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Abstract

The physiology of the brain changes over time in ways that are increasingly

better understood as new opportunities for in vivo analysis emerge. Such op-

portunities are made possible by the steady progress in image acquisition and

analysis. Significant periods of change are exemplified by the rapid and complex

growth in the early years and the subtle degeneration due to ageing or pathol-

ogy. By characterising patterns of change for groups of subjects, information can

be provided that may help in diagnosis and treatment or in understanding the

nature of growth or the progress of a disease.

This thesis focuses mainly on the application of registration and structural

segmentation techniques to serial image data in order to quantify and charac-

terise such longitudinal changes. A framework is presented that combines growth

estimates derived from longitudinal intra-subject registrations and average space

atlases based on inter-subject registrations. An approach to structural segmenta-

tion is also developed in which classifiers are selected from a repository of atlases

for use in label propagation and fusion.

These methods are used to characterise and quantify brain development in

young children based on serial image data acquired at one and two years of age.

It is shown how these methods can be used to investigate possible relationships

between regional growth estimates and clinical outcome. The methods are applied

to serial images acquired from a group of Alzheimer’s disease patients and age-

matched controls. The resulting longitudinal growth and structural segmentation

data are shown to provide good discrimination between these clinical groups.
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Chapter 1

Introduction

1.1 Neurological growth and degeneration

Like all organs of the body, the physiology of the brain changes over time and the

structural complexity of the brain presents a challenge to the characterisation of

this change. Changes in the brain can be rapid and dramatic, for example during

fetal development and the early years [92, 120, 155], and it can be subtle and

yet significant, as illustrated by atrophy due to ageing or neurodegeneration [185,

183, 62, 144, 94].

Changes can be viewed as occurring at different scales. At the microscopic

scale, cells are created, destroyed and undergo biochemical changes. The process

of myelination, in which individual neurons are coated in a lipid sheath, and which

occurs up to the age of two years, is an example of change at the microscopic

level [141].

At a macroscopic scale, there is the global change that acts in a uniform

way across the brain region. For example, the heads of children undergo general

growth in the early years in a way that can be approximated by a uniform global

scaling.

Between these macroscopic and microscopic scales, individual structures can

be observed to appear, grow or shrink over time. A good deal of brain volume-
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try is carried out at this macroscopic scale, and advances in imaging techniques

have allowed increasing numbers of such studies to be carried out in-vivo, using

imaged representations of the anatomy. Changes in the brain over time, at the

macroscopic level and above, are the main focus of the work presented in this

thesis.

In the context of brain development in the early years, preterm birth has

a significant effect on the developing brain, and infants born preterm commonly

display neuropsychiatric problems during childhood [117, 178, 25]. This motivates

the need to be able to characterise the patterns of typical and atypical brain

development in infants and young children, something that is made increasingly

feasible through the greater availability of brain images acquired during early

childhood.

In the case of a condition such as Alzheimer’s disease, a diagnosis is usually

made based on psychological testing and the use of cognitive tests such as the

mini mental state examination (MMSE [59]). Diagnoses of Alzheimer’s disease

can only be considered definitive if carried out by directly examining samples

of the brain tissue, either obtained post-mortem or by brain biopsy, an invasive

procedure with risk of complications [176]. It is, however, possible to obtain

markers for the progression of Alzheimer’s disease, using techniques based upon

the acquisition and processing of serial brain images of Alzheimer’s patients [96,

26, 172].

These examples illustrate the potentially useful role that can be played by

the analysis of longitudinally acquired images of the brain. It can be used to

inform clinical diagnosis and decisions on intervention and, by tracking disease

progression, can inform studies aimed at measuring the efficacy of a particular

drug or treatment.
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1.2 Acquisition of brain images

There are many ways in which structural images of the brain can be acquired.

Common modalities include magnetic resonance imaging, computed tomography,

PET and SPECT imaging and ultrasound imaging. The work in this thesis will

concentrate on the use of MR images.

Magnetic resonance imaging (MRI) uses a strong magnetic field created by a

fixed magnet, a set of applied gradients generated by electromagnets and a series

of radio frequency (RF) pulses to reconstruct images based on the spin properties

of the nuclei of atoms such as hydrogen. The application of the RF pulses causes

the alignments and phases of nucleic spins to vary in ways that allow inferences

to be made about the spatial distributions of different types of molecules, for

example water or contrast agents. The pulse sequences applied and the way the

resulting signals are interpreted mean that MR scanners can produce a wide range

of images that are adapted to the imaging of different aspects of the anatomy or

physiology of the subject.

The strengths of the magnetic field in a MR scanner can be very high. Modern

scanners typically use 1.5–3 Tesla magnets. In addition, acoustic noise levels

can also be high, as the gradient coils are used; this necessitates the use of ear

protection. Despite these considerations, MR imaging is considered to be non-

invasive.

MR images aimed at identifying structure (for example ‘T1-’ or ‘T2-weighted’

images) are typically acquired at a spatial resolution of the order of 1mm and

show good contrast differences between soft tissues within the brain, such as the

difference between grey and white matter. MR scanners can also be used to

generate images that measure the patterns of diffusion of water molecules in the

brain. The technique, known as diffusion weighted imaging (DWI) [121], allows

the estimation of the propensity of water to diffuse along particular directions.

By measuring this propensity along a number of directions, a diffusion tensor can
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be calculated that characterises the motion of water in all directions. Further

processing using the diffusion tensor allows the estimation physiological features

such as the orientations of bundles of fibrous tissue, such as white matter, within

the brain. Further processing can be used to identify patterns of connectivity

between different parts of the brain [11].

Another specialised use of MR imaging is MR angiography (MRA), where the

scanner is calibrated to highlight blood flow within the brain. This allows the

vasculature of the brain to be visualised. It is possible to use a paramagnetic

contrast agent during MRA acquisition which assists the identification of tissues

with a relatively increased vasculature, such as tumours, or in the detection of

aneurysms [16, 27]. Alternatively, an approach known as time-of-flight angiogra-

phy can be used to generate images where relatively fast moving blood gives a

higher signal; this allows vessels to be visualised.

A use of MR scanners known as functional MRI (fMRI) can also be used

provide maps that correspond to the level of blood oxygenation. Such blood

oxygen level dependent (BOLD) signals can be regarded as being correlated with

the levels of activity in different parts of the brain. By giving the subject different

tasks to perform while they are being scanned, inferences can be made on which

parts of the brain are associated with specific processes [97].

Computed tomography (CT) uses ionising radiation in the form of X-rays to

generate volumetric representations of the anatomy. X-rays are passed through

the patient in different directions and the variations in attenuation of the X-ray

signal are used to calculate a (tomographic) image of the anatomy. CT has a

high spatial resolution (less than 1mm is typical) and, compared with MR, is

fast and inexpensive. However, CT is considered to be more invasive than MR

due to the use of ionising radiation. Additionally, while CT provides excellent

contrast differences between calcified tissue, such as bone, and soft tissue, its

discrimination between different types of soft tissue is poor compared with that

of MR imaging.
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Ultrasound (US) imaging is an established and widely used method for ob-

taining images of many internal organs including the brain. US imaging is fast,

inexpensive and can be carried out in real time at the patient’s bedside. It is gen-

erally accepted as non-invasive. US is commonly used for fetal scanning, where

tasks such as screening for abnormalities or assessing the fetal position can be

quickly carried out. In cranial ultrasonography, the contrast allows for the ready

identification of structures such as bone or the ventricles. Compared with MR,

however, the contrast between different tissues is not as clear. The signal to noise

ratio (SNR) is also low compared with CT and MR.

The resolution and contrast properties of structural MR images, such as T1-

or T2-weighted volumes, along with their non-invasive acquisition makes them

a good starting point for the tracking of longitudinal changes in the brain. The

acquisition of structural MR images is relatively long, with times of 3–5 minutes

being typical for T1- and T2-weighted images, and this clearly present a challenge,

particularly when imaging young children, but these times are steadily being

reduced.

Other modalities exist that are less well suited for identifying structural fea-

tures in the brain. These include Positron emission tomography (PET) which

measures the concentration of a radioactive tracer in the body and can be used

to identify or detect tumours [184] and patterns of activity in the brain [30].

Optical imaging (topography or tomography) is a modality where tissues are dis-

tinguished based on their absorption and diffusion of near infra-red light. This can

be useful in estimating blood oxygenation, haemodynamic changes in response to

stimuli [32] or haemorrhages [7].

1.3 Analysis of brain images

Measuring longitudinal change is the main focus of this work and one way in which

such change can be characterised is by analysing images of the same individual
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acquired at different times. An illustration of the differences between serial scans

of an individual is shown in Figure 1.1 for a child with images acquired at one

and two years.

Figure 1.1: T1-weighted axial sectional images of a child acquired at one year
(left) and two years old (right).

1.3.1 Registration and segmentation

One way of characterising the changes between serial scans of the head such as

those in Figure 1.1 is to identify a transformation that aligns the two images.

The process of finding such alignments, known as image registration, generates

transformations that can be used to model the changes that take place during

the interval between scans. These changes may be due to the growth of tissues

or new structures, the degeneration of tissue or the growth of lesions or tumours.

The process of registration provides correspondences between the images and

these correspondences can be used to identify the changes between the serially

acquired images and to track growth. This is illustrated in Figure 1.2 for the

serial scans of the child in Figure 1.1. Along each row, the left hand image shows

the one year scan and the middle image shows the two year scan after different

degrees of alignment with the one year scan. The final image in each row shows

the difference between the one year scan and the aligned two year scan. After

rigid alignment, the difference image shows a band of bright and dark lines along
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the cranial boundary. This gives an impression of the global size difference be-

tween the one and two year scans. After an affine alignment that accounts for

these global changes, the cranial boundary differences have been reduced signifi-

cantly but there remain differences within the image, especially at the ventricular

boundaries. This is shown in the middle row of Figure 1.2. The bottom row shows

how the application of a locally varying, non-rigid transformation removes most

of the differences that remain after affine alignment. The longitudinal affine and

non-rigid transformations can be said to have captured or encoded the structural

changes that have taken place between the scans.

Another example of serial scans and the difference between them is shown

for an Alzheimer’s disease patient in Figure 1.3. The serial scans in this figure

have been rigidly aligned, and the most significant differences can be seen at

the boundary of the ventricles, indicating their expansion between the scans, a

phenomenon generally associated with atrophy of the surrounding tissues at this

age.

In conjunction with the estimation of longitudinal change, the use of auto-

mated segmentation methods allows individual structures to be identified. The

identified structures can be treated as ‘regions of interest’ for which specific esti-

mates of growth or atrophy can be provided.

An example of a structural segmentation is shown in Figure 1.4 which shows

a T1-weighted MR image for a subject that has been segmented into various

structures. These structures were estimated by propagating segmentations from

the images of other subjects and subsequently combining or fusing them.

1.3.2 Longitudinal and cross-sectional studies

Studies that use serially acquired images to estimate change over time are typi-

cally described as using longitudinal or prospective methods [28, 62, 65, 65, 72].

Such methods contrast with what are termed cross-sectional methods [20, 74, 77,
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Figure 1.2: The middle column of images shows the two year scan of Figure 1.1
after varying degrees of alignment to the one year scan. Top row: After rigid
alignment. Middle row: After correcting for global shape differences. Bottom
row: After correcting for local differences with a non-rigid alignment. The first
image in each row is the original year one scan. The last image shows the differ-
ence between the transformed year two scan and the year one scan.

Figure 1.3: Scans acquired from a patient diagnosed with Alzheimer’s disease.
From left to right: A baseline scan; A follow-up scan acquired one year later and
rigidly aligned with the baseline scan; The difference between the baseline and
follow-up scans.
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Figure 1.4: A T1-weighted MR image (left, axial and sagittal sections) and a
corresponding structural segmentation (right). The labels in the right hand im-
age were generated by combining multiple label sets that were propagated from
different atlas images to the T1 image.

94], where the aim is often to identify differences between two groups based on a

set of images acquired at the same time. Longitudinal methods rely on intra-

subject registrations between the serially acquired images and cross-sectional

methods use inter-subject registrations where one of the images is often a ref-

erence or a template image. Inter-subject registrations between a group of sub-

jects and a reference image can also be used to provide atlases that can represent

the group, containing the average of some feature derived from the subjects, for

example by providing an estimate of the typical anatomy.

The work presented in this thesis draws upon information derived from both

inter- and intra-subject registrations and from image segmentation. Using intra-

subject registrations for serially acquired data, estimates of longitudinal change

can be made. Inter-subject registrations and atlasing methods can then be used

to characterise patterns of longitudinal change across subjects within a serially

acquired cohort. By combining the information provided by registration with the

information provided by segmentation, regional estimates of growth or atrophy

can be made and the data from such regional estimates can, in turn, be explored

in a clinical context.
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1.4 Contribution

The thesis presents work on the combined use of registration based methods, to

measure and characterise longitudinal change, and of segmentation methods to

define regions of interest.

The contributions presented in this thesis can be divided into four areas, two

are methodological and two are based on the application of these methods to

specific types of data:

• A framework is presented for the combined longitudinal and cross-sectional

analysis of patterns of longitudinal change within serially acquired data for

a cohort of subjects. The patterns of longitudinal change are investigated

through the combined use of longitudinal, intra-subject, registrations and

inter-subject registrations that are used to generate average space atlases.

• A framework is developed for the use of a repository of labelled images

(atlases) to generate segmentations in unseen query images. This framework

treats the atlases as classifiers and combines their propagated labels to

provide segmentations for the query subject. Novel methods for classifier

selection are developed and analysed.

• Using these frameworks, atlases of brain morphometry and patterns of de-

velopment are characterised for a group of young children based on scans

acquired at one and two years of age. Quantitative estimates of growth

between ages one and two derived from this serial data are presented.

• Patterns of brain atrophy are similarly investigated for a group of subjects

with Alzheimer’s disease and a group of matched controls. For this group

of subjects, the combined use of growth estimates from registration and

structural and tissue segmentations is shown to be a powerful discriminator

between patients diagnosed with Alzheimer’s disease and controls.
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1.5 Outline of thesis

The remainder of the thesis begins with a description in Chapter 2 of the back-

ground and state of the art for the types of image analysis methods used in this

work. This covers various aspects of image registration, segmentation and at-

lasing and a brief overview of morphometry is also given. Chapter 3 presents

details on how registration can be used to assess longitudinal changes within a

cohort. In particular, a novel framework is presented for characterising patterns

of longitudinal change using a combination of serially acquired data for a co-

hort, information derived from longitudinal registrations and atlasing techniques.

Chapter 4 presents a description of structural segmentation through the use of

labelled atlas repositories, label propagation classifier fusion. This chapter also

outlines novel techniques in which classifiers can be selected from an atlas repos-

itory in order to provide segmentations more appropriate for the query subject

and to overcome the computational burden associated with the use of a large

repository. In Chapter 5, various experiments are carried out to demonstrate

the effectiveness of the classifier selection methods described in the Chapter 4.

Using the methods presented in the earlier chapters, novel data are presented in

Chapter 6 on the global and regionally specific brain growth in children between

the ages of one year and two years. The same methods are also applied to serial

scans acquired from a cohort of patients with Alzheimer’s disease and a group

of matched controls. The data, presented in Chapter 7 characterise patterns of

atrophy for the groups and use measures of atrophy combined with structural

data to show good discrimination between these clinical groups.
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Chapter 2

Background

2.1 Introduction

The aim of this chapter is to provide a description of state-of-the-art methods

that can be used for analysis of MR anatomical images of the brain along with a

brief description of the associated background literature. These methods can be

broadly categorised under the general headings of image registration, segmenta-

tion, morphometry and atlasing.

2.2 Image registration

In the following chapters, registration-based methods are used to generate atlases

at different timepoints and to estimate longitudinal change from serially acquired

data. They are also used as part of a segmentation method based on the propa-

gation of multiple manual segmentations to a query image – a step that helps to

identify specific structural areas and therefore helps to provide regionally specific

estimates of growth or atrophy.

The following sections present background and description for the voxel-based

registration method used in this work. More comprehensive reviews of image

registration techniques in general can be found in many sources. Hajnal, Hill and
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Hawkes [81], Zitová and Flusser [189] and Maintz and Viergever [116] provide

useful starting points for an overview of this large and growing field.

2.2.1 Voxel-based registration

The goal of any registration method is to find a spatial correspondence between

images of different subjects’ anatomies, or images of the same subject acquired

at different times. Given that registration methods are applied to images, the

correspondence being found is between imaged representations of the anatomies

rather than the anatomies themselves. An image of an anatomy can be viewed as

a set of samples of a spatially varying signal that represents the response of the

different tissues of the anatomy to the imaging modality. Usually, the samples are

associated with a regular lattice of points in three dimensions, with each point

being the centre of a cuboid shaped voxel (or a rectangular pixel in 2D). In MR

images, the intensity associated with a voxel represents an estimate of the average

response of the tissue located within it. The aim of voxel-based registration is

to estimate the geometrical correspondence between two images based on the

intensity values in each image – this contrasts with methods that require features

to be first extracted from the images which are subsequently used during the

registration.

The model of a typical voxel-based registration consists of a number of inter-

related components: a transformation model; a regularisation method; a similar-

ity metric; an optimisation method; and an interpolation method. Finding the

correspondence between the images entails finding the best transformation un-

der the model used. This is represented by the set of transformation parameters

that provide optimal similarity between the images. It is possible, however, for

optimal similarity to be achieved using transformations that are not plausible in

relation to the application – for example, a registration of two MR brain scans

of the same subject should not, in general, produce a transformation that breaks
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topology. For this reason, voxel-based registration schemes often also incorpo-

rate a regularisation component, so that the optimised parameters represent a

plausible transformation.

To clarify the terminology used in this work, one of the images being registered

is termed the ‘target’ image and the other image is termed the ‘source’. After reg-

istration, the estimated transformation is used to map locations from the target

image to the source image. This allows the intensities in the source image to be

‘pulled back’ to the target’s frame of reference, i.e. the source can be transformed

to the target. This process is illustrated in Figure 2.1, where dots represent the

locations of the voxel lattices of each image. A particular voxel location x, in the

target image, is mapped to a corresponding location h(x) in the source image.

The intensity in the source image at h(x) can then be estimated and assigned to

the location x in the target reference frame. Repeating this process for all target

voxels, a deformed version of the source can be estimated in the target reference

frame. In general, the location in the source image, h(x), does not coincide with

any of the source image’s voxel locations. For this reason, the intensity at h(x)

needs to be estimated using some form of interpolation.

Figure 2.1: A target image T and a source image S. The dots represent the
locations of the voxel lattices of each image. A transformation h maps a location
x in T to a corresponding location h(x) in S. The source intensity at h(x) is
estimated, ‘pulled back’ and associated with the target voxel at x. Repeating
this process for all target voxels allows the source image to be deformed onto the
target frame of reference.

The following sections describe in more detail the aspects of the voxel-based

registration method used in this work.
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2.2.2 Transformation models

A number of different models can be used to represent transformations between

a pair of images. The general aim is to obtain a parametric representation that

allows any location in the target image to be mapped to the source image. There

are many ways to parametrise transformations, but a broad categorisation of

transformations can be given by their geometric properties. Rigid transformations

preserve distances between points that are mapped from the target to the source.

I.e. for two target points, x1 and x2 and a rigid transformation T, ‖x1 − x2‖ =

‖T(x1) − T(x2)‖. Affine transformations map straight lines to straight lines,

preserving the collinearity of points in the target when transformed to the source.

Furthermore, the ratios of distances between points are preserved under affine

transformations. For three collinear points x1, x2 and x3 the collinearity property

can be expressed by

x3 = cx1 + (1− c)x2 ,

for some scalar c. This relationship is preserved under an affine transformation,

i.e.

T(x3) = cT(x1) + (1− c)T(x2)

for the same scalar c. Transformations that represent a varying local deformation

are known as non-rigid transformations. Under this distinction, the term ‘global’

is often used to describe a rigid or affine transformation, while the term ‘local’ is

used to describe a non-rigid transformation.

The choice of type of transformation is affected by the application in which it is

to be used. For example, if the images to be registered represent serially acquired

scans of the head of a healthy adult, then a rigid transformation is appropriate

as there is (in general) negligible change in the shape of the cranium in adults.

However, the difference between two cranial scans of a child acquired at, say, one

and two years of age would be better represented by an affine transformation as
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there is a significant amount of global change. In both of these cases, there may

be small scale differences that remain after the global transformation (rigid or

affine) has been applied – this may necessitate a further non-rigid registration

step to achieve an improved correspondence.

2.2.3 Rigid transformations

Under a rigid body transformation, angles and lengths are preserved and it can be

represented by applying rotations and translations. In 3D, a general rotation can

be decomposed into rotations about each of the coordinate axes and a translation

can be parametrised by a single vector. In the 2D case, the images can be viewed

as being embedded in a plane. The only rotations that need to be considered are

rotations about an axis perpendicular to the plane.

Considering first, the two-dimensional case, the matrix representation Rz(γ)

of an anti-clockwise rotation of the xy plane about the origin (z axis) by an angle

γ can be derived from its effect on the unit vectors (1, 0)T and (0, 1)T as follows




1

0


→




cos γ

sin γ







0

1


→



− sin γ

cos γ




giving

Rz(γ) =




cos γ − sin γ

sin γ cos γ




Representing a rotation in this form allows it to pre-multiply a vector x = (x, y)T

representing a location in the Euclidean plane R
2.

A translation in the xy plane can be represented by a single vector (a, b)T

whose components are the image of the origin under the translation. The effect

of applying a rotation matrix R and a translation vector v to a point with co-
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ordinates x can be written as

x→ Rx + v (2.1)

It is possible to simplify this by appending an extra component to the vector x

and interpreting it as a set of homogeneous co-ordinates, i.e.




x

1


 =




x

y

1




This requires the rotation matrix to be represented as




cos γ − sin γ 0

sin γ cos γ 0

0 0 1




and a translation to be represented as




1 0 a

0 1 b

0 0 1




.

In block form, the rotation and translation can be written as




R 0

0 1


 and




I v

0 1


 ,

where I represents the identity matrix. Multiplying these two matrices allows a
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single matrix to represent the effect of applying the rotation and the translation




I v

0 1







R 0

0 1


 =




R v

0 1


 ,

and the single matrix can be shown to be equivalent to the Euclidean co-ordinate

representation in Equation 2.1 by noting that




R v

0 1







x

1


 =




Rx + v

1


 .

This block representation for rigid transformations also applies to the three-

dimensional case. Clearly, the translation vector needs to have three components,

i.e.

v =




a

b

c




.

Some choice is available for the representation of two-dimensional transfor-

mations, for example a rotation may be carried out first followed by a translation

and vice versa. In three dimensions the situation is made more complex due to

an increased number of choices. For example, in the case of three-dimensional

rotations, a first rotation can be made about the x axis, and the next rotation

can be made about the y axis, which can either be considered as a new y axis (i.e.

affected by the previous rotation) or a fixed y axis. In the following, all rotation

axes are considered to be fixed, i.e. unaffected by any previous rotations.

A rotation of γ about the z axis (from the x axis to the y axis in a right-handed
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frame) in three-dimensional homogeneous coordinates becomes

Rz(γ) =




cos γ − sin γ 0 0

sin γ cos γ 0 0

0 0 1 0

0 0 0 1




Similarly, rotations of α and β about the x and y axes can be represented

respectively by

Rx(α) =




1 0 0 0

0 cos α sin α 0

0 − sin α cos α 0

0 0 0 1




and

Ry(β) =




cos β 0 sin β 0

0 1 0 0

− sin β 0 cos β 0

0 0 0 1




.

In general, a 3D rotation about an axis through the origin can be effected by

first rotating about the x axis, then the y axis then the z axis. This means that

the single matrix representation




R v

0 1




still holds for the rigid transformation, where R = Rz(γ)Ry(β)Rx(α) and v =

(a, b, c)T . This also shows that rigid transformations in three dimensions can be

represented using 6 parameters.
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2.2.4 Affine transformations

There may be a need to take into account differences in size between the images

being registered, for example there may be a need to calibrate the scanner to

prevent ‘drift’ in voxel sizes over time. If such size differences also need to be

modeled, then scales and shears can be used in addition to rigid body motion.

Under affine transformations, parallel lines are preserved but lengths and angles

may be altered.

Scale factors can be applied along each of the coordinate axes, affecting coor-

dinates along the chosen axis by different amounts. For example a scaling by a

factor of sy along the y axis is represented by




1 0 0 0

0 sy 0 0

0 0 1 0

0 0 0 1




with similar representations for scales in the x and z directions.

Shears in 2D are readily defined by a line through the origin and a scalar

value. Any 2D point is sheared by translating it parallel to the chosen line by an

amount proportional to the point’s distance from the chosen line. In 3D, shears

become more complex and can be characterised in more than one way. A 3D

shear can be defined as a translation in one coordinate direction by an amount

equal to a linear combination of the other two coordinate values. For example,

the x coordinate could vary by a linear combination of the y and z coordinates




x

y

z



→




x + ay + bz

y

z




A shear characterised in this way is known as a beam shear. Using the notation
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of Chen et al. [35] the above beam shear can be written in terms of its parameters

and the axis of interest as S(xb, a, b) with the suffix indicating a beam shear. This

particular beam shear leaves points with y = z = 0 (the x axis) invariant.

A shear can also be defined as a translation affecting two coordinates, each

by an amount proportional to the third, for example, with the y coordinate

determining an xz translation, we have




x

y

z



→




x + ay

y

z + by




This type of shear is known as a slice shear and the above example can be written

as S(ys, a, b). This shear leaves points with y = 0 (i.e. the xz plane) invariant.

Despite it being possible to characterise shears in different ways, the repre-

sentations are equivalent in the sense that the composition of three beam shears

along orthogonal invariant axes can be re-written as a composition of three slice

shears using orthogonal invariant planes. As an example, it can be shown that

S(zb, e, f)S(yb, c, d)S(xb, a, b) ≡ S(xs, c, e + fc)S(ys, a, f)S(zs, b− ad, d)

As before, it is possible to represent these shears as matrices acting upon

homogeneous coordinates. For example, the slice shear above can be written in

matrix form as 


1 a 0 0

0 1 0 0

0 b 1 0

0 0 0 1




Affine transformations can therefore be decomposed into a rigid portion (rota-

tions and translation) and a set of scalings and shears. Rotations and scales have

one parameter per axis, and a translation is specified with three parameters while
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the shears, as described above, require two parameters per invariant axis/plane.

The total number of parameters needed to specify an affine transformation

therefore appears to be 15 but these parameters are in fact coupled so that the

effective number of parameters is fewer than 15. The reason for this can be

seen in the form of the matrix representations for the transformations. Each

transformation can be carried out by multiplying by a matrix of the form




m11 m12 m13 m14

m21 m22 m23 m24

m31 m23 m33 m34

0 0 0 1




.

This type of matrix maps points represented in the form




x

1




to points of the same form, where x represents a 3-D point. This mapping

property requires that the final row of the matrix consists of zeros with a one

in the final position. The product of two matrices of the above form is also of

the this form, so the final matrix representing the affine transformation will be

specified by 12 parameters.

2.2.5 Non-rigid transformations

The number of representations available for affine and rigid transformations are

relatively few and even when different representations are used, the resulting

transformations can be shown to be equivalent. For example, the same rotation

could be represented by a matrix as described above or by using a quaternion

representation [149].

After a pair of images have been aligned using a rigid or affine transforma-
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tion, residual differences may remain that need to be accounted for by local or

non-rigid deformations and there are many possible ways to represent non-rigid

transformations. Furthermore, the properties of the non-rigid transformations

may vary according to the model used to describe them. The following section

describes some of the possible ways of modelling non-rigid transformations and

the subsequent section describes the model used for the work presented in this

thesis.

2.2.5.1 Background

Affine transformations can be used to account for global differences in location,

size or shape between images, but there are occasions where the transformation

needs to vary in its effect from one region of the image to another. An example

application is given by inter-subject registration. The images of the brains of

different subjects generally represent the same set of structures but the shapes

of these structures vary in different ways in different parts of the brain. In order

to provide a dense correspondence between two such images, the transformation

needs to be characterised by more than the parameters used to define a global

rigid or affine transformation – the effect of the transformation needs to vary

locally across the image.

A function f on a domain Ω is said to be continuous if an infinitesimal change

in the input produces an infinitesimal change in the output. The class of all con-

tinuous functions on a domain Ω is typically denoted as C0(Ω). Functions in the

class C0(Ω) that also have continuous first derivatives are said to be continuously

differentiable and define the class of functions C1(Ω). The class Ck(Ω) encom-

passes functions f for which f and the derivatives f (1), . . . , f (k) are continuous

and the class C∞(Ω) represents functions for which all derivatives are continuous.

In mathematical terms, only functions in C∞(Ω) are described as smooth but in

practical terms, functions in the class C2(Ω) or even C1(Ω) can be sufficiently

smooth when modelling structures or transformations. When functions are used
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to define mappings between coordinate systems further properties become rele-

vant. A function f that maps points from a set X to a set Y is a homeomorphism

if it is a bijection and both f and f−1 are continuous. The class of homeomor-

phisms preserves the topology of the spaces being mapped. If the underlying

topology of the anatomy being imaged (for example in a scan of the brain) is as-

sumed to be identical for two images, then a transformation between the images

needs to be a homeomorphism. The stronger restriction that f be a bijection

and that both f and f−1 are Ck continuous (i.e. k times differentiable) defines

f as a Ck-diffeomorphism [29]. The term diffeomorphism is typically used for a

C∞-diffeomorphism. Manifolds [29] related by a homeomorphism are said to be

homeomorphic and, similarly, diffeomorphic manifolds are related by a diffeomor-

phism. It is possible for two manifolds to be homeomorphic (i.e. topologically

equivalent) but not diffeomorphic, for example the surfaces of a sphere and a

cube. Smooth manifolds are often used to represent the anatomical structures

within images (see e.g. [99]) and if the anatomical structures represented within a

pair of images are assumed to be smooth, then the transformation relating them

is required to be a diffeomorphism of a suitable order. For this reason, diffeo-

morphic transformations are often used as a theoretical basis for the non-rigid

registration of medical images [37, 78].

Non-rigid transformations can be represented as smooth displacement fields,

which require a smooth assignment of vectors to each location in an image. For a

3D image, this leads to a representation that requires displacement vector com-

ponents to be specified for each of the images voxels. The number of parameters

needed to define such a transformation would then be three times the number of

voxels in the image.

It is, however, possible to represent the number of parameters needed to repre-

sent a non-rigid transformation, by using a model or exploiting a property of the

transformation, such as its smoothness. If each of a displacement field’s separate

components are viewed as scalar fields, then it is possible to use a set of smooth
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basis functions to model each component. For example it is possible to use a

limited number of discrete cosine functions, with varying frequencies, represent a

non-rigid transform, each component of the transformation is then written as a

linear combination of the basis functions [4]. A registration of two images in this

case involves finding the optimal set of coefficients for the basis functions that

align the images.

Another established technique for representing non-rigid warps is the use of

a set of control points or knot points within the image. A vector is associated

with each control point and a mechanism is then required that allows a smooth

transformation to be globally defined based on the vectors associated with each

of the control point locations.

The control points can be regularly spaced on a lattice within the image

or they can be placed at an irregular set of locations. If the control points

are irregularly spaced, they can be manually selected in the source and target

images to represent homologous locations [166]. Alternatively, irregular control

point locations can be automatically selected using a heuristic method [118, 147].

