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Abstract

In recent years, significant progress has been made in the care and treatment of

patients with cardiovascular diseases, the major cause of death in the world. Prin-

cipal among the developments which have improved the outlook for patients is the

development of magnetic resonance imaging (MRI) technology. The ability to ob-

tain high resolution cine volume images easily and safely has made it the preferred

method for diagnosis of cardiovascular diseases. MRI is also unique in the respect

that noninvasive markers can be introduced directly into the tissue being imaged

(MR tagging) during the image acquisition process. By tracking the motion of the

tag markers the deformation field in the heart can be reconstructed. Although MRI

is starting to be used more frequently for cardiovascular examinations, quantitative

analysis of the images acquired is hindered by the absence of automated tools.

The work presented in this thesis describes the development of nonrigid image

registration techniques to track the motion of the heart in MR images. We extend an

existing nonrigid image registration algorithm based on 3D B-splines for its applica-

tion to cardiac motion analysis. The deformation field is reconstructed by registering

a sequence of images taken during the contraction of the heart to reference images

taken at the start of the cardiac cycle. Because the motion of the heart is three-

dimensional, both short- and long-axis images of the heart are used to reconstruct

the deformation field in the heart. We also compare transformation models which

describe the motion of the heart in a Cartesian coordinate system to a model which

describes the motion in a cylindrical coordinate system. A registration algorithm

using a 4D B-spline motion model is also developed for representing the motion of

the heart continuously over time. We also construct and investigate the use of a

statistical motion model for cardiac motion analysis. We develop two different types

of statistical motion model, a time-dependent motion model and time-independent



motion model. The algorithms developed are evaluated on both synthetic data and

data acquired from patients and volunteers.

In the final chapter of this thesis we summarize and make conclusions on the

work presented and discuss directions for future work.
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Chapter 1

Introduction

According to recent World Health Organization (WHO) estimates, 16.7 million peo-

ple die in the world every year because of cardiovascular diseases (CVDs) [114].

This makes CVDs the greatest cause of death in the world. With the development

of novel imaging techniques, such as magnetic resonance imaging (MRI), clinicians

and researchers now have the tools necessary to monitor and assess the progression

of CVDs so that effective procedures for the care and treatment of patients can be

devised. In this chapter we review the basic anatomy and function of the heart, the

various diseases which can affect the heart and the main imaging techniques that

have been developed for diagnosing patients with CVDs.

1.1 The Anatomy and Structure of the Heart

The cardiovascular system [20, 78] is comprised of the heart and blood vessels whose

function is to circulate blood around the body. They act as a transport system

delivering oxygen from the lungs and nutrients from the gastrointestinal tract to the

cells of the body. The heart (figure 1.1) consists of two pumps lying side by side

which pump in phase with each other. Each pump has an atrium and a ventricle

as shown in the figure. The right atrium receives venous blood from the body and

passes it through into the the right ventricle (RV) where it is pumped to the lungs
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Figure 1.1: The heart consists of two pumps lying side by side. The arrows show the
direction of blood flow in the two sides. This figure has been adapted from figure
13.3 in Bray et al [20].

(pulmonary circulation) for oxygenation. At the same time the left atrium receives

oxygenated blood from the lungs and the left ventricle (LV) pumps it out to the

rest of the body (systemic circulation).

The four chambers of the heart are separated from each other and the rest of the

body by four sets of valves. The bicuspid (or mitral) and tricuspid atrioventricular

(AV) valves separate the left and right atria and ventricles respectively, while the

aortic valve separates the LV from the aorta, and the pulmonary valve separates

the RV from the pulmonary artery. Thin chords called the chordae tendineae are

attached to the atrioventricular valves and projections of the ventricular muscles

known as the papillary muscles. During ventricular contraction the papillary muscles

tense and prevent the valves from inverting into the atrium.

1.1.1 The Cardiac Cycle

Venous blood returning to the heart from the rest of the body, flows continuously

from the superior and inferior vena cava into the right atrium, while oxygenated
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blood from the lungs enters the left atrium through the pulmonary veins. When the

pressure in the atria exceeds the pressure in the ventricles, the AV valves open and

the blood enters the ventricles. When the ventricles are about 80% full, the atria

contract and propel more blood into the ventricles completing ventricular filling.

This stage, where ventricular filling takes place, is known as diastole.

After a very short pause (∼ 0.1 s) the ventricles contract. This stage is known

as systole. As the ventricles contract the pressure in the ventricles increases rapidly

and exceeds the atrial pressure, causing the AV valves to close. Simultaneously the

papillary muscles contract so that the AV valves do not revert back into the atria.

The continued contraction raises the ventricular pressure beyond the pressure in the

aorta and the pulmonary artery. This causes the pulmonary and aortic valves to

open and blood is ejected at low pressure from the RV into the pulmonary circuit

and from the LV into the systemic circuit. When the pressure in the ventricles falls

below that in the pulmonary artery and the aorta, the pulmonary and aortic valves

close. When the ventricular pressure falls below the atrial pressure, the AV valves

open and the ventricles start to refill with blood again and the cycle repeats.

1.1.2 The Electrical Activation of the Heart

The myocardium (the heart muscle) is comprised of muscle cells called myocytes.

These are typically 10–20µm in diameter and 50–100µm in length. The junction

between adjacent myocytes, called the intercalated disc, allows electrical impulses

to be transmitted from cell to cell making the myocardium act like an electrically

continuous sheet.

The contraction of the heart is initiated by the sino-atrial (SA) node and acts

as a pacemaker, dictating the rate of beating of the heart (figure 1.2). The node is

composed of myocytes which generate an action potential roughly once every second

that excites the adjacent atrial work cells and causes a wave of depolarization to

travel across the two atria and initiates atrial systole.
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Figure 1.2: The cardiac conduction system (adapted from figure 13.5 in Bray et
al [20]).

The electrical impulse then reaches the atrioventricular (AV) node in the atrial

septum (the wall separating the two atria). The impulse is delayed by the AV node

allowing the atria to finish contracting before the ventricles are activated.

The electrical impulse then travels down a narrow bundle of conduction fibers

called the bundle of His which separates into two parts, one activating the LV of the

heart and the other the RV. The bundle of His terminates in the Purkinje network,

located in the subendocardium, which distributes the electrical impulse rapidly to

the work cells of the myocardium.

1.1.3 The Coronary Circulation

The heart receives the energy it needs from the coronary circulation (figure 1.3),

which consists of five main arteries: the left main coronary artery (LEFT MAIN),

the right coronary artery (RCA), the left anterior descending artery (LAD), the left

circumflex artery (CIRC), and the posterior descending artery (PDA). The RCA and

the LEFT MAIN arise from the aorta, while the LAD and CIRC arise from the LEFT

MAIN when it splits into two. The PDA arises from the RCA in approximately

90% of the human population and from the CIRC in approximately 10% of the

population.
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Figure 1.3: The coronary circulation (from [161]).

The blood flow from the coronary arteries reaches the myocardium by vessels

which penetrate the walls of the ventricles. This means that the endocardial regions

of the heart are very vulnerable to cell death, or infarction, if coronary artery occlu-

sion occurs. This is especially the case with the LV which has a much thicker wall

than the RV. Occlusion of the LEFT MAIN is much more serious than occlusion of

any one of the other arteries since this blocks off all of the blood supply to the LV.

1.2 Cardiovascular Diseases

Table 1.1 shows a percentage breakdown of the deaths due to CVDs in the USA [3].

In both the USA and Europe, the greatest proportion of deaths resulting from CVDs

are due to coronary heart disease (CHD) [3, 136]. Atherosclerosis of the coronary

arteries can lead to occlusion or narrowing of the arteries. This results from the

build up of fatty deposits in the artery walls and restricts the supply of oxygen to

the muscles of the heart. One of the consequences are abnormalities in the motion

of the ventricular walls which results in a loss of cardiac function. Atherosclerosis

of the coronary arteries affects the LV to a greater extent because of its larger size

and greater demand for energy.
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Type of CVD Percentage of deaths
Coronary heart disease 54
Stroke 18
Congestive heart failure 6
High blood pressure 5
Diseases of the arteries 4
Other 13

Table 1.1: Percentage breakdown of deaths due to CVDs [3].

1.2.1 Coronary Heart Disease

The heart needs an unrestricted supply of substrates from the coronary circulation,

notably oxygen, to meet its energy demands. It cannot tolerate ischemia, which

results from coronary occlusion. Coronary occlusion is followed, almost immediately,

by a loss of function, and within hours, by cell death. The main symptoms of

coronary artery disease are angina, acute myocardial infarction and heart failure

and in some cases arrhythmias.

