

Ventricular dilatation is frequently observed secondary to IVH, though the mechanism of 

injury has not been fully elucidated. Many researchers have proposed that the flow and 

reabsorption of cerebrospinal fluid (CSF) is blocked by blood clots that obstruct the 

arachnoid villi (Fawer and Levene, 1982), and it has been shown that the CSF of preterm 

infants contains low levels of plasminogen, a mediator of clot lysis (Whitelaw et al., 

1995). Blood is also known to irritate the ependymal lining of the ventricular system 

causing this layer to be shed and replaced by glial tissue. This glial proliferation may 

itself lead to mechanical obstruction of CSF flow and cause hydrocephalus (Larroche, 
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1972; Fukumizu et al., 1995; Fukumizu et al., 1996), which can itself lead to 

periventricular white matter damage due to pressure effects. However experimental proof 

of these hypotheses remains elusive. 

 

The neurological outcomes associated with GLH and IVH are variable, depending 

principally on haemorrhage severity, its effects on CSF drainage, and the extent and site 

of any parenchymal infarction (Papile et al., 1983; Resch et al., 1996; Levy et al., 1997). 

Haemorrhages that are confined to the germinal matrix and without the involvement of 

the adjacent parenchyma have good prognosis (de Vries et al., 1998). However, it is 

hypothesised that GLH may damage oligodendrocyte progenitors and disrupt their 

migration, potentially resulting in impaired myelination of axonal fibres. Furthermore, 

GLH may result in damage to astrocytic precursors bound for the upper layers of the 

cerebral cortex, and thereby lead to impaired cortical neuronal development (Evrard et 

al., 1992). Studies in animal models have suggested that the presence of free iron from 

blood in the CSF may lead to white matter damage due to increased levels of free radical 

formation (Batton and Nardis, 1987). As developing oligodendrocytes are particularly 

vulnerable to injury from free radical attack (Back et al., 1998), it is possible that 

haemorrhage in the CSF may play a role in white matter damage (Volpe, 2001). 

 
 

3.2.3.2 Periventricular haemorrhagic infarction 
 
Typically occurring in the deep white matter adjacent to the lateral ventricles, 

periventricular haemorrhagic infarctions (PHIs) are ischaemic parenchymal injuries with 

associated haemorrhage (Volpe, 1989; Barkovich, 2000). PHI develops in about 10-15% 

of cases of IVH, with between 80% and 90% of these developing within the first four 

days of postnatal life (de Vries et al., 2001). An incidence of 1% amongst infants born 

≤2500g has been reported, with the injury proposed to be the result of a failure of 

drainage of the medullary veins into the terminal vein due to a blood clot (Takashima et 

al., 1986; Gould et al., 1987). It is currently thought that the raised venous pressure and 

blood stasis that ensues causes white matter infarction. Dependent on the site and extent 
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of the lesion, the long-term neurological sequelae are often severe (Bassan et al., 2006; 

Bassan et al., 2007), with damage to the motor fibres potentially resulting in hemiplegia 

(Takashima et al., 1986). Survival is rare if the lesions are bilateral. 

 

The spectrum of IVH/PHI in the preterm-born neonate has been divided into four grades 

(Table 3.1), dependent on severity (Papile et al., 1978). 

 

 

Grade Description 

I Germinal matrix haemorrhage without (or with minimal) IVH. 

Bleeds extending from the subependymal germinal zone into the 
ventricles, but without any associated ventriculomegaly. II 

IVH with ventriculomegaly, either due to parenchymal injury or 
communicating hydrocephalus. III 

White matter infarction secondary to raised venous pressure and 
blood stasis (PHI). IV 

Table 3.1: The Papile classification of IVH/PHI in the premature neonate (adapted 
from Barkovich, 2000) 
 

 

These have important prognostic value with respect to short- and long-term neurological 

outcomes, and are now widely used. In a follow-up study of a large cohort of infants that 

had ultrasound-defined IVH/PHI, 67% of infants with haemorrhage of grades I and II 

survived, compared to only a quarter of those infants with grade III/IV haemorrhages 

(van de Bor et al., 1993). Other studies have found that infants with grades I and II 

haemorrhage have a less than 10% incidence of neurological sequelae at six years of age 

(Whitaker et al., 1996), but those with IVH associated with dilated ventricles have an 

incidence five times greater. 

 
 

3.2.3.3 Periventricular leukomalacia 
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Predominantly affecting preterm infants between 23 to 32 weeks gestation, a period 

where oligodendrocyte precursors are particularly vulnerable to damage from hypoxia-

ischaemia (Volpe, 1998), free radical mediated injury (Back et al., 1998; Fern and 

Moller, 2000; Back et al., 2001) and materno-foetal infection (Dammann and Leviton, 

1999), periventricular leukomalacia (PVL) has been classically defined as focal necrotic 

lesions in the developing cerebral white matter that subsequently progress to the 

formation of cysts (Banker and Larroche, 1962; Volpe, 2003). First described in 1962, 

this ‘cystic’ form of PVL usually illustrated bilateral lesions that were found within the 

frontal and parietal-occipital periventricular white matter, adjacent to the anterior and 

posterior horns of the lateral ventricles (DeReuck et al., 1972; Shuman and Selednik, 

1980; Leviton and Gilles, 1984; Back et al., 2007). The clinical outcome of this may be 

cerebral palsy, with the more extensive the abnormalities observed on ultrasound, the 

greater the risk of severe motor (and cognitive) deficits (Holling and Leviton, 1999). 

 

Recent studies, however, suggest that the incidence of cystic PVL amongst infants born 

preterm or with a low birth weight is rapidly diminishing. Adjusting for gestational age, 

Hamrick (Hamrick et al., 2004) found that amongst preterm infants born with a birth 

weight ≤1500g, the ultrasound-defined incidence of cystic PVL declined 6.1 fold 

between 1992-2002, to 0.2% of all births between 2000-2002. However, there has been a 

corresponding increase in cases of a more diffuse form of white matter change reported 

amongst these infants, which has been described as non-cystic PVL or diffuse white 

matter injury (Maalouf et al., 1999; Counsell et al., 2003a; Inder et al., 2003). Maalouf 

(Maalouf et al., 1999) reported that the MR neuroimaging correlate of this change, 

diffuse excessive high signal intensity on conventional T2-weighted imaging, is present 

in 75% of all preterm infants imaged at term, which has characteristics compatible with 

widespread axonal and/or oligodendrocyte abnormality on diffusion weighted imaging 

(Counsell et al., 2006). 

 

Several potential mechanisms have been proposed for the pathogenesis of PVL during 

this period of glial proliferation, differentiation and myelination (Goldman, 1992). PVL 

occurs in areas that were thought to represent arterial border zones between main areas of 
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arterial supply (Perlman, 1998), and the anatomy of the vascular supply to the white 

matter may be an important factor. Blood flow to the cerebral white matter is low at this 

stage of development (Borch et al., 1998) and blood vessel density in the white matter is 

lower between 28 and 36 weeks than in earlier or later periods of development 

(Miyawaki et al., 1998). Prolonged hypoperfusion potentially exposes these areas to 

severe ischaemia and there is evidence of prolonged loss of cerebrovascular 

autoregulation following asphyxia, which may exacerbate the fact that autoregulatory 

control mechanisms within the cerebral vasculature may be immature. This may leave the 

preterm brain vulnerable to fluctuations in blood pressure and blood flow (Volpe, 2001). 

 

When neurons or their processes are damaged by hypoxic-ischaemic injury, the 

excitatory neurotransmitter glutamate is released in large quantities and additional factors 

may lead to the presence of excitotoxic free-radicals such as reactive oxygen and nitrogen 

species (Back et al., 1998; Laszkiewicz et al., 1999). With their increased metabolic 

demand, cells that are actively differentiating may be more sensitive to this profound 

change in the internal milieu. Pre-myelinating oligodendrocytes, which are present in the 

periventricular white matter in the third trimester are known to have glutamate receptors 

and may thus be damaged by toxic amounts in a similar way to neurons (Kinney and 

Back, 1998; McDonald et al., 1998). 

 

Traditionally, PVL was though to only result from ischaemic causes. However, infection, 

which has independently been reported as a risk factor for preterm birth (reviewed in 

Goldenberg et al., 2000) can cause elevation of pro-inflammatory cytokines that may also 

mediate white matter damage (Dammann and Leviton, 1999). Chorioamnionitis has been 

associated with damage to the developing white matter and is associated with increased 

risk of cystic PVL lesions (Wu, 2002). 
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3.2.4 Neurodevelopmental outcomes associated with preterm birth 
 
Despite difficulties in teasing out which of the antecedents to, or associations with, 

preterm birth render the developing brain vulnerable to injury, it has been shown that 

neurological morbidity is more severe with prolonged premature exposure to the 

extrauterine environment (Marlow et al., 2005) and more severe in boys than in girls 

(Wood et al., 2005). The section reviews some of the motor, cognitive and behavioural 

outcomes associated with preterm birth. 

 
 

3.2.4.1 Motor outcomes 
 
Motor difficulties following preterm delivery have been widely reported in the literature. 

Amongst preterm infants born weighing less than 1000g, between 4-12% have been 

reported to develop cerebral palsy (CP) (reviewed in Behrman and Stith Butler, 2006). 

The relationship between preterm birth and CP has been shown to be inversely related to 

gestational age (Drummond and Colver, 2002), with male infants at particular risk or 

adverse motor outcome (Wood et al., 2005). 

 

Chronic lung disease and postnatal corticosteroid delivery are more common amongst 

extremely preterm-born infants, and have also been independently shown to increase the 

risk of CP (Skidmore et al., 1990; Shinwell et al., 2000). 

 
 

3.2.4.2 Sensory outcomes 
 
Compared to a group of age- and gender-matched controls, extremely preterm-born 

infants are at an increased risk of sensorineural hearing loss and visual 

impairment/blindness at school age (Marlow et al., 2005). 
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3.2.4.3 Cognitive and behavioural outcomes 
 
There have been many studies reporting a reduction in general intelligence quotient (IQ) 

and its verbal and performance subscales amongst preterm-born infants compared to 

matched term-born control subjects (Botting et al., 1998; Saigal et al., 1991; Bhutta et al., 

2002; Anderson and Doyle, 2003). Small population sizes, different ages at assessment 

and different assessment criteria have made such studies difficult to compare, and the 

effects of recent clinical practice on cognitive outcome has been difficult to fully 

evaluate. In a meta-analysis of the data from fifteen studies containing 1556 preterm 

infants and 1720 term-control infants, however, preterm-birth was associated with an 

eleven-point reduction in cognitive score (95% confidence interval 9.5-12.5), with the 

reduction directly proportional to birth-weight and GA (Bhutta et al., 2002). In a more 

recent study of all infants born in the UK and Ireland at less than 25 weeks of completed 

gestation, IQ scores at school age were found to be 24 (95% confidence interval 20-27) 

points lower than matched controls (Marlow et al., 2005). Scores were positively 

correlated with GA, and were found to be lower amongst boys than girls. As many as 

52% of these children will require some form of special needs or educational support 

because of learning difficulties (Rivkin, 2000). Impairments often continue into 

adolescence, with a high prevalence of behavioural problems documented, including 

psychiatric and attention deficit disorders (Szatmari et al., 1990; Botting et al., 1997; 

Indredavik et al., 2005; Nosarti et al., 2005). 

 

These problems were initially thought to be due to damage to the corpus callosum 

resulting in an inadequate transfer of information between the cerebral hemispheres. 

However, the broad spectrum of reported problems related to preterm birth suggests that 

a diffuse injury or one that affects a central processing structure is more likely. The 

neuro-imaging correlates for these developmental impairments remain incompletely 

defined. 
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3.3 MRI of the developing brain 
 

The inherent sensitivity of MRI to changes in water content and the biochemical 

environment make it an ideal modality to investigate the developing brain, allowing the 

differentiation of the cortex, white matter and central grey matter structures (Battin et al., 

1998). As can be seen on conventional MRI, the sulci and gyri of the cortex develop at 

different rates in different regions of the brain (Figure 3.3). Prior to term, the folding of 

the central sulcus is the most advanced at any given age, followed by the main sulci in 

medial occipital lobe, the parietal lobe, the frontal and the posterior temporal lobes in that 

order. The anterior temporal region is the least well developed. By term the cortex has 

extensive folding with the formation of tertiary sulci. 

 

 

 
Figure 3.3: Preterm brain development assessed with MRI (adapted from Counsell 
et al., 2003b) 
These transverse T2-weighted images were taken of a preterm infant born at 23 weeks 
gestation and scanned serially between 25 weeks and 39 weeks gestational age. They 
show the normal development of sulcation and gyration during this time at the level of 
the centrum semiovale (top row) and the mid-ventricular level (bottom row). 
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3.3.1 MRI and myelination 
 
Unmyelinated cerebral white matter is demonstrated as high signal intensity on T2-

weighted imaging and low signal on T1-weighted imaging. This is due to the fact that the 

developing brain has higher water content and so both T1 and T2 are longer than in the 

more mature brain. As white matter structures myelinate their appearance on MRI 

changes, due to an increase in the lipid content and a relative decrease in water content. 

Myelinated white matter is seen as regions of high signal intensity on T1-weighted 

imaging and low signal intensity on T2-weighted imaging (Barkovich, 2000). The 

hypointense appearance of myelin on T2-weighted images corresponds to the time of 

tightening of myelin around the axon and the saturation of polyunsaturated fatty acids 

within the myelin membrane (Barkovich et al., 1988; Husted et al., 1993). The reduction 

in signal intensity on T2-weighted imaging is probably due to a reduction in the number 

of aqueous protons due to the development of the hydrophobic inner phospholipid layer 

(Barkovich et al., 1988). 

 
 

3.3.1.1 MRI appearances of myelination 
 
Myelin has been demonstrated by in vivo MRI in numerous white matter tracts and grey 

matter nuclei in the preterm brain, corresponding to those sites that demonstrate 

myelination on histology at this age. However, brain maturational changes corresponding 

to myelination are detected at different rates and different times on conventional T1 and 

T2-weighted images, the reasons for which remain ill-defined. Table 3.2 shows the ages 

at which changes of myelination first appear on conventional imaging (data from 

Barkovich et al., 1988; Barkovich, 2000; Counsell et al., 2002). 
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Anatomical region T1-weighted images T2-weighted images 

Superior cerebellar peduncle 28 gest wks 27 gest wks 

Median longitudinal fasciculus 25 gest wks 29 gest wks 

Medial lemnisci 27 gest wks 30 gest wks 

Lateral lemnisci 26 gest wks 27 gest wks 

Middle cerebellar peduncle Birth Birth to 2 mos 

Cerebral white matter Birth to 4 mos 3-5 mos 

Posterior limb internal capsule   

    Anterior portion First month 4-7 mos 

    Posterior portion 36 gest wks 40 gest wks 

Anterior limb internal capsule 2-3 mos 7-11 mos 

Genu corpus callosum 4-6 mos 5-8 mos 

Splenium corpus callosum 3-4 mos 4-6 mos 

Occipital white matter   

Central 3-5 mos 9-14 mos 

Subcortical 4-7 mos 11-15 mos 

Frontal white matter   

    Central 3-6 mos 11-16 mos 

    Subcortical 7-11 mos 14-18 mos 

Centrum semiovale 2-4 mos 7-11 mos 

Table 3.2: Age-associated changes in myelin appearance on MRI (from Barkovich, 
2005) 
Key: gest wks, gestational weeks; mos, months 
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3.3.2 Diffusion weighted imaging and diffusion tensor imaging of the 
developing brain 
 

3.3.2.1 White matter changes 
 
ADC values and diffusion anisotropy measures in the developing brain change with age. 

Cerebral white matter ADC values decrease with increasing maturity, with those of 

preterm infants being higher than term infants, which are in turn elevated compared to 

those of adults (Toft et al., 1996; Huppi et al., 1998; Neil et al., 1998; Morriss et al., 

1999; Tanner et al., 2000; Mukherjee et al., 2001; Mukherjee et al., 2002; Schneider et 

al., 2004). In addition, ADC values are higher in white matter than grey matter in 

neonates, and these values converge with increasing maturity (Neil et al., 1998; Tanner et 

al., 2000). Anisotropic measures of diffusion increase in the white matter with increasing 

gestational age (Huppi et al., 1998; Neil et al., 1998; Mukherjee et al., 2001; Mukherjee 

et al., 2002; Schneider et al., 2004) and it has been shown that changes in anisotropy with 

development are predominantly due increasing restriction of diffusion perpendicular to 

the local white matter tract direction (Suzuki et al., 2003; Partridge et al., 2004). 

 

The level of anisotropy in the cerebral white matter is affected by both microscopic 

factors (the degree of myelination) and macroscopic factors (the density and coherency of 

fibre tracts). However, anisotropic diffusion is observed in the corpus callosum, posterior 

limb of the internal capsule and optic radiations in the preterm brain before myelination 

has occurred in these structures (Toft et al., 1996; Tanner et al., 2000). In the rat brain, 

DWI reveals anisotropic diffusion in white matter before myelin is evident either 

histologically or on conventional MRI (Wimberger et al., 1995), thought to be due to 

premyelination processes including an increase in axon diameter (Hildebrand and 

Waxman, 1984), axonal membrane changes (Fields and Waxman, 1988) and early 

oligodendroglial wrapping around axons (Remahl and Hildebrand, 1990). This is 

associated with an increase in the concentration of microtubule-associated proteins, 

which may restrict water motion perpendicular to axons (Watson, 1991). 
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These findings suggest that there is an increase in white matter anisotropy immediately 

preceding the beginning of myelination. More gradual increases over many months or 

years follow as myelin matures. Quantitative anisotropy measurements may therefore 

provide a marker for white matter development and be sensitive to forms of white matter 

injury associated with preterm birth that disrupt myelination (Neil et al., 1998). 