Control points can also be placed on a regular lattice that is aligned with the

coordinate axes of the image. This is the approach used within the Free Form

Deformation (FFD) model for non-rigid transformations [140].

It is possible to begin a registration with a small number of sparse control

points and use a larger number of denser control points as the registration pro-

ceeds. In this way, the registration can begin by optimising for the low frequency

components of the warp and later matches details at a smaller scale. Such a

’coarse-to-fine’ strategy is popular, not least because it helps reduce the risk of a

registration converging on a local optimum. As an example of this strategy, Shen

et al. [147] who begin by (heuristically) selecting a small number control points,

based on distinctive voxel correspondences, to start a registration and increase

the number selected as the registration continues.

Using a FFD model, Schnabel et al. [143] begin a registration using a control
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point lattice with a large control point spacing. The parameters for this ini-

tial lattice are optimised and the resulting transformation captures the non-rigid

differences between the images at the largest scale. After optimising the initial

lattice it is possible to re-represent the same FFD transformation using a subdi-

vided lattice with half the control point spacing of the initial lattice [60]. The

subdivided FFD can capture a finer level of detail and forms the starting point

for a new optimisation step. An example of a FFD transformation and the result

of subdividing it is illustrated in Figure 2.2.

Figure 2.2: An example of the lattice subdivision of a FFD. Top left: A target
image for a registration. Top right: The source image after affine alignment to
the target. Bottom left: The source image after non-rigid FFD alignment. The
control point spacing is 20mm and the deformed FFD grid is shown. Bottom
right: The result of subdividing the 20mm FFD lattice, this FFD has a 10mm
control point spacing and forms the starting estimate for the next step in the
hierarchical registration.

For transformation models that use vectors at control points, the definition
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of the transformation at general locations is essentially an interpolation problem.

There is therefore a choice as to whether the transformation being represented

should interpolate or approximate the vectors at each control point and this choice

is linked to the method with which the transformation is defined globally.

For example, Twining et al. [166] use clamped plate splines to interpolate the

control point vectors, these splines minimise the energy of the resulting deforma-

tion field which means smoothness of the field is ensured by the model chosen

to globally represent the transformation. Free form deformations on the other

hand approximate the control point vectors rather than interpolate them. This

is achieved by convolving the control point vectors with a smoothing B-Spline

kernel along each image dimension. Using a B-Spline kernel in this way leads to

a smooth displacement field across the entire image. The B-Spline basis function

is a piecewise continuous function which has implications for the smoothness and

continuity of functions it is used to generate. For example a function generated

from a fourth order (cubic) B-spline will have C2 continuity at the knot-points

and C∞ continuity elsewhere (See e.g. [23]).

Alternative approaches to the representation of non-rigid transformations

draw upon the use of physical models. For example, it is possible to repre-

sent the space of one of the images being registered as an elastic material that is

being deformed towards the other image [10, 71, 63, 147]. In this case, the elastic

energy derived from the deformation field also serves to constrain its smoothness.

Another good example of the use of a physical model is represented by the use

of fluid registration models [37, 66, 47]. Here, the equations that govern the flow

of a fluid and under the influence of a force field are used to generate a smooth

displacement field between two images. This can be carried out by estimating a

series of time dependent smooth velocity fields and the displacement of a point

is estimated by integrating its flow over the velocity fields [13].

The process of diffusion can also serve as a model for image registration,

an example is presented by Thirion [163] who uses the concept of ’Maxwell’s
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Demons’. Pennec et al. [128] show how models that based on Maxwell’s demons,

with appropriate choices of parameters can be re-interpreted as examples of fluid

or elastic registration depending on the parameters selected.

2.2.5.2 The selected non-rigid transformation model

The non-rigid deformations used in this work are represented using the free-form

deformation (FFD) model, an approach introduced within the computer graphics

community by Sederberg and Parry [145] and subsequently adapted for medical

image registration by Rueckert et al. [140].

Free-form deformations belong within the category of spline-based methods

but contrast with, for example, thin-plate splines [22, 166]. Approaches using

thin plate splines typically require homologous points to be defined in both im-

ages and the displacements defined by these landmarks are used to parametrise

the transformation. The landmarks may represent anatomically corresponding

locations (e.g. [22]) or may be identified using a heuristic approach based on geo-

metric properties derived from the images [147]. FFDs are typically parametrised

using a regular grid of control points that do not have anatomical significance -

these are sometimes termed quasi- or pseudo-landmarks. It is possible, however,

to define FFDs based on grids other than a regular rectilinear lattice. For ex-

ample, cylindrical meshes have been used to define FFDs for the registration of

cardiac MR images [34]. Indeed FFDs have also been developed for grids with

an arbitrary topology [33] that can be tailored to the anatomy being registered.

While FFDs are parametrised by the displacements at the control points, the

displacements at general locations are defined using a B-spline kernel. The B-

spline kernel has compact support [167] which implies that the displacement at a

particular location depends only on those control points in a local neighbourhood

and, conversely, a control point only affects a limited number of voxels. This con-

trasts with the radial basis functions used to define displacements in a thin-plate

spline model. The (theoretically) infinite support of these basis functions means
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that a control point’s effect extends over the whole field of view of the image.

This can be computationally prohibitive when large numbers of control points

are used as well as making the modelling of local deformations more difficult.

FFDs share properties with elastic models that can also use a regular grid

of control points (see e.g. [70]) as well as irregular tetrahedral meshes of control

points (see e.g. [131]). Displacements at control points for an elastic model are

interpolated exactly with barycentric coordinates being used to estimate displace-

ments at non-nodal locations. Like FFDs, the control points’ effect is restricted

to a compact region, but FFDs, by contrast, approximate rather than interpolate

the control point vectors (See e.g. [110] for a discussion on approximation and

interpolation). For FFDs displacements in general are evaluated using a simple

tensor product which contrasts with elastic models that require material prop-

erties to be modeled and typically use a finite element scheme to optimise the

mesh displacements (see e.g. [70]). The use of a general tetrahedral mesh may

also necessitate a topology correction step (see e.g. [131]).

The fact that FFDs are parametrised makes it possible to represent a defor-

mation field more economically than within schemes that require a displacement

field to be stored for each voxel in an image as can be the case, for example,

in fluid schemes (see e.g. [37]). On the other hand, fluid schemes are capable

of representing relatively large deformations, although a regridding scheme may

be required if the Jacobians tend to become singular (see e.g. [37]). FFDs and

elastic approaches by contrast are more suitable for modelling relatively small de-

formations - after pose and scale differences have been corrected for with an affine

alignment step. It is, however, possible to carry out a series of successive FFD

alignments with the resulting FFDs being composed to give a final displacement

field [138]. This allows large displacements to be modeled although the resulting

displacements themselves are no longer represented by a single FFD defined by

a regular lattice.

A free-form deformation can be parametrised by a set of vectors {Φi,j,k}.
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Each vector is associated with one of a set of control points that are arranged on

a regular nx×ny×nz lattice with spacings of δx, δy and δz along each dimension;

the subscripts i, j, k index the location of a control point within the lattice.

By blending the control point vectors using a suitable basis function, a con-

tinuously varying displacement can be defined at each point of the target image

domain. In this work, the control points are blended using the cubic B-spline

basis functions:

B0(u) =
(1− u)3

6

B1(u) =
3u3 − 6u2 + 4

6

B2(u) =
−3u3 + 3u2 + 3u + 1

6

B3(u) =
u3

6

and the local displacement at a location (x, y, z) is given by a tensor product over

the control point vectors

Tlocal(x, y, z) =
3∑

l=0

3∑

m=0

3∑

n=0

Bl(r)Bm(s)Bn(t)Φi+l,j+m,k+n. (2.2)

Setting i = ⌊x/δx⌋ − 1, j = ⌊y/δy⌋ − 1 and k = ⌊z/δz⌋ − 1 ensures that the set of

control points {Φi+l,j+m,k+n} for 0 ≤ i, j, k ≤ 3 are those in the neighbourhood

of (x, y, z) that contribute to the B-spline summation. This reflects the compact

support of the B-spline basis functions. The value of r, where the first basis

function is evaluated is given by

r = x/δx − ⌊x/δx⌋,

and similar expressions are used to derive values for s and t from the y and z

coordinates.
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2.2.6 Multi-level free-form deformations

When carrying out a registration using FFDs, it is possible to apply a hierarchical,

coarse-to-fine approach. The first step involves optimising the parameters of a

FFD with a large control point spacing in order to align the larger features of

the images. After these parameters are optimised, it is possible to subdivide

the lattice of control points using B-spline subdivision [60] and use the resulting

control points to run a second registration step using a lattice with half the control

point spacing. Proceeding in this way, more of the finer detail in the images is

captured after each subdivision step.

In parallel with the subdivision of the control point spacings, it is also appro-

priate to blur and resample the images being registered, so that the scale of the

features in the images is appropriate for the spacing of the control point lattice in

the FFD. For example, an image may be blurred such that information relating

to structures smaller than a certain size, say 20mm, is effectively removed. A

FFD applied to such an image should have an appropriate control point spacing

as this affects the degree of local control. In the above example, the use of a

control point spacing of 10mm to 20mm would be appropriate for the scale of

the images. The theory of scale space for images is a well established area of

study (see e.g. [112]) and a discussion of multi-resolution approaches to optimis-

ing B-splines is given in Lee et al. [108] but a formal study of the interaction of

image scales and multi-resolution B-splines is yet to be carried out. The images

in this work were blurred and down-sampled to achieve the appropriate scale for

the coarser control point spacings, with the degree of blurring and resampling

resolution getting successively smaller at each step. Further details are given in

section 3.1.2.
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2.2.7 Combining the global and local components of a

transformation

The registration of two images in this work was carried out in two main steps.

First the global transformation (rigid or affine) was estimated, and this was then

used as the starting point of the non-rigid registration. The global transfor-

mation itself can also be estimated in two steps, by first estimating the rigid

transformation and using it as the starting point of the affine registration. The

transition from rigid to affine registration is straightforward because the rigid

transformation parameters resulting from the first step are a subset of the affine

transformation parameters that are optimised in the second step. The affine reg-

istration therefore begins with initial translation and rotation parameters that

are based on the rigid registration estimate and with scale and shear parameters

set to one and zero respectively.

The global transformation between the images is obtained after the affine reg-

istration step and the subsequent non-rigid or local registration seeks to estimate

the local residual displacements required to align the images after applying the

global transformation. This means that, under the model used, the global and

local components of the transformation were combined by addition. The addition

of the global and local components introduces an interrelationship between them

and this is discussed in more detail in section 3.1.3.1.

Let Tglobal represent a global transformation and Tlocal a local non-rigid dis-

placement field. The global transformation can be represented by a translation

vector d and a transformation matrix M. Matrix M can either represent a rigid

rotation using 3 parameters (rotations about each of the axes), or it can repre-

sent a 9 parameter affine transformation matrix M encoding rotations, scales and

shears. The global transformation is therefore represented as

Tglobal(x) = Mx + d. (2.3)
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The complete transformation T that accounts for both global and local differ-

ences between a pair of images is modelled as the sum of these local and global

components

T(x) = Tglobal(x) + Tlocal(x) = Mx + d + Tlocal(x) (2.4)

for each location x in the target image. Alternative methods for combining the

global and local transformations can be used, for example they can be composed.

The use of addition makes the transformations simpler to manipulate, for example

the evaluation of Jacobians is easier (see section 3.2 for more detail).

2.2.8 Similarity metrics

When optimising parameters during a registration, some measure of the similarity

of the images is required. The goal of the optimisation is to maximise the similar-

ity of the images. Alternatively, if a measure of difference is used, the registration

becomes a minimisation problem, but this can be converted into a maximisation

problem by negating the difference measure and considering it to be a similarity

metric. For example if d(A,B|T) represents a measure of difference between two

images A and B given a transformation T then the aim of a registration is to

minimise d and an alternative optimisation would be one that aims to maximise

−d, i.e. −d can be viewed as a similarity metric.

In order to calculate a similarity metric for a given pair of images, an estimate

of the correspondence between them is needed. In this work, transformations map

locations from a target image It to a source image Is. If {x1, . . . ,xn} represent

the locations of the voxels in the target image, the corresponding source image

locations under a transformation T, from It to Is, are {T(x1), . . . ,T(xn)}. The

set of intensity pairs {(It(x), Is(T(x1))), . . . , (It(xn), Is(T(xn)))} is then used in

the calculation of a similarity metric during voxel-based registration. For the sake

of clarity, let the set of corresponding target and source image intensity pairs be
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represented more compactly by {(t1, s1), . . . , (tn, sn)}.

Many different similarity metrics are available. It is possible to use the sums

of squared differences metric [82, 67], which penalises differences in intensity

between corresponding voxels.

SSD =
1

n

n∑

i=1

(ti − si)
2

Using −SSD as a similarity measure implies an assumption that the images

should appear identical when correctly aligned, i.e. that the any differences in

their intensities after alignment should only be due to noise.

Cross correlation is defined as

CC =

∑
(ti − t̄)(si − s̄)√∑

(ti − t̄)2
√∑

(si − s̄)2
.

where the summations are carried out over n voxel locations and t̄ and s̄ are

the means of the target and source intensities respectively. Cross correlation is

a general measure of statistical agreement but it has been used as a similarity

measure [52]. Its use as a similarity measure implies the assumption that the

intensities at corresponding locations of the images being registered have a linear

relationship when they are aligned. Their dynamic ranges may differ, but an in-

tensity scaling and shift can be used to map intensities at corresponding locations

with, once again, any residuals between them being due to noise.

If the intensity pairs are viewed as entries in the joint histogram of the im-

age pair, information theoretic measures can also be defined. With appropriate

binning and normalisation, it is possible to provide estimates of the probability

p(t) of the occurrence of a particular intensity t in the target image, the proba-

bility p(s) of intensity s occurring in the source and the probability p(t, s) of the

co-occurrence of these intensities (i.e. their occurrence at corresponding voxel

locations).
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Using these estimates of probability, it is possible to calculate the Shannon

entropy [146] of the target image as

H(It) = −
∑

t

p(t)log(p(t))

with the entropy of the source image similarly defined. In the above expression,

the summation ranges over all intensities t in the target image. The summation

represents the expected uncertainty or information content of the image. An

image that is completely uniform has p(t) = 1 for its single intensity and therefore

has an information content of zero. An image consisting of only noise without

any structure will, by contrast, have a high Shannon entropy. The joint entropy

of the image pair is defined as

H(It, Is) = −
∑

t

∑

s

p(t, s)log(p(t, s)).

Mutual information, which is defined as

MI = H(It) + H(Is)−H(It, Is).

A registration using MI as a similarity measure seeks a trade-off between max-

imising the marginal entropies of the images while reducing their joint entropy.

MI has been in use as an image registration similarity metric since 1995 [169, 40]

and was introduced mainly to register multimodality images, where the assump-

tion of a linear relationship between corresponding intensities does not hold. For

some pairs of images (e.g. PET and MR) there may not even be a functional

relationship between the images.

Normalised mutual information is defined as

NMI =
H(It) + H(Is)

H(It, Is)
,
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i.e. it represents the ratio of the sum of the marginal entropies to the joint entropy

in contrast to the difference represented by mutual information. Using a set of

simulated examples, Studholme et al. [159] showed that NMI was more robust to

variations in image overlap during the registration and also showed, using clinical

data, that the registration accuracy was also robust to variations in the imaged

field of view.

In practice, the values for the marginal and joint entropies can be estimated

by constructing the joint histogram of the two images. If the intensities in each of

the images are allocated to a series of bins, the joint histogram can be represented

by a set of values n(t, s) that count the number of co-occurrences of each of the

(binned) intensity pairs (t, s) in the two images. The joint probability of p(t, s)

can then be estimated as

p(t, s) =
1

N
n(t, s)

where N represents the total number of samples in the histogram. The marginal

histograms for each of the images separately can be estimated by summing the

joint histogram along its rows or columns. The marginal probabilities p(t) and

p(s) can, in turn, be similarly estimated. After estimation of the joint and

marginal probabilities, the entropies can be calculated as described above. An

alternative approach to the estimation of the joint and marginal probabilities is

through the use of Parzen representations [127, 168].

2.2.9 Interpolation

The calculation of the similarity metrics described in Section 2.2.8 is based on the

intensity correspondences obtained from the target voxel locations {x1, . . . ,xn}

and the source locations {T(x1), . . . ,T(xn)} under the transformation estimate

T. The source locations are clearly unlikely to coincide with the locations of the

voxel centres in the source image. For this reason, the source intensities need to be

interpolated from the sampled source values prior to evaluation of the similarity
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metric.

There are various choices of interpolation method, with the simplest being

nearest neighbour interpolation. Tri-linear interpolation is commonly used. More

sophisticated interpolation schemes are available, such as piece-wise continuous

cubic interpolation [105], B-spline interpolation [167] and sinc interpolation [161].

Lehmann et al. [110] provide a good overview of interpolation methods in med-

ical image registration, and the performance of interpolators is discussed more

theoretically in Thévenaz et al. [162].

From a registration perspective, the main issues underlying the choice of in-

terpolation method centre on the trade-off between the performance cost of eval-

uating the interpolator and the quality it produces. For example, the calculations

for linear interpolation are relatively fast but can affect the image in the same

way as a low-pass filter. A converse example is given by sinc interpolation, which

preserves the spectral content of the image but is very costly to compute.

2.2.10 Optimisation

The registrations carried out in this work optimised the similarity metric with

respect to the transformation parameters using either downhill descent or steepest

gradient descent (Strictly speaking, these should be called ‘uphill ascent’ and

‘steepest gradient ascent’ as the similarity measures are being maximised but

expressing the problem as a minimisation is more common in the optimisation

literature – see [58], for example).

The downhill method was used when optimising global (rigid or affine) trans-

formations. With this approach, the transformation parameters are individually

perturbed by a chosen step size and the similarity metric is re-evaluated for each

perturbation. The parameter giving the biggest increase in similarity is then

selected and the transformation is updated by modifying this parameter. This

process is repeated until no further increase in similarity is achieved. The step
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sizes were chosen empirically. A large initial step size was used and the trans-

formation parameters optimised. This can then be repeated using successively

smaller step sizes until an accurate rigid or affine alignment is obtained. For

the relatively small number of parameters being optimised during rigid or affine

registration, downhill descent represents a simple and fast method that generates

transformations with no significant difference from those obtained by gradient

based methods (such as gradient descent) without the overhead of calculating

the gradient of the metric with respect to the transformation parameters.

Gradient descent was used to optimise the parameters during non-rigid reg-

istration (the components of the control point vectors). If C represents the sim-

ilarity metric and Φ represents the collected components of the control point

vectors, then gradient ascent simply optimises by stepping along the direction of

maximum increase, i.e.

Φ + δ∇ΦC,

where δ represents the step size. This expression replaces the set of parameters

Φ at each iteration step. Once again, successively smaller step sizes can be used

to optimise in a coarse-to-fine fashion.

The gradient term ∇ΦC can be evaluated analytically for similarity metrics

such as SSD, and it is also possible to obtain an analytic expression for the gra-

dient of more complicated similarity metrics such as MI [90]. Alternatively, the

similarity gradient can be estimated by simply using a finite difference method,

for example by finding the central differences.

2.2.11 Regularisation

The relatively high dimension of non-rigid transformations means that a large

number of such transformations can be used to align a pair of images. The ex-

istence of such multiple solutions makes the non-rigid registration of images an

ill-posed problem. This leads to the notion of what may be described as the
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plausibility of the transformation that relates the images that need to be reg-

istered, thereby restricting the number of possible solutions. For example, if it

is known that the images represent anatomies with the same topology, then a

plausible transformation should not alter the topology in any way. Typically,

the smoothness of the transformation has been used as a measure of its plau-

sibility [140, 13, 103] and therefore the process of providing smooth, and hence

plausible, transformations has often been termed regularisation. The use of reg-

ularisation means that the under-determined nature of the registration problem

becomes a better-determined or even a well-posed problem.

If a transformation T represents the registration estimate between a target

image A and a source image B, then the registration problem can be expressed in

a Bayesian framework [125] as the requirement to maximise the posterior proba-

bility of the transformation given the image data:

P (T|A,B) ∝ P (A,B|T)P (T),

where P (A,B|T), the likelihood of the image data given the transformation, can

be represented by the similarity of the images under the correspondence given

by T. The plausibility of the transformation is expressed by P (T), its prior

probability. There is, however, a trade-off between the aims of optimising for

both the transformation plausibility and the image similarity. If smoothness is

the desired property of plausible transformations, then the extreme case of the

identity transformation represents the smoothest possible example but is likely

to lead to a poor match between the images.

The deformation model can, by definition, provide a high degree of regularity

in the final transformation. This is apparent in the case of FFD based trans-

formations where the use of B-splines to interpolate the control point vectors

gives a natural smoothness to the resulting transformation [140]. The use of

clamped plate splines [166] also, by definition, minimises the bending energy of
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the transformation that interpolates the displacements at the control points.

Additionally, a number of approaches for generating plausible transformation

estimates have been provided in the literature. The broad categories of these

approaches include those which explicitly model the material properties of the

anatomies being registered, those which apply a processing step to the obtained

deformations and methods which incorporate a term penalising implausible trans-

formations during the optimisation step.

Soza et al. [156] estimate parameters for the mechanical properties of the tissue

and directly incorporate them into the registration model. Karacali et al. [103]

process a given deformation, which may be irregular and break topology, and

estimate a similar deformation that is smooth and preserves topology. Rohlfing

et al. [136] introduce a priori knowledge of the incompressibility of breast tissue in

serial MR images and express this constraint as a penalty term with the similarity

metric.

Using an additional term in the similarity metric or objective function that

relates to the smoothness of the transformation is a typical approach due to

the ease with which it can be evaluated from the deformation and incorporated

into the voxel-based registration framework. If Csimilarity represents the similar-

ity metric and Creg represents a measure of the plausibility or regularity of the

transformation, then the overall objective function C is represented by

C = Csimilarity + λCreg, (2.5)

where λ determines the relative contribution of the regularisation and similarity

terms during the optimisation. An appropriate value of λ needs to be established.

A value that is too low may lead to implausible transformations, while values that

are too high may constrain the registration too much and prevent it from aligning

the images sufficiently accurately.

As an example, in the large deformation diffeomorphic metric mapping (LD-
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DMM) model, the transformation estimate is obtained by integrating a series of

time varying velocity fields. By choosing an appropriate norm on the velocity

vector fields and including it as a separate term in the cost function, it is possible

to generate smooth displacement fields [13].

For the purposes of this work, the regularisation term used, Creg, was the

bending energy associated with the transformation [170, 140]. This energy is

calculated using the second order derivatives of the transformation T.

Creg = − 1

|Ω|

∫ ∫ ∫
‖∂

2T

∂x2
‖2 + ‖∂

2T

∂y2
‖2 + ‖∂

2T

∂z2
‖2 +

‖ ∂2T

∂xy2
‖2 + ‖ ∂2T

∂xz2
‖2 + ‖ ∂2T

∂yz2
‖2dxdydz.

This expression represents a 3-D version of the bending energy associated with

the deformation of thin 2-D plate. If a thin flat metal plate is viewed as occupying

the xy plane and a series of displacements are applied in the z direction, then

expression above measures the energy required to bend the plate to achieve the

displacements. A linear or affine transformation has zero bending energy so that

the above term is only relevant for non-rigid registrations. If the individual com-

ponents of the transformation are viewed as scalar functions, then Creg penalises

high curvature in these functions. Creg can also be viewed as sum of the norms

of the Hessian matrices for the three scalar component functions.

2.3 Segmentation

There is a long history of identifying and delineating structural areas within the

brain. The relatively recent introduction of non-invasive scanning techniques has

allowed such segmentation to be carried out on imaged surrogates of the anatomy,

as an alternative to histological methods. The ability to segment a structure or

tissue type in the brain enables attention to be directed to specific regions, and

this information can serve to support more general studies of pathology or func-
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tion. Functional MRI studies have investigated how activations within different

regions of the brain (as measured by blood oxygenation) can be correlated with

specific tasks or activities [68]. The localisation of tasks to specific areas of the

brain is, however, not new. For example, neuroanatomical correlates between dif-

ferent areas of the brain and specific aspects of linguistic performance have been

the focus of many investigations in the form of studies of the effects of localised

damage to various regions of the brain [113, 119].

In the context of the measurement of change through time, the ability to gen-

erate structural segmentations of the brain serves a useful purpose in that regions

of interest can be isolated and the growth or atrophy within specific areas can

be assessed. For example, hippocampal atrophy has been identified as a marker

for Alzheimer’s disease [77, 94] and an increase in ventricular volume has been

associated with multiple sclerosis [62]. An example related to neurodevelopment

is the increase in the volume of myelinated white matter that takes place in first

two years of life [141].

These examples motivate the identification of regionally specific measures of

longitudinal change in the brain and the consequent need to identify the regions,

something which can be achieved via segmentation.

2.3.1 Manual segmentation

Human raters can carry out manual segmentations on images of brain anatomies

to identify structural and functional boundaries by assigning labels to the voxels of

an image. This can be a difficult and time-consuming process but if the human

rater is sufficiently experienced and the protocol that is applied is clear and

detailed, then the levels of inter- or intra-rater agreement can be high enough for

the resulting segmentations to be treated as a ‘gold standard’. Inter- and intra-

rater agreements are often reported as intra-class correlation coefficients and, for

manual segmentations, values of 0.93 and above are typical [21, 98] although these
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figures clearly depend upon the training and experience of the expert raters.

The high quality of the segmentations manually produced by experts is clearly

desirable but there is a trade-off against the level of effort required. Segmen-

tations provided by experts have been used for many years and are especially

important for structures that are difficult to segment automatically such as the

hippocampus [95, 132]. If there are a large number of unseen images that need

to be segmented, the effort of manual segmentation may become unfeasible and

alternative, more automated approaches present themselves as a viable alterna-

tive. As well as being time-consuming, manual segmentation can be prone to

errors that depend on human factors (e.g. inter- and intra- observer variation,

drift in practice over time), the nature of segmentation protocols and acquisition

effects (e.g. contrast characteristics, motion artefacts, scanner calibration issues

etc.). In some cases, depending upon the application, deterministic and robust

automated schemes may be preferred for their consistency and applicability to a

wide range of data.

2.3.2 Automated segmentation

Numerous approaches have been developed to address the problem of automated

image segmentation. In the context of general image processing, this involves the

assignment of labels to the pixels or voxels of an image that share some feature or

features. For example by labelling contiguous regions or areas similar in colour.

In medical image processing the task is mainly to assign labels to the voxels

within a particular structure or tissue type.

Noisy data represents a challenge to all automated segmentation methods and,

for the segmentation of MR images in particular, effects such as poor contrast,

inhomogeneity and partial voluming add to the difficulty of the task. A good

image segmentation technique should be robust to such effects.

Unsupervised classifiers or clustering techniques are well established in the
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general image processing community. The mean-shift [41] approach places a ker-

nel over each point in the image and uses this kernel to evaluate a regionally

specific mean. By moving in the direction of each mean iteratively, a maximum

point is eventually reached and each starting point can be labelled according to

which maximum it arrives at. The number of clusters found in such a scheme can

vary and is dependent on the size of the kernel. Mean shift is a non-parametric

technique that seeks to estimate a density. The feature space being considered,

for example the image intensities, can be viewed as a probability density function

and the local maxima of the this function, or its modes, represent locations that

can be viewed as cluster centres.

Normalised cuts [148] represents another unsupervised approach where the

pixels in an image are considered to be nodes in a weighted graph where the

weights along each edge measure the ‘similarity’ of the corresponding pairs of pix-

els. Spectral clustering techniques applied to a matrix derived from this graph

(the Laplacian) can be used to partition the image into two clusters of points

where the within cluster similarity is high and the between cluster similarity is

low. Each cluster corresponds to a region in the original image and repeated

application of the technique can allow an arbitrary number of regions to be seg-

mented.

An example of the use of an unsupervised method in medical image processing

can be found in [129] where the a fuzzy c-means algorithm is used to segment

the tissue types in MR brain images. This approach requires initial values for

the mean intensities of each tissue types in order to begin the algorithm and the

authors present automated methods for locating these values.

An approach that has found a good deal of success in tissue segmentation

combines a parametric model for representing the tissue types and a supervised

maximum likelihood for finding the optimal parameters. Such an approach re-

quires training data in order to create prior probability estimates of the spatial

variation of each tissue. Typically, such a framework models the tissue intensities
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as a mixture of Gaussians and the expectation maximisation (EM) algorithm can

be used to find estimates for the model parameters for each tissue in a given

image [177, 109]. The EM algorithm alternates between estimating the model

parameters for each tissue and updating the tissue membership probabilities for

each tissue at each voxel.

Alternative approaches explicitly model the boundary of the object or struc-

ture being segmented. Active contours, or snakes, have been used to segment

objects in 2-D images [104] where an initial estimate is driven by ‘forces’ derived

from the image data (for example the gradient) to the boundary of an object.

Typically, an internal force constrains the contour to be smooth.

Surfaces can be evolved in 3-D images to match the boundaries of structures.

The brain extraction method of Smith [152] expands a sphere mesh, initialised

at a location based on the image’s centre of gravity, outwards to meet the brain

boundary using forces derived from the profile of intensities along the surface nor-

mals at each vertex. Han et al. [86] initialise an estimate of the cortical surface

based on the boundary between grey and white matter found by tissue segmenta-

tion. A level set approach is then used to grow this surface to find the boundary

of the cortex using forces derived from the tissue membership probabilities.

Models for the boundaries of structures can be trained using sets of example

data where there is known point correspondence. Active appearance models

(AAMs) represent the typical patterns of variation for the shape of a structure

and the intensity patterns within or on the boundary of the structure [44]. After

training such a model, the intensity patterns, or appearance, of an unseen image

can be used to instantiate an instance of the model thereby providing an estimate

of the structure boundary.

Finally, atlas-based segmentation is an approach that allows expert manual

segmentations of images to be propagated to new images [93, 160, 49]. This

clearly requires an estimate of the correspondence between the atlas or segmented

image and the new image. This means that atlas-based segmentation requires a
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registration step to allow the labels to be propagated.

The propagation of labels from multiple atlases, and their subsequent combi-

nation or fusion is a method that has shown good levels of accuracy, comparable

with that of manual segmentation [135, 89]. Atlas-based segmentation and clas-

sifier fusion will be discussed in more detail in Chapter 4.

Methods that are trained in order to build an explicit model, such as AAM,

require effort to be expended during this training stage. The resulting model is,

however, reasonably compact and can easily be applied to new data. A single

atlas-based segmentation method does not build an explicit model but uses an

exemplar segmentation that represents the structure(s) for the whole population.

The overhead in the application of atlas-based segmentation is mainly represented

by the alignment step and this depends on the nature of the registration used.

Multiple label propagation and fusion again does not build an explicit model and

the bulk of its computational cost is in the registration of the multiple atlases to

the query. There is an additional cost in the need to store the entire database

of atlases. These costs are somewhat offset by the higher segmentation accuracy

possible in comparison with other methods [89].

The generalisability of a model-based approach depends on how comprehen-

sive the training data are in their representation of the population and on how

much of the detail within the population is retained within the model. The gen-

eralisability of label propagation and fusion depends on the size and variability

of the atlas database and on how well correspondence can be established with

unseen subjects.