1.2.1.1 Angina

An imbalance between cardiac energy demands and energy supply causes angina

pectoris (literally meaning a strangling in the chest). The main symptoms felt are

pain in the left chest, upper body and at the sites of old scars and injuries.

When the symptoms of coronary occlusive disease do not change the patient is

said to have stable angina pectoris. Stable angina often decreases in severity over

weeks and months because of the development of collateral vessels and enlargement

of partially occluded coronary arteries.

1.2.1.2 Acute Myocardial Infarction

This occurs when coronary flow is reduced so severely as to cause cell death in

a part of the heart. Most clinical infarctions involve the LV; RV infarction does

occur but it is usually less important than infarction of the LV. The endocardium

is especially vulnerable to coronary occlusion because the major coronary arteries
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penetrate the LV from its epicardial surface. In addition the energy expenditure

by the endocardium is greater than that of the epicardium largely because of the

higher tension developed in the inner layers of the ventricle. For these reasons,

endocardial cells die sooner than those of the epicardium after a coronary occlusion.

One consequence is that severe, but not total restriction of coronary flow can cause

a subendocardial infarction where necrosis is confined to the endocardium.

1.2.1.3 Arrhythmias

Coronary artery disease changes the cellular structure of the myocardium and alters

the propagation of electrical impulses in the heart causing arrhythmias. In some,

lethal arrhythmias are the terminal event in patients whose hearts have undergone

severe and progressive failure, while other patients can die suddenly within the first

few minutes of the occurrence of a severe acute myocardial infarction.

Ventricular Ectopic Beats Myocytes present in the myocardium may occas-

sionally fire before the SA node. This triggers an extra beat known as an ectopic

beat. If the trigger is located in the ventricle then the resulting wave of depolariza-

tion is ill synchronized because the excitation has not been distributed through the

His-Purkinje system. The resulting ill coordinated contraction fails to eject blood

properly from the heart.

Heart Block Ischaemic heart disease can also cause the AV node, main bundle,

or one of the bundle branches to not transmit electrical signals properly. This can

result in a slowing of conduction from the AV node to ventricular myocardium (first-

degree heart block), an intermittent failure of excitation to pass from the atria to the

ventricles (second-degree heart block), or complete failure of electrical transmission

from the atria to the ventricles (third-degree heart block).

Pathological Tachycardias Abnormal myocardial conduction pathways can cause

a wave of excitation to travel in a never-ending circle or spiral. Myocytes emerging
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from a period of excitation are re-excited by the return of the electrical wave (a

process called re-entry). Re-entry mechanisms are responsible for tachycardias and

for maintining fibrillation.

Atrial Fibrillation Multiple local re-entry circuits within the atrial wall can cause

an uncoordinated, repetitive excitation of myocytes. The resulting movement of the

wall becomes less effective in ejecting blood. A chief danger is the formation of a

blood clot or thrombus in a stagnant region of the atrium which can embolize.

Ventricular Fibrillation Multiple local re-entry circuits can also cause fibrilla-

tion in the ventricles resulting in an ineffective rippling motion of the walls. With

no cardiac output death can follow in minutes.

Ultimately, the state of the myocardial tissue has a direct effect on the cardiac

function and can be categorized into the following depending on the extent to which

it has been damaged by coronary occlusion [50]:

Normal Normal myocardium with normal perfusion.

Ischemic Results when the oxygen being supplied to the myocardium is insufficient

to meet its demands.

Stunned Where perfusion is near normal but where contractile function is abnor-

mal (occurs after periods of ischemia).

Hibernating Myocardium which has had its microstructure altered due to chronic

hypoperfusion resulting in loss of contractile function.

Infarcted Myocardium which has become fibrotic due to total coronary occlusion.

Infarcted tissue has little chance of recovery.

Being able to distinguish between these states can help clinicians identify those

patients who will most benefit from treatment as well as the best course of treatment.
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1.2.2 Stroke

Stroke is a CVD which affects the arteries leading to and within the brain. A strokes

occurs when a blood vessel carrying the oxygen and nutrients to a part of the brain

is blocked by a clot or ruptures. The part of the brain which is affected can die

because of the lack of blood flow and the consequences can be devastating. The

patient may become paralyzed in addition to the loss of language skills and vision.

Stroke can be treated, if the warning signs are detected early enough, by drugs or

surgical intervention.

1.2.3 Diseases of the Arteries

1.2.3.1 Atherosclerosis

Atherosclerosis is the name given to the process of the buildup of fatty substances,

cholesterol, cellular waste products, calcium and other substances in the inner lining

of an artery. The buildup, called a plaque, reduces the blood flow through the artery

and causes it lose its elasticity. Most of the damage caused by a plaque occurs when

it becomes fragile and ruptures. The plaque can travel to a different part of the

body and block a blood vessel that feeds the heart (causing a heart attack) or the

brain (causing a stroke).

Atherosclerosis is a slow and complex disease that starts at childhood and pro-

gresses into adulthood. It is thought that damage to the innermost layer of the

artery (the endothelium) causes the formation of the plaque.

The effects of atherosclerosis in the coronary arteries can be treated with the use

of medication which reduces the amount of energy needed by the heart. In other

cases surgical procedures such as balloon dilation or a bypass operation may be

necessary. The arteries may also be cleaned at the time of surgery (endarterectomy)

although this procedure is only used in treatment of the cartoid arteries and is rarely

used for other arteries.

25



1.2.3.2 Kawasaki Disease

Kawasaki disease is a childhood disease (80 % of people with Kawasaki disease are

under the age of 5) which predominantly affects boys and children of Asian ancestry.

It is thought that the disease is caused by a infectious agent such as a virus. It

affects the coronary arteries and the muscles of the heart. The walls of the coronary

arteries can become weakened resulting in two dangers: A blood clot can form in the

weakened area blocking the artery and causing a heart attack, or, in a few rare cases,

an aneurysm may form which ruptures. Other changes including the inflammation of

the heart (myocarditis) or the sac surrounding the heart (pericarditis), arrhythmias,

and abnormal functioning of the heart valves may also occur. Most problems usually

resolve themselves in a few weeks and no lasting damaging occurs.

Although the cause of Kawasaki disease is unknown some medicines such as

aspirin, which prevents the formation of blood clots, can be taken to prevent the

effects of the disease. Another medication, intravenous gamma globulin, is also

given to decrease the risk of developing coronary artery abnormalities, but it must

be given in the early stages of the disease.

1.2.4 Congestive Heart Failure

Congestive heart failure is a chronic disease and is the result of a weakening of the

heart muscles from an underlying cause such as clogged arteries, high blood pressure,

or a defect in the muscular walls or valves. It can involve either the LV, the RV, or

both. However it commonly occurs in the LV first. Systolic failure occurs when the

LV loses its ability to contract resulting in its inability to properly pump blood out

of the heart. If the muscles of the LV become too stiff then the LV loses its ability

to relax (diastolic failure). Blood flow may “back up” causing fluid to leak into the

lungs (pulmonary edema) and the reduced blood flow also causes fluid to build up

in tissues throughout the body (edema). The excess fluid build up explains the term

congestive.
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Increased fluid pressure as a result of LV failure is transferred through the lungs

to the right side of the heart ultimately damaging the RV and its ability to pump.

When this occurs blood is not pumped properly to the lungs causing blood to back

up into the veins and results in a swelling of the legs and ankles.

Congestive heart failure can be treated by taking medications to improve circu-

lation and help strengthen the muscle’s pumping action. If the heart has lost sig-

nificant pumping capacity then surgery may become necessary. A coronary artery

bypass surgery can help to increase the blood flow to the heart but in severe cases

a heart transplant may be the only option.

1.2.5 High Blood Pressure

High blood pressure is often called the “silent killer” as no symptoms are shown

in a person suffering from this CVD. Untreated it can lead to stroke, heart attack,

heart failure, or kidney failure. Medications are available which can help to reduce

and control high blood pressure but it is a lifelong disease which cannot be cured.

Proper choice of diet, exercise, and lifestyle choices (such as quitting smoking) can

also help to control high blood pressure.

1.2.6 Congenital Heart Disease

Children are sometimes born with defects or abnormalities in the heart referred to

as cardiac anomalies. The defects are primarily seen in the malformation of the

valves, the septum and the narrowing of the arteries leading from the heart.