 
 

3.3.2.3 Grey matter changes 
 
As well as being used to investigate white matter development, diffusion MRI has also 

been used to study developmental changes in cortical grey matter. At the resolution 

offered by MRI, anisotropy has been shown to decrease from 26 to 32 weeks GA until 

diffusion is almost isotropic, as it is in adult grey matter (McKinstry et al., 2002). Prior to 

32 weeks GA, cortical cytoarchitecture is dominated by radial glia and apical dendrites, 

which are perpendicular to the cortical layers, resulting in non-zero anisotropy. Once the 

basal dendrites and thalamocortical afferent fibres reach the cortex, however, the 

resulting multi directional arrangement of fibres leads to an overall reduction of 

anisotropy. 

 
 

3.3.3 MRI of diffuse white matter injury 
 
Numerous studies have documented the value of MRI in discriminating focal perinatal 

brain injury following preterm birth (for reviews, see Counsell et al., 2003b; O'Shea et 

al., 2005; Boardman et al., 2007). More recently, conventional MRI has demonstrated 

diffuse white matter abnormality in the majority of preterm infants at term equivalent age 

that is significantly more common than focal injury. In one study, around 75% of preterm 

infants at term were found to have areas of diffuse excessive high signal intensity 

(DEHSI) within the white matter on T2-weighted MRI (Figure 3.4), with a 

correspondingly low signal on T1-weighted imaging (Maalouf et al., 1999). It has been 

suggested that DEHSI may be the neuro-imaging correlate of diffuse PVL or 

telencephalic leukoencephalopathy (Volpe, 2003), and a diffusion weighted imaging 
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study has shown that apparent diffusion coefficient values are significantly higher 

amongst infants with DEHSI than infants with normal appearing white matter, and are 

similar to those with overt white matter pathology (Counsell et al., 2003a). 

 

 

 
Figure 3.4: Diffuse excessive high signal intensity 
(DEHSI) 
DEHSI can be seen in this transverse T2-weighted image 
at the level of the centrum semiovale in the posterior 
white matter (arrows). 

 

 

3.3.4 Quantitative MR studies of brain development and pathology in 
preterm infants 
 
Quantitative MR techniques can be used in addition to qualitative evaluation of MRI data 

to investigate development and pathology in the preterm brain. These techniques produce 

objective and reproducible measurements of brain growth and include measures of 

cortical folding, brain volumes, T1 and T2 relaxation measures and brain water diffusion 

parameters. 
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Computerised methods of measuring the cortex have shown a logarithmic increase in 

brain volume, cortical surface area and the complexity of cortical folding from 24 weeks 

GA until term (Ajayi-Obe et al., 2000). However, the normal scaling relation between 

cortical surface area and cerebral brain volume during the perinatal period is disrupted 

amongst infants born preterm, which is related to the degree of prematurity at birth and is 

more pronounced amongst males than females (Kapellou et al., 2006). The level of 

disruption to the scaling relation correlates with neurological outcome at two years, 

suggesting that this measure may be used as a neuro-imaging substrate for impairment 

following preterm birth. 

 

Tissue segmentation methods have been used to quantify regional reductions in brain 

tissue volume that predict poor neurodevelopment. Preterm infants at term equivalent age 

have reduced parieto-occipital, sensorimotor and inferior occipital cortices and increased 

lateral ventricle volumes, and white matter volumes in the sensorimotor and midtemporal 

regions in these infants correlated with early neurodevelopmental assessment scores 

(Peterson et al., 2003). Using deformation based morphometry, a technique that identifies 

macroscopic anatomical differences between subjects by aligning their data and analysing 

the parameters describing the estimated nonlinear transformations, Boardman 

demonstrated reductions in thalamic and lenticular volumes that were correlated with the 

degree of prematurity at birth (Boardman et al., 2006). 

 

Three dimensional volumetric MRI has revealed reduced cortical grey matter volume in 

preterm infants at term equivalent age that had cystic PVL on previous ultrasound or MRI 

scans. This suggests that cystic PVL has an impact on cerebral cortical development that 

may explain the cognitive deficits associated with this condition (Inder et al., 1999). MRI 

studies have also shown that the thalami (Lin et al., 2001), corpus callosum, pons and 

cerebellum (Argyropoulou et al., 2003) are smaller in infants with these lesions compared 

to controls. 
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Structural differences in the brains of survivors of preterm birth persist into adolescence. 

Hippocampal volume reductions (Abernethy et al., 2002; Nosarti et al., 2002), increased 

lateral ventricle volumes (Stewart et al., 1999; Nosarti et al., 2002), reduced cerebellar 

volume (Allin et al., 2001), diminished volume of the caudate nucleus (Abernethy et al., 

2002) and thinning of the corpus callosum (Cooke and Abernethy, 1999; Stewart et al., 

1999) have been identified. However, reduced global brain growth in the neonatal period 

is not inevitable after premature birth, and in the absence of chronic disease or factors 

continuing beyond the perinatal period early brain growth is preserved in the majority of 

preterm-born infants (Boardman et al., 2007). 

 

Elevated ADC values (Counsell et al., 2003a) and diminished RA values in white matter 

(Huppi et al., 2001) have been reported to be associated with abnormal white matter at 

term equivalent age. Compared to those with normal-appearing white matter, preterm 

infants with evidence of white matter injury have been reported to fail to demonstrate the 

normal maturational decrease in ADC near-term age (Miller et al., 2002), and it has 

recently been shown that elevated mean ADC values at the level of the centrum 

semiovale in preterm infants imaged at term are associated with reduced developmental 

quotient scores at two years corrected age (Krishnan et al., 2007). 

 

 

 

3.4 Conclusions 
 

In conclusion, there is increasing evidence that brain development following preterm 

birth may be altered, and in particular that preterm birth may be associated with subtle 

differences of cerebral white matter. This is thought to be the neuropathological substrate 

for the subsequent neurocognitive impairment that such infants are known to be at 

increased risk from. 
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The value of conventional MRI in discriminating focal perinatal brain injury following 

preterm birth is clear, and diffusion-weighted and diffusion-tensor MRI may allow the 

additional detection of abnormalities not seen on T1- and T2-weighted images. However, 

the observer-independent analysis of diffusion-derived MRI data has been hampered by 

the lack of a robust algorithm for aligning such images to enable automated analysis on a 

voxel-by-voxel basis. The use of such a tool would also aid the investigation of the 

association between certain clinical variables or events and measures of diffusion in 

different parts of the brain. Ultimately, this might be used to predict which preterm 

infants may be particularly susceptible to brain injury in the perinatal period, and 

therefore may be at increased risk of subsequent functional deficit. If found to be valid 

and robust, this approach may also allow assessment of the success of therapeutic 

interventions in altering brain microstructure. 

 

 

 

3.5 Aims 
 

The aims of this work were to: 

1. Determine if TBSS, a newly proposed method for aligning diffusion-derived 

fractional anisotropy maps to allow subsequent groupwise comparisons of DTI 

data could be implemented in the preterm population; 

2. Test the hypothesis that preterm infants have microstructural differences in 

cerebral white matter compared to term born control infants in the absence of 

focal abnormalities such as cystic periventricular leukomalacia or haemorrhagic 

parenchymal infarction on conventional MR imaging; 

3. Investigate the association between both acute respiratory distress at birth and 

chronic lung disease and cerebral white matter in preterm infants imaged at term, 

and 
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4. Develop a method which will allow non-subjective cross-subject comparisons of 

whole brain DTI data, without the need to perform the data reduction processes 

entailed in both TBSS and ROI approaches. 
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Chapter 4 
 

The Effect of Preterm Birth 
on Fractional Anisotropy at 

Term 
 

 

4.1 Introduction 
 

As described in Section 3.3.3, there is evidence that early brain development following 

preterm birth may be associated with subtle abnormalities of cerebral white matter 

compared to matched term-control subjects, which can appear as diffuse increased high 

signal on T2-weighted images or increases in the apparent diffusion coefficient on 

diffusion weighted imaging in the absence of focal lesions on conventional MRI 

(Counsell et al., 2003a). 

 

Regions of interest (ROIs) can be drawn directly onto unregistered diffusion tensor 

images to measure diffusion parameters in different areas of the brain and have revealed 

differences in white matter microstructure between preterm infants at term and matched 

term-born control subjects. However, the complex global spatiotemporal changes 

occurring in the developing neonatal brain cannot be fully captured by such analyses. 

Tract based spatial statistics (TBSS), outlined in Section 2.7.8.3, is an automated 

observer independent approach for aligning diffusion-derived fractional anisotropy data, 

which is considered to provide a measure of white matter integrity, in order to objectively 

130 



assess group-wise microstructural differences in the major white matter pathways of the 

brain (Smith et al., 2006). 

 

 

 

4.2 Aim 
 

The aim of this study was to determine if TBSS could be implemented in the preterm 

population, and to test the hypothesis that preterm infants have microstructural 

differences in cerebral white matter compared to term born control infants in the absence 

of focal abnormalities such as cystic periventricular leukomalacia (cPVL) or 

haemorrhagic parenchymal infarction (HPI) on conventional MR imaging. 

 

 

 

4.3 Materials and methods 
 

The MRI data used in this study were acquired by other researchers as part of a number 

of ongoing studies at Hammersmith Hospital. Ethical permission was granted by the 

Hammersmith Hospital Research Ethics Committee (2003/6564 and 04/Q0406/125). 

Written, informed parental consent was obtained for each subject. 

 

4.3.1 Subjects 
 

4.3.1.1 Preterm infants 
 
DTI data was acquired from 26 preterm infants (11 female, 15 male) imaged at term 

equivalent age. The median (range) gestational age of the infants at birth was 28+6.5 (25+4 

– 32+4) weeks, and the median birth weight was 1084 (654 - 1848) grams. The median 
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post-menstrual age at the time of imaging was 41+2 (38+1 – 45+2) weeks. The median 

weight and head circumference at the time of imaging were 3200 (1980 - 5500) grams 

and 36.0 (31.5 - 39.6) centimetres respectively. 

 
 

4.3.1.2 Extremely preterm infants 
 
In the subgroup of 11 preterm infants (4 female, 7 male) who were born at 28 weeks 

gestation or less, the median (range) gestational age of the infants at birth was 26+5 (25+5 

– 28+0) weeks, and the median birth weight was 920 (714 - 1200) grams. The median 

post-menstrual age at the time of imaging was 41+0 (38+1 - 44+0) weeks. The median 

weight and head circumference at the time of imaging were 3060 (2000 - 3685) grams 

and 35.5 (31.5 - 38.7) centimetres respectively. 

 
 

4.3.1.3 Term control infants 
 
DTI was also obtained on 6 healthy, term-born control infants (2 female, 4 male). The 

median (range) gestational age of the infants at birth was 39+5 (39+0 – 40+5) weeks, and 

the median birth weight was 3300 (3106 - 4000) grams. The median post-menstrual age 

at the time of imaging was 41+5 (41+0 – 46+0) weeks. The median weight and head 

circumference at the time of imaging were 3500 (3300 - 4510) grams and 36 (34.0 - 37.8) 

centimetres respectively. 

 

 

There were no significant differences in age at scanning (p = 0.24) or in gender (p = 0.53) 

between the preterm-born group and the term-born controls. There were no significant 

differences in age at scanning (p = 0.14) or in gender (p = 0.47) between the subset of 

preterm infants born ≤28 weeks gestational age and term-born control infants. 
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4.3.2 Magnetic resonance imaging 
 

MRI was performed on a Philips Achieva 3 Tesla system (Philips Medical Systems; Best, 

the Netherlands) with a maximum gradient strength of 80 mT/m and a slew rate of 200 

mT/m/ms. A six-channel phased array head coil was used and each subject’s head was 

immobilised using a pillow filled with polystyrene beads, from which the air had been 

removed. Ear protection was used for each infant, comprising both earplugs individually 

moulded from a silicone-based putty (President Putty; Coltene/Whaledent, Mahwah, New 

Jersey, USA) placed in the external ear and commercially available neonatal earmuffs 

(Natus MiniMuffs; Natus Medical Inc, San Carlos, California, USA). 

 

The preterm infants were scanned following sedation with oral chloral hydrate (25-50 

mg/kg). Term-born controls were imaged during natural sleep following feeding and 

were not sedated. All examinations were supervised by a paediatrician experienced in 

MRI procedures, and pulse oximetry and electrocardiograph monitoring were performed 

on all infants throughout the MRI examination. 

 
 

4.3.2.1 Diffusion tensor imaging 
 
A volume shim was performed prior to obtaining the DTI data in order to minimise 

distortions from magnetic field inhomogeneities due to air-bone-tissue interfaces. 

Following a reference image obtained with a minimal b value (~0 s/mm2), whole-brain 

single shot echo planar DTI data was acquired in the transverse plane in 15 non-collinear 

directions using the following parameters: TR 8000 ms, TE 79 ms, slice thickness 2 mm, 

field of view 224 mm, matrix 128 x 128 (voxel size = 1.75 x 1.75 x 2 mm3), b value = 

750 s/mm2. Depending on head size, between 36 and 49 slices were obtained to ensure 

full brain coverage. The data were acquired with a sensitivity encoding (SENSE) factor 

of 2 and the scanning time for this sequence was approximately 5 minutes. 
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4.3.3 Image processing and analysis 
 
Data was transferred off-line and the diffusion weighted images were registered to the b = 

0 image by affine transformations using the Philips Research Integrated Development 

Environment (PRIDE) Diffusion Registration tool (Release 0.4). Scanner data was then 

converted into analyze file format using Johns Hopkins University’s DTI Studio (version 

2.1) software (Jiang et al., 2006). 

 

Images were brain-extracted using BET (Smith, 2002), part of the FSL package (Smith et 

al., 2004) on a Linux operating system. Fractional anisotropy, λ1, λ2 and λ3 maps were 

generated using FDT (Behrens et al., 2003). 

 

Voxelwise statistical analysis was carried out using TBSS v1.0 (introduced in section 

2.7.8.3) implemented in FSL (Smith et al., 2006). First of all, each subject’s FA data was 

registered to every other subject’s FA data using an affine (3 resolution levels, 64 bins, 

20 iterations, 4 steps, 5 mm step length, similarity measure = cross correlation, initial 

control point spacing 20 x 20 x 20 mm3) followed by a nonlinear (1 resolution level, 64 

bins, 20 iterations, 4 steps, 5 mm step length, similarity measure = cross correlation, 

control point spacing 20 x 20 x 20 mm3) registration algorithm 

(wwwhomes.doc.ic.ac.uk/~dr/software) based on Basis-splines (B-splines). For all of the 

registrations to a particular infant’s diffusion space, the average (median) amount of 

nonlinear warping required to transform the other datasets into that target space was 

calculated. The ‘most typical’ subject was then defined as the one requiring the least 

amount of warping to align all the other images to it. All subjects’ FA data was then 

aligned to this common space and resampled to produce 1 x 1 x 1 mm3 voxels to generate 

a mean FA image with isotropic voxel dimensions. This was then thinned using non-

maximal suppression perpendicular to the local tract orientation to generate a mean FA 

skeleton representing the centres of all tracts common to the group. The skeleton was 

thresholded to FA ≥0.20 to include the major white matter pathways but exclude 

peripheral tracts where there was significant inter-subject variability and/or partial 

volume effects with grey matter. Each subject's aligned FA data was then projected onto 
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this skeleton to generate a four-dimensional image (the three-dimensional FA skeleton 

data for each subject in the cohort) and the resulting data was fed into voxelwise cross-

subject statistical analysis. TBSS pre-processing was also applied to the λ1, λ2 and λ3 

maps. 

 

 

4.3.4 Statistical considerations 
 
The permutation-based non-parametric inference approach incorporated in FSL’s 

Randomise tool (Nichols and Holmes, 2002) was used to analyse the data. This allowed 

for inference of the statistic maps given that for each voxel in the dataset, the cross-

subject null distribution of FA values was not necessarily Gaussian. Voxel t-values were 

tested against the null distribution (generated by 5000 random permutations of subject 

ordering with respect to the model) of maximum values of each of the test statistics. This 

allowed for control of family-wise errors whilst searching over the whole skeleton for 

regions of significant FA differences between the preterm and the term-born groups. 

 

ROI-based analysis was performed in areas of the brain where uncorrected voxelwise 

cross-subject statistics revealed significantly different FA values between the preterm-

born group and term-born control infants. The mask for each ROI was generated on each 

subject’s FA map that had been aligned and projected onto the mean FA skeleton, 

allowing inclusion in the analysis of only those voxels from tract centres. The same ROIs 

were also positioned on the aligned λ1, λ2 and λ3 maps. Regional differences between 

term controls and preterm infants, and between term controls and the subgroup of preterm 

infants who were born ≤28 weeks GA, were tested for significance using a Student’s t-

test or Mann-Whitney U test as appropriate, with a Bonferroni correction for multiple 

comparisons. FA values in the left and right posterior portions of the posterior limbs of 

the internal capsule were significantly different and so these regions were analysed 

separately. 
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4.4 Results 
 

4.4.1 Voxelwise thresholding 
 
Regions within the centrum semiovale, frontal white matter and the genu of the corpus 

callosum were found to have a significantly lower FA in preterm infants imaged at term 

equivalent age compared to term-born controls (cluster-based thresholding fully corrected 

for multiple comparisons, cluster-size = 3, p < 0.05) (Figure 4.1a-d). Those infants born 

at less than or equal to 28 weeks gestational age (n = 11) displayed additional reductions 

in FA in the posterior aspect of the posterior limb of the internal capsule, the external 

capsule and the isthmus and middle portion of the body of the corpus callosum, and had 

larger regions of reduced anisotropy within the centrum semiovale, frontal white matter 

and genu of the corpus callosum (Figure 4.1e-h). 

 

In order to explore this reduction in FA, the three eigenvalues of the diffusion tensor were 

analysed. Regions which exhibited decreased FA showed elevated intermediate (λ2) 

and/or minor (λ3) eigenvalues in both preterm groups (cluster-based thresholding 

(cluster-size = 3, p < 0.05) (Figure 4.3 and 4.4). The preterm groups also displayed an 

increase in the principal eigenvalue (λ1) in the regions of the frontal white matter and 

genu of the corpus callosum (Figure 4.2). A small number of isolated voxels showed 

higher FA and/or decreased λ1, λ2 or λ3 in the preterm infants (seen in red on Figure 4.1 

and blue in Figures 4.2-4.4). However, these did not correspond to any well-defined brain 

region. 