2.4 Atlas construction

Given a set of images for a group of subjects, it is possible to generate atlases

to represent the cohort. The atlases can represent any of a number of features

for the group, for example, the average anatomy, average tissue probability maps
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or average patterns of longitudinal change. Atlases can help in determining the

main clinical characteristics of the group, the main differences between clinical

groups or the differences between the same group observed at different times. If

an atlas represents a healthy population, it can be used to support diagnosis of

disease when compared with an image for a particular individual.

One of the simplest methods for generating an atlas from a set of images

is to register all the images to a chosen reference subject and use the resulting

transformations to align all the images to the reference. An atlas can be created by

averaging the values at corresponding voxels for the spatially normalised images.

As an example, using a set of scans acquired from a group of 25 two-year-old

subjects, two atlases were created. The first atlas was created by registering all

the subjects to a chosen reference and averaging the resulting images. The second

atlas was generated to be in an ‘average space’ using the methods described in

Section 3.4. Illustrations of these atlases are shown in Figure 2.3, where the

bias of the ‘reference space’ atlas to the chosen reference is apparent, as are the

differences between the reference space and average space atlases. For example

variations in the boundary of the skull that are particular to the subject chosen as

a reference (see Figure 2.3, top row) remain apparent in the atlas constructed by

registering to the reference and averaging (see Figure 2.3, middle row). A similar

comment applies to a slight asymmetry in reference subjects lateral ventricles.

These particular features of the reference do not, however, remain in the average

space atlas (see Figure 2.3, bottom row). Section 3.4 gives further details of the

average space atlas creation. This illustrates the obvious drawback of atlases

generated simply by registering to a reference and averaging. The atlas is likely

to be biased to the chosen reference subject and this may confound any further

data generated based upon the use of the atlas.

A number of methods have been proposed for the generation of ‘average-space’

or ‘template-free’ atlases. Guimond et al. [80] align all the images to a reference

space using affine registrations. Working with the aligned images, a ‘demons’-
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Figure 2.3: Atlasing a group of two-year-old subjects in reference and average
space. Top row: Transverse slices taken from a reference subject. Middle: Slices
of an atlas of the group created by transforming all subjects to the reference
and averaging intensities. Bottom: An average space atlas of the same group of
subjects.
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based registration [128] step is carried out to correct for residual non-rigid dif-

ferences between each image and the reference. The non-rigid registrations are

then averaged and used to generate a new reference estimate and the process is

repeated.

Wang et al. [173] affinely align a group of images for which sets of manual

labels are available. They then compare the use of different images as a reference

template from which labels are propagated to each of the other images. The

fitness of a reference is then measured by how well it predicts the manual labels.

The reference template can be an individual image in the group or an average

constructed through the use of the average non-rigid pairwise transformations

between the affinely aligned images.

Bhatia et al. [15, 14] use a similarity metric that measures the normalised

mutual information of each of the images in an affinely aligned set with a fixed

intensity reference. The images are then simultaneously non-rigidly aligned to

a postulated average space, subject to the constraint that the sum of all the

deformation fields is equal to zero.

Working with large deformation diffeomorphic metric mappings (LDDMM),

Joshi et al. [101] simultaneously register a set of images using a cost function

that penalises both intensity differences between the images and the total amount

of deformation induced by the large deformation diffeomorphic mappings from

the subjects to the atlas. The amount of deformation for a diffeomorphism is

measured by integrating the norm of a differential operator applied to the time

varying velocity fields that determine the diffeomorphism.

Approaches to generating average atlases can rely on first averaging the trans-

formations between the different images from which the atlas is created. Methods

used to average transformations can be analogous to the physical process of find-

ing the centroid of a group of masses. There is more than one possible way

to find a centroid iteratively, one possible method is illustrated in Figure 2.4.

If x1, . . . ,xn represent locations for unit masses, then their centroid x̄ can be
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Figure 2.4: A schematic diagram of the process of iteratively calculating the
location of the centroid for a group of equal masses. The centroid is initialised
to be at the same location as one of the masses. Thereafter, its location can be
updated by fractionally moving along the displacements to each of the remaining
masses. The fraction moved diminishes with each iteration. Analogous methods
have been used to provide the averages of sets of transformations between images
for the purposes of atlas generation.

located using an iterative scheme as shown in Algorithm 1.

Algorithm 1 Iterative scheme for finding the centroid of a set of equal masses.

Input Locations x1, . . . ,xn:
Output : x̄

x̄1 ← x1

i← 1
do

∆ = xi+1 − x̄i

x̄i+1 = x̄i + 1
i+1

∆

i← i + 1
while (i < n)

The approach known as Woods matrix averaging [180, 181] finds the average

of a set of affine transformations in an analogous way to the method described for

iteratively finding the centroid. The points shown in Figure 2.4 in this case rep-

resent images and a line between two points represents the affine transformation

between the images. Traversing a fraction of a line between two points becomes

finding a root of the affine transformation. It would be desirable, given a set
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of images, that the average space reached be the same regardless of the start-

ing image and the subsequent traversal through the images. Another desirable

property is that the affine transformations from the estimated average space to

the input images give the identity when composed. Given that affine transfor-

mation matrices do not, in general, commute, it seems unlikely that the results

will be exact although the results presented by in Woods et al. [180, 181] and

in subsequent work suggest that the method provides a reasonable approxima-

tion. Avants [8] presents a similar scheme for the averaging of non-rigid trans-

formations. Woods [179] presents further algorithms that can be used to average

non-rigid transformations using their Jacobians. Because each Jacobian tensor

represents a local affine transformation matrix. The complete average transfor-

mation is then characterised by the aggregation of the averages of the Jacobian

matrices across the region of interest.

Beg et al. [12] present an averaging method based on the concept of ‘geodesic

shooting’. The authors present an argument that large deformation diffeomor-

phic metric mappings (LDDMM) can be completely characterised by the initial

(t = 0) velocity vector field and by a ‘speed’ term. Within such a framework,

they further argue that the transformation between two images can then be rep-

resented by an initial ‘momentum’ and that the momenta representing a number

of transformations can be linearly averaged.

2.5 Morphometry

2.5.1 Background

The ability to characterise physiological features such as the size and shape of

neuro-anatomical structures or the quantity or density of different types of tissue

at different locations is clearly of use in that it provides additional information

that clinicians may use during diagnosis or treatment. In this context, a wide

65



range of methods for analysing image data, encompassing registration, segmen-

tation and atlasing techniques, fall under the general heading of ‘morphometry’.

The different approaches can be placed under the broad categories of voxel-based

morphometry (VBM), deformation-based morphometry (DBM) and tensor-based

morphometry (TBM).

A typical application of VBM [6, 75] aims to find differences between two

groups of subjects. The images for all the subjects are aligned to a reference

image. The registrations used for this alignment typically correct for affine dif-

ferences and have a low-dimensional non-rigid component. The images are then

segmented into different tissue types, and one of the tissue types, typically grey

matter, is used to calculate a statistic (e.g. a t-statistic) on a per-voxel basis

using the information on group membership. In this manner, regions in the brain

where there are statistically significant differences in tissue density between the

groups can be located.

VBM therefore uses the information present in the images after they have been

spatially normalised. DBM and TBM, by contrast, focus attention on the trans-

formations that align the images to the reference. If all the images being studied

are registered to a reference using a high-dimensional non-rigid registration step,

then they will be made to resemble the reference closely and the variation within

the group is encoded in the transformations mapping the subjects to reference.

The terminology is not entirely consistent in the literature but DBM can be

used to describe approaches that apply statistical techniques to the displace-

ment fields directly, for example by using a general linear model and multivariate

statistics [69].

If information based on derivatives of the non-rigid transformations is used,

for example by calculating the Jacobian tensor, then the term TBM can be used

to describe the approach [38].

The term DBM is, however, also used in studies where the Jacobian tensor

is calculated, for example in a longitudinal study of atrophy [28] and in a cross-
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sectional study of preterm infants and controls [20].

2.5.2 Morphometry for characterising longitudinal changes

When using images to identify changes over time, some way of ordering the images

in time is needed. This necessitates attaching some form of temporal marker to

the images. In most cases, this is simply the age of the subject at the time of

the scan, but the marker can also represent a stage during disease progression

or treatment; for example, images can be acquired longitudinally, before, during

and after a particular intervention.

When using image data to measure longitudinal change, more than one ex-

perimental design is possible, depending on how the data are acquired:

• In a cross-sectional study that tracks longitudinal change,1 the data ac-

quired generally represent a snapshot of a number of individuals, where

each subject is associated with a particular stage or time-point. For exam-

ple, a group of children with a range of ages can be scanned and their ages

recorded. Subsequently, measurements (e.g. volumes) derived from the im-

aged data can be related to the childrens’ ages to provide a representation

of the longitudinal change. The main confounding factor in cross-sectional

studies that measure longitudinal change is the influence of inter-subject

variability on the tissue or structure volumes being estimated. Variations

between subjects may affect any subsequent estimates of change that are

made.

• A longitudinal study in which each subject is scanned at two or more time-

points is less susceptible to the effect of inter-subject variability, because

each subject effectively acts as its own control, and changes, such as those

due to growth or degeneration, are more easily isolated. Furthermore, if se-

1A different sense of the term ‘cross-sectional’ is used to describe studies carrying out a
static (i.e. non-time dependent) comparison of two or more groups. The focus of this work,
however, is longitudinal change and the meaning should be clear from the context.
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rial scans are acquired for subjects in distinct clinical groups (for example

one group receiving a treatment and a group of controls), then the longi-

tudinal data can be used to make estimates of change that can then be

compared across groups in a mixed design experiment that incorporates

both longitudinal and cross-sectional features.

The simplest longitudinal study is one where scans are acquired at two com-

parable timepoints. For example, scans might be acquired at specific ages for a

cohort of subjects. In this case, as well as obtaining estimates of longitudinal

change for particular individuals, it is possible to generate atlases for the cohort

at each timepoint. This can help to identify general patterns of change over the

interval studied for the cohort as a whole.

2.6 Conclusion

This chapter has presented a review of the methods that can be used to analyse

image data in general and for the purpose of characterising longitudinal change

in particular. Descriptions have been given of methods that can be used to

register and to segment images along with techniques for atlasing images and

characterising longitudinal change.

Registration, segmentation and atlasing are components that will form parts of

later parts of this thesis. Chapters 4 and 5 use registrations to propagate manual

labels to unseen images in the context of atlas-based segmentation and classifier

fusion. Chapter 3 will give further detail of a registration-based framework that

can be used to characterise longitudinal change. This framework incorporates

longitudinal registrations for measuring growth and inter-subject registrations for

generating average space atlases. This framework is applied to different sets of

data in Chapters 6 and 7 where information derived from structural segmentations

and tissue segmentations is also used.
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Chapter 3

Registration-based methods for

measuring longitudinal change

The ability to assess and quantify structural changes in the brain over time is

clearly useful in a clinical setting. Examples of such change are growth during

childhood, degeneration due to ageing or pathology or changes due to therapy for

a particular condition. For any of these examples, identifying patterns of longitu-

dinal change for a cohort, either throughout the brain or by region, can provide

clinically useful information. Such information can be used to track growth and

development or it can serve as a bio-marker for the degree of pathology, for ex-

ample during a clinical trial [51].

In finding the patterns of variation in the longitudinal change for a cohort,

assessments relating to individual subjects can be made. This can help to deter-

mine, for example, whether a child’s brain is developing as expected, to decide if a

particular clinical intervention is appropriate, or to assess whether a patient with

a neurodegenerative condition is responding to a particular drug or treatment.

The remainder of this chapter describes methods that can be used to assess

and quantify longitudinal change and to create atlases in a longitudinally tracked

cohort. These methods are based on a variety of approaches. Intra-subject lon-

gitudinal registrations are used to estimate change for individuals. Inter-subject
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registrations are used to generate atlases of a cohort at different timepoints. The

atlases are created in an ‘average space’, using averages of inter-subject trans-

formations between the subjects in a cohort and a particular reference. These

methods are compared and combined with segmentation techniques to provide

either validation or further estimates of change.

3.1 Registration and volume change estimation

Before describing some of the choices taken for the registration models and pa-

rameters, a brief description of the data is presented to provide some context. The

registrations carried out in this work for volume change estimation were applied

to two sets of serially acquired T1-weighted MR images. One set was acquired

from a group of children at one and two years of age. A second set consists of

baseline and follow-up scans acquired from a group of Alzheimer’s disease pa-

tients and age-matched controls. The childrens’ image data was reconstructed to

have an in-plane resolution of 1mm2 and a slice thickness of 1.6 mm. The images

used in the Alzheimer’s study were reconstructed with and in-plane resolution of

0.9375mm2 and a slice thickness of 1.5 mm.

3.1.1 Registration model choices

For a given pair of images, a registration can be carried out in two steps by

first estimating a global transformation which is then used as a starting point

for a non-rigid registration step. The choice of global transformation between

the images depends on the type of images being registered. For example, if the

images represent serial scans of an adult subject, then a rigid transformation is

appropriate, as it is reasonable to assume that there is no change in global head

shape between acquisitions. If the images represent scans of different subjects,

or longitudinal scans of young infants where global shape changes are plausible,

then a 12 parameter affine transformation is more appropriate.
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The local non-rigid registrations were carried out using a B-spline based free-

form deformation (FFD) model [140] in a hierarchical coarse-to-fine manner [143]

as described in Section 2.2.6. As well as speeding up the optimisation process,

the use of this hierarchical coarse to fine approach when optimising the non-rigid

transformation parameters reduces the chance of being trapped by local minima

of the objective function [143].

Linear interpolation was used for the source image and normalised mutual

information [159] was used as the similarity metric. The regulariser used was the

transformation bending energy [170, 140]. This combination of choices was found

to be reasonably robust and appropriate for both inter-subject and intra-subject

registrations presented in this work. Further discussion of related parameter

choices is given in the next section.

3.1.2 Registration parameter choices

The hierarchical coarse-to-fine optimisation of the FFD registrations was carried

out with successive control point spacings of 20mm, 10 mm, 5 mm and 2.5 mm.

As an example, a FFD with a control point spacing of 20mm was first estimated

and was then subdivided to generate an initial estimate for a 10mm spacing FFD.

This was in turn optimised and the process repeated.

In tandem with the subdivision of the FFDs, the images were also blurred

with a Gaussian kernel and down-sampled. The extent of the downsampling and

blurring was based on the native resolution of the image and varied for each

FFD control point spacing. During the final optimisation stage the images were

registered in their native resolution and without resampling. The kernel sizes

and down-sampling factors used are shown in Table 3.1, where r represents the

smallest dimension of image voxel size. For example, an image with a smallest

voxel dimension of 1mm, being registered with a FFD having a 20mm control

point spacing, would be blurred with a Gaussian kernel of 1mm and resampled
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to an isotropic voxel size of 2× 1 = 2mm. This example relates to the first row

in Table 3.1.

Control point spacing Down-sampling factor Kernel size
20mm 2r r
10mm 1.5r 0.75r
5mm - 0.5r

2.5mm - -

Table 3.1: Image down-sampling factors and sizes of blurring kernel used during
hierarchical optimisation of the FFDs. Dashes indicate that either down-sampling
or blurring was not applied, i.e. the original image data was used.

In order to control the relative contribution of the regularisation term (see

Equation 2.5), a choice of the weighting value of λ = 0.01 was made. Clearly it is

desirable for the estimated transformation to be smooth, but if the value of λ is

too high, the transformation will become too constrained. In other words there

is a trade-off between the smoothness and the accuracy of the transformation.

As an experiment to test the effect of the regularisation parameter λ, the

images for a subject scanned at one and two years were segmented using an

expectation maximisation (EM) [109, 123] based algorithm to give tissue esti-

mates for white and grey matter. The images were registered using different

values of λ. Based on the resulting transformations, the average tissue overlap

(measured by the Dice coefficient [50]) was found between the year one tissues

and the transformed year two tissues.

The overlap values found after the different choices of λ are shown in Fig-

ure 3.1. The overlap deteriorates for the highest values of λ (≥ 1), reflecting the

trade-off between smoothness and accuracy. Choosing the value of λ that gives

the most regularisation prior to the drop in accuracy gives the value of 0.01. It

should be noted, however, that the use of B-spline basis functions to weight the

control points of a free-form deformation means that there is an intrinsic level of

smoothing already present in the transformation model.

Another factor that can affect the smoothness of the transformation is the

choice of similarity metric. For example, the use of SSD or CC was found to

72



0 0.0001 0.001 0.01 0.1 1 10
0.81

0.82

0.83

0.84

0.85

0.86

D
ic

e

λ

Figure 3.1: The effect of the choice of regularisation parameter λ. For various
settings of λ, a longitudinal (intra-subject) registration was carried out for a
subject. The resulting transformations were then used to align tissue segmenta-
tions in each of the images. The average overlap of grey and white matter was
calculated and is shown on the vertical axis.

be more likely to produce transformations which are less smooth. Examples of

deformations produced by SSD, CC and NMI are illustrated in Figure 3.2. All

parameters apart from the similarity metric were the same for these registrations

and the value of λ was 0.01. It can be seen that SSD produces deformations

which are the least smooth, NMI the smoothest and CC is intermediate.

Figure 3.2: An illustration of the different amounts of transformation smoothness
produced by different similarity measures during an inter-subject registration.
Left to right: SSD, CC, NMI.
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3.1.3 FFD properties

Two properties of the FFD transformation model used are relevant to the cal-

culation of average transformations used later in this chapter (Section 3.4.1.2).

These are the coupling of the global and local components of the transformation

and the additive properties of FFDs.

3.1.3.1 Global and local coupling

After the global and non-rigid registration steps, the resulting global transforma-

tion Tglobal and the local displacement field Tlocal are combined as described in

Equation 2.4, which is repeated here:

T(x) = Tglobal(x) + Tlocal(x) = Mx + d + Tlocal(x).

Combining the global and local parts of the transformation by addition creates

a dependence of the local displacement field on the global transformation. This

is illustrated schematically in Figure 3.3, where the local displacements needed to

map the left image to the one on the right are shown as dashed arrows. The top

pair of images are related by an identity global transformation and the bottom

pair of images are related by a 90 degree anti-clockwise rotation. If the displace-

ment field for the bottom pair of images is multiplied by the inverse of their global

rotation, the displacement field for the top pair is obtained.

The identity

T(x) = Mx + d + Tlocal(x) = M(x + M−1Tlocal(x)) + d,

shows that applying the global transformation followed by a local displacement

of Tlocal(x) is equivalent to applying a local displacement field of M−1Tlocal(x)

followed by the global transformation.

The displacement field represented by M−1Tlocal, (that is associated with the
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Figure 3.3: The coupling of the global and local parts of a transformation. The
displacements required to match each left hand image to the right hand image
are shown as dashed arrows. The top images are related by an identity global
transformation while the bottom pair are related by a 90 degree rotation.

pair of images with an identity global transformation) can be viewed as a version

of Tlocal that has been ‘de-coupled’ from its associated global transformation M.

3.1.3.2 Linearity of FFDs

Because Tlocal is a linear sum of the control point vectors, there is an additive

property with respect to different sets of control points. If two FFDs T{Φ} and

T{Γ} are defined on the same lattice locations with control point vectors {Φi,j,k}

and {Γi,j,k}, then

T{Φ} + T{Γ} = T{Φ+Γ}

i.e. the sum of the displacement fields can be represented by a single FFD with

control point vectors {Φi,j,k + Γi,j,k}.

A further consequence of this linearity is that the transformation obtained by

multiplying all the control points of a FFD by a fixed matrix has the same effect

as multiplying all the displacement vectors by the same matrix. Using the same
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notation as above, for a fixed matrix M,

T{MΦ}(x) = MT{Φ}(x)

for all locations x.

3.2 Estimation of longitudinal change

In order to characterise change in individual subjects using longitudinal data, it

is possible to perform intra-subject registrations using the baseline and follow-

up scans as target and source images respectively. If the transformation T =

(Tx, Ty, Tz)
T maps target (baseline) to source (follow-up) locations, the Jacobian

operator D can be applied to the transformation,

DT =




∂Tx

∂x
∂Tx

∂y
∂Tx

∂z

∂Ty

∂x

∂Ty

∂y

∂Ty

∂z

∂Tz

∂x
∂Tz

∂y
∂Tz

∂z




.

The Jacobian gives the best local linear approximation to the transformation. In

effect, it is an extension of the one-dimensional derivative operator. If v represents

a small perturbation applied to x, then

T(x + v) ≈ T(x) + DT(x) · v

and the volume change induced by the transformation in an infinitesimally small

region around a target location x is given by the determinant of the Jacobian

at x, which can be denoted J(x). From Equation 2.4, and using the linearity of
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Jacobian operator,

J(x) = det(DT(x))

= det(DTglobal(x) + DTlocal(x)). (3.1)

Using the notation of Equation 2.3, DTglobal(x) = M. DTlocal(x) can be calcu-

lated analytically using the derivatives of the B-spline basis functions. Making

the separate components of the local displacement described by Equation 2.2

explicit gives

Tlocal(x, y, z) =




Tx

Ty

Tz




=
3∑

l=0

3∑

m=0

3∑

n=0

Bl(r)Bm(s)Bn(t)Φi+l,j+m,k+n.

The partial derivative ∂Tx

∂y
, for example, can be obtained as

∂Tx

∂y
=

3∑

l=0

3∑

m=0

3∑

n=0

Bl(r)B
′
m(s)Bn(t)Φx

where, for clarity, Φx represents shorthand for the x component of the vector

Φi+l,j+m,k+n. The derivatives of the B-spline basis functions (such as B′
m(s)

above) can be evaluated analytically, because closed form expressions of the basis

functions are available.

3.3 Averaging volume change estimates

Given a transformation between images, it is possible to estimate a volume change

map in the space of each target image using the Jacobian determinants, J(x).

The context in which values of J(x) are aggregated or averaged for statistical

purposes generally fall under two main headings: they can be used to define

volume change for a particular region of interest (ROI) within the image of a
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single subject; or they can be averaged, at a particular anatomical location, across

multiple subjects. The methods used to average the Jacobian determinant values

depend upon which context applies.

3.3.1 Change over a region of interest

If the target and source images represent baseline and follow-up scans for an

individual subject, then the map of J(x) represents estimates of tissue volume

change during the interval between scans at each voxel. Let Ω represent a target

image region of interest (ROI) or structure for which an estimate of change is

required, then an estimate of the volume |T(Ω)| is needed. This represents the

volume of Ω after the transformation is applied and is given by

|T(Ω)| =
∑

w∈T(Ω)

1 ≈
∑

v∈Ω

J(v) (3.2)

where v and w represent target and source voxel locations respectively. This

estimate represents a discretised version of the change of variable formula for

integration.

It is convenient to measure the change for a structure as a growth or atrophy

factor |T(Ω)|
|Ω| , and this is equivalent to calculating the arithmetic mean of Jacobian

determinants over the ROI defined by Ω

|T(Ω)|
|Ω| ≈

∑
v∈Ω J(v)∑

v∈Ω 1
=

1

|Ω|
∑

v∈Ω

J(v). (3.3)

This method can be used to find growth factors for segmented structures and

only requires one of the images (the baseline) to be segmented.

The Jacobian determinants of a transformation should all be finite and greater

than zero for a transformation that does not fold, tear or introduce a reflection.

A calculated growth factor of one represents no change in volume at a location,

a value greater than one represents expansion. A growth factor with a value less
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than one represents shrinking.

So far it has been assumed that Ω is defined by a binary mask, a voxel v

is either in Ω or not, and similarly for T(Ω). If, however, a spatially varying

probability map p(v) represents membership of the structure or tissue class (e.g.

white matter), where 0 ≤ p(v) ≤ 1 for voxels v in the image domain V , then

Equation (3.3) can be modified to become

|T(Ω)|
|Ω| ≈

∑
v∈V p(v)J(v)∑

v∈V p(v)
. (3.4)

In this instance, the change for the structure is represented by a weighted lin-

ear average of the Jacobian determinant values. If the distribution of p(v) is

bi-modal, consisting only of values of zero and one, then Equation 3.4 reduces

to Equation 3.3. The application of segmentation methods such as the EM al-

gorithm, to brain images produces probabilistic tissue maps that can be used in

conjunction with Equation 3.4.

3.3.2 Average change across subjects

If serial scans at the same or similar timepoints are available for a number of sub-

jects, then longitudinal registrations may be carried out and volume change maps

estimated for each individual. It is a natural extension to combine the individual

volume change maps in a common coordinate system in order to identify general

patterns of change.

Let {J1, . . . , Jn} represent a set of spatially normalised Jacobian determinant

maps for a group of n subjects over a particular interval. For a given voxel location

v in the common coordinate system, the values of Ji(v) for i = 1, . . . , n represent

a set of multiplicative scale factors for the volume of the voxel at v. Given this

multiplicative nature, a natural choice for the average Jacobian determinant value
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at v, J(v) is given by the geometric mean of the individual estimates,

J(v) =

(
n∏

i=1

Ji(v)

) 1

n

. (3.5)

By choosing the geometric mean to represent a set of Jacobian determinant values

at a location, the resulting value can still be interpreted as a local scale factor that

is applied to infinitesimal volume neighbourhoods. This is because the volume

obtained by successively applying the Jacobian determinants Ji for i = 1, . . . , n

is equivalent to applying the geometric mean n times.

The choice of the geometric mean is equivalent to using the arithmetic mean

for the values of the log Jacobian. In their work on the use of deformation based

morphometry for studying the effects of alcoholism using inter- and intra-subject

registration, Rohlfing et al. [137] apply statistical methods to log-Jacobian maps

that have been spatially normalised to a reference. They also demonstrate that

any per-voxel statistics derived from such maps (e.g. z-scores, t-statistics) are

independent of the choice of reference space. This lends support to the choice

of the geometric mean as an average for Jacobian determinants from multiple

subjects.

A further consideration that needs to be taken into account are variations

in the length of the interval over which the scans were acquired for different

individuals. For example, if the interval studied represents the year between the

first and second birthdays for a group of children, then each subject’s scans are

obtained at times close to either birthday with some variation.

To account for this variation, the days between scans for the ith individual, di,

may be used to correct the Jacobian determinant values prior to averaging across

subjects as described in Equation 3.5. This can also be carried out geometrically:

Ji(v)← (Ji(v))
365

d ,
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which represents an annualised rate of change. This approach to temporal nor-

malisation of the Jacobian determinants assumes an exponential model for change

of the Jacobian determinant over time or, equivalently, a linear model of change

in the log determinant. Rohlfing et al.[137] also apply this approach to temporal

normalisation.

3.4 Average space atlases via transformation av-

eraging

Given a cohort of subjects with scans available at two or more timepoints, it

is possible to generate atlases to represent the cohort at each timepoint. Such

atlases can help to characterise volume change for the population as a whole, to

estimate region-specific patterns of change or simply as an aid to visualisation.

Anatomical atlases for a group of subjects can be created for the images based

on their inter-subject transformations. This study combines methods used for the

averaging of non-rigid deformations [80, 139] with estimates of the averages of the

global affine transformations – in this way the average space atlases represent the

group at a local level as well as in terms of global shape and size.

The inter-subject registrations all use a reference subject as the target image

but the possible bias towards the reference may be reduced using the average of

inter-subject transformations. This process is schematically illustrated in Fig-

ure 3.4.

Let {I1, . . . , In} represent the images for all subjects and Iref represent the

reference subject’s image. Let {T1, . . . ,Tn} denote the inter-subject transforma-

tions (with Iref as target) and let the result of averaging these transformations

be denoted T. In order for the reference to be included in the atlas, it can be

assumed that Iref is included in the set {I1, . . . , In} and that the corresponding

transformation is the identity. As with the input transformations, Iref is the tar-
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Figure 3.4: Atlas construction: The numbered arrows show the transformations
between the reference and the remaining subjects. These transformations are av-

eraged to create T. The compositions of T
−1

with the individual transformations
Ti, i = 1, . . . , n, were used to create an atlas in the average space.

get image for T. It will, however, map locations in Iref to a postulated average

space image I. The composition of T
−1

with each of {T1, . . . ,Tn} can be used

to map locations in I to each of the individual subjects’ images, i.e. the mapping

of a location v in the average space image to the corresponding location in the

image of the ith subject is represented by

v→ Ti(T
−1

(v)).

This allows intensity values in the images {I1, . . . , In} to be pulled back to voxel

locations in I prior to averaging. This method for generating atlases is similar

to the approach used by Guimond et al. [80] and Rueckert et al. [139] that were

applied using local deformations. The approach presented here differs in that the

global affine component of the transformations is also included in the averaging

step, i.e. information about the average shape in global terms is incorporated

into the atlases.

The analysis pipeline, showing the steps taken during the generation of average

space atlases, is shown in Figure 3.6. The input to this pipeline is represented by

the data to be atlased, for example Jacobian determinant maps, tissue probability

maps or anatomies, and a set of transformations between the average space atlas
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Figure 3.5: A diagram to illustrate the steps taken to find transformations from
an average space atlas to the images in a cohort. Details of the individual steps
are described in Sections 3.4.1 and 3.4.2.

Figure 3.6: A diagram to illustrate the steps taken to produce an average
space atlas for a given set of images. The input images can represent differ-
ent types of data, for example anatomies or Jacobian maps. The transformations

T1T
−1

, . . . ,TnT
−1

map locations in the average space to each of the input im-
ages. See Figure 3.5 for details of the generation of these transformations.
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and the individual subjects.

Details of the steps taken to generate the transformations between the average

space atlas and the images in the cohort are illustrated in Figure 3.5 and are

described in Sections 3.4.1 and 3.4.2.

3.4.1 Averaging transformations

The averaging of the inter-subject transformations during atlas creation was car-

ried out separately for the global and local components of the transformations.

The resulting averages of the global and local components were subsequently

combined to create the average overall transformation T .

3.4.1.1 Averaging global transformations

Using the same notation as that used above, a set of transformations {T1, . . . ,Tn}

relate each subject’s image to the reference - one of these transformations can be

assumed to be an identity transformation from the reference to itself. For a given

subject i, Ti is represented by

Ti(x) = Tglobal,i(x) + Tlocal,i(x) = Mix + di + Tlocal,i(x), (3.6)

a subject-specific version of Equation 2.4 where the global transformation is de-

termined by affine matrix Mi and translation di. The affine matrix Mi can be

decomposed as Mi = RiAi, where Ri is a rotation matrix and Ai represents

scales and shears.

If the full set of global parameters {Mi,di}i=1,...,n are used in the averaging

process, then the resulting atlas will also reflect the average position and orien-

tation of the images (relative to the reference). This position and orientation

information is independent of the anatomical and longitudinal change informa-

tion that the cohort encapsulates, so only the matrices {Ai}i=1,...,n are used in

the averaging process, providing an estimate of the average with respect to global

84



scales and shears. The restriction of the averaging to the global scales and shears

at this stage implies the average space atlases produced have the same position

and orientation as the reference subject.

Affine transformation matrices cannot be averaged directly because they do

not occupy a linear space. A simple example in 2 dimensions can be seen if linear

averaging is applied to two matrices representing the identity and 90◦ clockwise

rotation about the origin:




1 0

0 1


 ,




0 1

−1 0


 .

Intuitively, the average of these matrices should simply represent a 45◦ rotation.

The linear average of these matrices, however, represents a a scaling along each

axis by a factor of 1√
2

followed by a clockwise rotation of 45◦. This is seen in the

following decomposition:




1
2

1
2

−1
2

1
2


 =




1√
2

1√
2

−1√
2

1√
2







1√
2

0

0 1√
2




which demonstrates that the linear average is inappropriate in this case.