1.2.6.1 Arterial Defects

Aortic Stenosis Aortic stenosis results from the obstruction of the blood flow

between the LV and the aorta. It occurs because of muscular obstruction of the

aortic valves or because of aortic narrowing immediately above the valve. The most

common abnormality seen is the presence of only two leaflets in the aortic valve
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rather than the normal three. The leaflets are also commonly thicker and less pliable

then the leaflets in the normal aortic valve. The ventricular wall becomes thicker

because of the greater amount of work that it must do to eject blood. This is known

as left ventricular hypertrophy. A narrowing of the aorta known as coarctation of

the aorta is also seen sometimes in addition to a bicuspid aortic valve.

Interrupted Aortic Arch (IAA) The aorta leaves the heart and ascends into

the chest to give off blood vessels to the arms and the head. It then arches and

turns downward to the lower half of the body. Interrupted aortic arch (IAA) is the

absence or discontinuation of a portion of the aortic arch. With this defect not all

parts of the body are able to receive oxygen-rich blood from the left side of the

heart.

Patent Ductus Arteriosus (PDA) The ductus arteriosus is a connection be-

tween the aorta and the pulmonary artery and is present in all babies before birth.

It usually closes on its own in the first 15 hours of life. When it does not close the

formation is called a patent ductus arteriosus (PDA). In newborns a drug called

Indomethacin can be given which constricts the walls of the PDA and help to close

it. The potential side effects of the drug sometimes necessitates surgery.

Pulmonary Valvar Stenosis Pulmonary valvar stenosis is an obstruction be-

tween the right ventricle and pulmonary arteries caused by a muscular obstruction,

obstruction at the pulmonary valve itself, or a narrowing of the artery above the

valve. Similar to aortic stenosis the RV must work harder to pump blood to the

lungs and so the muscles of the RV become much thicker to compensate for the

extra work needed.

Total Anomalous Pulmonary Venous Return (TAPVR) Total anomalous

pulmonary venous return (TAPVR) is rare malformation which occurs when the

pulmonary veins do not connect to the left atrium but instead drain abnormally
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into the right atrium. An atrial septal defect (ASD) also occurs with a TAPVR and

is the only source of blood flow from the lungs into the left atrium.

Transposition of the Great Arteries Transposition of the great arteries is an

anomaly in which the aorta arises from the RV and the pulmonary artery arises from

the LV. This creates a situation in which the systemic and pulmonary circulations are

in parallel rather than in series. Unless there is some location where the oxygenated

and unoxygenated blood can mix (for example at a ventricular septal defect, an

atrial septal defect, or a patent ductus arteriosus) none of the organs will receive

any oxygen.

Truncus Arteriosus A baby with a truncus arteriosus has only one great blood

vessel leaving the heart. The great vessel is connected to both the LV and the

RV and usually has between two to five leaflets. A ventricular septal defect is also

usually present.

1.2.6.2 Valvular Defects

Ebstein’s Anomaly Ebstein’s anomaly occurs when the tricuspid valve is mal-

formed. Two of the valve leaflets are displaced downward into the right ventricle

and third is elongated and may be adherent to the wall chamber. The valve leaks

blood into the right atrium when the RV contracts and as a result the chamber

becomes enlarged.

Tricuspid Atresia Tricuspid atresia is the disease name given when the valve

between the right atrium and the right ventricle does not form. Blood returning

from the body must travel through an atrial septal defect into the left side of the

heart before it can enter the RV.
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1.2.6.3 Septal Defects

One of the most common congenital defects is the formation of holes in the septum

separating the four chambers of the heart. These can occur in the regions separating

the atria or the ventricles.

Atrial Septal Defect (ASD) An atrial septal defect (ASD) allows blood to flow

from the left to the right atrium. Untreated, this can lead to pulmonary hypertension

(high blood pressure in the lungs), congestive heart failure (weakening of the heart

muscle), atrial arrhythmias (abnormal beating of the heart) and an increased risk

of stroke.

Ventricular Septal Defect (VSD) Ventricular septal defect (VSD) is the term

used when a hole forms in the septum separating the ventricles. The size of the

hole determines to a large extent the need for surgery as small holes usually close

on their own.

Atrioventricular Septal Defect (AVSD) Atrioventricular septal defects (AVSDs)

occur most commonly in infants with Down syndrome. The defect is the result of

the failure of the formation of heart structures that arise from an embryonic struc-

ture called the endocardial cushions which are responsible for the separating the

central parts of the heart near the tricuspid and mitral valves. Surgery is necessary

to correct this severe structural defect and prevent congestive heart failure.

1.2.6.4 Single Ventricle Defects

Single ventricle defects are used to describe a group of defects which have the com-

mon feature that only one of the ventricles is of normal size.

Hypoplastic Left Heart Syndrome (HLHS) In hypoplastic left heart syndrome

(HLHS) the left side of the heart is severely underdeveloped. The RV of the heart

30



does the work of the LV by pumping the oxygenated blood that enters the RV

through an atrial septal defect.

1.2.7 Rheumatic Heart Disease/Rheumatic Fever

Rheumatic heart disease is an inflammatory disease caused by a streptococcal in-

fection and affects many of the bodies connective tissues, especially those of the

heart, joints, brain and skin. Damage to the valves of the heart can be prevented by

treatment using penicilin or other antibiotics once the first signs of rheumatic fever

are detected.

1.3 Cardiac Imaging

As we have discussed in the previous section, the heart can be affected by numerous

diseases which diminish its ability to pump blood out to the rest of the body. To be

able to assess the efficacy of a particular course of treatment, images of the heart

must be acquired first so that various functional parameters can be measured. In

this section we briefly review the imaging methods used for diagnosing the heart.

A more detailed description of the imaging methods can be found in Webb [173] or

Suetens [158].

1.3.1 Ultrasound

Ultrasound (US) is an important imaging modality for diagnosing the heart as it is

relatively inexpensive, safe, noninvasive and is portable enough that diagnoses can

be made at the bedside. The basic principle on which US imaging relies on is the

fact that sound energy waves generated by a transducer and which travel through

an object are scattered by structures present in the object. The reflected signals

and their intensities can be detected and processed to reconstruct images of the

structures in the object.
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In addition to visualizing anatomy, US imaging can also be used to assess function

through measurements of blood flow velocities and myocardial velocities (Doppler

imaging).

1.3.1.1 Conventional Ultrasound Imaging

Data acquisition for conventional US imaging is done in three different ways. In

the simplest form of US imaging, based on the pulse-echo principle, the transducer

is used as a receiver immediately after the transmission of a pulse. This is called

A-mode (amplitude) imaging. This yields a measurement of the strength of signals

reflected in the body as function of depth. In B-mode (brightness) US a linear array

of transducers simultaneously scans a plane through a body and produces a 2D image

of the reflected signal. If a rapid sequence of B-mode scans is repeated over time

then the motion of a structure within the body can be measured as the positions

of the reflective structures in the body change with respect to the position of the

transducer. This is know as M-mode imaging (for motion). It is used extensively in

cardiac and fetal cardiac imaging.

1.3.1.2 Doppler Imaging

Doppler US is based on the Doppler effect. The frequency of the reflected US waves

is altered if the reflecting object is moving (the reflected frequency becomes higher

if the object is moving towards the transducer and lower if the object is moving

away from the transducer). This change in frequency can be used to measure how

fast the object is moving. A recent application of Doppler US is the measurement

of strain and strain rate in the tissue being imaged [76, 50]. The strain rate can be

estimated by calculating the spatial gradients of the measured velocities and these

can be integrated over time to obtain the strain in the tissue.

The main limitation of US imaging is the difficulty in obtaining high quality

images. In conventional 2D US a mental image of the structure and motion of the

heart is formed from multiple 2D acquisitions oriented in different directions. This
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can lead to incorrect diagnoses as the images formed are subjective and depend on

the observer. Additionally, follow up procedures are difficult to perform since the

position of the transducer cannot be accurately reproduced from examination to

examination.

Recent developments in 3D echocardiography [52] have the potential to provide

real-time 3D visualizations of the structure of the heart and overcome some of the

limitations of conventional 2D ultrasound.

1.3.2 X-Ray Computed Tomography

X-Ray computed tomography (CT) can be used to produce cross-sectional images of

the body representing the X-Ray attenuation properties of the tissue being imaged.

Thin X-Ray beams are used to the scan the field of view in a either a parallel

or cone-beam configuration. This yields line attenuation measures for all possible

angles of the X-Ray beams with respect to the body being imaged and are used to

reconstruct the X-Ray attenuation at each point of the slice being scanned.