 

Re-grouping the preterm infants for analysis by sex revealed no gender-related 

differences in FA, λ1, λ2 or λ3 in any brain regions. 
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Figure 4.1: The effect of preterm birth on FA at term equivalent age 
Mean FA skeleton overlaid on the mean FA map. Regions of the mean FA skeleton in 
green represent areas where there were no significant differences in FA values in the 
preterm infants imaged at term compared to the term-born controls. Areas in blue are 
regions where the FA was significantly lower in the preterm group (a-d), and can be 
observed in the centrum semiovale (a), frontal white matter (b) and genu of the corpus 
callosum (c). Those infants born ≤ 28 weeks gestational age (e-h) had greater regions of 
reduced anisotropy within the centrum semiovale (e), frontal white matter (f) and genu of 
the corpus callosum (g). Voxelwise cross-subject statistics uncorrected for multiple 
comparisons (t > 3, p < 0.05) displayed additional reductions in FA in the posterior aspect 
of the posterior limb of the internal capsule and the external capsule. These areas of FA 
difference were used for subsequent ROI-based analyses of TBSS-processed FA data 
(Table 4.1 and 4.2). 
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Figure 4.2: The effect of preterm birth on λ1 at term equivalent age 
Mean FA skeleton overlaid on the mean λ1 map. Regions in green represent areas where 
there was no significant difference in λ1 values in the preterm infants imaged at term (a-
d) and in the subset of infants born ≤ 28 weeks gestational age (e-h) compared to the 
term-born controls. Areas in red are regions where the λ1 was significantly higher in the 
preterm group following cluster-based multiple comparison correction (cluster-size = 3, p 
< 0.05). 
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Figure 4.3: The effect of preterm birth on λ2 at term equivalent age 
Mean FA skeleton overlaid on the mean λ2 map. Regions in green represent areas where 
there was no significant difference in λ2 values in the preterm infants imaged at term (a-
d) and in the subset of infants born ≤ 28 weeks gestational age (e-h) compared to the 
term-born controls. Areas in red/orange represent regions where the λ2 was significantly 
higher in the preterm group (cluster-size = 3, p < 0.05), and can be observed in the 
centrum semiovale (a), frontal white matter (b) and genu of the corpus callosum (c). 
Those infants born ≤ 28 weeks gestational age (e-h) had greater regions of increased λ2 
within the centrum semiovale (e), frontal white matter (f) and genu of the corpus 
callosum (h, i), and displayed additional increases in λ2 in the posterior aspect of the 
posterior limb of the internal capsule (g), external capsule (g) and the isthmus of the 
corpus callosum (h). 
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Figure 4.4: The effect of preterm birth on λ3 at term equivalent age 
Mean FA skeleton overlaid on the mean λ3 map. Regions in green represent areas where 
there was no significant difference in λ3 values in the preterm infants imaged at term (a-
d) and in the subset of infants born ≤ 28 weeks gestational age (e-h) compared to the 
term-born controls. Areas in red/orange/yellow represent regions where the λ3 was 
significantly higher in the preterm group (cluster-size = 3, p < 0.05), and can be observed 
in the centrum semiovale (a), frontal white matter (b), and genu of the corpus callosum 
(c). Infants born ≤ 28 weeks gestational age (e-h) had greater regions of increased λ3 
within the centrum semiovale (e), frontal white matter (f) and genu of the corpus 
callosum (g, h), and displayed additional increases in λ3 in the posterior aspect of the 
posterior limb of the internal capsule (g), external capsule (g) and the middle body and 
isthmus of the corpus callosum (h). 
 

 

4.4.2 TBSS-defined region of interest-based analysis 
 
Having used TBSS to objectively survey the whole FA skeleton and detect regions of 

anisotropy differences between the infant groups, FA, λ1, λ2, and λ3 values were then 

assessed in these areas, using t-tests or Mann Whitney U as appropriate, corrected for 

multiple comparisons using a post-hoc Bonferroni test. 

 

ROI analysis revealed significantly reduced FA and elevated λ2 and λ3 but no difference 

in λ1 in the centrum semiovale, frontal white matter and genu of the corpus callosum in 
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the preterm-born group compared to term-born control infants (Table 4.1, Figure 4.5). 

Infants born at ≤ 28 weeks had additional reductions in FA and elevations in λ2 and λ3 in 

the posterior aspect of the posterior limb of the internal capsule, the external capsule and 

the isthmus and middle portion of the body of the corpus callosum (Table 4.2, Figure 

4.6). 
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  Term-born control 
infants (n = 6) 

Preterm infants at 
term (n = 26) p 

CSO FA 0.29 ± 0.03 0.22 ± 0.03 <0.001 

 λ1 1.68 ± 0.08 1.76 ± 0.11 0.060 

 λ2 1.26 ± 0.08 1.42 ± 0.11 <0.001 

 λ3 0.94 ± 0.08 1.14 ± 0.12 <0.001 

Frontal WM FA 0.28 ± 0.02 0.22 ± 0.03 <0.001 

 λ1 1.63 ± 0.08 1.70 ± 0.08 0.404 

 λ2 1.27 ± 0.07 1.43 ± 0.08 0.004 

 λ3 0.90 ± 0.04 1.10 ± 0.10 <0.001 

Genu CC FA 0.68 ± 0.06 0.56 ± 0.06 <0.001 

 λ1 2.20 ± 0.13 2.59 ± 0.39 0.300 

 λ2 0.79 ± 0.21 1.38 ± 0.39 0.003 

 λ3 0.46 ± 0.13 0.69 ± 0.19 0.006 

Table 4.1: Mean (± standard deviation) for FA, λ1 (x 10-3 mm2 s-1), 
λ2 (x 10-3 mm2 s-1) and λ3 (x 10-3 mm2 s-1) in term-born control infants and preterm 
infants imaged at term 
Key: CSO = centrum semiovale, WM = white matter, CC = corpus callosum. 
 
ROIs were defined in areas of the brain where voxelwise statistical analysis revealed 

significant reductions in FA at term in preterm infants compared to gender-matched term-

born controls. The ROIs were drawn in the space of the most typical infant in the group 

and projected onto all subjects’ aligned diffusion data. In all regions the observed 

reduction in FA amongst the preterm-born group can be explained by elevations in λ2 

and λ3 (i.e. by elevations in diffusivity perpendicular to the white matter tracts). 
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Figure 4.5: A box plot of FA values in regions of difference between term-born 
control infants and preterm infants imaged at term 
ROIs were defined in areas of the brain where voxelwise statistical analysis revealed 
significant reductions in FA at term in preterm infants compared to gender-matched term-
born controls. The ROIs were drawn in the space of the most typical infant in the group 
and projected onto all subjects’ aligned diffusion data. The bold lines represent the 
median value of the mean FA across subject in the regions studied, the boxes the inter-
quartile range of mean FA values and the whiskers the absolute range. 
Key: CSO = centrum semiovale, Frontal = frontal white matter, CC = corpus callosum. 
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  Term-born control 
infants (n = 6) 

Preterm infants at 
term (n = 11) p 

CSO FA 0.29 ± 0.03 0.21 ± 0.03 <0.001 
 λ1 1.69 ± 0.08 1.78 ± 0.09 0.048 
 λ2 1.26 ± 0.08 1.45 ± 0.10 <0.001 
 λ3 0.93 ± 0.08 1.17 ± 0.11 <0.001 

Frontal WM FA 0.28 ± 0.02 0.21 ± 0.02 <0.001 
 λ1 1.62 ± 0.08 1.68 ± 0.05 0.424 
 λ2 1.26 ± 0.06 1.43 ± 0.06 <0.001 
 λ3 0.90 ± 0.05 1.10 ± 0.07 <0.001 

Genu CC FA 0.68 ± 0.05 0.54 ± 0.05 <0.001 
 λ1 2.16 ± 0.11 2.51 ± 0.19 0.008 
 λ2 0.73 ± 0.13 1.29 ± 0.22 <0.001 
 λ3 0.47 ± 0.09 0.75 ± 0.12 0.008 

External Capsule FA 0.30 ± 0.03 0.24 ± 0.02 <0.001 
 λ1 1.52 ± 0.08 1.53 ± 0.06 >0.99 
 λ2 1.18 ± 0.07 1.27 ± 0.07 0.008 
 λ3 0.81 ± 0.07 0.94 ± 0.08 <0.001 

Left Posterior PLIC FA 0.45 ± 0.04 0.38 ± 0.03 0.008 
 λ1 1.68 ± 0.04 1.68 ± 0.10 >0.99 
 λ2 0.91 ± 0.07 1.04 ± 0.09 0.040 
 λ3 0.68 ± 0.06 0.78 ± 0.06 0.024 

Right Posterior PLIC FA 0.52 ± 0.04 0.44 ± 0.05 0.040 
 λ1 1.79 ± 0.04 1.75 ± 0.08 >0.99 
 λ2 0.81 ± 0.08 0.97 ± 0.08 0.008 
 λ3 0.64 ± 0.06 0.73 ± 0.06 0.080 

Middle Body CC FA 0.50 ± 0.06 0.40 ± 0.04 <0.001 
 λ1 2.14 ± 0.28 2.65 ± 0.86 >0.99 
 λ2 1.06 ± 0.12 1.60 ± 0.63 0.016 
 λ3 0.82 ± 0.12 1.17 ± 0.22 0.024 

Isthmus CC FA 0.53 ± 0.04 0.43 ± 0.05 <0.001 
 λ1 2.01 ± 0.15 2.37 ± 0.42 0.488 
 λ2 0.90 ± 0.10 1.34 ± 0.29 0.016 
 λ3 0.70 ± 0.10 1.05 ± 0.25 0.040 

Table 4.2: Mean (± standard deviation) for FA, λ1 (x 10-3 mm2 s-1), 
λ2 (x 10-3 mm2 s-1) and λ3 (x 10-3 mm2 s-1) in term-born control infants and preterm 
infants born ≤ 28 weeks GA imaged at term 
Key: CSO = centrum semiovale, WM = white matter, CC = corpus callosum, PLIC = 
posterior limb of the internal capsule. 
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ROIs were defined in areas of the brain where voxelwise statistical analysis uncorrected 

for multiple comparisons revealed significant reductions in FA at term in extremely 

preterm infants compared to gender-matched term-born controls. In most regions the 

observed reduction in FA amongst the preterm-born group can be explained by elevations 

in λ2 and λ3. 



Figure 4.6: A box plot of FA values in regions of difference between term-born control infants and preterm infants born ≤ 28 
weeks GA imaged at term 
ROIs were defined in areas of the brain where voxelwise statistical analysis revealed significant reductions in FA at term in extremely 
preterm infants compared to gender-matched term-born controls. The bold lines represent the median value of the mean FA across 
subject in the regions studied, the boxes the inter-quartile range of mean FA values and the whiskers the range. Outliers, greater than 
twice the inter-quartile range from the median value, are represented by asterisks or open circles. 
Key: CSO = centrum semiovale, ExtCap = external capsule, Frontal = frontal white matter, GenuCC = genu of the corpus callosum, Isthmus = 
isthmus of the corpus callosum, LtPPLIC = posterior portion of the left posterior limb of the internal capsule, RtPPLIC = posterior portion of the 
right posterior limb of the internal capsule, MiddleCC = middle body of the corpus callosum. 
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4.5 Discussion 
 

In this study DTI and automated tract-based analysis were used to investigate brain 

microstructure in preterm infants imaged at term equivalent age. The centrum semiovale, 

frontal white matter and genu of the corpus callosum were found to have significantly 

lower FA compared to age- and sex-matched term-born controls. The most immature 

infants (i.e. those infants born ≤ 28 weeks gestational age) displayed additional and more 

extensive reductions in FA, suggesting more severe white matter microstructural 

abnormalities with increasing premature exposure to the ex-utero environment. These 

differences were significant after a Bonferroni correction in subsequent ROI analyses in 

areas of the brain where voxelwise cross-subject statistics revealed significant differences 

in FA between the term control infants and the preterm born groups. 

 

Reductions in FA may be due to a reduction in axial diffusivity (i.e. decreased λ1) or an 

increase in radial diffusivity (i.e. increased λ2 and/or λ3). Animal studies have 

demonstrated that these eigenvalues of the effective diffusion tensor are more sensitive 

markers of myelination than FA (Gulani et al., 2001; Song et al., 2002, Song et al., 2005; 

Moeller et al., 2007). To investigate the observed reduction in FA the three eigenvalues 

of the diffusion tensor were therefore separately considered and it was found that regions 

which exhibited decreased FA showed elevated intermediate (λ2) and/or minor (λ3) 

eigenvalues (Figures 3 and 4). These findings are consistent with previous ROI-based 

analysis of DTI data from preterm and term born control infants (Counsell et al., 2006). It 

is not completely clear what the biological significance of this is. However, animal 

studies suggest that demyelination (and, most likely, altered premyelination) processes 

increase radial diffusivity in the cerebral white matter with minimal effects on axial 

diffusivity (Gulani et al., 2001; Song et al., 2002, Song et al., 2005). On the other hand, 

axonal damage is though to lead to decreased λ1 with a relatively smaller effect on λ2 

and λ3 (Song et al., 2002; Arfanakis et al., 2002; Moeller et al, 2007). 
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TBSS detected reduced FA in a number of white matter regions where microstructural 

changes have been shown in previous ROI-based studies. Huppi (Huppi et al., 1998) 

found that ADC values in the central white matter are higher and relative anisotropy (RA) 

values are lower in both the central white matter and posterior limb of the internal 

capsule in preterm infants at term compared to term-born infants, and suggested this was 

due to delayed maturation or oligodendrocyte and/or axonal damage. A significant 

elevation in radial diffusivity in the posterior body of the corpus callosum in preterm 

infants imaged at term compared to term-born controls has previously been reported 

(Anjari et al., 2006a; Anjari et al., 2006b), a finding which may have the same biological 

explanation. 

 

Elevated ADC values (Counsell et al., 2003a) and diminished RA values in white matter 

(Huppi et al., 2001) have been associated with abnormal white matter at term equivalent 

age. Miller et al reported a significant increase in ADC values with increasing GA in the 

frontal white matter and visual association areas in infants with moderate white matter 

injury (Miller et al., 2002). In addition, the authors observed an absence of the normal 

maturational increase in RA in a number of white matter regions in infants with moderate 

white matter injury and in the frontal region in infants with only minimal white matter 

injury (Miller et al., 2002). The frontal white matter in the preterm brain was not typically 

considered a major site of predilection for white matter injury, however the suggestion 

that there may be a particular susceptibility to injury in the frontal white matter (Miller et 

al., 2002) is consistent with the marked changes in this region seen in the present study. 

 

Reduced FA in the preterm brain was also found in the genu of the corpus callosum and 

increased λ2 and λ3 in the genu and isthmus of the corpus callosum in infants born at less 

than or equal to 28 weeks gestation. An ultrasound investigation has revealed reduced 

callosal growth rate in very preterm infants from birth to term age (Anderson et al., 2005) 

and a conventional MRI study has demonstrated smaller callosal size in children who 

were born preterm (Rademaker et al., 2004). Furthermore, thinning of the isthmus of the 

corpus callosum correlated with minor motor impairment in a cohort of seven-year-olds 
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who were born preterm (Abernethy et al., 2004) and with verbal impairment in 14-15 

year olds who were born preterm (Nosarti et al., 2004).  

 

An important limitation of many ROI-based analyses is the reliance on arbitrary a priori 

definitions to manually delineate different brain regions. In addition, ROI studies are 

time-consuming and often have significant inter-subject variability which does not easily 

allow for comparison of many brain regions or large subject groups (Kubicki et al., 2002; 

Giuliani et al., 2005). Therefore, fully automated whole-brain measurement techniques 

for analysing MRI data are being increasingly used, the most common of which has been 

voxel-based morphometry (Ashburner and Friston, 2000). VBM uses image registration 

to bring brain images from different subjects into a common coordinate system for 

analysis (Ashburner and Friston, 2000; Crum et al., 2004), and has been used in DTI 

studies of schizophrenia (Giuliani et al., 2005), white matter asymmetry (Buchel et al., 

2004) and supranuclear palsy (Padovani et al., 2006). There remains, however, ambiguity 

as to whether apparent differences highlighted using VBM approaches are due to 

differences in brain regions or to local misalignment. Smith et al performed a comparison 

study of TBSS and VBM-style analysis on FA data from schizophrenics and control 

subjects and found that VBM analysis generated several spurious results due to imperfect 

registration, including the demonstration of FA differences within the ventricles (Smith et 

al., 2006). Giuliani et al have observed that VBM findings do not always replicate ROI 

analyses of DTI data (Giuliani et al., 2005), and given that the choice of spatial 

smoothing extent of the segmentation output data also remains unresolved, some 

investigators have concluded that VBM should not be used with imperfectly registered 

images (Bookstein, 2001; Davatzikos, 2004). Tract-based spatial statistics overcomes 

some of the limitations of both ROI and VBM approaches to analyse neonatal data. TBSS 

aligns diffusion tensor FA data from different subjects via a nonlinear registration 

algorithm followed by projection onto an alignment-invariant tract representation prior to 

applying voxelwise statistics. The method therefore represents an observer-independent 

method of analysing neonatal DTI data without requiring spatial smoothing and can offer 

new insights into the development of the preterm brain. 
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4.6 Summary 
 

In this study the results of voxelwise cross-subject statistical analysis of neonatal DTI 

data has been used to perform non-subjective ROI-based analyses only in areas of FA 

difference. It has allowed the detection of microstructural changes on a voxel basis in a 

small sample group of preterm infants at term for the first time. The centrum semiovale, 

frontal white matter and genu of the corpus callosum had significantly lower FA in this 

group of preterm infants at term equivalent age compared to age- and sex-matched term-

born controls, with the most immature infants displaying additional and more extensive 

reductions in FA. This was due to an increase in radial diffusivity and most likely a result 

of delayed myelination or oligodentrocyte damage. 

 

 

 

4.7 Further questions 
 

It is likely that prematurity in itself is not responsible for some of the later problems that 

preterm-born infants are more susceptible to. It is perhaps more probable that specific 

clinical factors contribute to altered cerebral development in different parts of the brain. 