The averaging of affine matrices requires a different approach that takes into

account the manifold that they occupy. Previously, approaches for averaging ele-

ments of non-linear spaces have been presented for data representing transforma-

tions [24, 1], data representing tensors [3] and, more recently, in a machine vision

context, on the space of symmetric covariance matrices of features extracted for

the identification of humans in images [165].

The average Ā of the matrices {Ai} is given by their Frechét (or intrinsic)

mean [64] and can be calculated using Algorithm 2. In this algorithm, the log op-

eration maps matrices from their (non-linear) manifold to vectors in the tangent

space centred on the current estimate of the average. The vectors are averaged
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linearly in the tangent space and the result is mapped back to the manifold using

the exponential map. The resulting location is then used as the updated estimate

of the mean and the process is repeated until the average of the tangent space

discrepancies between the estimate of the average and the data becomes negligi-

ble. The discrepancy average is represented by the norm of 1
n

∑n

i=1 log(Ā−1Ai)

(or log(A′)) in Algorithm 2.

Algorithm 2 Find the Frechét mean of a set of matrices.

Input : Matrices {Ai}i=1...n

Output : Frechét mean Ā
Ā = I
do

A′ = exp{ 1
n

∑n

i=1 log(Ā−1Ai)} }
Ā = ĀA′

while ( ‖ log(A′)‖ > ǫ )

3.4.1.2 Averaging local transformations

Let the control point vectors for the local displacement field Tlocal,i be denoted

{Φu,v,w,i} where u, v and w index the position of the control point within the

lattice and i indexes the subject. It is worth noting that, since the transformations

Tlocal,i for i = 1, . . . , n all share the same target image (the reference subject),

they also share the same locations for their control point lattices. This means

that the indices u, v and w range over the same values for all subjects.

Equation (3.6) shows the individual transformations expressed as the sum of

a global transformation and a local FFD displacement field Tlocal,i. As described

in Section 3.1.3.1, this implies a coupling between the control point vectors and

the global affine transformation. Prior to averaging the local transformations, the

effect of the corresponding global transformations upon their control point vectors

needs to be removed. The effect of the global transformation is removed by pre-

multiplying each of the control point vectors by the Jacobian of the corresponding
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inverse affine transformation to obtain

{Φ′
u,v,w,i} = {M−1

i Φu,v,w,i}.

The linearity of the FFD with respect to its control points (Section 3.1.3.2) means

that pre-multiplying all the control points by M−1
i has the same effect as mul-

tiplying the displacements of the FFD globally by the same matrix. The affine-

corrected control points {Φ′
u,v,w,i} are linearly averaged over all the subjects for

i = 1, . . . , n to produce {Φ′
u,v,w}

Φ′
u,v,w =

1

n

n∑

i=1

Φ′
u,v,w,i.

This makes use of the additive property of free-form deformations that have the

same lattice locations that was described in Section 3.1.3.2. This implies that the

free-form deformation generated by the average control point vectors Φ′ gives the

equivalent displacement over all locations as the average of the displacements of

the input free-form deformations. Despite the simplicity of this approach, it has

been shown that linearly averaging local displacement fields in this way produces

atlases that are reasonably robust to the initial choice of reference [80, 139].

3.4.1.3 Combining the global and local averages

Let T
′
local denote the free-form deformation generated by the average of the affine

corrected control point vectors Φ′. The FFD T
′
local is not coupled to an affine

transformation (or, equivalently, it is coupled with the identity matrix). It needs

to be coupled with the previously calculated affine transformation, Ā, before

being used for the complete (global and local) average transformation. The lo-

cal component Tlocal of the average complete transformation has control points

{Φu,v,w}i given by

{Φu,v,w} = {Ā ·Φ′
u,v,w}
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Finally, given the average affine matrix and average local deformation field, the

average transformation T of the input transformations {T1, . . . ,Tn} is again

expressed as a sum, i.e.

T(x) = Āx + Tlocal(x)

3.4.2 Inverting transformations

The inversion of the global affine component of Tav is straightforward, but the

local FFD component is not analytically invertible. We used a numeric method

to invert the FFD by starting a lattice of control points in the space of the

reference image (which has the same position and orientation as the average space

atlas). For each control point location (x, y, z) an estimate of the displacement

T−1
av (x, y, z) was obtained using a Newton method. Once all the displacements

are obtained for the control point locations, a set of B-spline FFD components

are calculated for each control point using the inverse filtering method described

by Unser [167]. Further details of the method used to invert a transformation

consisting of global affine and local FFD component can be found in Appendix A.

3.5 Discussion

The previous sections have presented a framework that encompasses a set of

techniques for measuring longitudinal change. When measuring such change,

there is a need for some form of validation or consistency estimation against

which the estimates of change can be assessed.

Estimates of longitudinal growth or degeneration can be validated in a num-

ber of ways. Clearly, for a particular structure, it is possible to provide what are

described as ‘gold standard’ estimates for segmentations of that structure at each

timepoint. These could be provided by an expert clinician applying an appro-

priate manual segmentation protocol to the image data or, more invasively, by

histological segmentation. If manual segmentations are generated for each time-
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point, then an estimate of the structure’s longitudinal change can be made. This

estimate should be highly accurate given the high levels of accuracy provided by

expert manual segmentations.

The drawback of such a method is clearly the amount of time and effort

needed to generate manual segmentations, whether on images or histologically.

For assessing automatically generated volume change estimates for a large num-

ber of subjects and/or structures, this approach becomes impractical. A more

straightforward approach to providing comparison estimates is therefore via auto-

mated image segmentation techniques, which are easier to apply on a large scale.

In recent years, advances in automated segmentation have led to significant im-

provements in consistency and accuracy, in some cases reaching levels comparable

to those of manual raters [88].

As well as providing a comparison for estimates of volume change, segmenta-

tion methods can be used to define regions of interest that can, in turn, provide

regionally specific estimates of volume change.

Two segmentation methods were used to provide figures that could be com-

pared and combined with estimates of volume change in the brain that were

obtained from registration: Expectation maximisation and classifier fusion. Both

techniques are briefly described in the following sections.

3.5.1 Tissue segmentation: Expectation maximisation.

It is possible to generate segmentations of the different brain tissues using expect-

ation maximisation. Expectation maximisation (EM) is a well established method

for segmenting structures in brain MR images [109, 123]. A typical application of

EM assumes that the intensities of the different tissues within a brain image are

modelled by a mixture of Gaussians. It is common to provide a set of prior prob-

ability maps for the tissues or structures being segmented and the EM algorithm

is then used to find the maximum a posteriori (MAP) values of the parameters
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for the Gaussian mixture.

The application of EM to brain images allows the generation of tissue proba-

bility maps for each subject in a cohort. An illustration of the tissue probability

maps obtained by an EM segmentation is shown in Figure 3.7. If this is done

at multiple timepoints, then estimates of change in each tissue can be obtained,

either for individuals or for the cohort as a whole if atlases for the tissues are

created by aggregating individual subjects’ tissue maps.

Figure 3.7: An illustration of tissue maps obtained by EM segmentation. Left
to right: A transverse view of the anatomy of a subject; An estimate of the grey
matter tissue density; A corresponeding white matter estimate.

While EM based methods have a proven track record in classifying brain tis-

sues within images acquired from healthy adults, challenges can be presented

by images acquired from other types of subjects. For example, the brain tissue

responses during MR scanning for children up to approximately two years dif-

fer from those of adults. This can confound EM based segmentation methods.

Another example is given by the brain MR images of elderly subjects who have

enlarged ventricles compared with the majority of the population. In such cases

a typical set of tissue priors may not represent the individual well. It is, however,

possible to improve the results of an EM segmentation by providing the algorithm

with more specific prior probability maps of the tissues that are representative of

the population being studied. For example, the prior maps can be generated by

taking a manual atlas for a particular subject and propagating this atlas to each

of the remaining subjects to act as an initial estimate for EM segmentation [123].
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3.5.2 Structural segmentation: Classifier fusion

An alternative segmentation technique that can provide comparison estimates of

volume change relies on the use of repositories of images that have been struc-

turally labelled. An example of a set of manual labels for an anatomical image

is illustrated in Figure 3.8. Labels from the repository can be propagated and

Figure 3.8: An example of manual labelling for an anatomic image. It is possible
to segment query or unseen images using methods that rely on registration of
anatomic images and subsequent propagation of manual labels.

fused or combined to provide a structural segmentation for a query image. This

approach has been termed classifier fusion [135, 88]. Further details of classifier

fusion will be given in Chapters 4 and 5.

3.6 Conclusion

This chapter has described the ways in which registration can be used to identify

patterns of longitudinal change in a cohort of serially scanned subjects. Atlas-

ing methods were described that can be used, for example, to generate atlases

of anatomy or volume change, and to identify patterns of change for a cohort.

The atlasing methods rely on the averaging of inter-subject registrations and

create an average space representation of the cohort via a particular reference.

Segmentation methods that can provide a benchmark for comparing registration

based volume change figures were briefly described. Further details of structural

segmentation through classifier fusion will be presented in Chapters 4 and 5.
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Experiments based on the techniques given in this chapter will be presented in

Chapters 6 and 7 using data from young children and a group of elderly subjects

consisting of patients with Alzheimer’s disease and healthy controls.
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Chapter 4

Atlas-based segmentation,

classifier fusion and classifier

selection

4.1 Introduction

This chapter describes how atlas-based segmentation can be used to provide seg-

mentations for unseen images given a manually labelled atlas. The process of

classifier fusion, where labels from multiple atlases are propagated to an unseen

image and combined is described along with its advantages over atlas-based seg-

mentation using a single atlas. Finally, novel schemes for the selection of atlases

from a large repository are presented. The selection of atlases, particularly when

the size of the repository is large, can be used as an initial step prior to classifier

fusion. As well as reducing the computational burden, selection of appropriate

atlases for a given query can provide better quality segmentations.

Initially, background material is presented on ways in which the agreement

of raters or automated classifiers can be measured. A review of the pattern

classification context to classifier fusion is also given later in the chapter.
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4.2 Measuring agreement of segmentations

When generating segmentations for an anatomical structure, a way of measuring

the level of success is needed. If a gold standard segmentation is available and a

particular method is used to provide an alternative segmentation (either manually

or automatically) then the agreement of the segmentations gives a measure of the

method’s accuracy. Alternatively, estimates of a structure may be generated by

two different segmentations, neither of which is considered a gold standard. The

agreement of the two segmentations then provides a measure of precision.

Measuring agreement between structural segmentation methods falls under

the more broad heading of assessing the agreement between raters and a rough

distinction can be made among agreement measures depending on whether the

raters provide numerical or categorical data.

4.2.1 Agreement on numerical data

If the rater(s) being assessed provide numerical measures then statistical ap-

proaches can be applied to provide measures of agreement. This can be done

in the context of structural segmentation methods by applying the method and

calculating the volumes of the extracted structures. This can be appropriate

in cases where a structure’s volume can be directly related to a pathology, for

example the volume of the hippocampus in Alzheimer’s. If the volumes for a

structure are estimated by two raters then agreement can be assessed using any

of a number of statistical techniques such as Bland-Altman plots [26], Pearson

correlation or intra-class correlation [9]. Agreement based on extracted numerical

measures such as volumes, however, ignores spatial information so it is possible

for different raters to agree on the volume of a structure even if the corresponding

segmentations are in widely differing locations. For the purposes of this work,

agreement is assessed using methods that incorporate location information.
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4.2.2 Agreement on categories

For pairs of raters that provide categorical classifications, the simplest case is

a binary classification where each rater identifies an object as belonging to (1)

or not belonging (0) to a particular class. A further distinction can be made

depending on whether or not one of the raters can be considered to be a ‘gold

standard’ measurement. For example, a non-invasive test could be used to predict

the presence or absence of a condition which is later confirmed or denied by

surgery. In such an example it is possible to categorise the positive and negative

results as being ‘true’ or ‘false’. This is illustrated on the left in Table 4.1 (The

presentation of the information based on classifications in this way is sometimes

known as a ‘confusion matrix’). If one of the raters is considered a gold standard

then measures such as sensitivity and specificity are commonly used:

sensitivity =
TP

TP + FN
, specificity =

TN

FP + TN
.

i.e. sensitivity measures the chance that a positive test result is correct and

specificity measures the chance that a negative test result is correct.

Alternatively, if neither rater is considered to be a gold standard measurement,

then the remaining option is simply to count the number of instances of agreement

or disagreement as shown on the right in Table 4.1 where, for example, the number

of instances that the first rater assesses as belonging to the class and the second

rater does not is denoted as n10.

Gold Standard
0 1

Rater 0 TN FN
1 FP TP

R2

0 1
R1 0 n00 n01

1 n10 n11

Table 4.1: Agreement of two raters. Left: One of the raters is considered a ‘gold
standard’ and the assignments of the second rater can be labelled as true and false
positives and true and false negatives. Right: Both raters are on an equal footing
and counts are made of the number of instances of agreement and disagreement
on the class assignments.
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MR image based structural segmentation methods can be viewed as falling into

the latter category of rater; in most instances, a gold standard is unavailable and

consistency across methods is the only available option. In this case, a structural

segmentation method can assign 0 or 1 to a voxel to indicate membership of the

structure. If the counts of agreement and disagreement shown in Table 4.1 are

available then it is possible to calculate a measure of agreement known as the

kappa statistic [43]. This is a measure of the observed probability of agreement

po adjusted by the probability of agreement by chance, pc,

κ =
po − pc

1− pc

.

It can be shown that the kappa coefficient can be expressed in terms of the

agreement figures nxy as

κ =
2(n00n11 − n01n10)

(n00 + n01)(n01 + n11) + (n00 + n10)(n10 + n11)
.

If the raters described by Table 4.1 represent two methods for giving a structural

segmentation where a value of 1 represents the presence of the structure, then

the number of voxels for which both raters agree on the absence of the structure,

n00, will tend to dominate. Zijdenbos et al. showed [188] that under these

circumstances, using the notation above,

lim
n00→∞

κ =
2n11

n01 + 2n11 + n10

.

Assuming that raters R1 and R2 provide binary segmentation estimates for a

structure, and making a change in notation, it is possible to represent the set of

voxels labelled as part of the structure by R1 as A and the set of voxels labelled

as part of the structure by R2 as B. This means that it is possible to identify n11

with |A∩B| , n11 + n10 with |A| and n01 + n11 with B in the expression above to
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obtain the following representation of the limiting value of the kappa coefficient

lim
n00→∞

κ =
2|A ∩B|
|A|+ |B| = d

where d is the Dice coefficient [50] (also known as the similarity index).

Another simple measure of the overlap of two binary structures is given by

the Tanimoto overlap (also known as the Jaccard similarity) which, for two seg-

mentation estimates A and B, is given by the ratio of the overlap and the union

t =
|A ∩B|
|A ∪B| .

Both the Dice and Tanimoto overlap measures give zero for no overlap and

one for complete agreement and they can be shown to be related by the formula

d =
2t

1 + t
. (4.1)

This represents a monotonically increasing function on the interval [0, 1] so that

the ordering of agreement measures using either overlap is preserved. For the

purposes of this study, agreement between labels will be reported using the Dice

overlap.

If the segmentations produced consist of a series of categorical labels then it

is possible to aggregate the overlap measures for each label by averaging. The

method used by Heckemann et al. [88] provides a simultaneous segmentation of

multiple structures for a query subject. If the query subject has gold standard

labels available, Dice overlaps for all the structures can be calculated. Heckemann

et al. then used the linear average of all these Dice overlaps to obtain a summary

figure for the accuracy of the segmentation.

Crum et al. [45] also present a framework for aggregating overlaps over mul-

tiple structures. This framework introduces weights that can be associated with

the overlaps for particular structures. For example it is possible to assign higher
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weights to the overlaps calculated for smaller structures, on the principle that

a good overlap for a small structure is less likely to be obtained. Crum et al.

also allow for the possibility of more than two subjects, i.e. the aggregation can

also be evaluated over all pairwise overlaps between subjects as well as over all

structures studied. Finally, Crum et al. incorporate operations on fuzzy sets (see

e.g. [53]) that allow overlaps and their aggregation to be implemented in cases

where the segmentations produced are probabilistic or ‘soft’.

4.3 Atlas-based segmentation

A straightforward method of utilising a segmentation that is considered accurate,

for example a manual segmentation created by an expert rater, is to use it to

generate a segmentation for an unseen query image. For the purposes of this

part of the thesis, the term ‘atlas’ shall be used to refer to a pair of images: a

scan of the anatomy and a corresponding manual segmentation1. An example

of an anatomical image and its corresponding manual labelling is illustrated in

Figure 4.1.

Given an atlas image pair, the MR image can be registered to the anatomical

image of an unseen query subject. The resulting transformation can then be

used to transform the atlas labels to the space of the query and the transformed

labels can then be treated as a segmentation estimate for the query. The atlas

that is propagated may represent a single segmented individual [93, 160, 49],

or, alternatively, an average of multiple segmentations can be produced prior to

propagation [134] or treated as a probabilistic prior for further segmentation [114].

1The term ‘atlas’ has been used in earlier chapters to denote an average representation for a
group of images. While this is ambiguous, the sense in which the term is used should be clear
from the context.
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Figure 4.1: An example illustrating an anatomical image and a corresponding
manual labelling. The first column shows the anatomy, the final column shows
the manual segmentation of various structures. An overlay is shown in the middle
column.

99



4.3.1 An example of atlas-based segmentation

In order to illustrate the process of atlas propagation, and to demonstrate the

use of the types of agreement measure described in Section 4.2, an experiment

was carried out based on hippocampal segmentation.

The data used for the experiment is a set of 30 T1-weighted MR brain images,

each with a corresponding manual segmentation. Each image was manually seg-

mented into 83 anatomical structures using a protocol published by Hammers et

al. [83, 84]. The images represented scans of 30 healthy volunteers (15 women and

15 men). The median age of the women (men) was 31 (30) years and the range

was 20-54 (20-53) years. The coronal T1-weighted 3-D volumes were obtained

using a 1.5 Tesla GE Signa Echospeed scanner (GE, Milwaukee, WI). An inver-

sion recovery FSPGR sequence was used (TE = 4.2ms, TR = 15.5ms) to give

124 1.5mm slices covering the whole brain with a voxel size of 0.9375 × 0.9375

× 1.5mm. The images were resliced using sinc interpolation to give images with

isotropic 0.93753mm voxels where the line between the anterior and posterior

commissures (AC-PC line) defined the horizontal plane and the midline defined

the sagittal plane. Further details describing the subjects and the MR acquisition

can be found in [84].

For the purposes of this exemplar experiment, only the hippocampus labels

were used. Two of the subjects’ images were separated and treated as atlases.

These were propagated to provide segmentation estimates for the hippocampuses

of the remaining 28 subjects, which were treated as query subjects. Let the two

atlases, which can also be viewed as classifiers, be denoted A and B. In order to

provide a hippocampus estimate for a query, an atlas’ MR image was registered

to that of the query and the resulting transformation was used to propagate the

atlas manual label to the query. In this way, two hippocampus estimates were

generated for each of the 28 query subjects, one from atlas A and one from atlas

B. An example of this is shown in figure 4.2 where the results of propagating the
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hippocampus label from each of the two classifers are shown overlaid on the query

anatomy. Also shown is the manual label for the query subject for comparison.

Figure 4.2: The left and middle images show propagations of hippocampus la-
bels from two atlases to a query subject. The final image shows the manual
hippocampus labels for the query subject for comparison.

In some studies, only the volumes provided by the classifiers are of interest.

In this case, a simple comparison of the volumes provided by the propagation of

atlases A and B can be achieved through a scatter plot of their resulting volume

estimates (Figure 4.3, left). It is possible to discern a relative bias between the

two classifiers in this figure: the estimates from classifier A tend to be consistently

lower than those given by classifier B. Such a bias is more readily seen if the data

are presented in a Bland-Altman plot, where the mean volumes given by the

classifiers is plotted against their difference. Such a plot is given in Figure 4.3

(right) where the general disagreement between the two classifiers is shown by

the high number of points that are below the horizontal axis corresponding to a

difference of zero.

The Pearson correlation between the volume estimates provided by the vol-

ume measurements in Figure 4.3 is 0.76 and the intra-class correlation is 0.52,

which would be generally considered a low estimate of agreement between the

two classifiers.

Further aspects of agreement of the two classifiers can be explored if the

gold standard of the target structure is used. This is represented by the manual

hippocampus labels for the query subjects. For each estimate of a hippocampus
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Figure 4.3: Left : A scatter plot comparing the volumes of hippocampuses in 28
subjects given by two classifiers based on atlas propagation, A and B. Right: A
Bland-Altman plot of the data provided by the same classifiers. The bias of one
classifier relative to the other is more apparent in a Bland-Altman plot.

label by classifiers A and B, its accuracy can be measured using the overlap with

the query subject’s manual label. The agreement as measured by the Tanimoto

and Dice overlaps are shown in shown in Figure 4.4

The overlap measures shown in Figure 4.4 provide specific information on

the performance of each classifier for each of the individual query subjects. The

relative performance of each classifier on an individual query subject is preserved

irrespective of whether it is measured by Tanimoto or Dice overlap. This reflects

the monotonic relationship between Dice and Tanimoto overlaps described in

Equation 4.1.

The accuracy and agreement data for the classifiers A and B show that the

different atlases can provide segmentations with different accuracy for the same

subject and that the same classifier’s performance can vary depending on the

query subject being segmented.

This reflects the types of error that can affect the process of atlas propagation.

Errors may arise due to inaccuracies in the correspondence estimate between

the atlas and the query and the process of transforming and reslicing the atlas

to the target voxel lattice may also introduce error. Atlas-based segmentation

can also be confounded by errors in the original atlas labelling or if the atlas

used is anatomically unrepresentative of the query image to be segmented, for
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Figure 4.4: Tanimoto overlaps (Top) and Dice overlaps (Bottom) for the the
hippocampuses segmentations of 28 subjects provided by propagation of atlases
A and B.
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example if they do not share the same topology. Errors in the original atlas

cannot be removed even if the correspondence found with the query subject is

highly accurate.

To help overcome the effect of various types of errors in the propagation of an

individual atlas labelling, it is possible to propagate sets of labels from multiple

atlases to the query. After propagation, they can be treated as separate classifiers

and fused to form a single consensus segmentation estimate.

4.4 Classifier fusion

If a number of atlases are available, it becomes possible to propagate multiple

sets of labels to the query subject. The propagated segmentations can then be

treated as raters or classifiers and methods for combining or fusing the output

from groups of classifiers can be applied. The main benefit of classifier fusion

is that the effect of errors associated with any single atlas propagation can be

reduced in the process of combination.

Such methods have an established history in the broader pattern recognition

community; a good overview of different methods for classifier fusion is presented

by Kittler et al. [106].The number of possible schemes for combining or fusing

classifiers are many and varied and depend on the nature of data being fused and

the application context. The fusion can be viewed as taking place at different

levels. The focus of this work is on the low-level fusion of classifiers that assign

structural labels to individual voxels in an image and only the simplest fusion

schemes will be used.

Mid level fusion can describe the process of fusing a feature or features ex-

tracted from low-level data. An example might be the averaging of volumes

calculated from separate structural segmentations to provide a volume estimate

for a particular structure. Fusion at a higher level might be exemplified by the use

of features extracted from low-level data to provide multiple clinical assessments
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of the same subject. The high level fusion would then combine these assessments

into a single clinical label or diagnosis.

In the context of medical image segmentation, Warfield et al. [175, 174] present

methods where classifiers are weighted prior to combination as part of an expect-

ation maximisation framework (See section 4.4.2 ). A simpler approach is to treat

the labels assigned to each voxel as ‘votes’ and to categorise the voxel according

to a simple majority. Rohlfing et al. [135] used a database of images of bee brains

to show that fusing segmentations according to a simple vote or majority rule is

robust and accurate compared with, for example, producing segmentations from

the propagation of an average shape atlas, or by propagating an individual atlas,

selected according to its similarity to the query image. The vote rule has also

been shown to perform well relative to other fusion approaches in a more general

pattern recognition context [106].

The main advantage of propagating multiple segmentations and fusing them

is in reducing the effect of errors associated with any single propagated segmen-

tation. For example, if multiple atlases are registered to a query subject, then

a correspondence error during propagation of the segmentation for a particular

atlas is less likely to affect the final query segmentation estimate if it is combined

with multiple other propagated segmentations. A schematic diagram illustrating

the process of aligning a set of atlases to a query image, propagating their labels

and fusing them is shown in Figure 4.5.

Heckemann et al. [89, 88] present a series of experiments using a set of atlases

to investigate the precision and accuracy of structural brain segmentation based

upon label propagation and classifier fusion. The atlases consisted of brain MR

images for 30 subjects with corresponding manual segmentations created accord-

ing the protocol published by Hammers et al. [83]. An example of an anatomical

image and a corresponding manual labelling from this data set was previously

shown in Figure 4.1.

Adopting a ‘leave-one-out’ approach, it was possible to treat each of the
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Figure 4.5: Schematic representation of segmentation based on label propagation
and fusion. A set of atlas anatomical images Ai are registered to the query
anatomy Q. Using the resulting transformations, the corresponding atlas labels
Li are propagated to the query. The transformed labels L′

i are then fused to
create an estimate of the query labelling LQ.

anatomical images as a query subject and to estimate its structural segmentation

by label propagation and fusion, using some or all of the remaining subjects. The

query subject’s own manual segmentation could then be used as a gold standard

with which to assess the accuracy of the estimated segmentation. Precision could

be assessed by measuring the agreement of segmentations produced by different

subsets of atlases.

It was shown that, as the number of classifiers increased, the precision and

accuracy of the resulting segmentations increased (as measured by overlap with

the manual segmentation). With the assumption that the Dice values are nor-

mally distributed, it was shown that the Dice overlap as a function of the number

of classifiers was well modelled by the relation

d(n) = a− b√
n

, (4.2)

where n represents the number of atlases used as classifiers, d represents the Dice

overlap of the resulting segmentation and the manual labels, and a and b are a

pair of constants to be determined where 0 ≤ a ≤ 1 and 0 < b.
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There is a caveat on the assumption of a normal distribution for the Dice

overlaps. In theory, this is not possible given that the Dice coefficient is bounded

between zero and one. However, tests for normality on Dice values obtained in

practice, which are typically well away from the bounds, show that the normality

assumption can still be reasonable [88, 89].

The relation in Equation 4.2 models overlaps as monotonically increasing for

increasing numbers of classifiers up to an asymptotic limit determined by the

constant a. The constant b determines the rate at which the overlap increases.

As more classifiers are used, the overlap values increase because random errors,

associated with individual atlas-to-query propagations, are increasingly cancelled

out. There remains, however, a systematic bias that cannot be removed by using

larger numbers of classifiers. This is represented by the difference between the

asymptotic value a and one.

The systematic error, the size of which is represented by the parameter a, can

arise for a number of reasons. For example, the anatomy of the query subject may

represent a variation that is not represented by any of the atlases. Alternatively,

there may be a limit to the correspondence accuracy that can be achieved: for

example, the registrations may optimise the affine transformation only which may

be insufficient for local small scale alignment.

4.4.1 An example of classifier fusion using the vote rule

In order to give an illustration of the accuracy properties of classifier fusion given

by Equation 4.2, a second experiment was carried out on the same set of atlases

used to illustrate atlas-based segmentation in Section 4.3.1.

Each subject in the group of 30 atlases was treated as a ‘leave-one-out’ subject

and a number of the other subjects were randomly selected. The hippocampus

labels from the randomly selected atlases were propagated to the left out subject

and fused using the vote rule to obtain a classifier fusion segmentation estimate.
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Voxels where there was a tied vote were decided randomly. The overlap of the seg-

mentation estimate with the subject’s manual labels was then used as a measure

of the segmentation accuracy.

This process was repeated ten times for each of the thirty subjects and by

using different numbers of randomly chosen classifiers. For each number of clas-

sifiers, the Dice overlaps from the segmentation estimates across all subjects and

repetitions were averaged. This gives an indication of how the accuracy of the

segmentations varies according to the number of randomly selected atlases. This

relationship is shown in Figure 4.6.
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Figure 4.6: The average overlap achieved after repeated segmentations of hip-
pocampuses using various numbers of random classifiers. The overlap is plotted
against the number of classifiers fused. The central dashed line shows the Dice
overlaps predicted by the model represented in Equation 4.2. The upper and
lower dashed lines show the predictions based on the 95% confidence limits for
the parameters a and b.

Each cross in Figure 4.6 represents the average accuracy of 300 segmentations

(30 subjects× 10 repetitions). The model parameters for the relationship between

accuracy and the number of classifiers (Equation 4.2) were estimated based on

the average overlap data. The dashed lines in the figure show the values predicted

by this model and by the models obtained using the 95% confidence limits for the

parameters a and b. It can be seen that the model predicts the behaviour well.
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4.4.2 The pattern classification context

In a general context, pattern classification is applied to many different types of

data such as speech, biometrics, astronomy, etc. A typical pattern classification

model is described in Duda et al. [54] as comprising a series of different steps:

• Sensing

• Segmentation

• Feature extraction

• Classification

• Post processing

Atlas propagation and label fusion does not have an obvious place within such

a schema although, at the simplest level, it is possible to argue that the process

of propagating an atlas’s labels to a query strictly belongs to the segmentation

step in the list. Feature extraction and classification could then be interpreted as

higher level steps, for example after a query subject’s structures are segmented,

geometric or volumetric features can be extracted and a classification of the sub-

ject to a clinical condition could then follow.

Such a view does not, however, fully describe the process of propagating mul-

tiple label sets and fusing them and it does not fully represent the role of finding

geometric correspondence (registration).

If a propagated label set is considered to be a classifier in the sense of the above

list, then it can be considered as a spatial function in formal terms. Let there

be M atlases available, {A1, . . . , AM} and N query subjects to be segmented,

{Q1, . . . , QN} and let there be K classes or structures {c1, . . . , cK} (including

background) to be delineated in the query images. The particular combination of

atlas Ai and query Qj gives rise to a classifier function hij that is dependent on

Ai, Qj and the estimate of correspondence between them. The classifier function,
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hij, can be viewed as a vector valued function

hij : x→ (p1, . . . , pK)T

where p1, . . . , pK are the spatial membership probabilities that hij assigns to the

query image voxel at location x for each of the K classes, i.e.
∑K

i=1 pi = 1.

Viewing a classifier in this way implies that, in the context of the list above,

the feature it is operating on is simply a spatial location of the query image.

Making the spatial dependency of the membership probabilities explicit gives

the classifier the following form

hij(x) = (p1(x), . . . , pK(x))T .

The dependence of the membership probability functions on the combination

of atlas Ai and query subject Qj can also be made explicit by adding a superscript

hij(x) = (pij
1 (x), . . . , pij

K(x))T (4.3)

although this will be dropped if the meaning is clear.

Such a definition allows hij to describe a probabilistic or ‘soft’ classifier for the

structures in the query. For a hard labelling, the one of the components p1, . . . , pK

will have a value of one and the remainder will be zero. In this case, the vector

(p1, . . . , pK)T represents a basis vector in K-dimensions. If the component with

a value of one is indexed by s where 1 ≤ s ≤ K then this basis vector can be

denoted es which means hij can be re-written as

hij : x→ es , 1 ≤ s ≤ K. (4.4)

In practice, a soft classifier can be obtained from a set of labels propagated to

a query image through the use of an interpolator. For example, partial volume

110



interpolation [115] weights can be used to generate the vectors (p1, . . . , pK)T at

each query voxel location. A soft classifier can be converted into a hard clas-

sifier by finding the maximum component among the p1, . . . , pK for each voxel.