3D images can be obtained using spiral or sequential CT. Additionally, as CT is

based on the attenuation of X-Rays as they pass through the body, contrast agents

can be used to visualize blood vessels and identify tumors because of the different

levels of contrast uptake in the tumours in comparison to the surrounding tissue.

The cardiac applications of X-Ray CT are in the evaluation of aortic disease,

cardiac masses, and pericardial disease. The main advantage of X-Ray CT is the

high resolution and good tissue contrast in the 3D images which can be acquired.

But this advantage has to be weighed against the potentially harmful effects of the

radiation dose given to the subject being imaged.

1.3.3 Nuclear Medicine Imaging

In nuclear medicine imaging a tracer molecule (a molecule containing an unstable

radioactive isotope) is administered to the patient. The molecule is taken up by
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the organs of the body as part of its normal metabolic processes. Measurements

of gamma ray photons emitted by the tracer are then used to reconstruct maps of

the concentration of the tracer in the body over time. Two types of imaging can be

performed depending on the tracer molecule used.

1.3.3.1 SPECT

Single photon emission computed tomography (SPECT) relies on the emission of

gamma ray photons from the radionuclide used. The most important single photon

tracer is 99mTc, which is a metastable daughter product of the decay of 99Mo, and

decays to 99Tc by emitting a single photon of 140 keV with a half-life of 6 hours.

The photons emitted are detected using a scintillation crystal coupled to a pho-

tomultiplier tubes. As the source of the emitted photons is an unknown distribution

the gamma ray photons must be collimated with a mechanical collimator (a thick

lead plate with cylindrical holes). The line information obtained can then be used

to reconstruct the distribution of the tracer molecule in the body.

SPECT is used to assess the location and extent of ischemia and infarction in the

heart resulting from coronary heart disease. SPECT imaging provides 3D density

maps of blood perfusion in the myocardium. In a stress-rest study two perfusion

maps of the myocardium are taken from the patient, one while the patient is at

rest and one while the patient is exercising (under stress). Ischemic, infarcted, and

normal tissue can be detected by comparison of the stress-rest images:

Normal If the intensity distributions in the perfusion maps are normal in both the

stress and rest images then the state of the myocardium is normal.

Ischemic If the intensity distribution in the stress perfusion map is low but normal

in the rest perfusion map then the myocardium is ischemic.

Infarcted If the intensity distributions in both the stress and rest maps are low

then the myocardium is infarcted.
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1.3.3.2 PET

In positron emission tomography (PET) imaging a tracer molecule containing a

radionuclide such as 18F is used. 18F decays by emitting a positron and has a half-

life of 109 minutes. The emitted positron very quickly (∼ 10−9 seconds), and within

a few millimeters of its origin, meets an electron and is annihilated producing two

photons of 511 keV which travel in opposite directions.

No collimation is required in PET imaging as information about the origin of

emission can be deduced from the fact that it must lie on the line joining the positions

at which the photons are detected as well as the difference in times at which they

are detected. PET is also more sensitive than SPECT as no photons are absorbed

by a lead collimator during imaging but a PET scanner is also about four times

more expensive to operate than a SPECT scanner.

Two areas of clinical application have emerged for PET imaging. Firstly, it can

be used to detect, localize, and describe coronary artery disease; and secondly it can

be used to identify injured but viable myocardium in a similar way to SPECT.

1.3.4 Magnetic Resonance Imaging

MRI [84, 104] of our bodies is possible because hydrogen atoms contained in the

water and fat molecules of our organs possess an intrinsic spin (1
2
) and an associated

nuclear magnetic dipole moment, µ. When a body is placed in a strong constant

magnetic field, B0, the nuclear magnetic dipole moments present in the body align

themselves either in direction B0, or in the direction opposite to B0, while precessing

about the direction of B0, as shown in figure 1.4. The precessional frequency is

related to the strength of the applied magnetic field by the Larmor equation

ω0 = γ||B0|| (1.1)
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B0
µ

Figure 1.4: When an object containing hydrogen atoms is placed in a strong mag-
netic field B0 the nuclear magnetic dipole moments align themselves either in the
direction of B0 or in the direction opposite to B0 while precessing at the same time
about B0.

where γ is called the gyromagnetic ratio and for hydrogen atoms is equal to 42.57

MHz/T. There is a small excess in the number of magnetic dipole moments which are

aligned in the direction of the B0 field and this results in a measurable macroscopic

magnetization M which is equal to the sum of the microscopic nuclear magnetic

dipole moments. Because the precessing nuclear magnetic dipole moments have

random phases the transverse (the transverse plane is defined as the plane perpen-

dicular to the B0 field, and the longitudinal direction is defined as the direction of

the B0 field) components of the dipole moments sum to zero and M points in the

same direction as the B0 field.

When an oscillating magnetic field in the form of a radio-frequency (RF) pulse,

B1, with the frequency of oscillation equal to ω0 and perpendicular to B0 is applied

on the object, the magnetization is tipped away from B0. This results in a measur-

able transverse magnetization and a loss in longitudinal magnetization. But once

the B1 field is switched off the magnetization recovers its thermal equilibrium value

(called longitudinal relaxation or T1 relaxation), with a simultaneous loss in trans-

verse magnetization due to nuclear interactions (called transverse relaxation or T2

relaxation) and the nonuniformity of B0 (T2∗ relaxation). By Faraday’s law of in-

duction, the rotating magnetization induces an electrical current in RF receiver coils

placed in the scanner. This transient response, called a free-induction decay (FID),
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of the spin system after the pulse excitation is dependent on a number of factors

including the flip angle (the angle made by M with B0), the total number of spins

in the sample, the magnetic field strength, and the magnetic field inhomogeneity.

To image a single plane in the body only nuclei within that plane are excited.

This is achieved with magnetic field gradients, which alter the precessional frequen-

cies of the nuclei within the sample along the direction of the gradient, so that

when an RF pulse is applied only nuclei whose precessional frequencies match the

oscillation frequency of the RF pulse resonate and generate a signal. To locate the

signal within the imaged plane two further magnetic field gradients are used, one to

encode the horizontal position (frequency encoding), and one to encode the vertical

position (phase encoding). Thus, the spatial location of nuclei generating the de-

tected signal is encoded in the signal itself. It can be shown that the signal detected

is equivalent to the Fourier transform of the desired image [158, 91] and measuring

the FID signals generated due to the perturbation of the spin system by the RF

pulses allows the Fourier space to be sampled. An inverse Fourier transform applied

on the raw data collected produces an image slice in the body.

As water and fat have different T1 and T2 relaxation times this fact can be used

to generate contrast between the tissues in the body. It is also possible to perform

angiography by taking the difference between two images which give different weights

to the blood in the images but the same weight to other tissue in the images.

1.3.4.1 Imaging Sequences

The RF pulses and gradient fields can be applied in innumerable ways to generate

contrast in the images acquired or to increase image acquisition speed [103, 158].

The spin echo sequence consists of a slice selective 90◦ pulse followed by one or

more 180◦ refocusing pulses. This sequence can be used to generate T1-weighted,

T2-weighted, or proton density images.

Gradient echo sequences such as the fast low angle shot (FLASH) sequence over-

come the relatively large imaging times of the spin echo pulse sequences by not using
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the 180◦ refocusing pulses and using a flip angle smaller than 90◦. Gradient echo

pulse sequences are primarily used for fast 2D and 3D acquisition of T1-weighted

images. Echo-planar imaging (EPI) is a modification of Fourier imaging in which

all experiments necessary to reconstruct the image of an entire plane are performed

within a single FID. Other fast imaging sequences such as turbo spin echo (Tur-

boSE), half-Fourier acquisition with single-shot turbo spin echo (HASTE), and spiral

imaging have also been developed.

1.3.4.2 Flow Measurement

Phase Contrast MR It has been known for a long time (even before the proper

development of MRI) that NMR signals are sensitive to flow and motion [169].