A further study with larger numbers of infants will allow the assessment of the 

association of clinical variables such as gender, infection and acute and chronic lung 

disease on white matter microstructural properties in the developing preterm brain. 
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Chapter 5 
 

Fractional Anisotropy 
Changes Associated with 
Lung Disease Amongst 
Preterm-Born Infants 

 

 

5.1 Introduction 
 

In the previous study, it was demonstrated using TBSS that preterm-born infants have 

microstructural white matter differences compared to age- and gender-matched term-

control subjects as early as term-equivalent age. However, it is not clear what aspect(s) of 

premature delivery is/are responsible for some of the later problems in brain growth and 

development, or if specific diseases or interventions during the perinatal period contribute 

to abnormal cerebral structure and growth patterns. 

 

Epidemiological evidence suggests that respiratory disease amongst the preterm-born 

population is associated with adverse neurological outcome. Preterm infants with 

supplemental oxygen needs at 28 days postnatal life show reductions in deep grey matter 

volume at term age (Boardman et al., 2007) and those requiring oxygen at 36 weeks 

corrected age have reduced growth throughout the brain (Thompson et al., 2007). These 

reductions may have cognitive consequences, with Short (Short et al., 2003) and Hughes 
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(Hughes et al., 1999) reporting that at school-age, these infants have deficits in reading 

and mathematical ability compared to term-born peers. 

 

It is suggested that problems with respiration and gas exchange, as well as pulmonary 

inflammation and the effects of mechanical ventilation may directly cause cerebral white 

matter damage. However respiratory insufficiency is more common in more preterm 

infants and it has not previously been possible to disassociate the effects of lung disease 

and its treatments from increasing immaturity at birth. TBSS allows multivariate 

statistical analysis of large groups of images. This new technical advance, allied to a 

much bigger study, allows confounding variables to be accounted for, and for the first 

time provides the tool needed to address the hypothesis that respiratory disease is 

independently associated with cerebral white matter abnormalities in preterm infants. 

This may allow a more advanced and subtle understanding of the effects of respiratory 

disease on cerebral white matter, and influence the clinical treatment of preterm infants to 

potentially prevent certain adverse neurological outcomes in the long-term. 

 

 

 

5.2 Aim 
 

The aim of this study was to use TBSS to investigate the association between both acute 

respiratory distress at birth and chronic lung disease and cerebral white matter in preterm 

infants imaged at term, having accounted for confounders including the effects of 

increasing prematurity, age of the infants at imaging, gender and approximate evidence of 

serious infection. 
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5.3 Materials and methods 
 

The MRI data used in this study were acquired by other researchers as part of a number 

of ongoing studies at Hammersmith Hospital. Ethical permission was granted by the 

Hammersmith Hospital Research Ethics Committee (2003/6564 and 04/Q0406/125). 

Written parental consent was obtained prior to imaging for each subject. 

 

5.3.1 Subjects 
 
Fifty-three infants (30 female) who were born at a median (range) gestational age (GA) 

of 28+2 (24+2 – 32+4) weeks and median birth weight of 1030 (640 – 1940) g were studied. 

The median (range) age at the time of imaging, defined as the time from the first day of 

the mother’s last menstrual period, was 42+0 (38+1 – 44+2) weeks and the median (range) 

weight was 3400 (2000 – 5500) g. 

 

Twelve (6 female) of the cohort had prolonged (>18 hours) rupture of membranes 

(PROM) with a median (range) of 1 (1 - 9) day, and seventeen were delivered vaginally. 

In total, forty-two infants were treated with surfactant and forty-three with antenatal 

steroids. None of the cohort was given steroids in the postnatal period. Three subjects 

required inotropes. 

 

There were ten (4 female) infants with evidence of acute respiratory disease in the 

immediate perinatal period, defined as the need for mechanical ventilatory support for at 

least two days following delivery (median (range) of 3.5 (2 – 33) days). 

 

Fifteen (9 female) neonates in the cohort were classed as having chronic lung disease, 

defined by the need for supplemental inspired oxygen at 36 weeks post-menstrual age. 

 

Lacking a definitive test for septicaemia, available data suggesting serious infection was 

gathered. Fifteen (9 female) of these infants had clinical evidence of sepsis, including 
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culture-positive blood films for coagulase-negative staphylococcus aureus (n = 7) or 

enterococcus species (n = 1), varicella IgG (n = 1) or raised C-reactive protein (n = 6). 

 

Table 5.1 shows the overlap between each of the confounding variables, study variables 

and exploratory variables amongst the study population. 
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Gestational 
age (weeks) 

Age at scan 
(weeks) 

PROM > 
24 hours 

Acute lung 
disease status 

CLD 
status 

Sepsis 
status Subject Gender 

1 f 24.3 44.0 0 1 1 1 
2 m 24.4 42.0 0 1 0 0 
3 f 24.7 39.1 1 1 1 1 
4 m 25.1 43.7 0 1 1 0 
5 f 25.3 41.9 0 0 0 0 
6 f 25.3 41.9 0 0 0 0 
7 f 25.7 42.1 1 0 1 0 
8 f 25.7 42.1 0 0 1 0 
9 f 26.0 40.7 0 0 0 1 
10 f 26.0 41.6 1 0 1 0 
11 f 26.0 42.0 0 0 0 0 
12 m 26.1 41.4 0 0 0 1 
13 f 26.1 41.7 1 0 0 0 
14 f 26.1 41.7 0 0 0 1 
15 m 26.1 43.0 0 0 1 1 
16 f 26.1 43.3 0 0 1 0 
17 m 26.1 43.3 0 0 1 0 
18 m 26.3 43.6 0 0 1 1 
19 f 26.7 39.7 0 1 0 0 
20 f 26.7 40.6 0 0 0 0 
21 f 26.7 40.6 0 0 0 0 
22 f 27.4 44.0 1 0 0 1 
23 f 27.9 38.1 1 0 1 0 
24 f 27.9 38.1 0 0 1 0 
25 m 27.9 43.1 0 0 0 1 
26 m 28.0 40.1 1 1 0 1 
27 f 28.3 42.7 0 1 1 1 
28 m 28.3 44.3 0 0 0 0 
29 m 28.4 43.0 0 0 1 0 
30 m 28.4 43.0 0 0 0 0 
31 f 28.7 42.0 1 0 0 0 
32 f 28.7 42.9 1 0 0 0 
33 f 29.0 41.9 0 0 0 1 
34 f 29.3 43.0 0 0 0 1 
35 m 29.3 40.3 0 1 0 0 
36 f 29.7 42.1 0 0 0 0 
37 m 30.0 40.3 0 1 1 0 
38 f 30.0 43.3 0 0 0 0 
39 m 30.1 42.3 0 1 0 1 
40 m 30.4 41.0 0 0 0 0 
41 m 30.4 42.0 0 0 0 0 
42 m 30.4 42.0 0 0 0 0 
43 f 30.6 42.0 1 0 0 0 
44 f 30.6 40.7 0 0 0 0 
45 m 30.6 40.7 0 0 0 0 
46 f 30.7 39.9 0 0 0 0 
47 m 30.7 39.1 1 0 0 0 
48 m 30.9 41.4 0 0 0 0 
49 m 31.0 40.4 0 0 0 1 
50 m 31.6 43.0 1 0 0 0 
51 m 31.6 43.0 0 0 0 0 
52 f 32.1 44.1 0 0 0 0 
53 f 32.6 43.9 0 0 0 0 

Table 5.1: A correlation table of the association between each of the confounding 
variables, study variables and exploratory variables in the study population 
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5.3.2 Magnetic resonance imaging 
 
MRI was performed on a Philips Achieva 3 Tesla system (Philips Medical Systems, 

Netherlands) using an eight-channel phased array head coil. The infants were prepared 

for examination in the same way described in Section 4.3.2. 

 

Sagittal 3D magnetization prepared rapid acquisition gradient echo (MPRAGE) images 

(TR 17 ms, TE 4.6 ms, flip angle 13o, voxel size 0.82 x 0.82 x 1.6 mm3) and transverse 

T2-weighted fast spin echo (FSE) (TR 5200 ms, TE = 12.8 ms, flip angle 90o, voxel size 

0.86 x 0.86 x 1 mm3) were obtained prior to DTI. 

 
 

5.3.2.1 Diffusion Tensor Imaging 
 
Single shot EPI DTI was acquired in 15 noncollinear directions using the following 

parameters: TR 8000 ms, TE 49 ms, slice thickness 2 mm, field of view 224 mm, matrix 

128 x 128 (voxel size = 1.75 x 1.75 x 2 mm3), b value = 750 s/mm2. The data were 

acquired with a SENSE factor of 2 and the scanning time for this sequence was 5 

minutes. 

 
 

5.3.3 Data analysis 
 
As in the previous study, data analysis was performed using tools included in FSL v3.3.7 

(Smith et al., 2004). Data were transferred off-line and the fifteen diffusion weighted 

images were registered to the b = 0 s/mm2 image to correct for differences in spatial 

distortion due to eddy currents (Behrens et al., 2003). Images were brain extracted using 

BET (Smith, 2002), before FA maps were generated by fitting the diffusion tensor model 

to the data using ‘dtifit’ (Behrens et al., 2003). 

 

Voxelwise statistical pre-processing of the FA data was carried out using TBSS v1.0 

(Smith et al., 2006) as described previously. Multivariate voxelwise statistical analysis 
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was performed on the data using Randomise (Nichols and Holmes, 2002), as described in 

Section 4.3.4. 

 

The correlation between FA and study variables was assessed using linear regression 

analysis of voxelwise cross-subject statistics corrected for multiple comparisons using 

cluster-based thresholding (cluster size = 3, p-value < 0.05). To assess the amount of 

variance in the FA data that could be explained by any of the study variables, regions 

which showed a significant correlation between FA and any of the study variables were 

then further explored with local region-of-interest (ROI) based analyses. In each region, 

SPSS 12.0 (http://www.spss.com/SPSS) was used to fit the FA data to a forced-entry 

multivariate linear regression model containing both the study variable as well as the 

confounder variables of GA and age at imaging as free parameters. Beta-coefficients 

were calculated for each parameter, and R-squared values and the standard error of the 

estimate were obtained for the model. The effect of outliers on the model was assessed by 

determining the standardised residuals and Cook’s distance for each data point. 

 

Prior to the primary analysis the effect of the two known confounders on FA were 

examined: gestational age at delivery and age at imaging. The association between acute 

or chronic respiratory disease and FA was then assessed, having regressed out the effects 

of GA and age at imaging. Finally some exploratory analyses were performed to 

determine if the observed effects might be further confounded by other variables: gender, 

serious infection and premature rupture of membranes (PROM). 
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5.4 Results 
 

5.4.1 Confounding variables 
 

5.4.1.1 Increasing prematurity 
 
FA values in the splenium and posterior body of the corpus callosum, the left posterior 

limb of the internal capsule (PLIC), left frontal white matter and left inferior longitudinal 

white matter were significantly linearly correlated with GA after having regressed out the 

effects of age at scan on the data (Figure 5.1). A linear relationship between GA and FA 

was also suggested in the genu of the corpus callosum and left inferior longitudinal 

fasciculus, but this did not survive full multiple comparison correction with cluster-based 

thresholding (cluster-size = 3; p < 0.05) 

 
 

5.4.1.2 Age at imaging 
 
After regressing out the effects of GA, FA values throughout the whole of the cerebral 

white matter contained within the skeleton were found to be positively correlated with 

post-menstrual age at scan. 

 
 

5.4.2 Study variables 
 

5.4.2.1 Acute lung disease 
 
Infants that were ventilated for ≥ 2 days (n = 10) had a localised area of reduced FA 

within the genu of the corpus callosum compared to infants that were not ventilated or 

who were ventilated for shorter periods (Figure 5.2). Defining this as a region of interest 

and fitting a linear model to the FA with GA, age at imaging and acute lung disease status 

as free parameters revealed that prolonged ventilation was associated with an FA change 
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of −0.074 (standard error 0.017, 95% confidence interval -0.109 to -0.039) after 

accounting for GA and age at imaging (Figure 5.3). The Cook’s distance was not more 

than 0.25 for any of the data points, suggesting that the model was not significantly 

affected by outliers. The model explained 46% of the variance in FA (Table 5.2). A 

correlation between acute lung disease status and FA at term was not found when the data 

were averaged over the whole of the mean FA skeleton (Student’s t-test, p = 0.39). 

 
 

5.4.2.2 Chronic lung disease 
 
Preterm-born infants that required oxygen therapy at 36 weeks gestation (n = 9) were 

considered to have chronic lung disease and seen to have lower FA compared to chronic 

lung disease-negative subjects in the left inferior longitudinal fasciculus (Figure 5.4), but 

not in any other brain areas. A region of interest was placed here and a linear model of 

FA was constructed with GA, age at imaging and chronic lung disease status as free 

parameters, showing that chronic lung disease was associated with a -0.036 (standard 

error 0.007, 95% confidence interval -0.051 to -0.022) change in FA at term-equivalent 

age (Figure 5.5). The maximal Cook’s distance was 0.33, and the model had an R-

squared of 0.534 (Table 5.3). There was not a statistically significant correlation between 

chronic lung disease status and FA at term when the data were averaged over the whole 

of the mean FA skeleton (Student’s t-test, p = 0.21). 

 
 

5.4.3 Exploratory variables 
 

5.4.3.1 Gender 
 
No gender-related differences in cerebral white matter at term age were found, as 

assessed by FA in any region following preterm birth. 
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5.4.3.2 Evidence of serious infection 
 
The effects of both culture-positive and clinically-diagnosed sepsis on white matter were 

analysed, but found no differences in FA compared to infants with no documented 

evidence of serious infection. 

 

 

5.4.3.3 Prolonged rupture of membranes 
 
Differences in FA were not observed in any region between infants whose mothers did 

and did not have membrane rupture ≥ 18 hours prior to delivery. 

 

 

 
Figure 5.1: The effect of increasing prematurity at birth on cerebral white matter at 
term equivalent age 
Mean FA skeleton (green) overlaid on mean FA map in the sagittal (a), axial (b) and 
coronal (c) and planes. Voxels showing a significant linear correlation (c ≥ 3, p < 0.05) 
between FA and GA are shown in orange/yellow and include the splenium (b, c) and 
posterior body of the corpus callosum, the left posterior limb of the internal capsule (b), 
the left frontal white matter (a) and left inferior longitudinal white matter (c). 
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Figure 5.2: The association between acute lung disease and FA at term-equivalent 
age 
Mean FA skeleton overlaid on the mean FA map. Regions in green represent areas where 
there was no significant difference in FA values between infants that developed acute 
lung disease compared to infants that did not require ventilation for ≥ 2 days. Voxels in 
blue represent regions where the FA was significantly lower in the acute lung disease 
group after having regressed out the effects of GA and age at scan, and delineate only the 
genu of the corpus callosum (a) (b) (c). 
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Figure 5.3: The association between acute lung disease and FA in the genu of the corpus callosum at term-equivalent age 
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A multivariate linear model comprising GA, age at imaging and acute lung disease status was fitted to the FA values in an ROI in the 
genu of the corpus callosum (for model parameters see Table 5.2). This figure shows the scatter plots of the residuals of FA and each 
of the predictors in this region (GA, top left; age at scan, right; acute lung disease status, bottom left) when all three variables are 
regressed separately on the remaining predictors. 
Key: e( FA | X) = FA residuals given the regression model; e( gestational age at birth | X) = residuals of gestational age at birth given 
the model; e( age at scan | X) = residuals of age at scan given the model; e( dichotomised ventilation status | X) = residuals in acute 
lung disease status given the model. 
 

 

 
Figure 5.4: The association between chronic lung disease and FA at term-equivalent age 
Mean FA skeleton overlaid on the mean FA map. Regions in green represent areas where there was no significant difference in FA 
values between the cohort of infants that had chronic lung disease, as defined by supplemental oxygen requirement at 36 weeks PMA, 
and those that were negative for chronic lung disease. Voxels in yellow highlight the left inferior longitudinal fasciculus, the only 
region found where FA was significantly lower in the group that had chronic lung disease after having regressed out the effects of GA 
and age at scan. 
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Figure 5.5: The association between chronic lung disease and FA in the left inferior longitudinal fasciculus at term-equivalent 
age 
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A multivariate linear model comprising GA, age at imaging and chronic lung disease status was fitted to the FA values in an ROI in 
the left inferior longitudinal fasciculus. This figure shows the scatter plots of the residuals of FA and each of the predictors in this 
region (GA, left; age at scan, middle; chronic lung disease status, right) when both variables are regressed separately on the remaining 
predictors. 
Key: e( FA | X) = FA residuals given the regression model; e( gestational age at birth | X) = residuals of gestational age at birth given 
the model; e( age at scan | X) = residuals of age at scan given the model; e( dichotomised CLD status | X) = residuals in chronic lung 
disease status given the model. 
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Model parameters Unstandardised coefficients FA correlations 

 B 95% confidence interval for 
B 

Standard 
error 

Zero-
order Partial t-stat p-value 

  Lower 
bound 

Upper 
bound    

(Constant) -0.110 -0.632 0.210 0.209 - - -1.008 0.319 

GA 0.008 0.002 0.015 0.003 0.407 0.372 2.803 0.007 

Age at imaging 0.011 0.002 0.019 0.004 0.310 0.320 2.363 0.022 

Acute lung disease 
status -0.074 -0.109 -0.039 0.017 -0.564 -0.516 -4.214 <0.001 

Table 5.2: FA multivariate linear model summary in the genu of the corpus callosum 
FA was found to be significantly correlated with acute lung disease status in the genu of the corpus callosum. A multivariate linear 
model containing GA, age at imaging and dichotomised acute lung disease status was fitted to the FA data in this region with the 
following summary statistics. 
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Model parameters Unstandardised coefficients FA correlations 

 B 95% confidence interval for 
B 

Standard 
error 

Zero-
order Partial 

  Lower 
bound 

Upper 
bound    

t-stat p-value 

(Constant) -0.112 -0.299 0.075 0.093 - - -1.207 0.233 

GA 0.001 -0.002 0.004 0.001 0.329 0.117 0.826 0.413 

Age at imaging 0.009 0.005 0.013 0.002 0.431 0.540 4.495 <0.001 

Chronic lung 
disease status -0.036 -0.051 -0.022 0.007 -0.579 -0.580 -4.984 <0.001 

Table 5.3: FA multivariate linear model summary in the left inferior longitudinal fasciculus 
FA was found to be significantly correlated with chronic lung disease status in the left inferior longitudinal fasciculus. A multivariate 
linear model containing GA, age at imaging and chronic lung disease status was fitted to the FA data in this region with the following 
summary statistics. 
 