Alternatively, nearest neighbour interpolation can be used when propagating the

labels to the query image.

After all the atlases have been propagated to query Qj, we obtain M classifiers

h1j, . . . hMj. These are, in turn, combined to give a final classification result. Let

ct represent the final label assignment, where ct ∈ {c1, . . . , cK}. The classifiers

can be combined using a variety of rules, examples of which include the sum rule,

the median rule, the max rule and the majority vote rule:

Sum rule

Using the same notation as that used in Equation 4.3, the sum rule involves

assigning label ct to the voxel at location x where

t = argmax
s∈{1,...,K}

(
M∑

i=1

pij
s (x)

)
. (4.5)

The sum rule can be viewed as a type of majority vote rule where the individual

classifiers make fractional votes for each label.

Median rule

The sum rule may also be described as the mean rule because the result of

combining classifiers according to Equation 4.5 does not change if it is normalised

by the number of classifiers, i.e. if ct is determined by

t = argmax
s∈{1,...,K}

(
1

M

M∑

i=1

pij
s (x)

)
.

This can be extended to the median to produce a new rule where label ct is

assigned to the voxel at location x where

t = argmax
s∈{1,...,K}

(
M

med
i=1

pij
s (x)

)
. (4.6)
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In other words, the median probability value (across all contributing atlases)

is calculated for each of the classes and the class with the highest median prob-

ability is assigned to the voxel. The use of median averaging in this rule means

that outlier probability values have a reduced impact on the final classification

compared with the mean or sum rule.

Max rule

The max rule assigns label ct at location x where

t = argmax
s∈{1,...,K}

(
M

max
i=1

pij
s (x)

)
. (4.7)

This rule assigns the class corresponding to the highest probability value across

all classifiers and classes. Such an assignment is, in a sense, diametrically opposed

to the assignment given by the median rule above where the effect of high prob-

ability values is reduced.

Majority vote rule

If the hij represent hard classifiers as described in Equation 4.4, then the

expression
M∑

i=1

hij(x)

provides a K-vector at each voxel location where the components represent the

votes for each of the labels {c1, . . . , cK}. The majority vote rule can then be

expressed as : Assign label ct at location x where

t = argmax
s∈{1,...,K}

(
es ·

M∑

i=1

hij(x)

)
. (4.8)

These rules are described in a Bayesian context by Kittler et al. [106] who

showed that the sum rule outperforms the others based on a series of experiments.

It is worth noting that the majority vote rule can be viewed as a special case of

the sum rule, where the classifiers provide a hard labelling at each voxel.
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Other more complex rules and algorithms for combining segmentation esti-

mates are clearly possible and are considered beyond the scope of this work. A

notable example is the STAPLE framework described by Warfield et al. [175].

This framework treats multiple classifiers as observed estimates of a postulated

(and unobserved) true estimate of the segmentation of a structure. The frame-

work includes sensitivity and specificity parameters that measure the performance

or reliability of each classifier with respect to the postulated true segmentation.

The reliability measures of the classifiers can then be taken into account when

combining their segmentations in order to estimate the true segmentation. The

classifiers each assign probability for a given label to be present at a given lo-

cation. The overall probability estimate of the label at a voxel is given by a

weighted average of the probabilities assigned by the different classifiers with the

weight for each classifier determined by its reliability measure. An expectation

maximisation approach is applied to iteratively update the parameters describ-

ing classifier performance and the segmentation estimate of the label or labels

being segmented. Warfield et al. extend this process to apply to more general

scalar fields associated with the segmentations produced by different classifiers,

for example in combining distance transforms obtained from multiple binary seg-

mentations [174].

4.4.3 An example of classifier fusion : multiple fusion

rules

The following sections present experimental data to give a demonstration of the

different rules for fusing classifiers described above. The accuracy of the different

rules is assessed and implementation issues are also discussed.
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4.4.3.1 Comparison experiment

Using the same 30 manually labelled images described in the examples of atlas-

propagation and vote rule classifier fusion above (Hammers et al. [83]), an exper-

iment was carried out to assess the relative performance of the different simple

fusion rules described in Section 4.4.2.

Once again, each subject was treated as a query subject on a leave-one-out

basis and the propagated hippocampus labels for all the remaining subjects were

then used to provide an estimate of the query subject’s hippocampus. The query

subject’s manual labels were then used to assess the accuracy of each estimate

using the Dice overlap measure.

The 30 T1-weighted MR images were all registered to each other in a pair-wise

manner. This allowed, for a given query subject, the hippocampus labels for the

remaining 29 subjects to be propagated to the space of the query. The propagated

label sets were then fused according to the different classifier combination rules

described in Section 4.4.2 and the Dice overlaps with the query’s manual labels

found for each rule.

The results after treating each of the subjects as a query in turn are sum-

marised in Figure 4.7. In this figure, four bars represent the performance of each

of the max, mean, median and vote rules in providing a hippocampus estimate

for each subject. It can be seen that the max rule performs worse than the other

rules on a consistent basis. There is also little to separate the other three rules

(mean, median and vote) in terms of the accuracy that each one achieves. The

average (S.D.) Dice coefficients across all subjects for each of the fusion methods

used were: Max 0.688 (0.047), mean 0.779 (0.034), median 0.780 (0.033) and vote

0.780 (0.033).

114



0 5 10 15 20 25 30
0.55

0.6

0.65

0.7

0.75

0.8

0.85

D
ic

e

Subject number

max
mean
med
vote

Figure 4.7: A comparison of the different fusion rules applied to the segmenta-
tion of the hippocampus for 30 subjects on a leave-one-out basis. The horizontal
axis shows the number of each subject and each group of bars represents the
Dice scores achieved by the different fusion rules in estimating the subject’s hip-
pocampus. The subject’s manual label was used as a gold standard to assess the
accuracy of each segmentation. For each subject, the hippocampus labels for all
remaining subjects were propagated and fused using different rules. The shading
of each bar indicates the rule used.

4.4.3.2 Implementation issues

In practical terms, and in the context of image segmentation using propagated

labels, the computational costs associated with the different fusion rules vary.

An implementation of the vote rule requires a single label per classifier to be

associated with each query image voxel prior to fusion. For classifiers containing

labels for multiple structures, this means that an atlas can be propagated to the

query in a single transformation step using nearest neighbour interpolation. An

implementation of the mean or median rule requires a vector of probabilities per

query voxel for each classifier prior to fusion. This implies that a separate trans-

formation step needs to be carried out for each structural label in the propagated

label sets. A binary mask is needed for each label and this needs to be propagated

using an interpolation scheme that can represent fractional membership of the

propagated structure (linear interpolation, for example).

After propagation of the labels from each of the classifiers, the vote rule re-
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quires the counts of each label to be evaluated prior to the final decision. The

mean rule require the calculation of the mean probability for each label for each

voxel. Using the resulting vector of mean probabilities, a final decision can then

be made. The computational cost of the median rule will generally be higher

than for the mean rule because a the probabilities of the labels need to be sorted

before the final decision is made.

As these aspects of the implementation of the fusion rules suggest, the com-

putational cost associated with the propagation of labels and subsequent fusion is

lower for using the vote rule than it is for the other rules discussed in this section.

This relative ease of computation, combined with its comparable performance in

terms of segmentation accuracy makes it the preferred choice for this work.

4.5 Classifier selection

As increasing numbers of MR images have steadily become more available over

recent years, the creation and maintenance of databases or repositories of atlases

consisting of MR images with corresponding reliable structural segmentations

(manual or otherwise) has become more feasible. A good example is the Internet

Brain Segmentation Repository [31]. It has therefore been a natural consequence

to use such expert annotations to assist in providing automatic segmentations of

query or unseen images.

As described in the previous chapter, the propagation of manual segmenta-

tions and their fusion provides a reliable method for obtaining structural segmen-

tations in a query image. There are, however, issues that arise when the available

repository becomes large.
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4.6 The motivation for classifier selection

The size of the atlas repository can have an effect on the steps involved in the

propagation and fusion of labels as well as the quality of the final segmentation.

The results of Section 4.4.1 show that the average segmentation accuracy

achieved by fusing random groups of classifiers increases monotonically with the

number fused up to an asymptotic value for large numbers of classifiers. A nat-

ural question is whether the asymptotic level reached by fusing large numbers of

random sets of labels is the best that can be achieved. Is it possible to equal

this accuracy, or even exceed it, with smaller numbers of selected classifiers (as

opposed to random classifiers)?

One type of problem that may be encountered with the fusion of large numbers

of classifiers relates to variation across the population of the structure(s) being

segmented. This variation may mean that the same structure may have qualita-

tively different variants across the population. In these circumstances, choosing

increasing numbers of classifiers will result in a segmentation that is close to the

mean shape of the whole population and yet the query subject (and others with

the same structure variant) may not be well represented by such a mean shape.

If a structure is manifested in more than one variant, then, for a given query

subject, only a proper subset of the atlases in the repository is appropriate to use

– atlases from subjects who occupy the same cluster as the query with respect

to the variants of the structure. In a more general context, some work has been

carried out to apply clustering techniques to anatomical MR images [17] but this

remains at an early stage.

Anatomical variations can also affect the registrations used to generate cor-

respondence between atlas and query. If the query subject anatomy is dissimilar

to that of an atlas, then it is possible for the registration to fail in regions where

the anatomies differ, especially if the anatomies have differing topologies. The

converse is also true, a subject that is anatomically similar to an atlas will be
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well segmented by propagation not simply because they share anatomical features,

but also because these shared anatomical features lead to a better correspondence

estimate from registration.

Another consequence of using a large number of classifiers is that the resulting

segmentation is more likely to be a smooth shape because it will approximate

the mean of a large sample where small scale differences are averaged out. The

structure being segmented may, however, be badly represented by a smooth shape,

and may be better represented with a shape having higher curvature.

For these reasons, the propagation of a selection of classifiers that are ap-

propriate for the query subject would appear preferable to the selection of an

arbitrarily large number of classifiers. Wu et al. investigated methods for opti-

mal selection of a single template for atlas-based segmentation [182]. The work

described in this chapter contrasts with this by covering methods for the selection

of multiple atlases for subsequent fusion.

On a practical level, the propagation and fusion of a large number of classifiers

to a query may represent a prohibitive computational burden. If the alignment

step is carried out via a registration, the number of registrations needed increases

linearly with both the number of atlases and the number of query subjects. There-

fore, a method for selecting classifiers from the repository becomes a desirable

option when the size of the repository becomes large.

4.7 Example data for classifier selection

To illustrate the benefits of classifier selection, five subjects from the dataset

described earlier (Sections 4.3.1, 4.4.3, 4.4.1) were chosen to represent a repository

and all proper subsets of this small repository were used to provide a segmentation

estimate for the hippocampus of a sixth subject which is treated as the query.

A small number was chosen for the repository in order to easily enumerate all

subsets of classifiers.
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For subsets consisting of a single classifier the segmentation estimate is ob-

tained by simply propagating its hippocampus label to the query subject. Where

a subset consisted of more than one classifier the propagated labels were fused

using the vote rule with tied voxels being decided randomly.
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Figure 4.8: The circles show overlap accuracy values of segmentations derived
by propagating fusing all 31 proper subsets taken from a small repository of five
atlases. The query subject was fixed throughout. The size of each fused subset
is shown on the horizontal axis. The mean overlaps for all subsets of the same
size are shown by × symbols.

Figure 4.8 shows that, while the general trend (represented by the mean val-

ues) is for accuracy to improve with increasing numbers of fused classifiers, there

can be subsets of classifiers smaller than the whole repository that can perform

very well. Indeed, for this example, one of the classifiers performs better as a

single propagated atlas than does the fusion of all five propagated atlases (see

top left of Figure 4.8).

This small example serves to show that, for a given query subject and a given

structure, there may be merit in restricting the classifiers used in a fusion scheme

to a subset selected from the repository.
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4.8 Methods for classifier selection

Theoretically, the identification of an optimal selection of classifiers for a query is

possible by carrying out an exhaustive search. Given a repository of M atlases,

this would entail the use of each of the 2M −1 proper subsets of the repository as

classifiers for a particular query. The resulting fused segmentations would then

need to be evaluated according to some criterion and the classifier subset giving

the best performance could then be identified. Leaving aside the question of how

the segmentations could be evaluated, such a scheme is clearly impractical for a

large repository and alternative, more heuristic approaches would be preferable.

In the context of label propagation and fusion, a straightforward approach

would be to create a method for assessing each of the atlases in a repository in

terms of some measure of ‘suitability’ or ‘fitness’ as classifiers for a given query.

If the fitness of the classifiers can be numerically represented then this allows the

repository to be ranked with respect to the given query. The classifier selection

can then be made by choosing a particular number of the top-ranked classifiers.

An obvious approach to ranking the repository atlases based on the image

information they contain is to evaluate an image similarity metric between each

atlas and the query. Alternatively, information pertaining to the subjects them-

selves, i.e. meta-information can be used to rank the repository atlases. For

example, if the query belongs to a particular clinical group, then atlases in the

repository in the same clinical group might be selected. Clearly this latter ap-

proach requires that the meta-information be available for both the repository

and the query subjects.

Approaches to classifier selection based on image similarity will be described

in Section 4.8.1 and approaches for selecting atlases based on the use of meta-

information are described in Section 4.8.2.
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4.8.1 Selection using similarity information

The atlases in a repository can be ranked in terms of the similarity of each

of the atlas images to the query image according to a chosen similarity metric.

Selection of classifiers based on image similarity requires an estimate of the spatial

correspondence between the atlases and the query – i.e. a registration step of some

form is required.

The rationale for using image similarity to rank the classifiers is that the

success of a classifier fusion method in generating a segmentation is to a great

extent dependent on obtaining a good correspondence estimate between each

atlas and the query. The use of similarity gives an estimate of the success of a

registration and hence the potential suitability of an atlas as a classifier. The use

of a similarity metric for registration needs to be distinguished from its use for

selection. For registration, the similarity metric is used to determine the optimal

transformation parameters in an iterative fashion. For selection purposes, the

similarity metric is evaluated once post hoc on the query and atlas images.

Furthermore, the similarity metric used for selection does not need to be the

same metric that was used for registration.

When defining an image similarity based method to rank the classifiers, a

number of considerations need to be taken into account:

• Registration type: The registrations applied can be affine or non-rigid, and

non-rigid registrations can be carried out either at a fine or a coarse scale.

It is also possible to make the distinction between registrations carried out

for selection purposes and registrations carried out for label propagation

prior to fusion.

• Registration target: While the ultimate target for a segmentation is the

space of the query subject image to be segmented, it is possible to use an

intermediate space for selection or propagation. For example, a fixed refer-

ence image can be chosen and the atlas images, along with the query image,

121



can be spatially normalised to the reference. Combinations of selection and

fusion can take place using images registered to a reference or to the query’s

native space. An advantage of registrations between the repository images

and the reference is that they can be carried out ‘off-line’.

• Selection similarity metric: Clearly a number of image similarity metrics

are available when evaluating the similarity between an atlas and the query.

These were described in Section 2.2.8.

• Choice of region of interest (ROI): The similarity metric can be evaluated

using the whole of the region where the query image overlaps with an atlas.

Alternatively, a ROI can be defined, and the calculation of similarity can

be restricted to voxels within the ROI. This is appropriate if the structure

for which a segmentation is required is small relative to the field of view of

the whole image, for example the hippocampus.

Given the various considerations listed above, there are many possible ex-

perimental designs that could be defined for the selection of classifiers based on

image similarity. Focus will be restricted, however, on five particular experimen-

tal arrangements of registrations, selections, propagations and fusion that cap-

ture the main aspects of the considerations listed above. Each arrangement will

be described as a ‘scheme’ generally, and as an ‘image similarity based scheme’

specifically, given the use of similarity metrics during the selection stage:

• Query centric, one stage (Q1)

• Query centric, two stage (Q2)

• Reference centric, one stage (R1)

• Reference centric, two stage (R2)

• Hybrid (H)
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4.8.1.1 Query centric, one stage – Q1

This selection and fusion scheme represents a minor modification to the simple

propagation and fusion of labels described by Figure 4.5, Section 4.4. Under the

Q1 scheme, all atlases in the repository are registered directly to the query image.

This is illustrated schematically in the left hand diagram of Figure 4.9 where solid

lines represent registrations.

After this first registration step, the similarity between the aligned repository

images and the query is evaluated and used to rank the repository images. The

top-ranked images from the repository are then selected and, using the transfor-

mations obtained from the registrations, their labels are propagated to the query

and combined. This is illustrated in the right hand diagram of Figure 4.9 where

the dashed lines indicate the propagation of labels.

Figure 4.9: Query centric, one stage – Q1. All the repository anatomical images
Ai are registered to the query subject Q. The similarity between each of the
aligned anatomies and the query is used to decide their ranks. The labels Li for
the top-ranked atlases are selected and propagated. The resulting transformed
labels L′

i are fused to create the query label estimate LQ.

4.8.1.2 Query centric, two stage – Q2

This scheme represents a variation of the Q1 scheme where the registrations of

atlas images to the query take place in two stages. An initial registration is
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made to the query followed by selection of the atlases. After selection, a second

registration is carried out that maps the selected atlases to the query. An affine

or coarse non-rigid transformation can be optimised during the initial registration

prior to selection and a ‘finer’ transformation with a higher number of parameters

can be optimised after selection.

After the second registration step, the labels from the selected atlases are

propagated to the query and fused. The Q2 scheme is illustrated in Figure 4.10.

Figure 4.10: Query centric, two stage – Q2. Left: All the anatomical images Ai in
the repository are registered to the query image Q. The similarities of the aligned
images are used to rank the atlases. Right: The top-ranked atlases undergo a
second, finer, registration step to the query and their corresponding labels Li are
propagated. The transformed labels L′

i are fused to estimate the query labelling
LQ

.

4.8.1.3 Reference centric, one stage – R1

A scheme based on registrations to a reference image represents an easing of the

computational burden compared with query centric schemes. In the R1 scheme,

all the atlas images are registered with a single reference image. When a seg-

mentation is required for a given query subject, the query image is also aligned

with the reference. The similarity measurements are then made between the atlas

images and the query image after alignment in the space of the reference image.

The resulting similarity values are then used to rank the repository atlases and
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the labels for the top-ranked atlases are propagated to the reference space and

fused. This scheme is illustrated in Figure 4.11. The resulting estimate of the

query segmentation is in the space of the reference image. Depending on the

application, this may be sufficient but a further transformation step may be re-

quired to map the query segmentation back from the reference to the original

query image.

Figure 4.11: Reference centric, one stage – R1. The atlas anatomic images Ai,
along with the query image Q, are registered with the reference image R. The
similarities between the reference-aligned query and each of the reference-aligned
atlas anatomies are used to rank the repository. The labels from the top-ranked
atlases Li are transformed to the space of the reference generating L′

i. The prop-
agated labels are fused to generate a reference space estimate LR of the labelling
of the query subject.

4.8.1.4 Reference centric, two stage – R2

The reference centric, two stage scheme represents a modification of the R1

scheme that mirrors the modification of scheme Q1 to become Q2. The R2 scheme

begins with an initial registration of all the repository atlases to a fixed reference

image. The query image is also registered to the reference. After the initial reg-

istration step, the similarities between the aligned query and each of the aligned

atlas anatomies are used to rank the repository. The top-ranked atlases are then

registered a second time to the reference and the resulting transformations are
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used to propagate their label sets. The second registration step can optimise a

finer, higher dimensional transformation than that carried out in the first. As

with the R1 scheme, the labels of the selected atlases are then propagated to the

reference and fused. This scheme is illustrated in figure 4.12.

Figure 4.12: Reference centric, two stage – R2. Left: All the atlas anatomic
images Ai and the query image Q are registered to the reference image R. The
similarities between the aligned query and each of the aligned atlas anatomies
are used to rank the repository. Right: The top-ranked atlases are selected and
undergo a second registration step. Their labels Li are then propagated to the
space of the reference image. The transformed labels L′

i and are fused to generate
a reference space estimate LR of the labels for the query.

4.8.1.5 Hybrid selection and fusion – H

The hybrid scheme combines aspects from both reference centric and query centric

schemes. Under the hybrid scheme, all the repository atlases are registered with

the reference image. The query image is also registered with the reference. Sim-

ilarity measurement and selection is made based upon the repository and query

images after alignment to the reference as described in schemes R1 and R2. The

selected repository images are then registered directly to the query image. The

resulting transformations are used to propagate the labels for the selected atlases

direct to the query where they are combined. The hybrid scheme is illustrated in

Figure 4.13.
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Figure 4.13: Hybrid classifier selection and fusion – H. Left: All the atlas anatomic
images Ai and the query image Q are registered to the reference image R. The
similarities between the aligned query and each of the aligned atlas anatomies
are used to rank the repository. Right: The top-ranked atlases are selected and
registered to directly to the query subject. The labels Li of the selected atlases
are propagated to the query. The propagated labels L′

i are fused to generate an
estimate LQ of the query image labelling.

4.8.1.6 The computational burden

The majority of the computation required for label propagation and fusion is

taken up by the need to register images and in order to describe the computational

burden associated with the various schemes described above, the distinction needs

to be made between ‘on-line’ and ‘off-line’ registrations.

For a scheme such as Q1, none of the registrations can be carried out until

the query subject is identified; all of the registrations therefore need to be done

on-line. For the R1 scheme, only the registration between the query and the

reference needs to be done on-line; the registrations of the atlas subjects can all

be carried out beforehand (‘off-line’), which may represent a practical saving in

computational terms.

A scheme such as Q2 requires all registrations to be carried out on-line but the

computational burden may be eased by the fact that the initial registrations have

fewer parameters to optimise, making them faster, while the registrations with

the greater number of parameters are only carried out for the selected atlases. A
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similar comment applies to the R2 scheme.

In terms of computational requirement, the hybrid scheme represents a com-

promise between the most demanding query centric schemes and the least de-

manding reference centric schemes.

If the number of atlases in the repository is M , the number of query subjects

is N and the number of selected classifiers propagated and fused for each segmen-

tation is S, then the number of off-line and on-line registrations for each scheme

is summarised in Table 4.2.

Off-line On-line
registration cost low high low high
Q1 MN
Q2 MN SN
R1 M 1*
R2 M M 1*
H MN* SN

Table 4.2: An outline of the computational costs of the different similarity-based
selection schemes. There is a distinction made between coarse or affine registra-
tions that are described as ‘low cost’, and finer non-rigid registrations that are
described as ‘high cost’. Registrations are also divided into those that can be
carried out off-line and those that need to be carried out on-line, i.e. once the
query subject’s image is given. Asterisks indicate a choice of whether to carry
out low or high cost registrations.

4.8.2 Selection using meta-information

It is fairly routine for general and clinical information to be collected from sub-

jects during scanning, especially in large scale studies. Such information includes

gender, age, handedness, information relating to clinical conditions, scores in cog-

nitive tests, etc. This will be referred to as meta-information. If meta-information

is also available for a query subject, then the atlases in the repository can be cho-

sen according to how well the corresponding subjects match the query subject

on some aspect of the information. For example, the repository subjects who are

closest in age to the query can be selected for classifier fusion.
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One advantage of selection based on meta-information is that it can be car-

ried out independently of the image data and no pre-processing or alignment of

the images is required, which represents a reduction in computation. Addition-

ally, the selection of classifiers by meta-information may result in better quality

segmentations – a query subject with a specific clinical condition may be better

segmented by classifiers sharing the condition. Selection and fusion based on

meta-information is illustrated in Figure 4.14.

Figure 4.14: Meta-information selection – M. A subset of the anatomical images
Ai in the repository is selected and registered to the query image Q. Selection
takes place based on meta-information such as age or condition. The labels Li

for the selected atlases are transformed to the query. The propagated labels L′
i

are fused to create an estimate LQ of the query labels.

4.9 Conclusion

This chapter has presented an overview of methods that can be used to provide

structural segmentations in images. The ability to isolate specific regions is useful

in the context of assessing longitudinal change as it can be used to identify regional

patterns of growth or degeneration.

Methods of assessing the agreement and accuracy of segmentation methods

have also been discussed.

The methods presented are based on the use of registration to propagate
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manual segmentations from atlases to a target query, followed by the use of a

simple rule to combine the segmentations. Various simple rules for classifier

combination have been presented, discussed in a pattern recognition context and

compared in terms of performance.

The use of large repositories of labelled atlases raises particular issues with

respect to segmentation methods based on label propagation and fusion and mo-

tivates the idea of classifier selection. Different classifier selection schemes have

been presented and described which are based on image similarity or on meta-

information. The next chapter will present data from experiments aimed at

appraising the different classifier selection schemes.
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Chapter 5

An assessment of classifier

selection schemes

5.1 Introduction

The previous chapter presented descriptions of different methods that can be

used to select classifiers from a repository as part of the process of providing

a structural segmentation for a query image. After selection, the scheme used

to generate the segmentation can vary, but attention will be restricted to the

propagation of labels and their fusion via the vote rule, a method that has been

shown to be robust and accurate [88, 89, 135, 106].

The two main categories for selection of classifiers are selection based on im-

age similarity and selection based on meta-information. A further subdivision of

image similarity selection described schemes that were query centric, reference

centric or hybrid and with one or two stages of registration. Although the num-

ber of possibilities can increase rapidly, the particular set of selection schemes

described in Section 4.8 will be the focus of this chapter.

This chapter presents data from a set of experiments that aim to establish

whether classifier selection is useful and what might constitute a good implemen-

tation. The different parts of the chapter address different aspects of the selections
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schemes. Section 5.2 describes the data used in the various experiments using

the selection schemes. Section 5.3 describes the process used to define the region

of interest. Section 5.4 assesses how the different selection schemes compare with

each other. Section 5.5 makes an assessment of the suitability of image similarity

as a selection criterion for classifiers prior to fusion. Section 5.6 presents stochas-

tic experiments to identify how image similarity selection performs relative to the

segmentations provided by randomly selected classifiers. The effect of the choice

of the selection similarity metric is tested in Section 5.7. Section 5.8 assesses

how the quality of resulting segmentations is affected by the fusion of different

numbers of labels drawn from the ranked set of classifiers. Finally, a compar-

ison between image similarity selection and selection based on age as available

meta-information is made in Section 5.9.

5.2 Data

T1-weighted MR brain images acquired from 275 male and female subjects aged

between 4 and 83 years were made available by the Centre for Morphometric

Analysis (CMA, Massachusetts General Hospital, Charlestown, MA). The images

were acquired from multiple centres and subsequently various cortical and sub-

cortical structures were manually delineated within each image. An example of an

anatomical image and the corresponding manual labels are shown in Figure 5.1.

The set of structures that were present in all the images were: lateral ventricle,

caudate, putamen, accumbens, pallidum, thalamus, amygdala, hippocampus and

brainstem.

With these data, it was possible to carry out experiments on a leave-one-out

basis. For a given query subject, an estimated segmentation can be generated

via classifier selection, label propagation and fusion. Subsequently, the segmen-

tation estimate can be compared with the query subject’s manual labels which

are treated as a gold standard.
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Figure 5.1: An example dataset from the repository of CMA images. Top to
bottom: A T1-weighted MR image. Contours of the manual labels overlaid on
the anatomy. The manual labels.
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As well as the CMA data, a reference image was used to define a standard

space where a selection scheme required it. The image used as a reference was

the single subject atlas available from the Montreal Neurological Institute [91]

(MNI, McGill University, Quebec, Canada).

5.3 Defining the ROI for similarity selection

When finding the similarity of a pair of aligned images, the region over which

voxels contribute to the similarity metric needs to be defined. For the purposes

of this work, a mask of the sub-cortical structures was used throughout in order

restrict the similarity metric calculation to the neighbourhood of the sub-cortical

structures. Other masks are clearly possible, for example masks created for spe-

cific single structures, but a single mask was used for simplicity of presentation.

The first step was to identify a mask for the sub-cortical structures in each

of the individual images in the CMA dataset based on their manual labels. The

sub-cortical structures selected were the ventricles (lateral, inferior, third, fourth),

thalamus, caudate, putamen, pallidum, brainstem, hippocampus, amygdala, nu-

cleus accumbens, and the ventral diencephalon. The mask from each individual

image was transformed to the MNI reference image using the transformation de-

rived from an affine registration. The union of all the transformed masks was

then found in the space of the reference image and dilated twice to generate the

collective sub-cortical mask for the cohort. An illustration of the mask is shown

in Figure 5.2.

The mask generated in this way can be used for similarity measurements

between images that have been aligned to the reference – this corresponds to the

R1, R2 and H schemes described in the previous chapter. For experiments where

similarity comparisons need to be made in the native space of the query subject

(i.e. schemes Q1 and Q2), the collective mask was transformed back to the query

image with the inverse of the affine transformation that was used during the mask
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Figure 5.2: The sub-cortical mask used for similarity based selection schemes.
This is shown in contour form over the MNI single subject atlas. The masks
defines the region over which the similarity of an image pair is calculated.

creation stage.

5.4 A comparison of image similarity based schemes

Experiments were carried out to compare the quality of the results produced by

each of the image similarity based selection schemes.

For a given query subject, the remaining 274 atlases were treated as the

repository and each of the selection schemes was used to identify its best classifiers

in the repository for subsequent fusion. The selection was made using normalised

mutual information (as this was the similarity metric used during registration)

and the region used for similarity measurement was the sub-cortical ROI described

in Section 5.3. After ranking based on each of the schemes, the number selected

for subsequent fusion was 20 for each experiment.

For practical reasons, the number of experiments carried out for each scheme

differed depending on whether the similarity measurements were made in the

space of the reference image or in the native space of the query. Where the simi-

larity measurements were made between images aligned to the reference (schemes

R1, R2 and H), segmentation estimates for all 275 of the subjects could be made.

The query centric schemes (Q1, Q2), however, require the alignment of all the im-

ages in the repository to each query image prior to selection. Carrying out query
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centric selection on a leave-one-out basis for many images was consequently pro-

hibitive. Three subjects with different ages were therefore selected for testing the

query centric schemes.

The registrations carried out for the schemes either optimised an affine trans-

formation (12 parameters) or a non-rigid transformation. Non-rigid registrations

were initialised with the affine transformation estimate and optimised free-form

deformations for the local displacements using successive control point spacings of

20mm, 10mm and 5mm (See Sections 2.2.7 and 2.2.6). The different combinations

of target subject and type of registration are listed in Table 5.1.

Scheme Stage Target Type Purpose
Q1 1 Query Non-rigid Selection and label propagation
Q2 1 Query Affine Selection

2 Query Non-rigid Label propagation
R1 1 Reference Non-rigid Selection and label propagation
R2 1 Reference Affine Selection

2 Reference Non-rigid Label propagation
H 1 Reference Affine Selection

2 Query Non-rigid Label propagation

Table 5.1: The combinations of registration types, targets and their uses for the
comparison of the similarity based selection schemes.

Differences between the selection schemes imply differences in the way in

which the final assessment of segmentation accuracy can be made. For schemes

where the fusion step is carried out in the query image’s native space (schemes

Q1, Q2, H), the accuracy of the resulting segmentation can be measured by the

overlap with the query’s manual labels. If, however, the fusion step takes place

in the space of the reference image (schemes R1, R2), the resulting segmentation

and the query’s manual labels differ by the transformation between query and

reference. For this reason, the accuracy of segmentations estimated by reference

centric schemes R1 and R2 are given by their overlaps with query manual labels

propagated non-rigidly to the space of the reference.