Measured phase changes induced in the transverse magnetization of moving spins

in a spatially varying magnetic field can be used to compute the velocities of the

moving spins. The total phase shift, φ, induced between excitation and measurement

is given by [158]

φ =

∫ t

0

γG(t).r(t) dt (1.2)

where G is the gradient field applied between times 0 and t and r is the path followed

by the moving spin. Expanding r in terms of a Taylor series about t = 0

r(t) = r(0) +
dr

dt

∣∣∣∣
t=0

t + · · ·+
dlr

dtl

∣∣∣∣
t=0

tl

l!
+ · · · (1.3)

and substituting into equation 1.2 we obtain

φ = r0.m0 + v0.m1 + a0.m2 + · · ·+ (1.4)
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where

r0 = r(0) (1.5)

v0 =
dr

dt

∣∣∣∣
t=0

(1.6)

a0 =
d2r

dt2

∣∣∣∣
t=0

(1.7)

are the position, velocity, and acceleration of the moving spins at time t = 0 and

ml =

∫ t

0

γG(t)
tl

l!
dt (1.8)

is the l-th order moment of the gradient waveform. The first term in equation 1.4 is

related to how the spatial positions of the spins are encoded in a MR pulse sequence

and at the time of measurement (the echo time) is equal to 0. Assuming that higher

order terms can be ignored we see that the phase shift is proportional to the velocity.

This result can be used to measure the velocities of moving spins in a voxel by voxel

basis [123].

1.3.4.3 Magnetic Resonance Angiography

In the Time-of-Flight (TOF) pulse sequence a gradient-echo pulse sequence is used to

alter the longitudinal magnetization vectors in an imaging slice. The magnetization

vectors of stationary spins are made very small, an effect known as saturation, while

moving spins are unaffected. If a blood vessel passes through the imaging plane

it appears as a bright vessel in the image while all other stationary tissue remains

dark. The TOF pulse sequence is used to perform MR angiography.

Alternatively 3D MR angiography can be performed by using a contrast agent

(such as gadolinium chelate) which alter the T1 and T2 relaxation times of blood.
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1.3.4.4 Magnetic Resonance Tagging

Myocardial tissue in the body can be labelled by altering its magnetization proper-

ties which is persistent even in the presence of motion. By measuring the motion

of the labelled tissue, deformation fields in the myocardium can be reconstructed.

Magnetic resonance tagging was first proposed by Zerhouni et al [181] as a means

of non-invasively introducing markers within the myocardium of the LV. The tech-

nique relies on the perturbation of the magnetization in the myocardium by using

a sequence of RF saturation pulses before the acquisition of images using conven-

tional imaging. Because the myocardium retains knowledge of the perturbation in

the magnetization the motion of the myocardium can be tracked during systole.

Recent reviews of MR tagging are given in [137] and [10].

Tagging Pulse Sequences The SPAatial Modulation of Magnetization (SPAMM)

pulse sequence was developed by Axel and Dougherty [12, 11], which consists of two

nonselective (a nonselective pulse is one that is designed to excite all the spins in

the sample) RF pulses separated by a magnetic field gradient pulse. In the frame

of reference rotating with the B1 field generated by the first RF pulse, the effect of

the pulse is to flip the longitudinal magnetization onto the transverse plane creating

a transverse magnetization. The phase of the transverse magnetization is the same

everywhere in the sample. The gradient pulse spatially modulates the phase of the

transverse magnetization along the direction of the gradient. When the second RF

pulse is applied, the magnetization vectors are tipped on to the transverse plane

again, creating a modulation in the longitudinal magnetization.

The effect of the SPAMM pulse sequence is to produce a series of hypointense

stripes in the images acquired. Two sequences of stripes can be produced forming

a grid pattern as shown in figure 1.5.
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Figure 1.5: The top row shows a sequence of short-axis mid-ventricular untagged
images taken from a normal healthy volunteer at three different points in the cardiac
cycle, end-diastole (ed), mid-systole (md), and end-systole (es). The bottom row
shows the corresponding set of SPAMM images.

1.3.4.5 Perfusion

Blood perfusion in tissues can be evaluated by using a a contrast agent such as

gadolinium chelate which is intravenously injected into the patient. The contrast

agent decreases the T1 and T2 relaxation times of the blood, while extravascular

protons are not affected. The contrast produced can be used to measure the activity

of the capillary network permeating the myocardial tissue.

1.3.5 Imaging Planes

As the heart is continuously in motion it is necessary to acquire images in mul-

tiple orientations so that an accurate diagnosis can be made. It is common to

define, orient, and display the heart using the long-axis of the left ventricle and

selected planes at 90◦ angles relative to the long-axis. The imaging planes used are

shown in figure 1.6 and some example images are shown in figure 1.7. Other factors

which also make cardiac imaging challenging are patient motion, respiration, and
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Figure 1.6: The cardiac imaging planes [23].

Figure 1.7: The images from left to right show respectively short-axis, horizontal
long-axis and vertical long-axis views of the heart.

the anisotropic resolution of the images acquired. Typically, the in-plane resolution

is much higher than the through-plane resolution as shown in figure 1.8.

1.4 Contributions

Although a wealth of data can be collected about the anatomy and physiology of

the heart it is only in recent years, with the development of sufficient computational

power and novel methods for image analysis, that the full potential of cardiovascular

imaging has begun to be realized. It is also clear that MRI is becoming the modality
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Figure 1.8: This figure shows a simulated long-axis view of the heart which has been
obtained by stacking a set of short-axis images. As can be seen the through-plane
resolution is lower than the in-plane resolution.

of choice for cardiovascular image analysis as it has a number of advantages over

other imaging techniques. It is safe, noninvasive, and 3D and 4D images with high

spatial and temporal resolution of the anatomy and physiology of the heart can be

acquired in arbitrary orientations. Additionally, the acquisition protocols developed

for MRI enable blood flow and motion to be measured non-invasively, and among

them MR tagging can be used to measure myocardial deformation. However, MR

tagging is still not used routinely in the clinical environment as the amount of post-

processing required to extract meaningful functional parameters is too prohibitive

to be useful clinically. Additionally, no fully automatic method for the extraction

of deformation fields from tagged MR images yet exists.

The focus of the research presented in this thesis is the use of nonrigid image

registration techniques for cardiac motion analysis. The work presented makes four

main contributions to the analysis of tagged MR images and are contained in chap-

ters 4–7:

• A technique for cardiac motion tracking in tagged MR images of the LV is de-

veloped using nonrigid image registration and a transformation model based

on free-form deformations. To reconstruct the full four dimensional motion

field within the heart, short-axis and long-axis images of the heart are used.

The images taken during the cardiac cycle are registered to a set of refer-

ence images taken at end-diastole to recover the deformation field within the

myocardium of the heart. The proposed method is validated using a cardiac
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motion simulator and strain patterns from a group of normal volunteers are

derived to show the viability of the method for clinical use.

• We then extend the registration technique presented to use a cylindrical free-

form deformation model of cardiac motion. The cylindrical free-form defor-

mations are able to model more closely the radial thickening, circumferential

twisting, and longitudinal contraction of the heart. We compare this method

with the method based on ordinary free-form deformations and derive strain

patterns from a group of normal volunteers.

• A 4D image registration algorithm for cardiac motion tracking is then devel-

oped. The technique is based on the registration of two 4D image sequences to

each other, one in which the heart is moving and the other in which the heart

is stationary. The algorithm uses a 4D free-form deformation to model the

motion of the heart and allows the computation of deformation parameters at

arbitrary time instants in the cardiac cycle thus making comparison of strain

patterns across different subjects easier.

• Finally, a statistical model of the cardiac motion in a group of normal volun-

teers is constructed. To build this statistical model the motion fields in the

hearts of a group of 17 volunteers are transformed into a common coordinate

system so that an objective comparison of the motion fields can be made. A

principal component analysis (PCA) of the motion fields is then performed

to derive the major modes of variation in the motion fields across the sub-

jects. Two different types of PCA are performed, a time-dependent PCA and

a time-independent PCA. The free-form deformation model used for tracking

the motion of the heart is then reparameterized in terms of the major modes of

variation in the deformation fields. The ability of the statistical deformation

model to track the motion of the heart is then evaluated.
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1.5 Overview of Thesis

Chapters 2 and 3 contain the introductory and background material on cardiac

image analysis. Chapter 2 reviews the methods that have been developed for motion

estimation in cardiac images and chapter 3 reviews the methods that have been

developed for cardiac image registration.

The methods and algorithms that have been developed during our research are

presented in the subsequent chapters. In chapter 4 we develop a method for cardiac

motion tracking using nonrigid image registration and free-form deformations. In

chapter 5 we extend the method presented in chapter 4 to use free-form deformations

based in a cylindrical coordinate system. In chapter 6 a 4D B-spline registration

algorithm for tracking the motion of the heart is developed and in chapter 7 a

statistical motion model for cardiac motion tracking is presented.