5.5 Discussion 
 

Preterm infants with neurodevelopmental impairment frequently have multiple risk 

factors, including early respiratory difficulties, evidence of antenatal or postnatal sepsis 

and chronic lung disease. The neuropathological substrate for this impairment is thought 

to involve cerebral white matter damage but the convergence of multiple risk factors has 

previously made it difficult to determine specific associations between white matter 

abnormality and clinical events. In this study DTI data was analysed with TBSS to 

objectively investigate the association between acute and chronic lung disease status and 

cerebral white matter in preterm infants imaged at term-equivalent age. Having regressed 

out the strong effects of GA and age at scan on FA, infants that developed acute lung 

disease (i.e. those who were ventilated for ≥ 2 days; n = 10), displayed a highly localised 

region of reduced FA within the genu of the corpus callosum relative to infants that were 

not ventilated or who were ventilated for shorter periods (Figure 2). Fitting a multivariate 

linear model to the mean FA values in this region, developing acute lung disease was 

found to be correlated with a change in FA of -0.074 (95% confidence interval –0.109 to 

–0.039) at term-equivalent age. Amongst infants diagnosed with chronic lung disease, 

described as supplemental oxygen requirement at 36 weeks, decreased FA in the left 

inferior longitudinal fasciculus compared to infants negative for chronic lung disease 

(Figure 4) was found. Again a multivariate linear model was fitted, suggesting that 

positive chronic lung disease status is associated with a -0.036 (95% confidence interval 

–0.109 to –0.039) change in FA in this region at term-equivalent age. 

 

Infants with acute lung disease requiring prolonged ventilatory support frequently have a 

number of risk factors that are associated with preterm brain injury, including antenatal 

sepsis and patent ductus arteriosus, and prolonged mechanical ventilation has 

independently been linked with brain injury including intraventricular haemorrhage due 

to fluctuating cerebral blood flow patterns (Perlman et al., 1983; Perlman et al., 1985) 

mediated by arterial carbon dioxide levels (Collins et al., 2001). It is unclear why white 

matter within the genu of the corpus callosum would be more susceptible to this form of 
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injury and have reduced FA at term-equivalent age. To my knowledge there are no 

documented neuroanatomical or neurovascular features of the genu that suggest a 

plausible hypothesis for the specificity of this finding. However, it has been suggested 

that since the blood supply to the genu of the corpus callosum is from the terminal 

branches of the anterior cerebral artery, the region may be particularly susceptible to 

hypoxic-ischaemic injury as it is the equivalent of a watershed zone (Coley and Hogan, 

1997). This result suggests that either risks associated with acute lung disease or injury 

associated with patterns of ventilation may render this area of the brain more vulnerable 

to later abnormality, and may over time lead to deficits in cognition and executive 

function. This is consistent with a study of preterm infants in later life that showed a 

reduction in volume in this region compared to term-born control infants, and suggested 

an association with neurodevelopmental impairment (Caldu et al., 2006). 

 

The incidence of chronic lung disease is approximately one in three in preterm infants 

with a birth weight of <1000 g (Jobe and Bancalari, 2001). Antenatal infection may make 

the foetal respiratory system more vulnerable to potentially harmful postnatal stimuli 

such as mechanical ventilation, and this may result in an excessive inflammatory 

response in neonatal airways and lung tissue (Maxwell et al., 2006; Speer, 2004). 

However, though there are strong associations between perinatal infection, the foetal 

inflammatory response and both chronic lung disease and white matter disease, 

Dammann (Dammann et al., 2004) reported that newborns that develop chronic lung 

disease are not at increased risk of white matter disease, as detected using ultrasound. 

Diffusion tensor imaging can discriminate more subtle microstructural white matter 

deficits however, and in this study a highly localised focal reduction in FA within the left 

inferior longitudinal fasciculus was found. This is unprecedented and the functional 

effects are not known, although a recent study has proposed that the left inferior 

longitudinal fasciculus plays a key role in semantic language processing (Mandonnet et 

al., 2007). However it is important to recognize that the localizations found in this study 

represent brain regions where white matter is abnormal across the group of infants. It is 

possible that individuals will each have other regions of white matter damage. Further 

studies will be needed to explore the within group variation, but the present study detects 
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regions of predilection for white matter damage in the population. The prevention or 

treatment of CLD with corticosteroids is associated with neurodevelopmental impairment 

(Yeh et al., 1998; Yeh et al., 2004; Short et al., 2003; O'Shea et al., 1999; Shinwell et al., 

2000), but no infants in this group received postnatal treatment with steroids. 

 

The effect of increasing prematurity on white matter microstructure has been described 

previously; DTI has been used to characterize developmental changes in the preterm 

brain and to elucidate microstructural white matter developmental trajectories in preterm 

infants born at different gestational ages (Neil et al., 1998; Miller et al., 2002; Partridge et 

al., 2004). As outlined in Section 3.3.2, these ROI based studies have shown regionally 

dependent anisotropy increases in white matter with increasing gestational age (Counsell 

et al., 2003a). 

 

Elevated ADC values (Huppi et al., 2001) and diminished RA values in white matter 

(Weinberger et al., 1982) have been reported to be associated with abnormal white matter 

at term equivalent age. Compared to those with normal-appearing white matter, preterm 

infants with evidence of white matter injury have been reported to fail to demonstrate the 

normal maturational decrease in ADC near-term age (Miller et al., 2002), and it has 

recently been shown that elevated mean ADC values in preterm infants imaged at term 

are associated with reduced developmental quotient scores at two years corrected age 

(Krishnan et al., 2007). 

 

The current study demonstrates that the FA reductions noted in the splenium, the left 

PLIC and the left frontal white matter occurs in a linearly dose-dependent manner with 

decreasing GA. This was not found to be the case in any of the other regions with 

abnormal diffusion properties in my previous TBSS study of preterm infants at term 

compared to term-born infants, though defining manual ROIs on the mean FA skeleton 

based on those results did show a nonlinear trend of decreasing FA with increasing 

immaturity at birth. The bilateral asymmetry in the relationship between FA and GA in 

the PLIC, frontal white matter and inferior longitudinal white matter is interesting. 

Weinberger (Weinberger et al., 1982) found that the right and left frontal lobes have 
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different volumes as early as 20 weeks gestation in humans, but the correlation with 

microstructural changes remains unclear, and has not been previously highlighted in the 

literature. 

 

Male preterm infants are known to be at increased risk of brain injury in the perinatal 

period, leading to an increased prevalence of motor abnormalities including cerebral 

palsy associated with focal lesions (Wood et al., 2005), as well as diffuse white matter 

injury, resulting in increased incidence of learning and behavioural disorders at school 

age (Wood et al., 2005). However, in this study a correlation between gender distribution 

and FA values in any of the major cerebral white matter pathways at term age was not 

found. The reasons for this are unclear but may be because the microstructural neuro-

imaging correlates related to these long-term gender outcomes following preterm birth 

are not associated with FA in the centre of white matter tracts, but it is more likely that 

the study is underpowered to detect differences in this exploratory variable and that the 

effects of gender are more subtle that the effects of respiratory disease. 

 

There has been much recent evidence that antenatal infection and the inflammatory 

response may at least partially explain the relationship between preterm birth and white 

matter disease (Dammann et al., 2002; Dammann and Leviton, 2004). Group B 

streptococcal infection has been implicated in this effect (Faix and Donn, 1985), and 

histology studies have shown that chorioamnionitis, an expression of maternal infection, 

is associated with increased risk of cPVL lesions (Wu, 2002). Recently, Krishnan 

(Krishnan et al., 2007) found elevated ADC values in the white matter at the level of the 

centrum semiovale in preterm infants with postnatal sepsis. However, in our exploratory 

analysis of the effect of sepsis we used a wide range of indicators to select affected 

preterm-born infants without any sign of focal lesions on conventional MRI, but did not 

find an association between clinical evidence of sepsis and white matter abnormality. As 

in the gender study, this may be due to effects on white matter away from the centre of 

major tracts or because the study is underpowered. However the most likely reason is that 

clinical measures of sepsis status such as raised C-reactive protein are neither sensitive 

nor specific markers and fail to capture the true inflammatory burden distributed within 
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this population. Half of the subjects in the sepsis group did not have culture-positive 

sepsis, and the assessment of sepsis can at best be regarded as approximate. This study 

does not rule out a significant role of infection and inflammation in cerebral white matter 

disease. More specific markers of infection may enable a more accurate elucidation of the 

relationship between these factors. 

 

 

5.6 Summary 
 

In summary, this study has demonstrated that acute and chronic lung disease in the 

neonatal period may be associated with regionally specific effects on white matter 

integrity, as assessed by FA values, over and above the effects of GA at birth. The group 

of infants who developed acute lung disease displayed reductions in FA restricted to the 

genu of the corpus callosum, whereas the infants requiring long-term oxygen therapy had 

a large region of lower FA in the left inferior longitudinal fasciculus. Region-specific 

effects on FA related to gender or clinical sepsis status were not observed in the centres 

of major white matter pathways, but increasing immaturity at birth was linearly 

correlated with FA at term-equivalent age in a number of different white matter regions. 

 

Our findings suggest that specific insults and support requirements in the neonatal period 

may lead to regionally specific effects on white matter integrity, as assessed by FA 

values, and may be an important predictor of the types of neurocognitive vulnerabilities 

that infants born preterm may be at risk from. Additional studies will be needed to 

explore whether or not these are causative relationships, however, and if so why these 

areas may be more susceptible to changes than others in within the developing preterm 

brain. 
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Chapter 6 
 

Optimisation of a B-Spline 
Based Registration 

Algorithm for 
Retrospective Correction of 

Geometric Distortions in 
Neonatal DTI Data 

 

 

6.1 Introduction 
 
Group-wise analysis of anatomical MRI data is increasingly being performed using 

automated voxel-based morphometry style techniques. However, as described in Section 

2.6, most diffusion MRI data is acquired with an EPI readout, which makes achieving 

accurate image alignment prior to such analyses difficult. This is particularly true if the 

images are collected in the absence of higher order shimming, and if there is no 

additional field map data or images with opposing phase-encode directions which can be 

used to unwarp the diffusion data. Our previous studies used TBSS that works around the 

problems of EPI distortions and inaccurate registration by only including voxels in the 

centre of the major white matter pathways in the brain, away from distorted regions. 

173 



6.2 Aim 
 

In this chapter, work is presented on the application and optimisation of a nonlinear 

registration algorithm based on B-splines for retrospective correction of distortions in 

neonatal DTI data in the absence of additional information regarding B0 field 

inhomogeneities across the image, eddy currents and small motion artefacts. The goal 

was to develop a method which will allow non-subjective cross-subject comparisons of 

whole brain DTI data, without the need to perform the data reduction processes entailed 

in both TBSS and ROI approaches. Achieving accurate registration of diffusion data to an 

anatomical image acquired during the same scanning session is an important first step in 

this approach, and improves the robustness of subsequent normalisation to a common 

template. 

 

 

 

6.3 Materials and methods 
 

The MRI data used in this study were acquired by other researchers as part of a number 

of ongoing studies at Hammersmith Hospital. Ethical permission was granted by the 

Hammersmith Hospital Research Ethics Committee (2003/6564 and 04/Q0406/125). 

Written, informed parental consent was obtained for all subjects included in this study. 

 

6.3.1 Subjects 
 
Ten (5 female) preterm infants were studied at term-equivalent age. The median (range) 

gestational age of the cohort was 30+2 (28+5 – 32+1) weeks, and the median (range) age at 

the time of imaging, defined as the time from the first day of the mother’s last menstrual 

period, was 43+0 (39+6 – 44+1) weeks. 
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6.3.2 Magnetic resonance imaging 
 
MRI was performed using a Philips 3T Intera system with a six-channel phased array 

head coil, with infants prepared for imaging according to Section 4.3.2. 

 

High resolution T2-weighted fast spin echo (FSE) images were acquired in the transverse 

plane with a TR of 5200 ms, a TE of 12.8 ms, a flip angle of 90o, and a slice thickness of 

2 mm, with a -1 mm slice gap. The field of view was set to 220 x 220 mm2 and the matrix 

size was 256 x 256, corresponding to a voxel size of 0.86 x 0.86 x 1 mm3. 

 
 

6.3.2.1 Diffusion tensor imaging 
 
Single shot echo planar DTI was acquired in 15 non-collinear gradient directions. The 

pulse sequence parameters used were as follows: TR 9000 ms, TE 49 ms, slice thickness 

2 mm, field of view 224 mm, matrix 128 x 128 (resulting voxel size = 1.75 x 1.75 x 2 

mm3), b = 750 s/mm2. In order to reduce the echo train length and therefore minimise 

distortions related to dephasing effects, parallel imaging was used; the data were acquired 

with a SENSE factor of 2 and the scanning time for this sequence was between 4 – 5 

minutes. 

 
 

6.3.3 Image registration 
 
The single-shot echo planar image in which no diffusion gradients were applied (the b = 

0 s/mm2 image) was coregistered to the high resolution undistorted anatomical T2-

weighted FSE data acquired during the same session. This was in order to correct for 

differences in subject motion between the acquisition of anatomical and DTI data as well 

as for geometric distortions associated with B0 field inhomogeneities. Prior to 

registration, both the source and target images were brain-extracted using BET (Smith, 

2002), part of the FSL package (Smith et al., 2004). 
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6.3.3.1 Image similarity measure 
 
Normalised mutual information (NMI) (Studholme, 1999), a variant of mutual 

information (MI) (Collignon et al., 1995) was chosen as the similarity metric (see section 

2.7.3.3.2). 

 
 

6.3.3.2 Transformation models 
 

6.3.3.2.1 Affine registration model 
 
Affine registration of source data to target data was performed using areg or its variants, 

part of the Image Registration Toolkit (http://wwwhomes.doc.ic.ac.uk/~dr/software/; 

Rueckert et al., 1999). When 3D volumes of the source and target data were registered, 

this was parameterised by 12 degrees of freedom, allowing for rotations, translations, 

scales and shears in all three orthogonal directions. Registrations using areg_x were 

limited to only allow transformations in the phase-encode (anterior  posterior) 

direction. In the 2D slice-to-slice approach, either a full affine registration was allowed, 

described by 6 DOFs (areg2D), or was restricted to only permit transformations along the 

phase encode direction (areg2D_x). 

 
 

6.3.3.2.2 Nonlinear registration model 
 
Nonlinear registration of the source data was performed using nreg or its variants 

(http://wwwhomes.doc.ic.ac.uk/~dr/software/; Rueckert et al., 1999). This models the 

local distortion in the data using a free-form deformation (FFD) model based on B-

splines (Lee et al., 1996), which is a powerful tool for modelling 3D deformable objects 

and has been previously applied to neonatal brain data (Boardman et al., 2006). FFDs 

deform an object by manipulating an underlying mesh of control points to yield a smooth 

deformation of structures embedded in the image, where the control points act as 

parameters of the transformation (see Section 2.7.8.4 for more details). A slight 
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modification to the tool was developed that restricted nonlinear transformations of the 

data to the phase-encode direction (nreg_x). 

 
 

6.3.3.2.3 Affine and nonlinear registration parameters 
 
The parameters required for the affine and nonlinear registration models are listed in 

Table 6. Other than for the choice of the similarity measure, the parameters that seemed 

to allow maximum correspondence between the source (the b = 0 s/mm2 image) and the 

target (the T2-weighted FSE image) data were empirically determined for both the affine 

and nonlinear models. 

 
 

6.3.3.3 Optimal transformation 

 
The optimal transformation was found by minimising a cost function associated with the 

global and local transformation parameters, and comprised two competing goals: the cost 

associated with the voxel-based similarity measure (in this case, NMI) and the 

deformation cost term (λ), which was based on the squared sum of the second derivatives 

of the deformation field and constrained the transformation to be smooth (Rueckert et al., 

1999; Boardman et al., 2006). 

 

In order to assess the effect of different affine and nonlinear registration parameters in 

correcting for subject motion between the acquisition of the two images and EPI-induced 

distortions in different parts of the brain, visual inspection was first used. The b = 0 

s/mm2 image following registration and transformation into T2 space with the given 

parameters was overlaid on the T2-weighted FSE image. Algorithms that seemed to 

produce the closest alignment between the images were then empirically optimised to 

robustly maximise correspondence in an acceptable time frame (deemed to be less than 

one hour processing time on a standard desktop workstation). 
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6.3.3.4 Comparison with other registration algorithms 
 
The most successful and robust algorithm (that is, the one that closely aligned pairs of 

images from the same subject and could do so for all ten subjects in the study group), was 

compared to two widely used registration methods incorporated in MR image analysis 

packages: 

1. FLIRT (see Section 2.7.8.1), a tool for aligning brain images using affine 

transformations and incorporated in FSL version 4.0; and 

2. Align_warp (section 2.7.8.2.2), part of the AIR version 5.0 software suite that 

uses a higher order polynomial model and can allow up to 1365 independent 

degrees of freedom to register images. 

 
 

6.3.3.4.1 FLIRT 
 
The FLIRT parameters used to register pairs of images are given in Table 6. The 

parameters were selected based on recommendations suggested by developers of the 

algorithm for registering EPI data (acquired for functional MRI studies) to intrasubject 

anatomical data, and so are appropriate for this study. Two different FLIRT registrations 

were compared to the optimised B-spline based algorithm: a 7 DOF model (allowing 

translations and rotations in x, y and z along with a global scale) and a full 12 DOF 

model, with all other registration parameters kept fixed. 
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Option Chosen Parameter 

Global rescale (7 parameter model) / Affine (12 
parameter model) Transformation model 

Cost function Normalised mutual information 

Interpolation mode Trilinear 

-90o to +90o across the x, y and z axes Search range 

Table 6.1: FLIRT registration parameters 
On the left are the options available to the user in FLIRT to align the images and on the 
right are the parameters selected in this study. 
 