Summary results for the different similarity based selection schemes are shown

in Figure 5.3 where the average Dice overlaps achieved for each scheme are dis-
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played. A separate summary of the performance of the schemes is shown in
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Figure 5.3: A comparison of different similarity based selection schemes using
average Dice overlaps for different structures. The structures are listed on the
horizontal axis and, for each structure, groups of bars indicate the performance
of each scheme – left-right structures are combined. Within each group of bars,
the overlaps achieved for the Q1, Q2, R1, R2 and H schemes are listed from left
to right followed by the average overlap achieved without selection, i.e. by fusing
random sets of 20 classifiers (X).

Figure 5.4, where the Dice overlaps for each scheme across all the structures is

shown in the form of a box plot.

The data in Figures 5.3 and 5.4 suggest that schemes producing segmentation

estimates in query space tend to perform better than reference centric schemes.

This was confirmed by a t-test comparing overlap accuracy obtained by schemes

Q1, Q2 and H (combined mean 0.8538) on one hand and schemes R1 and R2

(combined mean 0.8202) on the other (p < 0.0001, 2-tailed test, unequal vari-

ances). The best performing schemes based on the box-plots shown in Figure 5.4

are compared in more detail in Table 5.2. The results produced by hybrid se-

lection also appear to be slightly better than those produced by query centric

schemes Q1 and Q2 although the results should be treated with some caution

as the averages are based on different numbers of experiments. The mean Dice

overlap for hybrid selection was 0.854 and the combined mean for schemes Q1

and Q2 was 0.848. In a t-test, the difference between these means was not sig-

137



Q1 Q2 R1 R2 H X

0.7

0.75

0.8

0.85

0.9

0.95

D
ic

e 
ov

er
la

p

Scheme

Figure 5.4: A box-plot to compare the different schemes for classifier selection
and fusion. This chart represents a summary of the data shown in Figure 5.3
where the results across all structures for each scheme are represented by a box
and whisker diagram. The last box and whisker plot shows the distribution of
overlaps obtained without selection i.e. by fusing random sets of 20 classifiers.

Structure Scheme Q1 Scheme H No selection
Lateral ventricle 0.881 (0.09) 0.914 (0.04) 0.866 (0.09)

0.901 (0.05) 0.911 (0.04) 0.882 (0.05)
Thalamus 0.898 (0.01) 0.908 (0.02) 0.854 (0.02)

0.906 (0.01) 0.909 (0.02) 0.862 (0.02)
Caudate 0.826 (0.06) 0.883 (0.03) 0.747 (0.11)

0.839 (0.04) 0.879 (0.03) 0.766 (0.09)
Putamen 0.901 (0.03) 0.898 (0.02) 0.887 (0.03)

0.900 (0.03) 0.898 (0.02) 0.882 (0.03)
Pallidum 0.852 (0.03) 0.819 (0.05) 0.803 (0.03)

0.837 (0.04) 0.818 (0.05) 0.800 (0.02)
Hippocampus 0.846 (0.01) 0.832 (0.04) 0.808 (0.03)

0.852 (0.02) 0.837 (0.04) 0.825 (0.03)
Amygdala 0.794 (0.05) 0.778 (0.06) 0.749 (0.05)

0.797 (0.05) 0.776 (0.06) 0.728 (0.09)
Accumbens 0.767 (0.09) 0.765 (0.07) 0.726 (0.08)

0.723 (0.07) 0.751 (0.07) 0.698 (0.07)
Brainstem 0.934 (0.01) 0.941 (0.01) 0.903 (0.02)

Table 5.2: Detailed comparison of the overlaps achieved after selection using
schemes Q1 and H. For each paired structure, the left and right overlaps are
shown on successive rows. For reference, the average overlap achieved by fusing
random sets of 20 classifiers are given in the final column.
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nificant at the 5% level. The results also suggest that there is little difference in

performance between one stage and two stage schemes, i.e. Q1 (mean 0.8503)

and Q2 (mean 0.8458) performed very similarly and could not be separated by a

t-test at p = 5%. This was also the case for schemes R1 (mean 0.8210) and R2

(mean 0.8195).

5.5 Image similarity as a selection criterion

The experiments described in section 5.4 compared schemes for the selection of

classifiers that differed in various aspects such as the space chosen for selecting

classifiers, the type and number of registrations used and the space in which the

final segmentation estimate is made. A common feature of all the schemes was

the use of image similarity as the criterion on which classifiers were ranked prior

to selection – in each case, NMI was used as the similarity measure. It is natural

to ask, therefore, whether image similarity represents a suitable selection criterion

with respect to the ultimate aim of obtaining accurate segmentations.

If two images, X and Y , are being registered, and their similarity is sim(X,Y ),

then the aim is to maximise sim(X,Y ) with respect to the parameters of a

transformation between them; the only images that are considered are X and Y .

The use of similarity for selection differs, however, in that similarities between a

query image and multiple other subject images are considered. If Q represents a

query image and classifier atlases are represented by A and B, then a desirable

property of similarity selection would be that it determines the best of A and

B as classifiers for Q. This means, for example, that if sim(Q,A) > sim(Q,B)

then A should provide a more accurate atlas segmentation of Q. It is possible,

however, that this may be confounded by variations in the contrasts and quality

of the atlases and variations in scan protocol. The CMA data were acquired from

multiple centres and represent a diverse range of subjects – it is unlikely that this

large number of images were acquired with the same scanning protocols.
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In order to make a preliminary assessment of the suitability of image sim-

ilarity as a selection criterion, an experiment was carried out to determine the

relationship between the ranks of classifiers as given by image similarity and their

performance (as individual classifiers) in segmenting the query image. The 275

T1 images and their corresponding labels were all affinely aligned to the MNI

reference image. Each subject in the data set was treated as a query in turn and

the ranks of the remaining atlases were found based on their similarity with the

query T1 image. The accuracy of the remaining images as classifiers for a struc-

ture by was estimated from their Dice overlaps with the query’s manual labels.

Repeating this process for all subjects allows the average accuracy to be calcu-

lated for the classifiers for each rank. Plots of the average Dice overlap against the

rank of the classifier are shown for the hippocampus and the lateral ventricle in

figure 5.5. These plots indicate that highly ranked classifiers are associated with

a higher level of accuracy for both these structures. Although no label fusion is

carried out in this experiment, the correlation between classifier rank determined

by similarity and accuracy seems to justify the use of similarity as a basis for

selection of classifiers prior to fusion (Correlation coefficients: Lateral ventricle,

−0.9488; Hippocampus, −0.8765).
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Figure 5.5: The relationship between average Dice accuracy obtained by individ-
ual classifiers and their rank as determined by image similarity with the query.
The results for the hippocampus are shown on the left and those for the lateral
ventricle are shown on the right.
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5.6 Detailed comparison with the fusion of ran-

dom sets of classifiers

As described in Section 5.4, the average accuracy values for the query centric

schemes were based on fewer subjects (N = 3) than for the reference centric and

hybrid schemes (N = 275). This was due to the higher computational burden

associated with query centric selection and fusion. For this reason, a further, more

detailed, investigation of the accuracy of the query centric schemes is presented.

Three individual subjects were selected in order to assess the query centric

schemes. The only criterion for the selection of these subjects was that their

ages should represent the range of ages in all the data. The subjects are simply

referred to as subjects 1, 2 and 3 and the ages at scan were: Subject 1: 11.6 years.

Subject 2: 29 years. Subject 3 : 79 years. For these subjects, a set of experiments

was carried out in order to compare in more detail the accuracy of segmentations

obtained after classifier selection with the accuracy of segmentations obtained by

simply fusing random sets of classifiers.

The selection scheme used to generate the segmentations for each individual

subject was the query centric, one stage scheme. Randomly selected groups

of 20 subjects were selected from the remaining 274 subjects and their labels

were transformed non-rigidly to the selected individual and fused to generate

a segmentation for comparison. The process of random selection and fusion of

labels was repeated 1000 times for each of the selected individuals.

The Dice overlaps of each segmentation produced by the fusion of a random

group of subjects were then evaluated for the sub-cortical structures. The overlaps

were calculated between the randomly fused labels and the gold standard manual

labels. This allowed an estimate of the distribution of Dice overlaps to be made

for each structure and for each of the selected individuals.

The accuracy of segmentations produced by the Q1 selection and fusion scheme

(as measured by overlaps with the gold standard manual labels) can then be com-
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pared against the distributions of overlaps based on the fusion of random groups.

The distributions of Dice overlaps from randomly fused sets of labels are shown

for the different structures in Figure 5.6. As an example, focusing on the data

for the left pallidum in Figure 5.6, the random overlap distribution has a median

Dice overlap of approximately 0.78. The limits of the inter-quartile range are 0.77

and 0.79, the overlaps for half the random segmentations lie between these limits.

The whiskers for the box-plot of this distribution, representing the extremes of

the distribution, are at 0.72 and 0.84. The Dice overlap obtained from the single

segmentation of the left pallidum obtained after Q1 selection is plotted as a circle

and can be observed slightly above the whisker at the upper end of the random

distribution.
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Figure 5.6: An assessment of the overlaps for different structures for subject 1
obtained after applying the Q1 scheme. The overlap obtained for each structure
(plotted as a circle) can be compared against the distribution of overlaps obtained
from the fusion of 1000 sets of 20 labels from randomly chosen subjects.

Plots that assess the gold standard overlaps of the Q1 scheme for subjects

2 and 3 are shown in a similar way in Figures 5.7 and 5.8. For all the cases,

the accuracy of the segmentation obtained by Q1 selection and fusion is higher

than the average overlap obtained by fusing random classifier sets. In most cases,
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the Q1 segmentation estimate exceeds the 75th percentile of the random overlap

distributions. In many cases it exceeds, the outlier limits defined by the whiskers

in each box-plot.

LV thal caud put pall hipp amyg acc stem

0.65

0.7

0.75

0.8

0.85

0.9

0.95

subject 2
D

ic
e

Structure

Figure 5.7: An assessment of the gold standard overlaps obtained after applying
the Q1 scheme for subject 2. The overlap obtained for each structure (plotted as
a circle) can be compared against the distribution of overlaps obtained from the
fusion of 1000 sets of 20 labels from randomly chosen subjects.

A very small number of the overlaps achieved after the fusion of random

sets of labels fell outside the ranges defined by the whiskers of each box-plot in

Figures 5.6, 5.7 and 5.8. These were not plotted for readability. Across all struc-

tures and subjects, the whiskers defined (on average) the 0.007% and 99.998%

percentiles of the random distributions of overlaps.

A slightly different way of using the distributions of random overlaps to assess

the quality of the overlaps achieved after selection is through the use of z-scores.

For a given subject and structure, the mean and standard deviation of the dis-

tribution of random Dice overlaps can be calculated. The gold standard overlap

achieved after selection can be converted into a z-score based on this mean and

standard deviation. The z-score measures the signed difference between an over-

lap achieved after classifier selection and the mean of the random distribution.
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Figure 5.8: An assessment of the gold standard overlaps obtained after applying
the Q1 scheme for subject 3. The overlap obtained for each structure (plotted as
a circle) can be compared against the distribution of overlaps obtained from the
fusion of 1000 sets of 20 labels from randomly chosen subjects.

The difference is expressed as the number of standard deviations above / below

the mean. Clearly, a large positive z-score indicates that the overlap achieved

significantly out-performs the overlaps achieved from randomly fused labels.

A summary of the z-scores for each of the selected subjects and structures

is shown in Table 5.3 and the same information is also shown pictorially in Fig-

ure 5.9, where the left and right figures for each of the structures (except the

brainstem) are shown separately. These data show that the overlaps achieved by

segmentations after classifier selection will, in general, perform much better than

overlaps achieved by fusing labels randomly. The average z-score achieved overall

is 2.91 : this represents a cumulative percentage of 99.8% for normal distributions.

5.7 The choice of similarity metric

This section presents data to illustrate how the choice of similarity metric used

during the selection of classifiers affects the quality of the final segmentations.
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Subject
1 2 3 Average

Lateral Ventricle 1.70 -0.05 4.21 1.96
Thalamus 2.21 3.87 6.31 4.13
Caudate 3.22 1.17 5.54 3.31
Putamen 2.48 2.38 2.37 2.41
Pallidum 2.83 3.31 2.89 3.01
Hippocampus 2.76 1.63 5.00 3.13
Amygdala 3.73 2.26 3.22 3.07
Accumbens 1.58 1.43 1.78 1.59
Brainstem 3.43 3.10 4.20 3.58
Average 2.66 2.12 3.95 2.91

Table 5.3: Z-scores achieved by segmentations produced by fusion of labels after
classifier selection (Scheme Q1).
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Figure 5.9: Z-scores achieved by segmentations produced by fusion of labels after
classifier selection (Scheme Q1). For paired structures, separate bars are shown
for the left and right structures. The abbreviations listed on the horizontal axis
are for the following structures : Lateral ventricle (LV) thalamus (thal), caudate
(caud), putamen (put), pallidum (pall), hippocampus (hipp), amygdala (amyg),
accumbens (accum), brainstem (stem).
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During all the results presented so far, normalised mutual information (NMI)

was the metric used to determine the similarity of subjects for the various se-

lection schemes. This choice was made because this metric was used during all

registrations. It therefore seemed reasonable to assume that it would correlate

with the degree of success of each registration. Because classifier fusion relies on

good estimates of correspondence between atlases and query images, the measure

of registration success should correlate with the quality of the resulting segmen-

tation. Conversely, an atlas that is badly aligned with a query image will not

make a good contribution in a label propagation and fusion scheme.

The NMI metric was compared against the results obtained from selection us-

ing cross correlation (CC), a non-information theoretic measure (see Section 2.2.8).

The selection scheme that was used for the comparison was the hybrid scheme

(H). This meant that the repository images were all aligned to the MNI reference

image and selections were made in reference space of the top 20 classifiers for each

subject. The selections were made twice, once with each of the similarity metrics.

It should be stressed, however, that the registrations of each of the subjects to the

reference were not repeated. For both sets of selections, the registrations based

on NMI were used for the alignment and subsequent label propagation.

The average Dice overlaps obtained after hybrid selections using NMI and

CC are compared in Figure 5.10. These results show that the accuracy of results

based on CC selection are slightly lower than those based on NMI but that there is

very little difference in the accuracy of the final segmentations based on selection

with either metric. The results were obtained after 275 leave-one-out experiments

for each selection metric. T-tests were applied to the sets of data represented by

the averages in Figure 5.10. None of these tests showed a significant difference

between the results of using each metric at the p = 0.01 significance level.
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Figure 5.10: A comparison of the effect of the choice of metric during the classifier
selection stage. Average Dice overlaps for hybrid selection and fusion of various
structures. For paired structures, the averages of the left and right instances are
combined. The abbreviations listed on the horizontal axis are for the following
structures : Lateral ventricle (LV) thalamus (thal), caudate (caud), putamen
(put), pallidum (pall), hippocampus (hipp), amygdala (amyg), accmubens (ac-
cum), brainstem (stem).

5.8 Varying the number of classifiers

When applying a similarity based selection scheme, the atlases in the repository

are ranked according to their similarity with the query image. A decision then

needs to be made on the number of classifiers to use for the next stage, label

propagation and fusion, that gives the final segmentation estimate. This section

presents data from experiments that aim to address this question.

The experiments were carried out using the images for subjects 1, 2 and 3

described in Section 5.6 and by applying the Q1 selection scheme. For a given

query image, the repository atlases (N = 274) were ranked by their similarity

to the query. Subsequently, increasing numbers of the ordered classifiers were

selected and fused to provide separate estimates of the query segmentation; in

other words, the label sets combined to provide a segmentation after selecting k

classifiers is represented by the label sets used after selection of k − 1 classifiers
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with the inclusion of the kth classifier in the ordered list. The accuracy of each

segmentation estimate was assessed using the Dice overlap with the query image’s

corresponding manual label.

The combined left-right average accuracy for various structures for all three

query subjects chosen are shown in Figure 5.11 by the solid blue lines. Each chart

shows how the accuracy of the resulting structure varies as increasing numbers of

the ordered classifiers are selected. The average overlap accuracy for all structures

and all subjects is shown in the bottom right of Figure 5.11.

For comparison, the accuracy achieved by fusing random sets of classifiers,

with varying numbers in each, is shown in each chart as a dashed line.

0 20 40 60 80 100
0.8

0.85

0.9

Thalamus

D
ic

e

0 20 40 60 80 100
0.7

0.8

Caudate

0 20 40 60 80 100
0.7

0.8

Pallidum

D
ic

e

0 20 40 60 80 100
0.7

0.8

Hippocampus

0 20 40 60 80 100
0.6

0.7

0.8
Accumbens

D
ic

e

Number fused
0 20 40 60 80 100

0.7

0.8

Average

Number fused

Figure 5.11: The segmentation accuracy for various structures by fusing increas-
ing numbers of ranked classifiers. The vertical axes show average Dice with the
manual labels. The horizontal axes show the number fused. The solid lines show
overlap for classifiers chosen from the ranked list. For comparison, the dashed
lines show overlap for random sets of classifiers. Data for five structures (com-
bined left-right) are shown. The average over all structures is shown in the plot
at the bottom right.

The data shown in Figure 5.11 can be a little noisy, as demonstrated, for
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example, by the overlaps for the accumbens (a small structure). The general

pattern, however, is that there is a sharp initial increase in overlap accuracy up

to a maximum level followed by a gradual decline.

This contrasts with the overlaps achieved by fusing random sets of classifiers;

after a sharp initial increase, these show a continued monotonic increase but

always remain below the accuracy level used by fusing ranked classifiers. Clearly

as the number fused approaches the size of the repository the accuracy of ranked

and random classifier fusion should converge to the same level, which would be the

accuracy obtained by using the population average as the segmentation estimate.

The number of ranked classifiers needed to give the highest accuracy varies

for the different structures. The overlaps for the caudate reach a maximum

for about 8 classifiers while the maximum for the hippocampus is reached after

the selection of the top 25 classifiers on average. The average overlaps across

all structures in the bottom right of the figure show a fairly flat section of the

highest overlap values for between 15 and 25 classifiers. This suggests that the

choice of 20 classifiers is appropriate for general segmentations. If, however, the

segmentation of a particular structure is required, the number of classifiers used

from the ranked atlases could then be adapted specifically to suit the structure.

5.9 Comparing similarity based and age based

selection

A comparison was made for all 275 subjects in the repository of the accuracy

of segmentations generated after selection based on age and selection based on

similarity. The similarity selection scheme used was the hybrid selection scheme,

where images are aligned to the reference before similarity comparison. In order

to select classifiers by age, the twenty nearest subjects to a given query were

simply chosen and fused.
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The performance of each method for each subject was measured by the mean

overlap over the sub-cortical structures. After calculating the means, a single

figure was estimated for each subject representing the signed difference between

the schemes: age selection accuracy minus hybrid selection accuracy.

The resulting values are shown in Figure 5.12 where the points for each sub-

ject are plotted using different markers simply to indicate their approximate age

group. Points lying above the horizontal axis represent subjects for whom age

selection represents an improvement over hybrid selection and vice-versa. For

subjects in the middle age group (represented by crosses) the distribution of the

differences suggests that there is negligible difference between the schemes. For

the youngest subjects (represented by dots) there are some subjects for whom age

selection appears to produce a slightly worse result although the differences are

small. The mean difference for the younger subjects was -0.0055 (S.D. 0.0057)

and the maximum change was -0.0199. A single sample two-sided t-test identified

the mean as significantly different from zero (p < 0.0001) with the 95% confidence

limits for mean as {−0.0065,−0.0045}. The oldest subjects (represented by cir-

cles) were more varied than the other two groups, but contained the subjects for

whom age selection made the most improvement. Again, the differences are small

with a maximum increase in Dice accuracy of 0.0276. The mean increase in Dice

for the older subjects was 0.007 while the standard deviation for Dice increases in

the older group was 0.011. The standard deviations for the younger and middle

groups was 0.0057 and 0.0035 respectively. The mean increase for the older group

was different from zero in a statistically significant sense (p < 0.005, two-sided

t-test) and the 95% confidence interval for the mean was {0.0023, 0.0108}. In

general, the small values for differences in performance between age-based selec-

tion and hybrid similarity based selection suggest that the performance of both

schemes is comparable.

To give a qualitative impression of the classifiers selected, three subjects were

chosen from the young, middle and older aged groups and the top 10 classifiers
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Figure 5.12: A comparison of age-based selection and similarity-based (hybrid)
selection. The horizontal axis shows the age of the subjects, subjects in different
age groups are plotted with different symbols. The vertical axis shows the im-
provement that age selection gives over the hybrid scheme – ‘improvement’ can
be negative as well as positive.

based on the hybrid similarity selection scheme were identified. Slices from each

of the top-ranked classifiers for each subject are shown in Figures 5.13 , 5.14

and 5.15. Figure 5.13 shows the classifiers selected for an 11 year-old subject,

Figure 5.14 a 29 year-old and Figure 5.15 a 79 year-old.

Figure 5.13: The top ten classifiers for an 11 year-old subject using the hybrid
similarity scheme.

The ages of the top ten classifiers for each of these three subjects are shown

in Table 5.4. The table shows that, although the classifiers were selected using

an image similarity based scheme, the ages of the best classifiers match the age
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Figure 5.14: The top ten classifiers for a 29 year-old subject using the hybrid
similarity scheme.

Figure 5.15: The top ten classifiers for a 79 year-old subject using the hybrid
similarity scheme.
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of the query subject well. This suggests that there is a good deal of agreement

between selection on similarity and selection on age and gives a possible reason

for the similar segmentation accuracy provided by age-based selection and by

hybrid similarity selection as shown in Figure 5.12.

Age of query subject
Rank of classifier 11 29 79

1 13.6 29 73
2 4.5 52 72
3 10.1 25 76
4 9 43 31
5 8.6 16.5 75
6 8 25 65
7 9.5 55 63
8 11.3 34 73
9 11.9 12.7 83
10 7.5 55 65

mean (SD) 9.4 (2.55) 34.72 (15.74) mean 67.6 (14.20)

Table 5.4: The ages of the top 10 classifiers selected using the hybrid similarity
scheme for three different query subjects. The three subjects were chosen to cover
the age range of the data.

5.10 Discussion

A comparison of the accuracy achieved by the different similarity based selection

schemes has been presented in Section 5.4. Differences in computational burden

associated with the schemes mean that there are some differences in the numbers

of experiments carried out with each scheme prior to comparison. The number of

possible experiments that could be carried out for the query centric schemes was

limited by practical considerations but a detailed comparison for the Q1 scheme

was carried out against distributions of overlaps obtained by fusions of random

groups of classifiers. Additionally, the accuracy measurements for the reference

centric schemes were made against a transformed version of the manual labels

due to the segmentation estimates being made in the reference space.

Notwithstanding these differences, it is still possible to obtain an impression
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of the relative performance of the different similarity based selection schemes.

The best performing schemes, Q1 and H, were compared against each other in

more detail (see Table 5.2). The overlap measures achieved by both these schemes

are comparable with or better than those achieved by previously published au-

tomated methods [88] and are comparable with previous manual segmentation

methods [57, 157].

The hybrid scheme has a significantly lower computational overhead compared

with query centric schemes. The results presented suggest that the accuracy of the

hybrid scheme is at least comparable with the query centric schemes, something

that makes it a desirable alternative.

The lower accuracy values of segmentations produced by reference centric

schemes could be due to more than one cause and further work would need to

be done to isolate their effects. The likely reasons for this may relate to errors

in the transformation between the query and the reference, this transformation

is needed to produce the accuracy figures for the scheme by propagating the

query labels to the reference, so that it can act as a gold-standard. Moreover,

there are essentially two registrations involved in the construction and assessment

of the accuracy of a reference centric segmentation. The registrations from the

atlases to the reference and the registration from the query to the reference. This

means that such a scheme is likely to contain more errors due to inaccuracies in

registration compared with other schemes. The lower accuracy values could also

be due to errors in the segmentations themselves.

Comparing the performance of the reference centric schemes R1 and R2, the

results suggest that there is little accuracy lost when adopting a two stage scheme

(R2) instead of a one stage scheme (R1). This would imply that the computa-

tionally cheaper option (two stage) is generally worth pursuing as the majority

of the registrations carried out in the two stage schemes optimise a lower number

of parameters – these are the registrations used during the selection stage.

In section 5.5 an initial assessment of the suitability of image similarity as a
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selection criterion prior to label fusion was made. The results suggest that the

rank of an atlas in terms of its image similarity with the query correlates with its

accuracy as a classifier. This gives some justification for the use of image similarity

for selection. Additionally, based on a visual inspection, the images showing

the top-ranked atlases for three query subjects in Figures 5.13 , 5.14 and 5.15

indicate that the anatomies of the classifiers selected based on image similarity

are indeed similar to those of the query subjects. In future work, selection based

on geometric features can be explored and compared with selection based on

image similarity. Geometric features can be extracted from the transformations

between the images in the atlas pool and a reference image and those that are

closest to the features obtained from a query-reference transformations can be

used as a basis for selection. A similar approach was proposed in [42] where a

metric defined between transformations to a reference space were used to select

the most similar template to a query image.

The comparisons of the Q1 scheme accuracy figures against those achieved

by fusing randomly chosen groups of classifiers (Section 5.6) suggest that the use

of a similarity selection scheme produces a higher level of accuracy than chance

alone.

The effect of the choice of similarity metric was briefly assessed in Section 5.7

and the results suggest a very slight advantage in using the same metric for

selection as that used for registration (NMI in this case) but that the differences

in performance were not significant.

The accuracy figures achieved by the fusion of different numbers of classifiers

presented in Section 5.8 indicate that simply using larger and larger numbers

of classifiers (after ranking) actually produces lower levels of accuracy in the

resulting segmentation. As the number of classifiers fused increases, the accuracy

achieved tends to rise quickly to a maximum and subsequently decline gradually.

The number of classifiers required for the maximal accuracy varied according

to structure, but the fusion of approximately 20 classifiers produces the near
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maximal accuracy when the results are averaged across structures. A modification

to the scheme, when segmentations for a specific structure are required, would be

to identify the optimal number of classifiers for that structure in advance prior

to the use of classifier selection.

The decline in the overlap values as increasing numbers of classifiers are used

may be explained by the tendency of the resulting fused segmentation to the mean

of the structure across the cohort. This mean segmentation may not represent

the query subject as well as the segmentation provided by a relatively smaller

number of ranked classifiers.

Another general implementation choice was that of the ROI used for making

similarity comparisons. This represented a mask that covered all the sub-cortical

regions for all subjects. Again, a structure-specific implementation could be car-

ried out using a mask tailored to the structure that is required for segmentation.

In Section 5.9 the results of a comparison of the accuracy achieved after selec-

tion based on age and selection based on similarity (scheme H) were presented.

These results suggest that there were no significant differences in the perfor-

mance of the schemes. For some subjects, selection on age may even produce

a very slightly worse result although the differences are very small. It is noted,

however, that the subjects for whom age selection gave the most improvement

were more likely to be among the oldest subjects. This may be due to the scans

acquired from older subjects being more likely to have a significantly different

appearance from the rest of the cohort. Interestingly, when comparing against

the Dice overlaps generated by the fusion of random groups of subjects (Sec-

tion 5.6), the subject for whom the accuracy of segmentations after classifier

selection showed the greatest improvement over random selection (Table 5.3) was

the oldest subject (age 79).

It should be noted that the accuracy of scheme H is comparable with scheme

Q1 which, in turn, performs significantly better than the fusion of random sub-

jects. The comparable levels of accuracy achieved by scheme H and age based
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selection suggests that age based selection should also significantly outperform

random selection.

5.11 Conclusion

This chapter has presented various experiments to compare different schemes

for classifier selection and fusion and to test their accuracy against the levels of

accuracy achieved by fusing random groups of classifiers.

The results suggest that the accuracy levels achieved by the query centric

and hybrid schemes are significantly higher than would be achieved by the fu-

sion of random sets of classifiers. The good performance of the hybrid scheme in

particular, along with its comparatively low computational burden, makes it an

attractive scheme for producing accurate structural segmentations. Additionally,

the comparable performance of age based selection and the hybrid scheme indi-

cate the potential that meta-information based selection has in generating good

segmentations.

An interesting area for future work would be to extend the schemes presented

to allow adaptive weighting of the different classifiers during the fusion stage. For

example, such a scheme might use a local measure of the similarity between the

classifying atlas and the query subject and, instead of using a simple majority

vote rule at each voxel, the votes could be weighted by some measure of the

classifiers’ local agreement in the neighbourhood of the voxel.

Structural segmentations using the methods described in this chapter are used

to help define regions of interest in a dataset consisting of Alzheimer’s disease

patients and age-matched controls. These data are presented in Chapter 6 and 7.
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Chapter 6

Longitudinal change in early

childhood

In the previous chapters a framework was presented for characterising longitudinal

change in serially acquired data for a cohort. Methods for structural segmentation

were also described. These methods rely on the use of label propagation and

classifier fusion.

In this chapter, these methods, along with EM based tissue segmentations,

are applied to serially acquired images to characterise longitudinal change in a

group of children for the interval between one and two years of age.

There is a particular need to characterise and quantify brain development in

this vulnerable population: extreme preterm delivery potentially disrupts brain

growth and many children born prior to 26 weeks’ gestational age develop neu-

rological disabilities [117] and neurocognitive problems that can continue into

adolescence [25].

Experiments were carried out aiming to provide estimates of global and re-

gional growth within an exemplar group of 25 infants who were born preterm.

Volumetric magnetic resonance (MR) imaging data were acquired at both one

and two years of age for this group. As well as estimating growth, average space

atlases at each timepoint were also generated to represent anatomy, tissue maps
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and regional growth across the population. Growth estimates from individual

registrations and from atlas based estimates are compared and shown to be con-

sistent with estimates obtained from conventional tissue segmentation.

6.1 Growth in early childhood : Previous work

Most brain growth occurs during the first two years of life, much occurring in

utero prior to birth at 40 weeks’ gestational age. A full understanding of human

brain development in general, therefore, must include this early period of rapid

development. However, most previous neuroinformatic studies of human brain

growth have focused on older children and adolescents [73, 164, 155].

Approximately 5% of children are born prematurely and, among those who

survive, the primary impact of preterm birth is neurological. Impaired neuro-

logical development in preterm born children has been identified in infants [178]

and in six-year old children [117]. Neuropsychiatric problems are common in the

teenage years following preterm birth [25]. This clearly highlights the need for

characterising and quantifying the patterns of brain development in infants and

children.

Many previous studies have used cross-sectional designs to assess brain growth.

These have included, for example, Huppi et al. [92], who estimated brain volumes

of neonates with gestational ages of 29 to 41 weeks. Using images of similarly

aged infants, Nishida et al.[126] used a semi-automated method for regional vol-

umetric analysis. Giedd et al. [74] estimated growth for children and adolescents

from four years, comparing in the context of a linear model. Matsuzawa et al.[120]

applied more complex models to tissue volumes derived from cross-sectional data

of children up to 10 years of age.

While cross-sectional studies can be used to identify general trends in longi-

tudinal development, inter-subject variability can act as an additional source of

error, given that the data are obtained from different subjects at various time-
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points. Longitudinal studies are more costly and time consuming due to the

need for serial acquisitions but have an advantage in that each subject effectively

acts as its own control, reducing the confounding effect of inter-subject variabil-

ity. Further discussion of the distinction between developmental inferences drawn

from cross-sectional and longitudinal studies can be found in [107].