Finally, in chapter 8, we summarize the work presented in this thesis and discuss

future work.
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Chapter 2

Cardiac Motion Analysis

The ultimate objective of clinicians and researchers working in the field of cardiac

image processing and analysis is to build useful and efficient tools for the diagnosis

and treatment of patients with CVDs. Since it is common for large amounts of data

to be generated in a single imaging session, the manual analysis of the images ac-

quired is too time consuming to be useful in a clinical setting and is subject to intra-

and inter-observer variability. It is also likely that further development of imaging

technologies will only increase the amount of data made available for use and so the

need for highly automated tools to aid in the extraction and analysis of clinically

useful functional parameters will only increase. Also, an increasing amount of atten-

tion has been focussed on the estimation of local deformation parameters, such as

strain, from cardiac images as it is believed that investigating the mechanical effects

of diseases such as cardiomyopathy and ischemia can lead to improved methods for

the treatment of patients with CVDs.

Although the motion of the heart is complex, three different components can

be distinguished in a normal motion: radial thickening, longitudinal shortening,

and apico-basal twisting. Regional variations can also be seen in the motion and

strain patterns in a normal heart—the lateral part of the heart moves more signifi-

cantly than the septum and transmural differences in the strain distribution are also

seen [111]. CVDs affect the normal motion patterns seen in the heart. For exam-
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ple, the reduction in blood flow to the myocardium resulting from coronary artery

disease changes the mechanical properties of the heart muscle. One of earliest signs

seen is the decreased contractility of the myocardium. Infarcted regions of the heart

permanently lose their ability to contract and these can also be detected from motion

studies. Detection of abnormal motion patterns and their evolution over time can

be invaluable in determining those who will benefit most from available treatments

as well as monitor their recovery.

In general, the sequence of processes involved in the functional analysis of cardiac

images can be divided into four main stages as shown in figure 2.1.

Imaging To image the heart successfully is a challenging endeavor. Not only is the

image acquisition made difficult by the intrinsic beating motion of the heart

itself but the breathing motion of the patient must also be accounted for. Fur-

thermore, motion estimation is made difficult in many modalities (such as US,

PET, and SPECT) as there are no clearly distinguishable anatomical features

in the walls of the heart. In these imaging modalities only simple measures

of contractility such as the radial contraction or radial thickening of the ven-

tricular walls can be estimated. Ideally we would like to be able to construct

a 4D model (3D spatial and 1D time) to properly estimate various functional

parameters. To construct such a model, 3D image sequences must be acquired

covering the entire heart for the whole of the cardiac cycle. The number and

quality of the images that can be acquired depend on the imaging modali-

ties used and these have their own unique characteristics and limitations as

described in chapter 1. Thus, the model that can be built and the parame-

ters that can be derived from it depend directly on the imaging modality or

modalities chosen.

Feature Extraction and Model Construction After the images are acquired

specific features such as surfaces and contours related to the geometry of the

heart are extracted. These features are used to construct the spatio-temporal
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Figure 2.1: A block diagram showing the sequence of steps taken in extracting
functional parameters from cardiac images.

models of the heart. Most researchers have concentrated on building mod-

els for just the LV as it is larger than the RV and, because of its greater

demand for energy, is also more susceptible to CHD. Information about the

internal structure of the heart, such as the muscle fiber orientations that can

be obtained from diffusion tensor MRI [71], can also be incorporated with the

geometrical information extracted to enhance the predictive capabilities of the

model built.

Derivation of Functional Parameters from Model The models are then used

to estimate specific global and local parameters of interest to the clinician.

Analysis and Clinical Application Finally, the parameters extracted are used

by clinicians to assess the functioning of the heart. To aid in this analysis,

visualization tools can be used to determine whether the extracted parameters

fall within normal limits.

A significant amount of progress has been made in the development of methods

for the functional analysis of cardiac images and an extensive review has been made

by Frangi et al [56]. In this chapter we review the computational methods that have

been developed for the measurement of functional parameters using the imaging

modalities described in the previous chapter with a particular emphasis on cardiac

motion analysis.

2.1 Feature Extraction and Model Construction

To derive global parameters of cardiac function the endocardial and epicardial con-

tours need to be extracted. Many segmentation algorithms have been developed
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for this purpose, each tailored to the specific problems encountered when using

a particular imaging modality. US images are perhaps the most difficult images

to segment because the boundaries of the LV are not clearly visible due to the

noise present in the images. Several steps are usually necessary to group detected

edges into the contours of the LV based on geometrical and spatiotemporal con-

straints [90, 18, 177, 174, 172]. The extracted contours can then be used to construct

parametric B-spline surfaces of the LV cavity so that global parameters of cardiac

function can then be estimated [177].

A number of generic methods have been adapted for contour detection and can

applied to X-Ray CT, PET, SPECT, and MR images in which the contours of the

LV can be clearly delineated. Neural networks [40], fuzzy C-means clustering [19],

and model-based techniques [80] have been used in gated PET and SPECT images.

Active shape models [37, 38] and active appearance models [35, 36] which incor-

porate prior knowledge about the shape and appearance of the LV into the segmen-

tation algorithm have also been used successfully to segment the contours of the LV

in both US and cardiac MR images [74, 110, 109, 79]. Recently Lorenzo-Valdés et

al [94] have developed atlas-based segmentation of the LV using image registration.

2.2 Functional Parameters

Functional parameters used to assess cardiac function can be classed into two differ-

ent categories: global and local functional parameters. Global measures of cardiac

function describe the overall ability of the heart to deliver blood to the rest of the

body, while local functional parameters are used to assess regional dysfunction in

the heart which is determined by the state of the myocardial tissue (section 1.1.3).

2.2.1 Global Functional Parameters

Global functional parameters assess the overall performance of the ventricles in

their ability to eject blood. The left ventricular volume (LVV), left ventricular mass
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(LVM), stroke volume (SV), ejection fraction (EF) and cardiac output (CO) have

all been used to assess the performance of the LV [56].

Left Ventricular Volume (LVV) LVV is defined to be the volume enclosed by

the LV. Volume-time curves of the left-ventricular cavity can provide informa-

tion about the global contractility of the myocardium.

Left Ventricular Mass (LVM) LVM is the mass of the LV and is equal to the

volume of the myocardium, Vm, multiplied by the density of the myocardium,

ρm = 1.05 g/cm3:

LVM = Vmρm (2.1)

This quantity can be used to assess the excessive development of the my-

ocardium of the LV (hypertrophy) which can also result in a loss of function.

Stroke Volume (SV) SV is defined as the volume ejected during systole and is

equal to the difference between the end-diastolic volume (EDV) and the end-

systolic volume (ESV):

SV = EDV− ESV (2.2)

Ejection Fraction (EF) The EF is defined as the ratio of the SV to the EDV:

EF =
SV

EDV
× 100% (2.3)

Cardiac Output (CO) The CO is the amount of blood ejected from the LV per

minute and is equal to the SV multiplied by the heart rate (HR):

CO = SV×HR (2.4)

Although global functional parameters can be used to determine the abnormal

functioning of the heart they do not indicate which regions of the heart have reduced

contractile function. Moreover, for some patients, global functional parameters fall

50



within normal limits even though the wall motion may be abnormal. For example,

patients suffering from hypertensive left ventricular hypertrophy may have normal

EF while circumferential and longitudinal shortening are depressed [82, 118]. Mea-

suring local functional parameters can help to detect areas of the myocardium which

have been damaged because of reduced blood flow.

2.2.2 Local Functional Parameters

The motion of the heart can be characterized in terms of its contraction in the radial,

circumferential and longitudinal directions, the wall thickening, the apico-basal twist

of the myocardium, as well as the strain in the myocardium.

2.2.2.1 Radial, Circumferential and Longitudinal Contraction

In assessing the radial, circumferential, and longitudinal contraction motion para-

meters, a coordinate system is chosen that is defined with respect to the geometry

of the heart. For example, to assess motion parameters in the LV (figure 2.2), the

z-axis or the long-axis of the LV is defined to be the line joining the apex to the

midpoint of the base of the LV (usually taken to be the midpoint of the mitral

valve leaflets). The planes perpendicular to the long-axis then define the short-axis

planes. The radial, circumferential, and longitudinal contraction are then defined

by the vectors ur, uθ, and uz, as shown in figure 2.2.