 

6.3.3.4.2 Align_warp 
 
The nonlinear registration tool incorporated in AIR was first initialised using the 

alignlinear tool. That is, the images were first registered to each other using an affine 

transformation model, which provided the starting estimates for the subsequent nonlinear 

registration. The registration/transformation parameters for both the affine (alignlinear) 

and nonlinear (align_warp) components of the registration algorithm are given in Table 6. 

A very brief description of each parameter is provided, but for a fuller explanation see 

http://bishopw.loni.ucla.edu/AIR5/technicalnotes.html. 
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Option Chosen Parameter 
(alignlinear) 

Chosen Parameter 
(align_warp) 

Affine (12 parameter 
model) 

Fourth order nonlinear 
(105 parameter model) Transformation model 

Least squares with intensity 
rescaling Cost function Sum of squared 

differences (fixed) 

Interpolation mode Trilinear Trilinear 

Number of iterations 25 50 

Maximum number of 
iterations without 
improvement 

5 2 

Initial sampling (for cost 
function calculation) 81 (i.e. every 81st voxel) 81 

Final sampling 1 (every voxel) 9 

Scaling decrement ratio 3 3 

Convergence threshold 1.0 x 10-5
  5.0 x 10-1

Table 6.2: Alignlinear and align_warp registration parameters 
 

 

6.3.4 Validation of geometric and motion correction distortion 
algorithm 
 
A landmark-based strategy was employed to assess the quality of geometric and motion 

correction distortion algorithms and quantify the improvement in correspondence 

between the target (T2-weighted) and the source (b = 0 s/mm2) images from the same 

subject. In each of the subjects’ data, fifteen point landmarks were positioned throughout 

the brain in regions that were easily identifiable on both the anatomical T2-weighted 
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image (Figures 6.1-15, top row) and the unregistered b = 0 s/mm2 image (Figures 6.1-15, 

bottom row). The distance between corresponding landmarks was then calculated as the 

Euclidian distance between the points: 
 

222 )()()( zzyyxx QPQPQPR −+−+−=
 

 

where R is the distance between the landmark Px,y,z in the T2-weighted image and the 

corresponding landmark Qx,y,z in b = 0 s/mm2 image. 

 
Following registration with each of the models chosen, the new location of these 

landmarks in the registered b = 0 s/mm2 image was found by transforming the data into 

T2 space with the same transformation parameters used to transform the unregistered b = 

0 s/mm2 image. 

 
 

6.3.4.1 Fiducial localisation error 
 

In order to measure the consistency of landmark positioning, five of the infants had all 15 

landmarks independently placed on both the source and the unregistered target image on 

three separate occasions on consecutive days. 
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Figure 6.1: Landmark 1 - Most superior point of the left lateral ventricle (judged on a 
parasagittal sagittal slice) 
 
 

 
Figure 6.2: Landmark 2 - Most superior point of the right lateral ventricle (judged on a 
parasagittal slice) 
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Figure 6.3: Landmark 3 - The most anterior point of the left hemisphere of the brain 
This was not the true anterior-most part of the brain, but the most superior point on the coronal 
slice where grey matter could be seen in the left frontal lobe. 
 
 

 
Figure 6.4: Landmark 4 - The most anterior point of the right hemisphere of the brain 
Like landmark 3, this was not the true anterior-most part of the brain, but the most superior point 
on the coronal slice where grey matter could be seen in the right frontal lobe. 
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Figure 6.5: Landmark 5 - The most posterior part of the brain 
This was not the true posterior-most part of the brain, but the most superior point on the most 
posterior coronal slice where the two cerebral hemispheres joined together. 
 
 

 
Figure 6.6: Landmark 6 - The most anterior point of the left anterior horn of the lateral 
ventricle 
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Figure 6.7: Landmark 7 - The most anterior point of the right anterior horn of the lateral 
ventricle 
 
 

 
Figure 6.8: Landmark 8 - The most posterior point of the posterior horn of the left lateral 
ventricle 
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Figure 6.9: Landmark 9 - The most posterior point of the posterior horn of the right lateral 
ventricle 
 
 

 
Figure 7.10: Landmark 10 - The most inferior point of the inferior horn of the left lateral 
ventricle 
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Figure 6.11: Landmark 11 - The most inferior point of the inferior horn of the right lateral 
ventricle 
 
 

 
Figure 6.12: Landmark 12 - The tip of fourth ventricle 
The most posterior point at the junction of the cerebellum and the fourth ventricle. 
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Figure 6.13: Landmark 13 - The most anterior point of the ponto-medullary junction 

 
 

 
Figure 6.14: Landmark 14 - The most lateral point of the left cerebellar hemisphere 
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Figure 6.15: Landmark 15 - The most lateral point of the right cerebellar hemisphere 
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6.4 Results 
 

6.4.1 Optimised B-spline based registration of EPI (b = 0 s/mm2) data 
to high resolution anatomical (T2-weighted FSE) data 
 
XFigure 6.16 shows just some of the B-spline based registration models that were 

attempted in order to align the images. A brief description of the rationale and the results 

from only the most promising of these are described in the following section. 

 

Initially, only an affine transformation model was used to register the data. This was 

empirically optimised, and was found to improve correspondence between the b = 0 

s/mm2 image and the T2-weighted FSE image, since it allowed for the correction of 

subject motion between the acquisition of the two images. The alignment of the deep grey 

matter structures was particularly good, and subvoxel accuracy could be achieved. 

However, similar to the results presented below for the FLIRT 7 and FLIRT 12 parameter 

models, the cortex could not always be robustly aligned, particularly near regions of large 

geometric distortions in the EPI data. 

 

Given that the magnitude of the distortions present in EPI data are different depending on 

axial slice position (Figure 6.17), a 2D slice-by-slice registration was attempted. Based on 

the output of the 3D affine registration model described above, the b = 0 s/mm2 images 

were transformed into their corresponding target (T2) space before being resliced to 

produce equivalent source and target slices. Each b = 0 s/mm2 slice was then registered to 

its corresponding target slice using a 2D affine or a 2D affine followed by a 2D nonlinear 

registration algorithm. Registered slices were then recombined to produce a distortion 

corrected b = 0 s/mm2 brain volume. However, as can be seen the nonlinear (Figure 

6.18b) transformations applied to neighbouring b = 0 s/mm2 slices were not necessarily 

consistent, resulting in obvious discontinuities in the recombined 3D data which were not 

present in the target data (Figure 6.18c). 
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Figure 6.16: An overview of some of the B-spline based registration models used 
Key: b0 = echo planar image with no diffusion weighting applied (b = 0 s/mm2 image); T2 = T2-weighted FSE image; areg = affine 
registration model; areg_x = linear registration model with transforma s limited to the phase encode direction; nreg = nonlinear 
registration model; nreg_x = nonlinear registration model with transfor ons limited to the phase encode direction. 
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Figure 6.18: Slice-by-slice registration 
Unregistered source (b = 0 s/mm2) image (a); distortion corrected b = 0 s/mm2 brain 
volume following nonlinear slice-by-slice registration (b); target (T2-weighted FSE) 
image (c). 
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Figure 6.19: A hierarchical distortion correction registration algorithm using free-form deformations based on B-splines 
First, the whole brain b = 0 s/mm2 image was registered to the T2-weighted image using affine transformations. Following this, the 
two images were divided into two corresponding axial blocks of slices. Each block of b = 0 s/mm2 slices were individually registered 
to the equivalent block of T2-weighted image slices, first with affine transformations and then with nonlinear transformations. Blocks 
were then divided again and re-registered, before being further subdivided and registered until individual corresponding b = 0 s/mm2 
slices and T2-weighted slices were being registered. Registered b = 0 s/mm2 slices were then recombined into a 3D volume. 
 

 

Moving away from slice-by-slice registration approaches, a registration model was then optimised which used the previous estimate 

from the optimised 3D affine registration model as a starting point for a subsequent 3D nonlinear registration between the two images. 

This was parameterised to either only permit transformations in the phase-encode direction, or to allow control point displacement that 

was only regularised by the additional term in the cost function which constrained the transformation to be smooth. It was this final 

optimised model that consistently produced better alignment between the b = 0 s/mm2 images and the anatomical images than all the 

other B-spline based approaches attempted. A description of the parameters required for the affine and nonlinear registration models 

can be found in Table 6. The empirically derived values for these parameters in the optimised algorithm are given in Table 6., and it 

was the results of this method that were compared to the outputs from FLIRT and align_warp. 

 



 

Option Description 

Number of resolution 
levels 

The number of different control point spacings for the target 
and source images during registration with a multilevel 
approach. 

Number of bins The number of bins when constructing the joint histogram 
for the target and source. 

ε (Epsilon) 
The stopping point for the iterations of the optimisation (the 
registration terminates when the change in the similarity 

ed for successive iterations is less than ε). metric calculat

Padding value 

Allows exclusion of all image data outside the brain in the 
target image during registration and cost-function 
calculation. All voxels with the padding value intensity in the 
target image are ignored during registration. 

Similarity Image similarity measure used to compare the images. 

Interpolation The interpolation method to compute voxel intensities 
between control points. 

Optimisation method The optimisation method used when attempting to minimise 
the chosen cost function. 

Source/Target 
blurring 

Both the source and the target image can be blurred by 
different Gaussian kernels at different resolution levels (e.g. 
when control point spacing is coarse, the images can be 
heavily blurred to remove high frequency detail). 

Source/Target 
resolution 

Both the source and target image can be resampled at 
different resolution levels. 

Number of iterations 

The maximum number of iterations to use during 
optimisation at each resolution level (the registration will 
terminate earlier if the difference in the similarity metric 
calculated for successive iterations is less than ε). 

Number of steps The number of steps used when parameters are changed in 
the optimisation of the transformation parameters. 

Length of steps The amount by which the parameters are incremented when 
optimising the transformation parameters. 

λ1-3 
The weighting values for different types of regularisation 
penalty terms in the cost function. Up to three different 
regularisation terms can be included in the cost function. 

Control point spacing 
The spacing between control points. These can be different in 
the x, y, and z axes and can vary by different amounts at 
successive resolution levels. 

Table 6.3: The parameters required for affine and nonlinear registration of the 
source and target data using a FFD model based on B-splines 
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Option Chosen Parameter (affine 
model, areg) 

Chosen Parameter (nonlinear 
model, nreg) 

Number of 
resolution levels 3 2 

Number of bins 128 128 

ε (Epsilon) 0.0001 0.0001 

Padding value -1 -1 

Similarity Normalised mutual 
information Normalised mutual information 

Interpolation Linear Sinc 
Optimisation 
method Gradient descent Gradient descent 

Level 1: 1 Level 1: 0 
Level 2: 2 

Source blurring 
(in mm) 

Level 3: 4 Level 2: 1 

Level 1: 0.5 Level 1: 0 
Level 2: 1.0 Target blurring 

(in mm) 
Level 3: 2.0 Level 2: 1 

Level 1: 2.0 x 2.0 x 2.0 Level 1: 1.75 x 1.75 x 2 
Level 2: 4.0 x 4.0 x 4.0 Source resolution 

(in mm) 
Level 3: 8.0 x 8.0 x 8.0 Level 2: 4.0 x 4.0 x 4.0 

Level 1: 1.0 x 1.0 x 1.0 Level 1: 0.86 x 0.86 x 1 
Level 2: 2.0 x 2.0 x 2.0 Target resolution 

(in mm) Level 3: 4.0 x 4.0 x 4.0 Level 2: 2.0 x 2.0 x 2.0 

Level 1: 20 Level 1: 20 
Level 2: 20 

Number of 
iterations 

Level 3: 20 
Level 2: 20 

Level 1: 4 Level 1: 4 
Level 2: 4 Number of steps 
Level 3: 4 Level 2: 4 

Level 1: 2 Level 1: 1.5 
Level 2: 4 Length of steps 
Level 3: 8 Level 2: 3.0 

λ1-3 - λ1 = 0.1, λ2 = 0, λ3 = 0 

Level 1: 10 x 10 x 10 Control point 
spacing (in mm) - 

Level 2: 5 x 5 x 5 
Table 6.4: Optimised B-spline registration parameters 
The parameters that achieved the best correspondence between the source and target 
image for both the affine (middle column) and nonlinear (right column) components of 
the registration algorithm are listed. 
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Figure 6.22: A histogram showing the distance between the mean landmark position 
and the individually placed landmarks for all fifteen landmarks placed on each 
subject’s b = 0 s/mm2 image 
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LIRT and align_warp 

e lateral ventricle and cerebral cortex at the level of the hatched line delineating the two 

ages. Nonlinear registration with AIR’s align_warp tool initialised by an affine 

registration (performed using alignlinear) (Figure 6.23d) and using the optimised B-

Spline based method (Figure 6.23e) matches this correspondence. However, as can be 

seen by the deformation field representing the displacements of the initially regularly-

spaced control points (Figure 6.23f), in order to match the images in other regions of the 

slice required significant amounts of nonlinear warping. 

6.4.3 Visual comparison of optimised B-spline registration algorithm, 
F
 
Figure 6.23 shows the correspondence between the T2-weighted image (left of the 

hatched line) and the b = 0 s/mm2 image (right of the hatched line) from a representative 

subject prior to registration (a) and following each of the registration methods used in this 

study (b-e). In this parasagittal slice it can be seen that the baby has moved between the 

acquisition of the two images, and before registration they are in obvious misalignment 

(a). Registering the images using FSL’s FLIRT algorithm parameterised by 7 (Figure 

6.23b) or 12 (Figure 6.23c) degrees of freedom has successfully matched the borders of 

th

im
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atched line) image correspondence before and after 

l (b); registration with FLIRT 12 DOF transformation 
gistration using the proposed optimised B-spline based 
on field (f). 

Figure 6.23: T2-weighted (left of hatched line) and b = 0 s/mm ght of h
registration (sagittal slice) 
Unregistered image (a); registration with FLIRT 7 DOF transf on mode
model (c); nonlinear registration using AIR’s align_warp tool (d); linear re
registration algorithm (e); the B-spline based registration algorithm eformati
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Although both the 7 and 12 degree of freedom affine transformation models with the 

appropriate registration parameters in FLIRT could align anatomy at the level of the 

previous sagittal image, Figure 6.24b and 6.24c show that in the presence of local 

distortions in addition to movement between the acquisition of the images an affine 

model is insufficient to accurately register the anatomy. Although the deep grey matter is 

again well aligned, the cortex is misregistered (arrows). This cannot be corrected by a 

limited degree of freedom nonlinear registration using the align_warp tool in AIR, which 

was initialised using an affine transformation model (Figure 6.24d). Using the proposed 

optimised B-spline model, however, correspondence between both cortical as well as 

deep grey matter can be achieved. 
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2Figure 6.24: T2-weighted (below hatched line) and b = 0 s/mm  (above of hatched 

line) image correspondence before and after registration (axial slice) 
Unregistered image (a); registration with FLIRT 7 DOF transformation model (b); 
registration with FLIRT 12 DOF transformation model (c); nonlinear registration using 
AIR’s align_warp tool (d); nonlinear registration using the proposed optimised B-spline 
based registration algorithm (e); the B-spline based registration algorithm’s deformation 
field (f). 
 

 

In this coronal slice from the same infant, the FLIRT linear transformation models have 

provided good alignment between the two images (Figure 6.25b and c). However, 

registration with the AIR nonlinear (align_warp) model has not been as successful, 

despite the increased degrees of freedom allowed (Figure 6.25d). Good correspondence 

between the ventricles or inferior portions of the parietal cortex between the images at 

this level has not been achieved (arrows). 
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Figure 6.25: T2-weighted (left of hatched line) and b = 0 s/mm2 (right of hatched 
line) image correspondence before and after registration (coronal slice
Unregistered image (a); registration with FLIRT 7 DOF transformation m  
registration with FLIRT 12 DOF transformation model (c); nonlinear registration using 
AIR’s align_warp tool (d); nonlinear registration using the proposed opt ed  
based registration algorithm (e); the B-spline based registration algorithm e  
field (f). 
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algorithm

 

models reduces the variance in the distribution of 

differences between corresponding landmarks. 

 

6.4.4 Landmark-based comparison of optimised B-spline registration 
, FLIRT and align_warp 

 

6.4.4.1 Overall comparison of registration performance (fiducial 
registration error) 

Figure 6.26 shows histograms of the difference between corresponding landmarks on the 

b = 0 s/mm2 and T2-weighted images prior to registration (a) and following registration 

with the FLIRT 7 DOF (b), FLIRT 12 DOF (c), AIR nonlinear (d) and optimised B-spline 

(e) models. Registration with all 



 
Figure 6. e differe  c esponding landmarks on the b = 0 s/mm2 and T2-weighted images prior 
to and fol with the d used 
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6.4.4.2 Registration performance across subjects (fiducal registration 
error) 
 
XTable 6. shows the mean distance between corresponding landmarks in the b = 0 s/mm2

P 

and T2-weighted images before registration (second row) and following registration with 

the FLIRT 7 DOF (third row) and 12 DOF (fourth row) models, AIR’s align_warp tool 

(fifth row) and after using the optimised B-spline registration (sixth row) on a subject-by-

subject basis. Across all subjects, registration with FLIRT and with the optimised B-

spline algorithm resulted in smaller mean distances between corresponding landmarks in 

the T2-weighted and transformed b = 0 s/mm2 images than between the T2 images and 

the unregistered b = 0 s/mm2 images. In general, registration using AIR’s align_warp 

algorithm with the parameters listed in Table 6. also improved correspondence, but the 

performance was more variable. The mean distances between corresponding landmarks 

were larger following registration in subjects 3 (p = 0.21), 6 (p < 0.005) and 7 (p < 0.05). 