Growth studies based on longitudinal data include the models of white matter

(WM) and grey matter (GM) growth presented by Giedd et al. [73] for children

and adolescents aged between 4 and 20 years. Thompson et al.[164] tracked the

development of the total brain, corpus callosum, ventricles and caudate in a group

of six children scanned repeatedly between the ages of 3 and 15. Gerig et al.[72]

reported regional growth estimates using atlas-based approaches for longitudinal

data of eight subjects with baseline and follow-up scans at 2 and 4 years. A non-

volumetric assessment of growth using longitudinal data is presented in Sowell et

al.[155], where cortical thickness measurements are estimated for children scanned

at 2 year intervals between ages 5 and 11. A critical review of literature relating

to MRI studies of the developing brain can be found in Durston et al.[55].

Boardman et al.[20, 19, 18] used maps of the Jacobian determinant to identify

volumetric group differences in deep grey matter between preterm born children

and term born controls. These types of approaches, where derivatives of the

deformation field are used to characterise regional differences (for example in

surface area or volume), are sometimes described as Tensor Based Morphometry

(TBM) [48, 39, 111]. Such approaches contrast with Voxel Based Morphometry

(VBM) [6] where, after all images have been spatially normalised, the main focus

of study is difference in tissue composition at individual voxels.

6.2 Image data

The subjects studied consisted of 25 preterm born children (9 female, 16 male)

who were scanned at one and two years of age. The mean gestational age at
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birth was 27.7 weeks (SD 2.2), the mean corrected ages at scan were 54.0 weeks

(SD 5.8) for the one year (baseline) scans and 106.4 weeks (SD 4.4) for the two

year (follow-up) scans. Scan ages were corrected for gestational age by recording

the ages of the children relative to their due dates at 40 weeks gestation rather

than the actual premature birth dates. The mean interval between corresponding

scans was 52.4 weeks (SD 7.1).

Young children are more likely to move during MR scanning which increases

the likelihood of motion artefacts in the resulting images. The children used in

this study were born preterm so it was possible to obtain ethical permission to

sedate them (using chloral hydrate) during scanning on the grounds that there is

clinical information to be gained from imaging them. Ear protection was also used

(Natus MiniMuffs, Natus Medical Inc, San Carlos, CA). The scans acquired for

all children were T1-weighted MR volumes. Seven subjects’ images were acquired

using a Marconi 0.5 T Apollo scanner, TR/TE = 23ms/6ms, flip angle = 30◦.

The images for the remaining subjects were acquired using a 1.0T HPQ system

(Philips Medical Systems, Cleveland, Ohio), TR/TE = 23ms/6ms, flip angle =

35◦. All images were reconstructed with voxel dimensions of 1 × 1 × 1.6mm3.

For each subject, both the baseline and follow-up images were acquired on the

same scanner. The images were pre-processed initially by extracting the brain

regions and by correcting for MR non-uniformity. Brain masks were created for

the images using ‘BET’ [152] and the non-uniformity correction was carried out

using ‘N3’ [150].

To illustrate these pre-processing steps, a slices taken from an original scan

and the non-uniformity corrected image are shown in Figure 6.1. This figure also

shows the difference image along with the result of applying the brain extraction.
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Figure 6.1: Illustrations to show the pre-processing steps applied to the image
data. From left to right: A slice taken from an acquired image. The corresponding
slice taken from the non-uniformity corrected image. The difference between the
original and non-uniformity corrected images. The result of applying the brain
extraction step.

6.3 Experimental design

With the aim of using the data described in the previous section to quantify

growth for individual subjects during the second year of life, registration based

growth estimates were calculated over the whole brain and these were also trans-

formed to a common coordinate system and aggregated to produce a population

average.

In order to obtain registration based growth estimates, for individuals or for

the cohort, two types of registration were carried out. A longitudinal registra-

tion was performed for each subject using the baseline and follow-up scans. The

transformations obtained from these intra-subject registrations can be used to

provide estimates of growth for each subject by calculating the Jacobian deter-

minant. Cross-sectional (inter-subject) registrations were carried out within each

timepoint by randomly selecting a reference subject and registering the remain-

ing subjects within the timepoint to the reference. The cross-sectional trans-

formations can be used to generate atlases at each time-point in the space of

the reference subject. It is, however, possible to generate ‘average space’ atlases

within each time-point by using the average cross-sectional transformation to the

reference. These atlases can represent anatomy, particular structures or regional

growth for the population. A schematic diagram for the different registrations
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and the atlases is illustrated in Figure 6.2.

Figure 6.2: Schematic illustration of the images used and registrations performed.
The subject images are represented by the clear squares with the reference subject
shown in bold. The year one (baseline) and year two (follow-up) images for each
subject are registered to obtain longitudinal transformations (shown as dashed
arrows). Within each timepoint, the subjects are registered to the reference (solid
arrows) and the average transformation (bold arrows) is used to map reference
locations to the average space (grey square). Atlases were generated in the average
space which could represent anatomy, growth or tissue class across the population.

6.4 Individual registration results

The longitudinal registrations were carried out using the baseline scan as the

target or fixed image and the follow-up scan as the source or deformed image.

The baseline and follow-up images for an individual are shown in Figure 6.3, along

with an illustration of the transformed follow-up image after non-rigid registration

(which also shows the deformed lattice of control points used to transform the

image).

Images showing the difference between the baseline and follow-up images are
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(a) Baseline (b) Follow-up (c) FFD

Figure 6.3: The left and middle images show the baseline (year one) and follow-
up (year two) images for a particular subject. The right image shows the follow-
up image after non-rigid registration along with the grid used for the free-form
deformation. An animation depicting the growth from one to two years for the
subjects studied is available on the accompanying CD ROM.

shown in Figure 6.4. Figure 6.4(a) shows the difference image after a rigid align-

ment. Figures 6.4(b) and 6.4(c) show the difference image after affine and non-

rigid registration respectively.

(a) Rigid (b) Affine (c) Non-rigid

Figure 6.4: Difference images between the baseline and follow-up images after
a rigid alignment and after the affine and non-rigid registration steps. These
images are of the same subject shown in Figure 6.3, i.e. 6.4(a) shows the difference
between Figures 6.3(a) and 6.3(b).

As described in Section 3.1.2, a weighting value of 0.01 was chosen for the

regularisation parameter λ (Equation 2.5). The effect of this choice of regularisa-

tion parameter was evaluated by finding the percentage of voxels with a negative
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Jacobian determinant for each of the various transformations. Assuming that

there are no differences in the topologies of the anatomies represented in the im-

ages, the ideal transformation should not tear or fold the underlying space, i.e.

the Jacobian determinant values should be positive and finite. Based on this as-

sumption, longitudinal registrations for the data studied should have no regions

with negative Jacobians while these may exist for inter-subject registrations. This

is because the growth in the interval studied is unlikely to break topology while

there may be topological variation between subjects.

For the longitudinal transformations, between the baseline and follow-up im-

ages, two of the twenty-five subjects’ transformations contained negative determi-

nants and these occurred in less than 10−3% of the voxels. For the cross-sectional

transformations used to create the atlases, the average percentage of voxels with

negative Jacobian determinants was 0.03% (SD 0.06%, maximum 0.3%). The

average transformations used to create the average space atlases did not generate

any negative Jacobian determinant values.

6.5 Image segmentation

6.5.1 Expectation maximisation

A particular subject was selected and manual segmentations of various structures

were outlined by a clinical expert. The manual segmentations for each of the

main tissue classes (grey and white matter) and for cerebro-spinal fluid (CSF)

were propagated to each of the remaining subjects using an affine transformation

and blurred. The transformed images were used as prior probability maps for an

EM segmentation for each subject [123]. Validation results for this approach can

be found in [124].

An example of the priors for a particular subject are shown in Figure 6.5.

Examples of the segmentations produced by the EM algorithm are shown in
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Figure 6.5: Prior probability maps for use in an EM tissue classification for a
subject. These maps were generated by transforming a manual segmentation for
to the target subject using an affine transformation and blurring.

Figure 6.6.

6.5.2 Classifier fusion

A repository of 30 image pairs consisting of T1-weighted images and manual seg-

mentations was used to provide classifiers for structural segmentations. Each atlas

contained labels for 83 structures delineated according to a published protocol by

Hammers et al. [85] (see Section 4.3.1).

For a given query subject, the 30 annotated T1- images were registered with

the subject’s baseline scan and the resulting transformations were used to prop-

agate the corresponding manual segmentations of each of the pairs to the space

of the subject. Each propagated manual segmentation is treated as an individual

classifier for the subject. A simple vote rule was used to combine the classifiers

with the label receiving the majority vote at a voxel being assigned to that voxel.

An example of a structural segmentation for an individual subject is shown in

Figure 6.7.

6.6 Atlases

Using the methods described in Section 2.4, average space atlases of the anatomy

across the group were generated for each time-point. These are illustrated in
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Figure 6.6: Transverse slices of tissue labels generated by EM segmentation for
an individual subject. The top row shows slices from the original anatomy. The
bottom row shows the labels. The middle row shows the label boundaries overlaid
onto the anatomy.
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Figure 6.7: An example of a structural segmentation for an individual based on
the propagation of labels from a set of classifiers to the subject and subsequent
fusion using the vote rule.
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Figure 6.8.

Figure 6.8: The average space anatomical atlases of the cohort based on the one
year scans (top) and the two year scans (bottom).

Similarly, in the same coordinate system, an atlas of growth is shown in Fig-

ure 6.9 and this growth atlas is overlaid onto the anatomy of the year one average

in Figure 6.10. Atlases of the tissue maps across the population at each timepoint

are shown in Figure 6.11.

In order to obtain an estimate of the average deformation that is produced by

the registration of the year one and year two images, the individual longitudinal

registrations for all the subjects were transformed to the space of the year one

average space atlas. The method used to map the individual deformation fields to

the atlas is described in Rao et al. [133]. After spatial alignment of the deforma-

tion fields, their control points were averaged to produce the average deformation

field as described in Section 3.4.1. The longitudinal global affine transformation

that was combined with the average longitudinal deformation field was the affine

map relating the average space atlases at one and two years. This was carried
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Figure 6.9: The growth map atlas based on all individual growth maps for the one
to two year old data. This is in the space of the year 1 (baseline) average space
atlas. The growth figures displayed are based on both the global and longitudinal
transformations (see Equation 3.1).

Figure 6.10: The growth map atlas for the one to two year old longitudinal data
overlaid onto the average space anatomical atlas for the scans acquired at age
one.
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Figure 6.11: The average space atlases of the tissue maps. From left to right:
WM year 1, GM year 1, WM year 2, GM year 2.

out as described in Section 3.4.1.3. An illustration of the average deformation is

shown in Figure 6.12 where the deformations have been enlarged by 50% in order

to give a sense of the patterns of change across the group. The colour scheme

applied to the average deformation field is based on the associated Jacobian de-

terminants with the hotter colours representing regions of growth and the colder

colours representing contraction (see also Figures 6.9 and 6.10).

An average space atlas was also created from the fused segmentation estimates

for the structural labels. The individual fused segmentations for the subjects

were used in a second classifier fusion step where each baseline segmentation was

propagated to the baseline average space and, once again, combined according

to the vote rule. This provides an average space atlas estimate for the structural

segmentations which is illustrated in Figure 6.13.

6.7 The effect of the choice of reference

In order to assess the influence of the choice of reference subject used during

the construction of the average space atlas, two average space anatomical atlases

were generated using two different reference subjects. Each atlas has the same
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Figure 6.12: An illustration of the average longitudinal deformation across the
cohort. The individual longitudinal transformations were mapped to the space of
the anatomical one year atlas and linearly averaged. The colouring represents the
size of the Jacobian determinant in the same manner as that shown in Figures 6.9
and 6.10.

Figure 6.13: The structural segmentation of the average space baseline image.
This segmentation was generated by propagation of the structural segmentations
of each of the subjects’ baseline segmentations to the average space year-one
atlas. After propagation, a second fusion step using the vote rule was applied to
generate the final structural atlas.
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orientation as its corresponding reference (with respect to translation and rotation

parameters), so a rigid transformation was used to align the atlases. These atlases

are shown Figure 6.14.

Figure 6.14: Two average space atlases generated from the same subjects. The
atlases were generated using two different reference subjects, i.e. two different
choices for the subject labelled Iref in Figure 3.4. The atlases were rigidly aligned
using the rigid transformation relating the corresponding reference subjects.

The similarity of these atlases can be shown by overlaying their iso-intensity

contours. Figure 6.15 shows two sets of iso-intensity contours that correspond to

the same intensity taken from each of the atlases after rigid alignment. Further

iso-intensity contours derived from the average space atlases are also shown in

Figure 6.16. There are some slight differences between corresponding contours

from the different atlases but they generally agree and demonstrate the robustness

of the process of generating the average space atlases with respect to the choice
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of reference.

Figure 6.15: Two corresponding iso-intensity contours taken from each of the pair
of average space atlases shown in Figure 6.14. These atlases were generated using
two different reference subjects, i.e. two different choices for the subject labelled
Iref in Figure 3.4. The atlases were rigidly aligned using the rigid transformation
relating the corresponding reference subjects. Further iso-intensity contours using
different values are shown in Figure 6.16.

6.8 Comparison of registration and segmenta-

tion based growth estimates

The tissue segmentations estimated via EM can be used to provide volume esti-

mates for grey and white matter for each subject at each timepoint. These are

plotted in Figure 6.17. In this figure, the baseline and follow-up volume esti-

mates for a particular tissue that correspond to the same subject are joined with

a dashed line. This is simply to show corresponding volumes and not intended

to suggest that the growth is linear. The mean volumes of grey matter for the

cohort were 665.7 (69.7) cm3 at age one and 746.7 (81.9) cm3 at age two, where

the figures in brackets indicate standard deviations. The corresponding volumes

of white matter at ages one and two were 198.7 (18.6) cm3 and 254.8 (26.7) cm3.

The segmentation algorithm provides maps for grey matter, white matter

and cerebro-spinal fluid. Since the focus of this work is on quantifying tissue

174



Figure 6.16: Further iso-intensity contours corresponding to the same levels taken
from two average space atlases. The atlases were generated using two different
reference subjects. Each row corresponds to one of the atlases and each column
corresponds to an iso-intensity level (see Figure 6.15).
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Figure 6.17: Tissue volumes at ages one and two based on the segmentation
results. The baseline and follow-up volumes of each tissue for an individual are
joined with a dashed line to show the correspondences between the estimates.
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growth, only the grey and white matter maps have been used to estimate growth

figures. Using the segmentation results, the growth factor for a tissue class for an

individual can be estimated by finding the ratio of the volumes given by the tissue

segmentation algorithm within the baseline and follow-up images. Alternatively,

using the registration results, the growth factor for a tissue can be estimated

using the Jacobian determinant map and the baseline tissue segmentation (see

Equation (3.4)).

In order to assess consistency, the growth factors estimated by registration

for each tissue class were compared against the growth factors obtained from

segmentation. This comparison between growth factors provided by registration

and segmentation is illustrated in Figure 6.18 and shows good agreement between

the two methods. Table 6.1 gives a summary of the growth factors obtained by

both methods for grey and white matter.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Growth factor estimated by registration

G
ro

w
th

 fa
ct

or
 e

st
im

at
ed

 b
y 

se
gm

en
ta

tio
n

WM
GM

Figure 6.18: GM and WM growth factor estimates for all subjects. This chart
shows the general agreement between estimates of growth provided by registration
and those provided by segmentation. The registration-based figures are derived
using Equation (3.4) and the segmentation-based figures are the ratio of the vol-
umes of each tissue at the two timepoints. The mean absolute difference (MAD)
between the growth factor estimates based on registration and segmentation were
0.042 for white matter and 0.017 for grey matter.
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Growth factors Grey Matter White Matter
Segmentation 1.12 (0.030) 1.28 (0.049)
Registration 1.11 (0.035) 1.26 (0.046)

Table 6.1: Growth factor estimates obtained by segmentation and registration.
The segmentation estimates were obtained from the ratio of volumes of each
tissue at each age and averaged across subjects. The registration estimates were
obtained by integration of Jacobian determinants as described in Equation 3.4.
Standard deviations are shown in brackets.

A further assessment of consistency is given in scatter plots that compare

registration and segmentation estimates of the growth of grey and white matter

in more detail - these are shown in Figure 6.19. In Figure 6.19 subjects for

whom the difference in registration and segmentation based estimates represented

outliers are highlighted. Outliers were identified by considering the upper and

lower quartiles of the signed differences between the registration and segmentation

based estimates. The outlier limits were set at 1.5× the inter-quartile range (IQR)

above the upper quartile and 1.5×IQR below the lower quartile1. If the outlier

subjects are excluded, the mean absolute differences (MAD) for the growth factor

estimates given by the two methods are 0.037 for white matter and 0.014 for grey

matter. Bland Altman plots for the inlier subjects are shown for the growth

estimates of each tissue in Figure 6.20. No systematic bias is apparent in these

plots.

6.9 Regional volume changes and clinical infor-

mation : Preliminary investigation

For some of the subjects in the group, data relating to clinical outcome were also

available. The available clinical data were gestational age (GA), birth-weight

(BW) and the development quotient (DQ). These data were available for 17 of

the 25 subjects. The development quotient was obtained by carrying out neuro-

1see e.g. http://mathworld.wolfram.com/Outlier.html
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Figure 6.19: Scatter plots of tissue growth factors showing outliers. The upper
and lower quartiles were found for the differences between the segmentation- and
registration-based methods and outlier limits were set at 1.5×IQR above the
upper quartile and 1.5×IQR below the lower quartile where IQR represents the
inter-quartile range. The factors for these subjects are shown as crosses, the
factors for the remaining subjects are shown as circles.
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Figure 6.20: Bland-Altman plots for the growth factor estimates produced by
registration and by segmentation.
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developmental assessment using the Griffiths Mental Development Scales [79] at 2

years corrected age. The Griffiths Mental Development Scales provide an overall

developmental quotient (DQ) with sub-scales assessing skill areas (locomotor,

personal-social, hearing and speech, eye and hand co-ordination, performance).

The mean (SD) DQ score for the general population is 100(12).

For these subjects, an initial exploration of possible relations between growth

and clinical data was made. The availability of structural segmentation estimates

for each subject allows the growth figures for particular regions to be estimated.

The growth figures for the subjects with clinical data were separated into

sub-cortical and cortical growth. This was made possible by aggregating struc-

tural segmentations to provide cortical and sub-cortical masks and integrating

the Jacobians over these masks.

The structures that were grouped to form a sub-cortical mask were : hip-

pocampus, amygdala, brainstem, caudate nucleus, accumbens, putamen, thala-

mus, pallidum, corpus callosum, lateral ventricle and substantia nigra. The cor-

tical and cerebellar grey and white matter were grouped to form cortical masks.

In order to mitigate against possible sources of error, the regional growth fig-

ures obtained were filtered prior to further analysis. The growth figures obtained

by the two methods of registration and segmentation were compared for each

subject. This was carried out separately for the cortical and sub-cortical regions.

Subjects with relatively high degree of inconsistency between the two growth es-

timation methods were treated as outliers and removed. This was carried out

by finding the upper and lower quartiles of the signed differences in the method

estimates and setting limits at 1.5×IQR above the upper quartile and 1.5×IQR

below the lower quartile. The outliers were identified separately using the cortical

and sub-cortical growth estimates and combined to form a single group before

removal.

After removing the outliers for each region’s growth estimates, correlation

coefficients were calculated for the growth figures against each of the clinical
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Cortical growth Sub-cortical growth
DQ 0.66 0.18
GA 0.34 0.38
BW 0.10 0.34

Table 6.2: Correlation coefficients calculated for regional growth estimates (Cor-
tical and sub-cortical) against clinical factors (gestational age - GA, birth weight
- BW, development quotient - DQ).

factors available. These figures are summarised in Table 6.2. The results indicate

correlation between cortical growth and the development quotient (r2 = 0.66)

and between sub-cortical growth and gestational age (r2 = 0.38). The specific

data for these correlations are shown in Figures 6.21 and 6.22. Although the

number of available data points is low, it is of interest that there may be links

among these different factors.
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Figure 6.21: A plot of the growth figures for the cortical region against the
development quotient. There appears to be a weak positive correlation between
these factors (r2 = 0.66).

6.10 Discussion

The results presented in this chapter show how deformation based morphometry

via the registration of longitudinal data can be used to to generate quantitative

estimates of brain growth for a cohort and for individual subjects during the

second year of life. The data to which these methods were applied are images
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Figure 6.22: A plot of the growth figures for the sub-cortical region against
gestational age. There appears to be a weak positive correlation between these
factors (r2 = 0.38). If the circled subject is treated as an outlier, the correlation
coefficient rises to r2 = 0.63.

of preterm born children. Data for term born controls is relatively scarce (as

it is difficult to obtain ethical permission for sedation during scanning) but the

techniques used to estimate growth can be readily transferred to such data.

Using Jacobian determinant maps that represent growth on a per-voxel basis,

growth estimates for white and grey matter for each individual and for the cohort

as a whole have been calculated. Among the 25 infants studied, there was an

increase of around 11− 12% in grey matter volume and an increase of 26− 28%

in white matter (see Figure 6.19 and Table 6.1).

Comparison between tissue class growth estimates obtained via registration

and from tissue segmentation shows excellent agreement on grey matter growth

but higher variability in the estimates for white matter growth. This suggests a

possible increased susceptibility to error in white matter estimates which could

be attributed to one or more of a variety of factors: For example, the relatively

smaller volume of white matter, changes due to myelination or partial volume ef-

fects. Additionally, there are fewer features in white matter tissue compared with

grey matter where images typically display stronger edges, for example within the

sulci and gyri.

The volumes of each tissue at each timepoint, as shown in Figure 6.17, il-

lustrate the correspondences between baseline and follow-up volumes. Without
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making any assumptions about the best model for the growth (e.g. linear, non-

linear etc.), these correspondences suggest that development at this age follows

what is described as a ‘parallel trajectory’ by Kraemer et al. [107]. Allometric

studies of brain development (for example [102] and [186]) are made possible by

these data, and the DBM approach has been successfully used for studies of more

immature brains, and thus a combination of the DBM approach with automatic

brain labelling holds the promise of a large scale neuroinformatic understanding

of brain development during this period of rapid growth.

In particular, the preliminary data shown in Section 6.9 show the interesting

possibilities for exploration in this area. Based on the small number of subjects

for which the data were available, correlations between clinical factors such as

DQ and GA and regional growth estimates may be present and should provide

pointers for future studies with larger numbers of subjects.

A method based on inter-subject registrations and transformation averaging

has been used to generate average space atlases for the cohort at each timepoint.

These atlases can represent anatomy, tissue class maps, structural segmentations

or growth across the cohort at each timepoint. In general, across the population,

the pattern of change is mainly represented by relatively higher growth within

white matter, especially for the anterior white matter region (see Figure 6.10)

and a general contraction in the ventricular region which can be observed, for

example, by comparing the one and two year images in Figure 6.8.

A visual comparison of two average space atlases generated using two different

reference subjects (Figure 6.15) shows them to be in close agreement. This sug-

gests that the bias towards the chosen reference has been significantly reduced.

The approach used to create the atlases is similar to that used by Guimond et

al. [80] and Rueckert et al. [139] who both showed that the atlases generated

are reasonably robust to the choice of reference when the transformations being

averaged are the local deformation fields. The work described in this section in-

corporates the global affine transformations between subjects into the averaging
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process and the results indicate that the robustness to the choice of reference

remains.

Longitudinal transformations have been used to estimate growth using the

Jacobian determinants and an illustration of the average longitudinal deformation

field for the cohort was given in Figure 6.12. There are many other properties of

the longitudinal deformation fields that can be extracted and subsequently used

to answer questions about the patterns of development. For example, the curl

or divergence of the fields can be calculated or estimates of the main modes of

variation in the fields can be made [139]. These options were beyond the scope

of this work but should provide a very interesting area for future research.

6.11 Conclusion

This chapter has presented examples that show how patterns of longitudinal

change can be characterised by combining methods based on registration and re-

gion of interest identification. Identifying regions of interest can be implemented

via general tissue segmentations or by structural segmentations achieved via at-

las propagation and fusion. These methods have been applied successfully to

characterise patterns of growth in young children between the ages of one and

two.

The combination of growth data and structural segmentation allows the iden-

tification of patterns of growth in particular regions. The ability to identify re-

gional change estimates and the availability of outcome or clinical data mean that

higher levels of analysis are made possible. For example, Section 6.9 presented

data that suggest some correlation between estimates of cortical and sub-cortical

growth and clinical factors in the group of young children – this may represent an

interesting area for further study. This suggests that further analysis using larger

datasets and more powerful statistical methods (e.g factor analysis), or methods

based on data-mining, may shed further light on the patterns of physiological
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development in young children that may inform clinical diagnosis and decision

making.
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Chapter 7

Longitudinal change due to

atrophy

The previous chapter presented data on the patterns of growth for a cohort of

children scanned at one and two years of age. The work presented in this chapter

describes a second set of experiments on identifying longitudinal change that was

carried out using serial data acquired from a group of patients with Alzheimer’s

disease (AD) and a group of age-matched controls. The experimental set-up for

these data shares many similarities with that described in the experiments on

growth in early childhood. The use of longitudinal registrations for growth esti-

mation and inter-subject registrations for atlasing is the same as that described

in Section 6.3 and illustrated in Figure 6.2. Longitudinal change can once again

be estimated by the integration of Jacobian determinants using suitable masks.

The main differences between the two sets of experiments are represented by

the amount of change over the interval studied and by the availability of more

distinct clinical classifications for the subjects. The amount of change in the brain

due to atrophy in the elderly in general and Alzheimer’s patients in particular is

much smaller than that due to growth in the early years. The subtle nature of

the changes in the elderly presents a challenge to schemes that aim to measure

it. The subjects studied in this section also fall into much more distinct clinical
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categories than those for the children studied in earlier sections. The subjects

are clearly defined as (AD) patients or controls. The younger subjects described

in the previous chapter had clinical information that generally belonged to a

continuous scale (e.g. gestational age or birth weight) with no obvious discrete

boundary. The categorisation of the elderly subjects into patients and controls

allows experiments based on group separation and classification to be carried out

using information obtained from processing their image data.

In the following sections, a description of the background and previous work

in this area is given and the data and experiments carried out using the images

acquired from the AD patients and the controls are presented.

7.1 Atrophy due to ageing and Alzheimer’s dis-

ease : background and previous work

The incidence of Alzheimer’s disease (AD) is generally found among older sec-

tions of the population, typically 65 years of age and above. Around 60% of the

estimated 24 million worldwide cases of dementia are attributed to AD [56, 122]

and increases in longevity mean these figures are likely to rise. AD is charac-

terised at the histological level by the build up of plaques of a misfolded protein

known as beta amyloid and the development of aggregates of proteins known as

neurofibrillary tangles within neurons. These cellular effects of AD generally oc-

cur for a significant period prior to the diagnosis of the disease, which is typically

identified through its cognitive and behavioural effects. The microscopic changes

due to AD can be observed at a larger scale as a general atrophy of brain tissue,

which means that there is a role for medical imaging in the study and manage-

ment of AD: it can provide supplementary data to inform clinical decisions and

assessments of the efficacy of treatments.

The use of serially acquired data allows for estimates of atrophy to be made
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using fewer subjects than would be required by a ‘snap-shot’ or cross-sectional

study. Serial acquisitions compensate for the inter-subject variability.

Using serially acquired images, the most straightforward way of detecting and

measuring atrophy is for experts to manually delineate the brain tissue in each of

the scans acquired from a subject. The difference between the delineated tissue

masks then represents a measure of the atrophy that has occurred between scans;

if M1 represents a baseline tissue mask, and M2 is the follow-up tissue mask, then

the voxels used to estimate atrophy are represented by the difference between the

union and intersection of the masks, (M1 ∪M2) \ (M1 ∩M2).

The difficulty with such an approach lies partly in the time-consuming nature

of producing expert outlines of brain tissue and also in the natural inter- and

intra-rater variability of the raters.

An approach known as the Boundary Shift Integral (BSI) was presented by

Freeborough and Fox [65] to address this problem. BSI focuses on the voxels in the

difference between the masks and determines if they truly represent atrophy by

taking their intensities in each of the baseline images into account. If the voxel

represents atrophy then, in T1-weighted images, the transition of its intensity

from the baseline to the follow-up image will be from a high value to a low

value. By integrating the signed intensity transitions for voxels in the difference,

an estimate of the atrophy can be made. BSI is a well-established technique.

Variations of the technique continue to be explored [144]. It has also been used

within clinical trials [61].

A method known as SIENA (Structural Image Evaluation using Normalisa-

tion of Atrophy, Smith et al. [154]) estimates atrophy in a similar way. It uses

an automated technique to estimate a mesh-based representation of the brain

boundary in the baseline and estimates the amount of atrophy by the movement

required to align the meshes. A development of this method by Wang et al. [171]

incorporates partial volume information in the voxels at the boundary.

A different approach is to register the baseline and follow-up images non-
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rigidly and use the Jacobian determinants of the resulting transformation to esti-

mate the change in brain volume between scans by integrating the determinants

over the region of the baseline mask. Work by Boyes et al. [26] presented mea-

surements of atrophy determined by Jacobian integration of longitudinal non-rigid

registrations in comparison with BSI. Both methods estimated comparable levels

of atrophy.

The progression of AD typically starts earlier in the hippocampus [151, 142].

The hippocampus has therefore been the focus of many studies that use serial

data to investigate change in this particular structure [172, 46].

Ashburner et al. [5] present a good general overview of morphometric methods

that can be used for the analysis of healthy and diseased brains.

7.2 Data

The MIRIAD (Minimum Interval Resonance Imaging in AD) data set, generated

at the Dementia Research Centre (Institute of Neurology, UCL, UK), includes

T1-weighted MR scans acquired from 58 subjects. Thirty nine subjects were

diagnosed with Alzheimer’s disease and had a mean age of 69.3 years at first scan

date (SD 7.0). Nineteen age-matched controls (mean age 69.7, SD 7.2) also took

part in the study. The Local Research Ethics Committee granted approval for

the study and the subjects gave written informed consent.

Volumetric MR scans were acquired coronally on the same 1.5T Signa Unit

(GE Medical Systems, Milwaukee) using an inversion recovery (IR)-prepared

spoiled GRASS sequence. Imaging parameters were as follows: TE, 6.4 ms; TI,

650 ms; TR 3000 ms; bandwidth 16 kHz; 256 × 256 × 124 matrix; 240 × 240 ×

186 mm field of view (FOV).

During the baseline visit, two scans were acquired sequentially (i.e. with the

subject remaining in the scanner) and a single scan was acquired during each of

two follow-up visits at six months and one year after the baseline scan date.
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7.3 Mask generation

When using free-form deformations (FFDs) to measure subtle longitudinal changes

such as atrophy, the mask over which the Jacobian determinants are to be inte-

grated needs to be carefully defined. For the purposes of this work, segmentations

of the main tissue types were carried out for all the subjects using expectation

maximisation (EM) [177, 109] and structural segmentations were carried out us-

ing classifier fusion.

The output from the EM algorithm was used to create whole brain masks of

grey and white matter tissue. The probability maps of grey and white tissue were

added together and thresholded at 50%. Examples of the tissue masks can be seen

for an Alzheimer’s subject in Figure 7.1 and for a control subject in Figure 7.2.