2.2.2.2 Apico-basal Twist

There is a gradient in the rotation angle of the myocardium of the LV about the

long-axis as it contracts. This is due to the helically oriented muscle fibers in the

LV [62]. When viewed from base to apex, the base is seen to rotate in a clockwise

direction while the apex is seen to rotate in an anticlockwise direction. Torsion

in the LV reduces the transmural myocardial strain and reduces oxygen demand

during systole. When muscle cells die systolic LV torsional deformation is delayed
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Figure 2.2: Local motion parameters in the LV are measured in a coordinate system
which is defined with respect to the geometry of the LV.

and decreased, impairing the beneficial effects of torsional deformation [163], while

in patients suffering from pressure overload due to aortic stenosis the torsion is

significantly increased and diastolic apical untwisting is prolonged compared with

those of normal subjects [153].

2.2.2.3 Strain

When an object is deformed, internal forces are produced within the body which

tend to return the object to its undeformed state. These forces are related directly

to the amount of stretching or deformation that the body is made to undergo. Strain

is a quantity which measures the load placed on the body by measuring the amount

of deformation of the body. In one dimension the strain can be defined in a number

of ways. For example, in figure 2.3, which shows the deformation of a 1D object, the

material point A with position x initially, moves to the position q(x) in the deformed

state; and the material point B with position x + dx initially, moves to the position

q(x + dx). Then, one way of defining the strain is as the ratio of the extension of
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the element
−→
AB to its original length

E =
||
−→
ABdef || − ||

−→
AB||

||
−→
AB||

(2.5)

=
q(x + dx)− q(x)− dx

dx
(2.6)

=
dq

dx
− 1 (2.7)

where
−→
ABdef is the vector between the material points A and B in the deformed

state. In terms of the displacement of points in the object, u(x) = q(x) − x, the

strain is:

E =
du

dx
(2.8)

The strain can also be defined as the ratio of the difference between the squares of

the lengths of the element
−→
AB in its deformed and undeformed states to the square

of the length of the element in its undeformed stated

E =
1

2

||
−→
ABdef ||

2 − ||
−→
AB||2

||
−→
AB||2

(2.9)

=
1

2

(q(x + dx)− q(x))2 − dx2

(dx)2
(2.10)

=
1

2

[(
dq

dx

)2

− 1

]
(2.11)

which in terms of the displacement, u, is:

E =
du

dx
+

1

2

(
du

dx

)2

(2.12)

The two definitions of strain given in equations 2.8 and 2.12 become equivalent to

each other when the deformation is very small.

In three dimensions (figure 2.4), where x = (x1, x2, x3) and q = (q1, q2, q3), it is

mathematically more convenient to consider the squares of the elements ||
−→
AB|| and
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Figure 2.3: The deformation of an object in 1D.

||
−→
ABdef || in finding a suitable definition for the strain:

||
−→
ABdef ||

2 − ||
−→
AB||2 = ||q(x + dx)− q(x)||2 − ||dx||2 (2.13)

=
∑

i

∑

j

∂qi

∂xj

dxj

∑

k

∂qi

∂xk

dxk − dxi dxi (2.14)

Rewriting q(x) in terms of the displacement field u(x) = (u1, u2, u3)

q(x) = x + u(x) (2.15)

equation 2.14 becomes:

||
−→
ABdef ||

2 − ||
−→
AB||2 =

∑

i

∑

j

(
∂ui

∂xj
+

∂uj

∂xi
+
∑

k

∂uk

∂xi

∂uk

∂xj

)
dxi dxj (2.16)

The strain is defined from this equation as:

Eij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi
+
∑

k

∂uk

∂xi

∂uk

∂xj

)

(2.17)

E = {Eij} is called the Lagrangian strain tensor and it behaves like a symmetric

tensor of rank 2. When the displacement field u is very small the third term in

equation 2.17 vanishes and we obtain another measure of strain, e = {eij}, called

Cauchy’s infinitesimal strain tensor:

eij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(2.18)
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Figure 2.4: This figure shows the deformation of an object. The point x moves to
the position q(x), and the point x + dx moves to the position q(x + dx).

The diagonal elements in E and e are called the normal strains, and the off-diagonal

elements are called the shear strains.

We can compute the strain in a particular direction by using the transformation

law for tensors. If R is the rotation matrix which transforms the components of a

position vector measured in the coordinate system with Cartesian axes xyz into a

coordinate system with the Cartesian axes x′y′z′, then the components of the strain

tensor measured in the x′y′z′ coordinate system are given by

E ′ij =
∑

α

∑

β

RiαRjβEαβ (2.19)

where Rij is the element of matrix R with row i and column j.

Figure 2.5 shows a coordinate system, x′y′z′, in which the x′-axis points in the

radial direction, er, the y′-axis points in the circumferential direction, eθ, and the

z′-axis points in the same direction as the z-axis, ez. Using equation 2.19 the radial

strain is given by

Eer
= E ′11 = eT

r Eer (2.20)

where eT
r = [cos θ, sin θ, 0]. In general, the strain in a particular direction, u, is given

by

Eu = uT Eu (2.21)

which is a scalar value.
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Figure 2.5: To compute the strain tensor at the point P in a coordinate system
whose axes x′, y′, and z′ are aligned in the directions er, eθ, and ez we can use the
transformation law for tensors.

Strain Visualization A common way to visualize strains in a particular region

of interest is by using contour or color maps. Another way of visualizing strains is

with the use of tensor ellipsoids. Since the strain tensor, E, is a symmetric tensor,

a coordinate system can be found in which E take the form a diagonal matrix.

The rotation matrix which transforms into this coordinate system is given by RP

in which the column vectors are equal to the the eigenvectors of E. The diagonal

components of the strain tensor in this coordinate system are called the principal

strains and are equal to the eigenvalues of E. The eigenvectors point in the principal

strain directions. At each point in the region of interest an ellipsoid can be drawn

whose axes point in the directions of the eigenvectors of the strain tensor and whose

lengths are proportional to the eigenvalues.

Figure 2.6 shows a visualization of a synthetic displacement field using an arrow

plot and the corresponding strain field using tensor ellipsoids.

2.3 Motion Analysis using Ultrasound

As there are no clear landmarks in the ventricular walls, true 4D motion estima-

tion from US images is not possible. Nevertheless, the relatively low cost of US

and the ability to acquire images from the bedsides of critically ill patients have

attracted a significant amount of attention in the literature for the estimation of
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Figure 2.6: The figure on the left shows an arrow plot of a radially symmetric
displacement field. The figure on the right shows a plot of the corresponding strain
field using tensor ellipsoids.
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Figure 2.7: A plot of the radial (left) and circumferential strains (right) generated
by the displacement field shown in figure 2.6.

motion parameters from US images.

Because of the noise present in the US images some researchers have concentrated

on finding only the boundaries of the LV and estimated local deformation parameters

from the contours extracted. Tseng et al [165] used 4D knowledge-based snakes and a

continuous distance transform neural network (CDTNN) to detect the endocardium

of the LV in US images acquired using transesophageal echocardiography. Other

methods based on level sets [39] and active contours [60] have also been proposed

for contour tracking. Common to all of these methods, the epicardium is not as easy

to track because of the poor contrast between it and the background.

Papademetris et al [120] relied on operator intervention and correction of a semi-

automatic algorithm for the detection of endocardial and epicardial surfaces. Corre-

sponding points on the surfaces detected in the image sequence were then mapped

to each other using an algorithm which tried to minimize the differences in principal

curvatures between the surfaces [151]. They then used a biomechanical model of the

LV which incorporated prior knowledge of the muscle fiber orientations to obtain a

dense estimate of the deformation field within the myocardium.

There is some evidence that the speckle patterns generated from scattering by

underlying tissue elements in echocardiographic image sequences are temporally
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correlated. Some researchers have investigated the possibility of reconstructing the

deformation field in the myocardium by tracking the motion of the speckle during

the cardiac cycle. Mailloux et al [97] assumed that the interframe velocity field

could be locally described by a set of linear equations. The linearity of the optical

flow field was introduced into the optical flow formulation of Horn and Schunck [70]

and used to estimate the deformation of the LV wall in 2D echocardiographic image

sequences. A more general method using deformable meshes and block matching

has also been suggested for tracking speckle patterns [178] but has yet to be applied

for heart images.

The assumption that the motion of the underlying tissue is strongly coupled to

the motion of the speckle patterns becomes false when the tissue scattering struc-

tures which generate the speckle patterns move in a nonuniform way. This results

in speckle decorrelation and is the greatest difficulty encountered when tracking

speckle patterns. Other problems such as noise, through-plane motion, and speckle

motion artifacts resulting from the image formation process itself also make motion

estimation from US images challenging.