This was reflected in the registered b = 0 s/mm2 images in these subjects, which were still 

in obvious misalignment with the target T2-weighted image following registration. Table 

6. is presented as a line graph in Figure 6.27. 

 



 

Subject 
 

1 2 3 4 5 6 7 8 9 10 

Unregistered 2.41 ± 0.32 2.57 ± 0.41 3.07 ± 0.43 6.95 ± 0.46 7.15 ± 0.39 1.71 ± 0.20 5 .18 6  1.61 ± 0.14 5.83 ± 0.5 1.68 ± 0 .57 ± 0.45

FLIRT 7 DOF 2.18 ± 0.21 2.39 ± 0.40 2.74 ± 0.35 2.53 ± 0.39 2.24 ± 0.30 1.67 ± 0.19 1 .17 3  1.55 ± 0.11 4.10 ± 0.8 1.35 ± 0 .16 ± 0.40

FLIRT 12 DOF 2.25 ± 0.21 2.41 ± 0.40 2.76 ± 0.36 2.56 ± 0.40 2.10 ± 0.27 1.62 ± 0.18 1 1. .18 3  1.29 ± 0.18 3.98 ± 0.8 36 ± 0 .18 ± 0.41

AIR Nonlinear 1.43 ± 0.13 1.59 ± 0.12 3.51 ± 0.75 2.92 ± 0.55 2.32 ± 0.38 2.64 ± 0.41 5 1. .26 1  2.14 ± 0.24 1.83 ± 0.3 67 ± 0 .70 ± 0.25

Optimised B-
Spline 1.37 ± 0.14 1.45 ± 0.19 1.69 ± 0.24 2.19 ± 0.26 1.44 ± 0.21 1.07 ± 0.18 3 1. .16 1  1.48 ± 0.22 1.38 ± 0.2 06 ± 0 .15 ± 0.17

Table 6.5: Mean differences (± SEM) in mm between corresponding landmarks in d b /mm2

a subject-by-subject basis 
 the T2-weighted an = 0 s  image on 
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Figure 6.27: Registration performance across subjects 
Each line represents the Mean differences (± SEM) in mm between corresponding landmarks in the T2-weighted and b = 0 s/mm2 
image on a subject-by-subject basis. 
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6.4.4.3 Registration performance across landmarks (fiducal 
registration error) 
 
Table 6. shows the mean distance between corresponding landmarks in the b = 0 s/mm2 

and T2-weighted images before registration (second row) and following registration with 

the FLIRT 7 DOF (third row) and 12 DOF (fourth row) models, following AIR’s 

align_warp tool (fifth row) and after using the optimised B-spline registration (sixth row)

on a landmark-by-landmark basis. This is represented as a line graph in Figure 6.28. 

Across all landmarks, compared to the unregistered data there was a general trend of 

registration with FLIRT parameterised by 7 DOF (third row) and 12 DOF (fourth row) 

improving correspondence with the T2-weighted data. This was generally true of 

registration with AIR’s nonlinear tool (fifth row), except for correspondence of landmark 

15 between the source and target image following registration. In all cases, registration 

with the optimised B-spline method decreased corresponding landmark distances relative 

to the unregistered image. 



L  andmark
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 1

3.41 ± 3.44 ± 
6

3.93 ± 3.57 ± 3.98 ± 
3

3.71 ± 3.80 ± 5.91 ± 
9

5.25 ± 3.67 ± 3.65 ± 
2

3.09 ± 4.22 ± 4.49 ± 
1

3.22 ± 
0.78 0.7  0.89 0.87 1.0  0.75 0.77 1.0  0.79 0.80 0.6  0.64 Unregistered 0.94 1.1  0.70 

FLIRT 7 DOF 1.93 ± 
0.22 

1.9
0.

1
39 

3
91 

0
57 

3
37 

9
64 

 ± 2.46 ± 
0.72 

2.27 ± 
0.70 

3.2
0.

 ± 1.64 ± 
0.26 

2.35 ± 
0.37 

2.7
0.

 ± 3.05 ± 
0.42 

2.18 ± 
0.58 

1.7
0.

 ± 2.18 ± 
0.31 

1.75 ± 
0.27 

3.1
0.

 ± 2.68 ± 
0.50 

FLIRT 12 DOF 1.97 ± 1.9
0.21 

3
0.39 0.75 0.70 

8
0.92 0.23 0.37 

3
0.56 0.42 0.54 

1
0.39 0.36 0.24 

7
0.63 0.43 

 ± 2.39 ± 2.22 ± 3.1  ± 1.70 ± 2.40 ± 2.7  ± 2.91 ± 2.20 ± 1.7  ± 2.32 ± 1.95 ± 3.2  ± 2.98 ± 

AIR Nonlinear 1 
88

6 4 8 4
1.31 ± 1.30
0.14 0.1

 ± 2.23 ± 
0.19 

2.77 ± 2.
0.34 0.4

 ± 1.35 ± 
 0.15 

1.14 ± 2.05
0.21 0.2

 ± 1.92 ± 
 0.22 

1.56 ± 1.43
0.26 0.2

 ± 2.81 ± 
0.73 

1.50 ± 4.26
0.40 0.5

 ± 4.09 ± 
 0.98 

Optimised B-
Spline 

1.04 ± 
0.14 

0.92 ± 
0.14 

1.77 ± 
0.25 

2.21 ± 
0.30 

1.89 ± 
0.28 

1.07 ± 
0.21 

1.11 ± 
0.18 

1.46 ± 
0.22 

1.65 ± 
0.18 

1.34 ± 
0.15 

1.48 ± 
0.15 

0.77 ± 
0.18 

1.59 ± 
0.37 

1.50 ± 
0.22 

1.62 ± 
0.46 

Table 6.6: Mean differences (± SEM) in mm between corresponding landmarks in the T2-weighted and b = 0 s/mm2 image on 
a landmark-by-landmark basis 
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Figure 6.28: Registration performance across landmarks 
ding landmarks in the T2-weighted and b = 0 s/mm2 image on a landmark-Each line represents the mean distance between correspon

by-landmark basis prior to (red line) and following registration with the FLIRT 7 DOF (green line) and 12 DOF (blue line) models, 
the nonlinear registration tool in AIR (magenta line) and the optimised B-spline method (cyan line). 
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ann-Whitney U tests were performed to assess whether different registration methods 

X

atrix comparing registration performance between 

the different models used with a Mann-Whitney U test. All the algorithms significantly 

improved alignment between b = 0 s/mm2 and T2-weighted images from the same 

subject. No improvement was found using either the FLIRT 12 DOF model or the AIR 

nonlinear model relative to the FLIRT 7 DOF model. Registration using the optimised B-

spline method was found to significantly improve correspondence compared to all the 

other methods (Figure 6.29). 

6.4.4.4 Statistical comparison of registration performance 
 
M

improved landmark correspondence with the T2-weighted image compared to the 

unregistered b = 0 s/mm2 image and each of the other registration methodologies for each 

of the fifteen landmarks (Appendix B). To summarise the results, the two FLIRT models 

significantly improved correspondence between landmarks 6, 8, 9 (12 DOF model only) 

and 11 in the b = 0 s/mm2 image and the T2-weighted image (p < 0.05 in all cases). This 

was matched by the AIR’s nonlinear model, which also significantly reduced the distance 

between Landmarks 1, 7 and 10 in the two images (p < 0.05). The optimised B-spline 

model proposed here further improved correspondence between the two images at the 

positions of Landmarks 2, 12, 13 and 14. 

 

Table 6. and Figure 6.29 statistically summarise the data across all subjects and all 

landmarks. Table 6. is a significance m



 Unregistered FLIRT 7 DOF AIR Nonlinear Optimised B-
spline FLIRT 12 DOF 

Unregistered  -     

FLIRT 7 DO   - F 7.74 x 10-7    

FLIRT 12 DOF 2.52 x 10-6
 1 -   

AIR Nonlinear 1.34 x 10  1 1 - -8  

Optimised 
spline 

B   x    1  

- 4.07 x 10-21 2.76  10-7 7.03 x 10-9 2.42 x 0-6 - 

Table 6.7: Sign e i a d  ts l  r u  ificanc  matr x for ll lan marks in all subjec  (p-va ues corrected for multiple compa isons sing a
Bonferroni correction) 
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Figure 6.29: Box and whisker diagrams for final corresponding landmark distances using the different registration models 

between corresponding landmarks in the b = 0 s/mm2 and T2-weighted The red lines represent the median values of the distances 
images. The boxes represent the inter-quartile range and the whiskers the range. Outliers, greater than twice the inter-quartile range 
from the median value, are represented by asterisks. Registration using the optimised B-spline method significantly improved 
correspondence compared to all other methods used. 



6.5 Discussion 
 

In this study, the partial optimisation of a nonlinear registration algorithm based on B-

splines was developed for the retrospective correction of distortions in neonatal DTI data. 

This is was achieved by coregistering b = 0 s/mm2 data acquired with an EPI readout to 

high resolution anatomical T2-weighted data, with the eventual aim of facilitating 

subsequent group-wise analysis of DTI data from the whole of the brain. In the absence 

of a ground truth, the success of the optimised algorithms were assessed by manually 

placing corresponding landmarks throughout the brain (as in Woods et al., 1998b) on the 

T2-weighted and unregistered b = 0 s/mm2 images, and measuring the Euclidian 

distances between the points before and after registration. The most accurate and robust 

f the optimised methods developed in this study was found to consist of two steps. First o

of all, an affine transformation model was estimated, using the parameters in column two 

of Table 6. The output from this affine registration was in turn used as the starting point 

for nonlinear registration using the B-spline-based multi-level free-form deformation 

model with the parameters listed in column three of Table 6. Under the model used, the 

global and the local components of the transformation were then combined by addition 

(Rueckert et al., 1999): 
 

( ) ( ) ( )zyxzyxzyx localglobal ,,,,,, Τ+Τ=′′′Τ  

 

The use of a dilated padding mask to exclude voxels outside the brain in the target image 

when calculating the cost function during each intermediate step in the registration 

process mades the algorithm highly computationally efficient, and for each subject the 

registration of the b = 0 s/mm2 image to the T2-weighted image took less than one hour 

on a standard workstation. 

 

The performance of the algorithm was compared to two widely used registration 

algorithms, FLIRT, a linear registration tool, and align_warp, a nonlinear transformation 

model defined by higher order polynomials, with parameters appropriate for this 

registration problem. It was found that using any of these methods significantly improved 
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the alignment between corresponding landmarks in the two images. Combining the data 

from all ten subjects included in the study, it was found that the difference between 

corresponding landm 2 and T2-weighted images was ≤4 mm in 98% 

a mm in 83% of cases follow egistration with the optimised B-spline algorithm. 

This was compared to equivalent landmarks being ≤4 mm in only 57% and ≤2 mm in 

32% of cases prior to registration, and ≤4 mm in 86% and ≤2 mm in 53% of cases 

following registration with FLIRT’s 12 DOF model. In the majority of instances, 

re ation with the B-spline s therefore achieved subvoxel accuracy between 

the images, at least as measured at the points where the landmarks were placed. 

Registration was least successful in ning the most anterior parts of the left and right 

cerebral hemispheres (Landmarks 3 and 4), placed on axial slices in the unregistered EPI 

im  where distortions due to m etic field inhomogeneities were pronounced. In 

co  was m essful in matching the most posterior point of the 

fourth ventricle (Landmark 12  contrast between the CSF and cerebellum was 

high; across all subjects, the m ce here between equivalent landmarks was <1 

mm. In general, however, the registration algorithm proposed here improved 

correspondence fairly uniformly across all landmarks (Figure 6.28). 

 

The algorithm  p d b latively robust in coregistering b = 0 s/mm2 and 

T2-weighted image data across different subjects. This is in contrast to the align_warp 

algorithm incorporated in AIR, which proved to be as successful as the optimised B-

spline method in coregistering som bjects’ data, but worse than the FLIRT models in 

co stering  f  o  s je Figure 6.27). The reasons for this are unclear, but 

are likely to be rela s metric computed when assessing the performance 

of erent tr o i a  Align_warp does not allow specification of the 

cost function to be used; by default, the registration algorithm attempts to minimise the 

sum of squared differences (Section 2.7.3.1.1) between the two images to be aligned. 

This is a p  n it ration, and given that, like the FSE image, the 

b = 0 s/m im  s 2-weighted, can be used to align these images 

with som ccess. However, regions of signal pile-up and related signal loss in the EPI 

data are not present in the undistorted T2-weighted image and may suggest why this 

arks in the b = 0 s/mm
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registration model is not as successful in matching landmarks placed in regions with large 

geometric distortions in the b = 0 s/mm2 image. Defining the align_warp

model with lower (second and third) or higher (fifth or sixth) order poly not 

appear to resolve this problem. Indeed, as described by Szeliski and Lavallée (Szeliski 

and Lavallée, 1996), the use of higher order polynomials resulted in artef tly 

degraded the quality of the registered image. 

 

Such registration-induced artefacts are far less pronounced using spline ds, 

and group-wise studies of MR neuro-imaging data that used B-spline registration to align 

the images are increasingly common in the literature (see for example Rao et al., 2004; 

Bhatia et al., 2004; Boardman et al., 2006; Smith et al., 2006; Rueckert et al., 2006a; 

Rueckert et al., 2006b; Gousias et al., 2007; Aljabar et al., 2008). 

 

 

 

6.6 Limitations 
 

It is important to note, however, that registration methods cannot retrospectively correct 

for all the different types of distortion present in echo-planar diffusion MRI data. As 

discussed in Section 2.6.1.2, signal blurring may result due to different p  

experiencing different amounts of transverse decay during the long  

required in single-shot EPI. This blurring, which occurs predominantly along the phase 

encode direction can only be minimised at source. In this study, this was  

use of parallel imaging to reduce the echo train length (SENSE; Pruessmann et al., 1999). 

Nyquist ghosting and the incomplete suppression of signal from fat can induce additional 

artefacts in the data, though these were not seen in any of the images in th . 

As previously described, there were considerable distortions in the EPI  

with inhomogeneities in the B0 field. These were most pronounced in the transverse 

slices acquired at the level of the cerebellum, where the different magnetic susceptibilities 

of air, bone and brain led to inaccuracies in the localisation of the MR signal, and 
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therefore regions of signal loss and signal pile-up. When registering this data to the 

a, the optimised B-spline method attempted to ‘fill in’ regions 

f signal loss by ‘pulling back’ some of the data from regions of signal pile-up. This was 

re (Rueckert et al., 1999) allows for masking of the target image 

to exclude regions that should not be included in the cost function evaluation, but 

asking out regions susceptible to large B0 inhomogeneities resulted in sharp edges that 

easure the initial and final alignment between coregistered 

arks were individually placed at fifteen different points 

anatomical T2-weighted dat

o

purely based on an attempt to match intensities at corresponding locations in the source 

and target image, without any knowledge of what the true spatial location of the signal 

should be. In the absence of additional data acquired during the scan to measure the B0 

field across the image (Jezzard and Balaban, 1995; Jenkinson, 2001; Cusack and 

Papadakis, 2002) or data acquired with the phase encode direction reversed (Andersson et 

al., 2003; Jones et al., 1999), for example, the true location of the signal cannot be 

retrospectively recovered using registration techniques. Even though the algorithm may 

achieve good correspondence, the intensities are not representative of a truly unwarped 

image, and so should not be included in any voxelwise statistical analysis. 

 

Although registration methods based on B-splines are locally controlled and therefore 

displacing a control point only affects the transformation in the local neighbourhood of 

that point, Figure 6.23 shows that attempts to match intensities in regions of geometric 

distortions in the b = 0 s/mm2 data can significantly displace voxels at the level of other 

transverse slices where the B0 field is much more homogeneous. The spline based 

registration tool used he

m

degraded overall registration performance compared to only padding out regions outside 

the brain. 

 

A final limitation of the results presented in this work concerns the validation strategy 

employed. In order to m

images, anatomical landm

throughout the brain. These were positioned at easily identifiable points where there was 

high contrast between the tissues, and the reproducibility of landmark positioning (that is, 

the fiducial localisation error) was found to be small. However, these tissue boundaries 

may have driven the registration algorithms, and so they many all have matched these 
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locations better than they did other points in the images. This, coupled with the fact that 

nonlinear algorithms do not allow the target registration error (i.e. the distance between 

corresponding points not used in calculating the registration transformation parameters; 

Fitzpatrick and West., 2001) to be calculated from the reported fiducial registration error 

(the error at the landmarks following registration) and fiducial localisation error, mean 

that the validation results need to be treated with care. 

 

 

 

6.7 Suggestions for further work 
 

6.7.1 Deweighting the cost function 
 
One way in which the regions of signal loss and pile up may less strongly affect the 

evaluation of the cost function in the optimised B-spline method proposed in this work is 

to apply a second regularisation term that deweights these regions. Rather than exclude 

em totally from the cost function calculation and generate sharp edges that drive the th

registration and lead to inaccurate alignment, these regions may be deweighted in a 

manner similar to that employed in the FLIRT method. 

 

 

6.7.2 Individually tailoring the coregistration parameters 
 
The optimisation of the b = 0 s/mm2 to T2-weighted anatomical coregistration algorithm 

presented here used the same parameters to coregister these images across different 

subjects. However, the subjects may have moved by different amounts between the 

acquisition of the two images, and the EPI data may have different degrees of distortion. 

Therefore, the robustness and accuracy of the coregistration may be improved by 

individually tailoring the registration parameters on a subject-by-subject basis. For 

example, if the b = 0 s/mm2 and T2-weighted data are in large misalignment prior to 
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registration, then the coefficient of the regularisation term in the cost function that 

constrains the transformation to be smooth (λ) could be reduced and the initial step length 

made larger. In contrast, if the data are already in very close correspondence then the 

coefficient of the cost function regularisation term could be increased. In the absence of 

manual intervention it is not clear how much subject-dependent parameterisation could be 

achieved, but one possibility may be to use the magnitude of the evaluated similarity 

etric prior to registration and choose parameters based on this. This has not been 

 the current study, finding the parameters to accurately transform diffusion-derived 

RI data into anatomical space was attempted by coregistering the b = 0 s/mm2 image to 

e high resolution anatomical T2-weighted image. The optimised B-spline algorithm 

n to perform well at matching regions throughout the brain, 

ed by instead registering tensor-derived scalar maps such as 

 or ADC data to the T2-weighted image. This is a promising alternative, and in the 

m

attempted, however, and may not be suitable and introduce bias in the data. 