Figure 7.1: An example of a tissue segmentation for an Alzheimer’s patient.

The CMA dataset was used to provide structural classifications of the MIRIAD

subjects. As described in Section 5.2, this dataset consists of 275 T1-weighted

MR images acquired from male and female subjects with a range of ages. Each

image was manually segmented into various structures by an expert rater. The

CMA images and their corresponding segmentations were treated as the reposi-

tory of atlases. For each query subject in the MIRIAD dataset, a set of classifiers

was selected from the repository using the hybrid similarity selection scheme (H)

described in Section 4.8.1.
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Figure 7.2: An example of a tissue segmentation for a control subject.

Under the hybrid scheme, the repository images and the query were all spa-

tially normalised to a reference (the MNI single subject image) and the similarity

of each repository image with the query was calculated. The similarity metric

used was normalised mutual information (NMI) and the region over which this

was calculated was a mask encompassing the sub-cortical structures as described

in Section 5.3. The top 20 subjects from the repository ranked by NMI were then

registered directly to the query subject, and the resulting transformations were

used to propagate their labels to the query prior to fusion.

Examples of structural segmentations are illustrated for an Alzheimer’s pa-

tient in Figure 7.3 and for a control subject in Figure 7.4. Figures 7.5 and 7.6 il-

lustrate the 15 top-ranked classifiers for the same control subject and Alzheimer’s

subject shown in Figures 7.3 and 7.4.

In order to generate a mask for use in integration of Jacobian determinants,

the grey and white tissue mask defined by the EM segmentation was generated

and the brainstem was then removed. The estimate of the brainstem was taken

from the structural segmentation based on classifier fusion.

The downward extent of the brainstem towards the neck region means that

deformations exhibited by the FFD in this area can be affected by the deforma-

tions that aim to adjust for differences in the relative cranial and neck positions

apparent in the images being registered. It was felt that this would lead to arte-
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Figure 7.3: An example of a structural segmentation for an Alzheimer’s patient.

Figure 7.4: An example of a structural segmentation for a control subject.
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Figure 7.5: The top 15 ranked classifiers for the Alzheimer’s patient shown in
Figure 7.3. These images were obtained after affine alignment of each classifier
subject to the MNI single subject atlas. Each row shows three classifier subjects
with a transverse and coronal view of each.
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Figure 7.6: The top 15 ranked classifiers for the control subject shown in Fig-
ure 7.4. These images were obtained after affine alignment of each classifier
subject to the MNI single subject atlas. Each row shows three classifier subjects
with a transverse and coronal view of each.
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factual estimates of volume change and therefore the brainstem was removed from

the mask. The resulting mask for Jacobian integration therefore comprised the

sub-cortical structures, white matter, cortical grey matter and the cerebellum.

7.4 The effect of interpolation

The subtle nature of the changes in the brain due to atrophy makes them harder

to detect with accuracy. As described in Section 2.2.9, there is a need to choose an

interpolation scheme during the registration of an image pair. In previous work,

it was shown that the choice of interpolation method can affect the quantity

of artefactual deformation generated by a registration [2]. For this reason, the

longitudinal registrations carried out between each subject’s baseline scan and

one year follow-up scan were carried out twice with different interpolators. The

interpolation schemes used were standard tri-linear interpolation and a B-spline

based scheme known as cardinal interpolation.

Linear interpolation can be achieved by a separable convolution of the samples

at the image lattice by a kernel that is defined as

φlinear(x) =





1− |x| |x| < 1

0 |x| >= 1

A standard B-spline interpolator can have varying orders, for example the

order 3 B-spline interpolator, β3(x), is defined as a repeated convolution of the

order zero B-spline kernel [167]

β3(x) = β0(x) ∗ β0(x) ∗ β0(x) ∗ β0(x)
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where

β0(x) =





1 |x| < 0.5

0.5 |x| = 0.5

0 otherwise

The standard B-spline interpolator is known as an ‘approximating’ interpolator

because it does not actually interpolate the data at the sample locations but it

does have the desirable property of compact support which makes its computation

easier. It is possible, however, for a given image, to generate a set of coefficients

at the same sample locations that will provide a high quality interpolator to the

original image when convolved with a standard B-spline kernel. The generation of

these coefficients is described in [162] and [167] who describe the resulting scheme

as the cardinal interpolation.

The quality of an interpolator is often described by its spectral properties, i.e.

how it filters different parts of the spectrum of an image. The ideal interpolator

which does not affect any of the frequencies in a band-limited signal is known as

the sinc interpolator. It is known that the linear interpolator acts as a low pass fil-

ter which, in effect, blurs the image being interpolated. The cardinal interpolator

has been shown to approximate the sinc interpolator [162] with the quality of the

approximation improving with the order of the underlying B-spline kernel used.

This excellent result means that the application of a compact support B-spline

kernel to a set of coefficients derived from the image can approximate a universal

support kernel (sinc) applied to the original image data. In the following, the

term B-spline will be used to refer to the cardinal interpolator.

After registering each of the baseline images to the one year follow-up images,

each resulting longitudinal FFD was used to estimate the rate of atrophy for the

subject. The Jacobian determinants of the transformation were integrated over

the brain mask for the subject that was generated using the method described

in Section 7.3. The availability of two baseline images for each subject meant

that there were two longitudinal transformations from which to estimate atrophy
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over the one year interval. The atrophy estimates provided by each of these

transformations were then averaged to provide a more accurate estimate.

The resulting atrophy estimates are shown in Figure 7.7 as a set of box plots,

with a separate plot for each combination of subject group and interpolation

scheme. The crosses shown in this plot represent outlier values. A value is de-

fined as an outlier if it is outside the inter-quartile range by a value more than

1.5× the distance between the upper and lower quartiles. As can be seen in

Figure 7.7, the use of a B-spline interpolator during registrations gives a slightly

improved separation between the groups with respect to measured atrophy. The

improved group separation shown by the B-spline based figures can also be ob-

served by applying a t-test to the figures obtained by each interpolator. Using

the atrophy figures based on linear interpolation, the t-statistic for the AD sub-

jects and controls is 3.23 (p = 0.0021, 56 degrees of freedom, two tailed). The

t-statistic using the B-spline based figures is 3.78 (p = 3.8× 10−4).

The mean values obtained from these atrophy estimates, excluding the out-

liers, are shown in Table 7.1. In this table, the estimates for linear and B-spline

based FFD registrations are shown alongside estimates of atrophy for the same

group of subjects recently published by Smith et al. [153]. This work compared

the atrophy figures produced by SIENA (Structural Image Evaluation, using Nor-

malisation, of Atrophy [154]) and BSI (Boundary Shift Integral [65]).

It can be seen in Table 7.1 that, using all four methods, there is more vari-

ability among the Alzheimer’s subjects than among the controls, the standard

deviations of the atrophy estimates are in the range 0.35-0.62 for control subjects

while the SD range for AD subjects is 0.95-1.34.

Linear interpolation during FFD registration seems to produce generally higher

estimates of atrophy for all subjects compared to the other three methods. It gave

the highest average estimate of atrophy for the control subjects (0.98%) and the

second highest value for the AD subjects (2.09%). Atrophy estimates obtained

using B-spline interpolation with FFD registration are generally closer to the fig-
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Figure 7.7: Atrophy estimates derived from longitudinal FFD transformations.
The left hand pair of plots represent figures derived from registrations using linear
interpolation, the right hand pair derive from registrations using B-spline inter-
polation. The crosses represent outlier values (see text). For both interpolation
methods, the Jacobian values of the resulting transformations were integrated
over the same brain-mask estimate (see Section 7.3).
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ures produced by BSI and SIENA than the figures based on linear interpolation.

Mean atrophy, % (S.D.)
Method Controls AD
FFD Linear -0.98 (0.62) -2.09 (1.05)
FFD B-spline -0.56 (0.55) -1.87 (1.09)
BSI -0.38 (0.35) -1.80 (0.95)
SIENA -0.53 (0.45) -2.43 (1.34)

Table 7.1: Values of atrophy among AD subjects and controls estimated using
different methods. FFD Linear and FFD B-spline represent integrated Jacobian
determinants following non-rigid registration using linear and B-spline interpola-
tion of the source image. BSI represents the ‘Boundary Shift Integral’ and SIENA
represents ‘Structural Image Evaluation, using Normalisation, of Atrophy’ (see
text). The BSI and SIENA figures were recently published in [153] and are based
on the same image data that is described in this chapter.

In summary, the data presented in this section suggest that B-spline interpo-

lation during FFD registration produces better quality estimates of atrophy for

this group of subjects; there is better separation between the clinical groups and

the results match more closely those published previously using different estima-

tion methods. For this reason, the results reported in subsequent sections will be

based on B-spline interpolation during the registrations.

7.5 Consistency of estimates of longitudinal change

The availability of two scans acquired during the first visit means that an assess-

ment of the consistency accuracy of atrophy measurements can be made. Separate

measurements of atrophy can be obtained based on registrations between each of

the baseline scans and the follow-up images.

The separate measurements of atrophy for both the six month and the twelve

month intervals are shown in Figure 7.8 in the form of Bland-Altman plots. In

these plots, no discernible bias of inconsistency in the measurements is apparent.
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Figure 7.8: Bland-Altman plots to show the level of baseline consistency. The
six month and one year estimates for atrophy were estimated twice using the two
baseline images as the target of each longitudinal registration. The left hand plot
represents the six month data and the right hand plot represents the one year
data.

7.6 Atlases

Using the methods described in Section 2.4, a set of average space atlases were

generated for the subjects in the MIRIAD data set. The atlases were generated

separately for the patient and control groups.

An illustration of the anatomical atlases obtained can be seen in Figure 7.9.

In this figure, the first and third rows represent slices taken from the atlas ob-

tained from the Alzheimer’s subjects. Rows two and four of the images show the

corresponding slices in the atlas of control subjects. After atlasing, physiological

differences between the groups remain apparent. The ventricles appear larger for

the AD atlas and the cortical sulci appear deeper and wider. In the first images

in row 1 and row 2, more parahippocampal cerebrospinal fluid is apparent in the

AD slice compared with the control slice.

Atlases of volume change estimated from the longitudinal Jacobian determi-

nant maps were also created for each group. These are illustrated in Figure 7.10.

The slices of the volume change atlases in this figure correspond to the slices

shown in the first column of images in Figure 7.9. The different characteristics

of the patterns of volume change between the groups is apparent in these volume

change maps. The AD subjects clearly show greater levels of expansion within
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Figure 7.9: Slices taken from average anatomical space atlases for a set of subjects
with Alzheimer’s disease and a set of matched controls. Rows one and three
show the slices taken from the atlas of AD subjects, rows two and four show the
corresponding slices taken from the controls subjects’ atlas.
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the ventricles and regions of contraction within the cortical tissue are also visible.

A region of expansion is also visible at the boundary of the ventricles in the con-

trol subjects but this is much smaller in extent than the corresponding regions

in the AD volume change atlas. Also apparent in the top left of Figure 7.10 is

a region of CSF expansion at the edge of hippocampus and amygdala in the AD

volume change atlas.

Figure 7.10: Slices taken from average space Jacobian determinant atlases for a
set of subjects with Alzheimer’s disease and a set of matched controls. Row one
shows slices taken from the Alzheimer’s atlas, row two shows the corresponding
controls’ atlas slices. These slices correspond to those in the first column of images
in Figure 7.9.

In order to obtain a clearer picture of the patterns of volume change shown in

the Jacobian determinant atlases, they are also shown overlaid onto the anatom-

ical atlases in Figure 7.11.

The longitudinal FFD displacement fields for each subject estimated by regis-

tration of the baseline and one-year follow-up images were spatially normalised [133]

to the average space atlas for each group and averaged as described in sec-

201



Figure 7.11: Slices taken from average space Jacobian determinant atlases for
a set of subjects with Alzheimer’s disease and a set of matched controls. The
images are overlaid onto the corresponding anatomies and the slices correspond
to those shown in Figures 7.10 and 7.9.
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tion 3.4.1. The average deformations within each of the Alzheimer’s and control

groups are shown separately in figure 7.12. These deformations have been scaled

by a factor of 5 for easier visualisation.

Figure 7.12: An illustration of the average longitudinal transformations for the
MIRIAD data. Left the average longitudinal transformation for the control sub-
jects overlaid onto their average space anatomical atlas. Right the corresponding
image for the AD patients. The individual longitudinal transformations for each
subject were mapped to the space of the corresponding baseline atlas for the group
and linearly averaged. The colours indicate regions of expansion or contraction
in the same way as shown in Figure 7.10.

7.7 Group separation and classification

As discussed in Section 7.4, it is possible to separate the groups based on the

degree of atrophy measured by FFD volume changes (see Figure 7.7). There are

other possible features or measurements on which to attempt the separation of

groups of Alzheimer’s patients and age-matched controls.

For example, previous work has shown that the hippocampus is one of the first

structures affected by Alzheimer’s disease with respect to volume loss [77, 94]. In

order to investigate this within the MIRIAD data, estimates for the hippocampal

volumes of each subject were made using the structural segmentations of the
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images generated by classifier fusion.

Structural segmentations were available for all four images acquired for each

subject. Normalisation for global scales and shears was carried out by affine

alignment of the segmentations to the MNI single subject template. This may

mean that the measurement of the volumes of structures is no longer accurate

but the group separation exercise can still be carried out using the size of each

structure normalised by global size. In order to mitigate for possible errors in

the separate estimates for each subject, the four sets of hippocampal volumes for

each subject were averaged to produce a final estimate for the combined left right

volume.

The resulting hippocampus volumes for all subjects are summarised as box

plots in Figure 7.13. Applying a t-test to these volume estimates gives a t-statistic

of 4.75 (p = 1.46 × 10−5, 56 degrees of freedom, two tailed). This shows that

the normalised hippocampal volumes give slightly better group separation than

the estimates of atrophy derived from B-spline interpolated FFD registrations

(t = 3.78, p = 3.8× 10−4).
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Figure 7.13: Box-plots to show the distributions of hippocampal volumes for the
control subjects (N = 19) and the AD subjects (N = 39). The figures represent
combined left and right hippocampal volumes and were estimated by averaging
the values obtained from segmentations of the four scans for each subject. These
figures give better separation of the group compared with that given by FFD
based atrophy estimates (see Figure 7.7).

The hippocampal volume estimates shown in Figure 7.13 can be used to train

204



a supervised classifier on a ‘leave-one-out’ basis, i.e. the hippocampal data and

the clinical groups (i.e. AD or control) from all but one of the subjects are

used to train a classifier which is then used to predict the clinical group of the

left out subject. If a Fisher linear discriminant [54] is used as the classifier and

is trained with the hippocampal volume data, the resulting performance in the

leave-one-out experiments is shown in the confusion matrix in Table 7.2.

Clinical group
Control AD

Prediction Control 16 9
AD 3 30

Sensitivity : 76.9%
Specificity : 84.2%
Overall : 79.3%

Table 7.2: The performance of a Fisher linear discriminant in classifying the
clinical groups of the MIRIAD subjects on a leave-one-out basis. The classifier
was trained using the hippocampal volumes shown in Figure 7.13

Using the figures in Table 7.2, the performance of a linear classifier based

on hippocampal volume is represented by a sensitivity of 76.9%, a specificity of

84.2% and an overall correct classification rate of 79.3%.

The process of training a classifier was repeated using different input data.

These data were combinations that were selected from the following:

• Hippocampal volumes

• Atrophy estimates over the year

• Grey and white matter proportions

The hippocampal volumes and atrophy estimates were derived as described above.

The grey and white matter ratios were calculated using the EM [177, 109] tissue

segmentations, where the volume of each tissue was expressed as a proportion of

the total volume of grey matter, white matter and CSF for each subject.

Five sets of experiments were carried out, varying the data with which the

linear classifier was trained. The experiments are coded with the letters A–E and

the combinations of data used for each experiment are listed in Table 7.3, which
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shows, for example, that experiment B used the hippocampal volumes and the

one year atrophy figures to train the classifier.

Experiment
Data A B C D E
GM/WM tissue proportion 1 1 1
Hippocampal volume 1 1 1 1
One year atrophy (GM & WM) 1 1

Table 7.3: Combinations of data used for different linear discriminant experi-
ments. The experiments are coded A–E and the data used to train the classifier
in each experiment is indicated by the 1s in each column.

The ‘leave-one-out’ classifier performance for the different combinations of

training data was calculated for each of the experiments in the same way as

described earlier (see Table 7.2). The resulting values for sensitivity, specificity

and overall classification rate are shown in Table 7.4 and in Figure 7.14. These

values show that the use of data from multiple sources to train the linear classifier

gives improved classification performance, e.g. the results of experiment B are an

improvement upon those of experiment A, showing that the use of hippocampal

volumes and atrophy estimates is better than hippocampal volumes alone. The

use of hippocampal volumes (A) gave identical performance to the use of grey and

white tissue proportions (C), but their combination (D) resulted in significantly

improved classification rates. The use of all the data during training led to the

best performing classifier (experiment E).

Experiment Sensitivity Specificity Overall
A 0.769 0.842 0.793
B 0.821 0.842 0.828
C 0.769 0.842 0.793
D 0.872 0.947 0.897
E 0.897 0.947 0.914

Table 7.4: The performance of classifiers applied on a ‘leave-one-out’ basis to
the MIRIAD data. The classifiers used in experiments A–E were trained with
different combinations of data as described in Table 7.3. The data shown here
are also shown in Figure 7.14.
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Figure 7.14: The data from Table 7.4 shown as a bar chart. (Codes: A = Hip-
pocampus volume, B = Hippocampus volume + Atrophy, C = Tissue proportions,
D = Hippocampus volume + Tissue proportions, E = Hippocampus volume +
Tissue proportions + Atrophy)

7.8 Discussion

This work presented above has investigated the application of various techniques

to characterise patterns of change and explore group differences in the MIRIAD

data set – a group of Alzheimer’s patients and a group of age-matched controls.

The methods applied have been the registration based methods for estimating

growth described in Chapter 3 along with tissue segmentation via expectation

maximisation and structural segmentation using classifier selection and fusion.

Average space atlases of the patient and control groups have been generated

using the same methods applied to the images acquired from young children de-

scribed in Chapter 6. The contrasting patterns of atrophy in the AD and control

subjects have been represented via the generation of average space atlases of Ja-

cobian determinant maps derived from longitudinal transformations of individual

subjects.

As was the case for the data acquired from subjects at one and two years,

the longitudinal registrations of the subjects and the resulting transformations

should provide an interesting area of future work where further features can be

extracted directly from the transformations and analysed.

The data acquired via the application of different automated processes to the

207



images in the MIRIAD cohort – atrophy estimates from registration, structural

estimates from fusion and tissue estimates via EM – have been shown to be very

powerful in the separation of the patient and control groups and in providing good

classification performance during leave-one-out experiments. In this context, the

use of data acquired from multiple processing steps to train classifiers has resulted

in more powerful classifier discrimination.

Registration based methods clearly have a role in identifying patterns of

change in longitudinal data acquired from elderly subjects and patients with

neuro-degenerative diseases. The successful incorporation of data derived from

structural segmentations achieved via classifier selection and fusion shows the

potential of such structural segmentation methods in helping to characterise and

measure the changes associated with atrophy.

7.9 Conclusion

This chapter has presented data on the patterns of atrophy due to AD related

dementia and healthy age-matched controls based on serially acquired images.

The techniques applied were the same as those used to identify patterns of growth

in young children in Chapter 6. These techniques allow the regional and global

patterns of atrophy to be identified. This is of direct relevance to the study

of neurological atrophy in general and the progression of Alzheimer’s disease in

particular.
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Chapter 8

Conclusion

This thesis has presented work on measuring and characterising patterns of lon-

gitudinal changes in the brain. Registration- and segmentation-based approaches

have been used in investigating such patterns of longitudinal change. As well as

focusing on patterns of volume change over time for individuals and for groups

of subjects, segmentations have been used to explore longitudinal change on a

regional basis.

8.1 Contribution

This section discusses the contributions presented in this work and divides them

into methodological and application-related categories:

• Methodology:

– A framework for characterising longitudinal change based on serial

data has been presented. Within this framework, estimates of longi-

tudinal change for individuals are identified using intra-subject reg-

istrations. Additionally, cross-sectional inter-subject registrations are

used to create transformations that map locations from the space of

individual subjects’ images to a postulated ‘average space’. These
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transformations can be used to generate average space atlases of lon-

gitudinal change based on the individual longitudinal registrations.

The transformation framework linking images with the average space

can also be used to generate atlases representing other features of a

cohort; anatomical atlases, for example, or atlases of the density for a

particular tissue type.

– Segmentations of structures have been carried out using a classifier

fusion approach and methods for the selection of classifiers from a

large repository have been developed and assessed. Such segmenta-

tions allow regional estimates of growth to be derived from the per-

voxel growth maps generated by longitudinal registration.

The classifier selection approaches are based on image similarity met-

rics or on meta-data relating to the subjects. The segmentation esti-

mates were assessed for accuracy using the manual labels for query sub-

jects as gold-standard validation estimates. Experiments have demon-

strated the accuracy of segmentations resulting from the fusion of lim-

ited numbers of selected classifiers; this accuracy significantly exceeds

that achieved by fusing random sets of classifiers. Additionally the

levels of accuracy obtained are comparable with those of previously

published automated approaches [88] and with manual segmentation

methods [57, 157].

• Applications

– The methods for measuring longitudinal change, atlas generation and

segmentation have been applied effectively to serially acquired brain

image data from a group of children. The growth data for this group

have been shown to be reasonably consistent with growth estimates

based on tissue segmentation volumes, especially for the estimates of

grey matter growth. Gold-standard estimates of growth, that might,
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for example, be estimated from manual segmentations of successive

serial images, are unavailable. However, the consistency of estimates

derived by different methods (segmentation- and registration-based)

provides some support for these automatically obtained growth figures.

The use of structural segmentation allowed the growth of different re-

gions based on the childrens’ image data to be separately estimated.

An initial investigation of regionally specific longitudinal change has

indicated the possibility of an association between the growth in differ-

ent regions of the brain and clinical data, for example developmental

quotients or gestational age.

– The methods for measuring longitudinal change, atlas generation and

segmentation have also been applied to serially acquired brain image

data from a group consisting of Alzheimer’s patients and age-matched

controls. The data obtained from an analysis of these images show

clear differences in the patterns of atrophy between Alzheimer’s pa-

tients and control subjects. By using information based on static esti-

mates of structure or brain volume, combined with longitudinal volume

change data, excellent separation of the patient and control groups was

achieved and classifiers trained on these features performed very well.

8.2 Limitations and future work

The longitudinal transformations estimated in this work have mainly been used

for the generation of Jacobian determinant maps. These have also been aggre-

gated to obtain average space volume change atlases for the cohorts studied. It

would be possible, however, to extract further information from these longitudi-

nal transformations. For example, geometric information such as the curl of the

displacment field or the stress tensor. Further work can also be done by carrying

out a full spatial normalisation of the longitudinal displacement fields for each
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subject [133]. This work has presented the average of the spatially normalised

displacement fields for illustrative purposes. This can be further extended by,

for example, an investigation of the statistical properties of these transforma-

tions [139]. If the patterns of variation for the transformations are estimated (for

example by applying a principal components analysis) then the subjects’ longi-

tudinal transformations may be given a low dimensional parameterisation. Such

a representation may be explored for possible associations with clinical data.

Further work can also be carried out to improve the consistency of white

matter growth estimates in young children, as achieved by registration- and

segmentation-based methods. The variation in white matter estimates of change

was higher than for the grey matter estimates. This can be due to one or more

of a number of reasons. For example, the comparatively smaller volume of white

matter may have been more significantly affected by partial volume effects during

segmentation. Alternatively, relatively fewer features in white matter (compared

with, say, the folding patterns in cortical grey matter) may make it inherently

more difficult to align during registration.

An improved tissue segmentation method, should assist this process. The tis-

sue segmentations presented in this work were derived from a simple EM-based

optimisation of a Gaussian mixture model of the tissue types, using propagated

manual atlases as priors. Improvements to this model are possible, for exam-

ple, by using a Markov random field to incorporate context information [187].

Furthermore, it is possible to carry out the registration and the segmentation

of images simultaneously [36, 130]. A recently presented approach, addressing

difficulties specific to white matter registration, uses a similarity metric based

on diffusion tensor data as well as the intensities of structural MR images [158].

Such an approach may help generate more consistent estimates of white matter

change in groups such as the children studied in this work.

There is also a choice of the underlying transformation model. In this work,

registrations were carried out using a free-form deformation model blended with
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B-spline basis functions. Different models may be explored, for example a fluid

model that allows for large deformations [37, 100] may be appropriate for large

scale changes such as growth in the early years.

On a related issue, an interesting area for further study would be an investiga-

tion of growth, based on serially acquired images, for the interval between birth

and the first year. This represents a particular challenge because the changes that

occur during this period are more pronounced than between one and two years

of age shown in this work. An additional confound is the degree of myelination

that takes place during the first year of growth [141]. This affects the response

that tissues have to MR signals and makes the contrast properties of neonatal

brain images very different from those acquired from older children, thus making

registrations of images across this age gap more challenging.

Further work may also be carried out on the investigation of regional changes

in volume in relation to clinical outcome. In this thesis, a coarse partitioning of

growth data into cortical and sub-cortical regions has been presented for the one-

and two-year old subjects. The availability of a finer scale structural segmenta-

tions, however, makes an investigation of growth or atrophy at a smaller scale

more feasible. The use of a larger number of smaller regions, in which growth

figures are obtained and compared with clinical outcomes, means that a larger

number of subjects would be necessary for statistical conclusions to be drawn

with confidence. This also means that there would be a proliferation of data

from which meaningful associations could be derived.

If, for a group of subjects, a set of variables representing clinical outcomes are

available along with volume change data from a number of regions, the amount of

data available for study can increase combinatorially. With such large amounts

of data, following a hypothesis-based approach becomes more difficult and tech-

niques used in the data-mining community [87] present themselves as useful al-

ternatives. For example, factor analysis [76] may be used to search for a small

number of latent factors that may be viewed as underlying or explaining growth
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or atrophy for groups of multiple structures. An exploration of associations be-

tween a limited number of such factors and clinical outcome data would then be

more feasible than one based on separate volume change estimates for a large

number of structures.

In relation to the fusion of different classifiers when creating segmentations for

query subjects, alternative, more sophisticated methods of fusing the classifiers

represent another area that could be further investigated. Approaches such as

STAPLE [175] may be adapted into the classifier selection and fusion framework

used in this thesis. Alternatively, the vote rule used in this work may be extended

to become spatially dependent on the regional similarity between classifiers and

the query subject. Under such a scheme, classifiers’ votes on the label for a

particular voxel could be weighted by some measure similarity each one has with

the query subject in the neighbourhood of the voxel.

8.3 Summary

This thesis has presented work that aims to characterise and explore patterns

of longitudinal change for populations for which serial image data are available.

Combinations of methods have been applied and a registration based framework

has been used to estimate volume change data for individuals and to generate

atlases of volume change and other features of the population in an average

space. These techniques have been used to characterise growth or atrophy pat-

terns within serial data acquired for both young and old subjects. A framework

for the selection of atlases prior to fusion has been developed and has been suc-

cessfully applied to data acquired from a set of Alzheimer’s patients and age

matched controls. Some exploration of association between growth data in young

children and clinical outcome has also been carried out as well as the use of vol-

ume change data and structural segmentations for distinguishing between clinical

groups.
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[189] B. Zitová and J. Flusser. Image registration methods: a survey. Image

Vision Comput., 21(11):977–1000, 2003.

242



Appendix A

Inverting Free-Form

Deformations

This section presents a description of the methods used to estimate the inverse of

transformations that use free-form deformations (FFDs). This inversion is used

as a stage in the generation of average space atlases as described in Chapter 3.

A.1 Composition of FFDs

Prior to a discussion of the inversion of transformations involving FFDs, the basic

properties of compositions of such transformations are described in this section.

Let f(x) : R
3 → R

3 represent a transformation mapping a location x from

the space of one image to another such that f(x) is parametrised by a transla-

tion tf , an affine matrix Mf (encoding rotation, scales and shears) and a local

displacement field uf represented by a FFD

f(x) = Mfx + tf + uf (x).

Let a second transformation g be similarly characterised

g(x) = Mgx + tg + ug(x).
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It is possible to combine the effect of the affine matrix and the translation in a

single homogeneous transformation matrix but, for ease of presentation, they are

kept separate here.

Let h = f ◦ g, the composition of the transformations, be characterised in the

same way. This implies that

Mhx + th + uh(x) = f(g(x))

= f(Mgx + tg + ug(x))

= Mf (Mgx + tg + ug(x)) + tf + uf (Mgx + tg + ug(x))

= MfMgx + Mftg + tf + Mfug(x) + uf (Mgx + tg + ug(x))

which allows the following identifications

Mh = MfMg

th = Mftg + tf

uh(x) = Mfug(x) + uf (Mgx + tg + ug(x))

or uh(x) = Mfug(x) + uf (g(x))

A.2 Estimating the inverse

Let g be a transformation with known parameters mapping locations in image X

to image Y . A transformation f(x) is required such that it acts as the inverse of

g, i.e. f(g(x)) = x. Let the lattices of control points for the FFD components of

f(x) and g be Ωf and Ωg respectively.

Ωg = {xijk ∈ X | 0 ≤ i ≤ lg, 0 ≤ j ≤ mg, 0 ≤ k ≤ ng}

Ωf = {yijk ∈ Y | 0 ≤ i ≤ lf , 0 ≤ j ≤ mf , 0 ≤ k ≤ nf}

As f and g are inverses of each other, it is a reasonable assumption that the
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global transformation of h = f ◦ g should be the identity, i.e.

x = Mhx + th = Ix + 0

which gives

Mh = I ⇒Mf = M−1
g

th = 0 ⇒ tf = −Mftg = −M−1
g tg

Let the lattice of control point locations for f in image Y be defined as above,

then it is possible to iterate over each of the lattice points yijk, and estimate where

it corresponds to in image X. This can be done using a numerical implementation

of a Newton method for solving non-linear equations (Numerical Recipes in C).

This method provides an approximation f̃ of g−1 at the lattice locations yijk

f(yijk) = g−1(yijk) ≈ f̃(yijk)

f(yijk) is represented by

f(yijk) = Mfyijk + tf + uf (yijk)

which gives an estimate for uf (yijk) as

uf (yijk) ≈ f̃(yijk)−Mfyijk − tf .

which, in turn, can be expressed in terms of the parameters of g, which are known

uf (yijk) ≈ f̃(yijk)−M−1
g yijk + M−1

g tg

The values uf (yijk) represent estimates for the displacements at the lattice

locations for the local displacement field uf . The remaining step is to estimate val-

ues for the coefficient vectors at each control point that are needed to parametrise
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uf . This can be achieved using the method described by Unser [167] where the

values of a signal are known at a set of knot locations and coefficients need to

be calculated that will provide a spline that interpolates the signal at the knots.

The method makes use of the z-transform and is implemented as a very efficient

filtering process.

The remaining choice for the inverse transformation estimate is in the place-

ment of the control points of f , {yijk}. This was simply determined once a control

point spacing was decided. If δ represents the distance between adjacent control

points, then the control point lattice was determined as the maximal lattice that

could be placed within the image volume Y that is simultaneously centred in the

volume and aligned with the voxel axes.
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