 

 

6.7.3 Coregistering tensor-derived scalar maps 
 
In

M

th

presented here has been show

but alignment may be improv

FA

TBSS method FA maps are directly registered to a template image with fairly good 

results even prior to the perpendicular search step to find the centres of white matter 

tracts. Coregistering the data prior to registration to a template image may result in even 

better alignment prior to group-wise analysis. 

 

This approach has subsequently been attempted in a very preliminary extension of the 

work presented here. Given the similarity in tissue contrast between b = 0 s/mm2 images 

and ADC maps, the optimised registration algorithm was first used to attempt intrasubject 

alignment between the latter maps and high resolution T2-weighted data. However, initial 

results were not as successful as had been hoped, and on visual inspection the algorithm 

performed less well than if the b = 0 s/mm2 image had been kept as the source. This is 

perhaps unsurprising given that the algorithm was optimised to register the image with no 
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diffusion weighting, but since this work is at a very early stage the promise of this 

approach remains intact, and the method is still being developed. 

 

 

 

6.7.4 Normalisation to a study-specific average space 
 
Most current voxel-based group-wise analyses of MRI data are performed by registering 

the data to an atlas space or to a group-specific individual target space. However, as 

discussed in Section 2.7.7.2.2, the chosen atlas may be very different to that of the 

subjects involved in the study or the individual target space may not be representative of 

the study population. In these cases, some images may be significantly warped during the 

registration process, and even then accurate alignment may not be achieved and bias may 

.8 Conclusion 

be introduced. It may therefore be advantageous to instead register diffusion-derived 

scalar maps that have already been coregistered to anatomical images to a study-specific 

atlas space. This has tentatively been attempted using the algorithm proposed by Bhatia 

(Bhatia et al., 2004), but it is highly computationally intensive and is not currently 

suitable for registering large study groups. Nevertheless, this remains a promising future 

option. 

 

 

 

6
 

The ultimate aim of this work was to facilitate objective cross-subject comparisons of 

whole brain neonatal DTI data. A robust method of coregistering EPI data to high 

resolution anatomical T2-weighted to correct for geometric distortions has been presented 

that may improve subsequent normalisation of images from different subjects into a 

common space. Achieving accurate inter-subject alignment of diffusion-derived scalar 

maps to this common space is the next step. The inherently low signal-to-noise ratio and 
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large voxel sizes relative to the size of the neonatal brain, coupled with the inherent 

variability in the size, shape and cortical morphology of the brains of different subjects 

make this more challenging than intra-subject registration. Work is ongoing to overcome 

these hurdles, however, and may be assisted by the optimisation method presented in this 

thesis. 
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Chapter 7 
 

Summary and Final 
Remarks 

 

 

.1 Summary 

hope of shedding more light on 

e of the microstructural neuro-imaging abnormalities that may be associated with 

white matter pathways throughout the brain. Subsequent analysis revealed that FA was 

7
 

The increasing incidence of preterm birth has focused much attention on finding the 

neuro-imaging correlates of the adverse neurological outcomes that some of these infants 

suffer from. These include motor and sensory impairments that are associated with focal 

lesions on conventional MRI, but more subtle cognitive and behavioural impairments are 

increasingly reported and are related to more diffuse abnormalities of the cerebral white 

matter. Diffusion tensor magnetic resonance imaging measures the diffusion 

characteristics of water in tissues and may allow the detection of microstructural 

abnormalities that are not evident on conventional MRI. The aim of this work was to 

explore the developing preterm brain with DTI, in the 

som

preterm birth. The limitations of manual region of interest approaches in allowing non-

subjective group-wise comparison of DTI data led to the search for a more objective tool 

to achieve this. TBSS, a recently proposed method for aligning FA data from multiple 

subjects prior to voxel-wise cross-subject statistical analysis, was attempted on data from 

26 preterm-born infants imaged at term-equivalent age and 6 term-born control infants 

who had no evidence of focal abnormality on conventional MRI. The two-step 

registration process was found to achieve very good alignment of the centres of major 

226 



lower in the preterm-born group than the control group in the centrum semiovale, frontal 

white matter and genu of the corpus callosum, with the most immature infants displaying 

dditional and more extensive regions of FA reduction. Microstructural changes in a 

umber of these regions have been shown to be associated with preterm birth in previous 

OI-based studies, but this is the first time they have been confirmed with objective 

observer-independent methods of analysing DTI data. These reductions in FA could be 

l white matter tract 

 clinical variables with FA. Studying 53 preterm infants born at various 

estational ages and imaged at term-equivalent age, it was found that acute lung disease 

 independently associated with a significant decrease in FA in the genu of the corpus 

allosum. Chronic lung disease, on the other hand, was associated with a highly localised 

FA reduction in the left inferior longitudinal fasciculus. This is the first time that lung 

 be correlated to such highly localised regions of FA change 

nd the reasons why these particular white matter tracts are more susceptible than others 

a

n

R

explained by elevations in diffusion perpendicular to the loca

direction, and thus were found to be consistent with oligodendrocyte and/or axonal 

abnormality. 

 

Preterm birth is associated with a number of clinical variables including infection in the 

neonatal period and preterm PROM. Amongst the most important of these variables are 

acute and chronic lung disease, affecting 50% of preterm infants born at <30 weeks 

gestational age (Ramanathan, 2008) and 33% of preterm infants with a birth weight of 

<1000 g (Birenbaum et al., 1983) respectively. These are, however, significantly 

associated with increasing prematurity at birth, and it had not previously been possible to 

dissociate their effects on cerebral white matter microstructure. However, TBSS has 

allowed for multivariate statistical analysis to assess the independent correlations of these 

different

g

is

c

disease has been reported to

a

is not clear. However, this study has shown the potential of TBSS to act as a biomarker 

for such processes, and may prove to be very useful in assessing neuro-imaging changes 

associated with different forms of neonatal intervention. 

 

At present, the majority of group-wise analyses of DTI data are performed using ROI 

techniques. This is due to the fact that distortions present in diffusion MRI data acquired 
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with an EPI readout are complex, and coupled with the relatively large voxel sizes and 

the inherently low signal-to-noise ratio of this technique make accurate alignment to a 

common template more difficult than the equivalent problem with high resolution 

anatomical MRI data. TBSS has successfully achieved this and in our first study 

produced results consistent with previously published ROI studies. However, given that 

both of these methods involve a lot of data reduction, objective cross-subject whole brain 

analysis remains an outstanding challenge. The partial optimisation of an affine followed 

by a nonlinear registration algorithm based on B-splines was proposed to coregister b = 0 

s/mm2 images acquired with an EPI readout to high resolution anatomical T2-weighted 

data. This was developed in an attempt to account for geometric distortions in EPI data 

and transform diffusion-derived scalar maps into anatomical space prior to spatial 

normalisation for group-wise analysis. The optimised algorithm has been shown to be 

relatively robust across subjects and in matching points placed throughout the brain. 

However, ongoing work remains and it is important to bear the limitations of the 

proposed method in mind, particularly in the matching and redistributing of signal from 

regions of the brain where EPI suffers from large distortions due to inhomogeneities in 

the B0 field. Taking into account anatomical variability and the relatively large voxel size 

suggests that automated objective group-wise analysis of DTI data from the whole of the 

developing preterm brain, particularly of the cortical grey matter, is still some way away. 

However, this study represents a potentially important first step along this path. 

 

 

 

7.2 Conclusion and final remarks 
 

In conclusion, this work has provided objective quantitative evidence confirming that 

preterm-born infants have microstructural differences in cerebral white matter pathways 

compared to term-born controls. These differences in FA have subsequently been shown 

to be significantly linearly correlated with gestational age. Taking this as well as age at 

imaging into account when performing multivariate statistical analysis has revealed that 
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acute and chronic lung disease m 

age in the genu of the corp or longitudinal fasciculus 

respectively, Though the rea  of these sites is unclear, 

this finding may be clinically relevant and suggests the use of TBSS as a neuro-imaging 

biomarker in assessing medical interventions in these diseases. 

 

Finally, the  B-splines 

has been presented that is cap  high resolution anatomical 

images better than two other ls. This represents the first 

tep in the alignment of diffusion-derived scalar maps to a common template to allow 

ross-subject statistical analysis. Whole brain analysis is probably still some way away, 

to improved registration methods, enhanced 

re capable of minimising even more of the distortions seen in 

PI data at source and allow for increased signal-to-noise ratio and/or reduced voxel size 

are independently associated with FA reductions at ter

us callosum and in the left inferi

sons for the selective vulnerability

partial optimisation of a nonlinear registration algorithm based on

able of coregistering EPI data to

commonly used registration too

s

c

however. It is likely that in addition 

acquisition protocols that a

E

will be required before such studies can be performed. These are areas of active research 

however, and are already helping to further the potential of using diffusion tensor 

imaging to investigate the developing preterm brain. 
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Appendix A: The reproducibility of landmark 
positioning at each landmark 
 

 

Appendices 
 

 



 
Figure A.1: Reproducibility of landmark positioning at Landmarks 1-6 
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Figure A.2: Reproducibility of landmark positioning at Landmarks 7-12 
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Figure A.3: Reproducibility of landmark positioning at Landmarks 13-15 
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Appendix B: The effect of different registration methodologies for achieving 
correspondence in different brain regions 
 

 

 Unregistered FLIRT 7 DOF FLIRT 12 DOF AIR Nonlinear Optimised B-spline 

Unregistered -     

FLIRT 7 DOF 0.16 -    

FLIRT 12 DOF 0.21 0.85 -   

AIR Nonlinear 0.02 0.04 0.03 -  

Optimised B-splines 0.01 <0.005 <0.005 0.31 - 

Table B.1: Landmark 1 - Most superior point of the left lateral ventricle (judged on a parasagittal sagittal slice) 
Significance matrix for this landmark across all subjects (p-values corrected for multiple comparisons with a Bonferroni correction). 
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  Unregistered FLIRT 7 DOF FLIRT 12 DOF AIR Nonlinear Optimised B-spline 

Unregistered -     

FLIRT 7 DOF 0.14 -    

FLIRT 12 DOF 0.14 0.91 -   

AIR Nonlinear 0.05 0.52 0.34 -  

Optimised B-splines 0.01 0.02 0.01 0.08 - 

Table B.2: Landmark 2 - Most superior point of the right lateral ventricle (judged on a parasagittal slice) 
Significance matrix for this landmark across all subjects (p-values corrected for multiple comparisons with a Bonferroni correction). 
 

 

  Unregistered FLIRT 7 DOF FLIRT 12 DOF AIR Nonlinear Optimised B-spline 

Unregistered -     

FLIRT 7 DOF 0.19 -    

FLIRT 12 DOF 0.06 0.73 -   

AIR Nonlinear 0.52 0.27 0.19 -  

Optimised B-splines 0.85 0.13 - 0.08 0.97 

Table B.3: Landmark 3 - The most anterior point of the left hemisphere of the brain 
Significance matrix for this landmark across all subjects (p-values corrected for multiple comparisons with a Bonferroni correction). 
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  Unregistered FLIRT 7 DOF FLIRT 12 DOF AIR Nonlinear Optimised B-spline 

Unregistered -     

FLIRT 7 DOF 0.31 -    

FLIRT 12 DOF 0.24 0.85 -   

AIR Nonlinear 0.85 0.10 0.08 -  

Optimised B-splines 0.68 0.52 0.47 0.33 - 

Table B.4: Landmark 4 - The most anterior point of the right hemisphere of the brain 
Significance matrix for this landmark across all subjects (p-values corrected for multiple comparisons with a Bonferroni correction). 
 

 

  Unregistered FLIRT 7 DOF FLIRT 12 DOF AIR Nonlinear Optimised B-spline 

Unregistered -     

FLIRT 7 DOF 0.62 -    

FLIRT 12 DOF 0.57 0.85 -   

AIR Nonlinear 0.62 0.91 0.91 -  

Optimised B-splines 0.08 0.27 0.27 0.07 - 

Table B.5: Landmark 5 - The most posterior part of the brain 
Significance matrix for this landmark across all subjects (p-values corrected for multiple comparisons with a Bonferroni correction). 
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  Unregistered FLIRT 7 DOF FLIRT 12 DOF AIR Nonlinear Optimised B-spline 

Unregistered -     

FLIRT 7 DOF 0.03 -    

FLIRT 12 DOF 0.03 0.73 -   

AIR Nonlinear <0.001 0.57 0.24 -  

Optimised B-splines <0. 01 0. 4 0. 6 0. 7 - 0 2 1 4

Table B.6: Landmark 6 - The most anterior point of the left anterior horn of the lateral ventricle 
trix for this landmark across all subjects (p-values corrected fo ultiple comparisons with a Bonferroni correction). 

 

 

red FLI OF OF ar Optimi -spline 

Significance ma r m

  Unregiste RT 7 D FLIRT 12 D AIR Nonline sed B

Unregistered -     

FLIRT 7 DOF 0.43 -    

FLIRT 12 DOF 0.43 0.85 -   

AIR Nonlinear 0.01 0.03 0.02 -  

Optimised B-splines 0.01 0.03 0.03 0.88 - 

Table B.7: Landmark 7 - The most anterior point of the right anterior horn of the lateral ventricle 
Significance matrix for this landmark across all subjects (p-values corrected for multiple comparisons with a Bonferroni correction). 

237 



 

  Unregistered FLIRT 7 DOF FLIRT 12 DOF AIR Nonlinear Optimised B-spline 

Unregistered -     

FLIRT 7 DOF 0.03 -    

FLIRT 12 DOF 0.03 1 -   

AIR Nonlinear 0.01 1 0.97 -  

Optimised B-splines <0.001 0.16 0.10 0.02 - 

Table B.8: Landmark 8 - The most posterior point of the posterior horn of the left lateral ventricle 
Significance matrix for this landmark across all subjects (p-values corrected for multiple comparisons with a Bonferroni correction). 
 

 

  Unregistered FLIRT 7 DOF FLIRT 12 DOF AIR Nonlinear Optimised B-spline 

Unregistered -     

FLIRT 7 DOF 0.06 -    

FLIRT 12 DOF 0.02 0.68 -   

AIR Nonlinear <0.001 0.05 0.05 -  

Optimised B-splines <0.001 0.01 0.02 0.41 - 

Table B.9: Landmark 9 - The most posterior point of the posterior horn of the right lateral ventricle 
Significance matrix for this landmark across all subjects (p-values corrected for multiple comparisons with a Bonferroni correction). 
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  Unregistered FLIRT 7 DOF FLIRT 12 DOF AIR Nonlinear Optimised B-spline 

Unregistered -     

FLIRT 7 DOF 0.14 -    

FLIRT 12 DOF 0.14 0.91 -   

AIR Nonlinear 0.04 0.34 0.19 -  

Optimised B-splines 0.01 0.19 0.08 0.38 - 

Table B.10: Landmark 10 - The most inferior point of the inferior horn of the left lateral ventricle 
Significance matrix for this landmark across all subjects (p-values corrected for multiple comparisons with a Bonferroni correction). 
 

 

  Unregistered FLIRT 7 DOF FLIRT 12 DOF AIR Nonlinear Optimised B-spline 

Unregistered -     

FLIRT 7 DOF 0.04 -    

FLIRT 12 DOF 0.02 0.97 -   

AIR Nonlinear 0.02 0.79 0.85 -  

Optimised B-splines 0.02 0.79 0.79 0.71 - 

Table B.11: Landmark 11 - The most inferior point of the inferior horn of the right lateral ventricle 
Significance matrix for this landmark across all subjects (p-values corrected for multiple comparisons with a Bonferroni correction). 
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  Unregistered FLIRT 7 DOF FLIRT 12 DOF AIR Nonlinear Optimised B-spline 

Unregistered -     

FLIRT 7 DOF 0.34 -    

FLIRT 12 DOF 0.43 0.79 -   

AIR Nonlinear 0.52 1 1 -  

Optimised B-splines <0.001 <  <  0.005 0.005 0.02 - 

Table B.12: Landmark 12 - The tip of fourth ventricle 
Significance matrix for this landmark across all subjects (p-values corrected for multiple comparisons with a Bonferroni correction). 
 

 

  Unregistered FLIRT 7 DOF FLIRT 12 DOF AIR Nonlinear Optimised B-spline 

Unregistered -     

FLIRT 7 DOF 0.05 -    

FLIRT 12 DOF 0.16 0.38 -   

AIR Nonlinear 0.05 0.68 0.47 -  

Optimised B-splines 0.02 0.57 0.24 0.82 - 

Table B.13: Landmark 13 - The most anterior point of the ponto-medullary junction 
Significance matrix for this landmark across all subjects (p-values corrected for multiple comparisons with a Bonferroni correction). 
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  Unregistered FLIRT 7 DOF FLIRT 12 DOF AIR Nonlinear Optimised B-spline 

Unregistered -     

FLIRT 7 DOF 0.62 -    

FLIRT 12 DOF 0.73 0  .91 -   

AIR Nonlinear 0.68 0  .19 0.16 -  

Optimised B-splines 0.01 0.06 0.04 5. 4 55E-0 - 

Table B.14: Landmark 14 - The most lateral point of the left cerebellar hemisphere 
Significance matrix for this landmark across all subjects (p-values corrected for multiple comparisons with a Bonferroni correction). 
 

 

  Unregistered FLIRT 7 DOF FLIRT 12 DOF AIR Nonlinear Optimised B-spline 

Unregistered -     

FLIRT 7 DOF 0.68 -    

FLIRT 12 DOF 1 0.68 -   

AIR Nonlinear 0.52 0.57 0.91 -  

Optimised B-splines 0.14 0.10 0.03 0.01 - 

Table B.15: Landmark 15 - The most lateral point of the right cerebellar hemisphere 
Significance matrix for this landmark across all subjects (p-values corrected for multiple comparisons with a Bonferroni correction). 
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