2.4 Motion Analysis using PET and SPECT

Wall motion analyses can also be performed on PET and SPECT, although the

poor resolution of the images acquired imply that dense estimates of deformation

parameters are not possible. Simple numerical scores can be assigned to segments of

the heart to classify the type of motion motion exhibited in a particular region of the

myocardium. For example, 1 = normal wall motion, 2 = hypokinesis (diminished

endocardial wall motion and thickening), 3 = akinesis (no endocardial movement or

wall thickening), and 4 = dyskinesis (outward excursion of the wall during systole).

Such numerical indices have been used by human observers to grade wall motion

abnormalities in electrocardiographically (ECG) gated PET images [67, 145, 176].

Similar studies have also been conducted in gated SPECT images [168, 15, 2, 1, 89].
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2.5 Motion Analysis using MRI

Unique to MRI is the ability to measure displacements and velocities of material

points in the myocardium. Two different methods can be used to quantify myocar-

dial kinematics—phase contrast MRI (PC-MRI) and magnetic resonance tagging.

2.5.1 Phase Contrast MR

The main difficulty associated with motion estimation from cine phase contrast MR

images is the accumulation of errors which results when the measured velocities are

integrated over time to track the motion of a material point. This is particularly true

near borders of the LV. Other difficulties also result from the spatially dependent

phase offsets caused by eddy currents.

To overcome some of these difficulties Zhu and Pelc [182] computed motion tra-

jectories from cine PC-MRI images by modeling the the periodic motion of the

heart as composed of Fourier harmonics and integrating the material velocity of the

tracked point in the frequency domain. They then extended the method using a

spatio-temporal finite element mesh model [184] in which the nodes of the finite

element mesh were characterized by the Fourier harmonics. This allowed a smooth

transition from a coarse but highly reproducible model to a perfect spatiotempo-

ral representation (at the expense of reduced reproducibility). Meyer et al [108]

integrated information from the LV contours as well as the velocity data into a

deforming mesh to track the myocardium over time. The mesh was guided by a

Kalman filter in which the cardiac motion was modeled as being temporally smooth

and cyclical when there was low confidence in the contour and velocity data. Other

similar methods to estimate strain have also been suggested [183].

A virtual tagging framework has been proposed by Masood et al [105]. Velocity

measurements made during the cardiac cycle are used to deform an artificial tag grid

imposed on the heart muscle. The differences between the velocities computed from

the deforming virtual tag grid and the true velocities measured during the scanning
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are minimized in a least squares sense. The deformation of the virtual tag grid can

then be used to compute the strain in the myocardium.

2.5.2 Magnetic Resonance Tagging

The main difficulty associated with the MR tagging is the loss of contrast between

tags due to longitudinal (T1) relaxation so that the entire cardiac cycle cannot be

tracked with a single set of images. Fischer et al [53] proposed a method called

Complementary SPAtial Modulation of Magnetization (CSPAMM) to reduce the

effects of tag fading by acquiring two sets of images in which the tagging grids in

the first set of images is the negative of the tagging grids in the second set and

subtracting one from the other. As the two sets of images are acquired sequentially

the image acquisition time is correspondingly increased.

Other methods to improve the tagging contrast and resolution have also been

proposed including the Delays Alternating with Nutations for Tailored Excitations

(DANTE) tagging sequence [112] as well as hybrid methods utilizing Steady-State

Free Precession (SSFP) [66] and spiral MR imaging sequences [143]. Radial geome-

tries for tag patterns [13, 152] have also been developed for the characterization of

myocardial motion patterns but their clinical usefulness has, to date, not been fully

investigated.

A second difficulty associated with the reconstruction of motion fields using

tagged MR images is that of through-plane motion. This is depicted in figure 2.8

which shows the deformation of the LV that takes place between two times in the

cardiac cycle, t = 0 and t = nτ , where n is the frame number and τ is the time

interval between the frames.

As can be seen in the figure the imaging volume defined by the MR scanner

coordinate system is stationary whereas the heart moves continuously in three di-

mensional space due to the respiratory motion of the subject being imaged as well

as the intrinsic beating motion of the heart itself. It follows that the tissue that
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Figure 2.8: This figure shows the deformation of the LV that takes place between
times t = 0 and t = nτ .

is imaged at a particular time will not be the same as the tissue that is imaged

in subsequent times. So to accurately reconstruct the deformation field in the my-

ocardium a contiguous set of slices must be acquired covering the whole of the LV.

Moreover, as the tagging patterns are two-dimensional, to estimate the complete 3D

motion of the heart over time tagged MR images in two different directions need to

be acquired (usually the short-axis (SA) and long-axis (LA) directions). In this way

the true three-dimensional motion of the heart can be estimated.

To overcome the problem of through-plane motion induced by respiratory mo-

tion breath-hold cine MRI [107] can be used, but care must be taken to coach the

volunteer to have a consistent breathing pattern so that the position of the heart at

end-expiration is the same across the multiple breath-holds needed for 3D imaging.

To account for the motion of the heart itself, slice-following [154] can be used in

conjunction with breath-hold methods. Recently, Ryf et al [144] have extended the

CSPAMM method to produce 3D dimensional tag patterns thus reducing the com-

plexity of deformation field reconstruction from multiple sets of SA and LA tagged

MR images.
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2.5.2.1 Motion Tracking Methods

A general trend seen in the literature relating to tagged MR image analysis is the

separation of the task of tag localization or tag displacement measurement with

that of deformation field reconstruction: Usually the tags are localized in an initial

step and then a transformation or deformation model is fitted to the measured

displacements. In the following we describe the various methods which have been

developed for tagged MR image analysis.

Active Contour Models The most popular method for tracking tag stripes

in SPAMM [12, 11] MR images is through the use of active contour models or

snakes [77]. A snake is defined to be a curve or a surface which minimizes an energy

functional. In 2D a snake is a curve

x(s) = [x(s), y(s)], s ∈ [0, 1] (2.22)

that minimizes an energy functional of the form

E =

∫ 1

0

1

2
[α||x

′

(s)||2 + β||x
′′

(s)||2] + Eext(x(s)) ds (2.23)

where x
′

(s) and x
′′

(s) are, respectively, the first and second derivatives of x(s) with

respect to s, α and β are weighting parameters that control the snake’s tension and

rigidity respectively and are associated with the internal energy of the snake, and

Eext(x(s)) is an external energy function derived from the image data. The external

energy term is chosen to be a function which attracts the snake to features of interest

in the images—the epicardial and endocardial contours of the LV or the dark stripes

defining the tagging grid in tagged MR images.

Two difficulties are encountered when using snakes. The first difficulty stems

from the fact that an external energy function, designed to attract the snake towards
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edges in the image, is usually derived from the gradient of the image intensity:

Eext = −|∇I(x, y)|2 (2.24)

This means that if the snake is initialized to lie in a relatively homogeneous region

of the image then no forces will exist to drive the snake towards features of interest.

The second difficulty arises when the image forces are not sufficiently strong enough

to drive the active contour towards concave features of interest in the images. Gra-

dient vector flow (GVF) flow fields have been suggested by Xu and Prince [175] to

overcome these difficulties.

Amini et al [7, 4] used B-snakes and coupled B-snake grids (a B-snake is an active

contour parameterized by B-spline functions) to track the motion of the myocardium

in radial and SPAMM tagged MR images. The B-snake grids were optimized by find-

ing the minimum intensity locations in the tagged MR images. A dense displacement

field was then interpolated by calculating a smooth warp based on continuity and

intersection constraints. As the authors have noted, their method is limited to 2D

analyses of the motion field within the myocardium as cardiac through plane mo-

tion is neglected. A specific imaging protocol consisting of a series of short-axis

SPAMM tagged MR images lying along the corresponding tag planes in a set of

parallel-tagged long-axis images has also been suggested for the analysis of cardiac

motion [5]. The intersections of the tag planes, which were modeled as a series of

B-spline surfaces, defined a set of points called myocardial beads which could then

be visualized as the heart contracted during its cycle. A 4D extension has also been

developed by Huang et al [72].

Active contour models were also used by Young et al [180] where a weighted

combination of energy potentials related to the internal energy of the deforming

grid, the energy of the tagged image itself and the energy of user interactions was

minimized using a modified gradient descent technique. The displacements obtained

were then fitted to a finite element model to calculate deformation indices.
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Park et al [121, 122] defined a new class of deformable models parameterized by

functions which captured the local shape variation of the LV such as the contraction

and axial twist. Again the SPAMM tag pattern was tracked using active contour

models and the displacement data obtained was fitted with the deformable models.

The main advantage of this method was that the parameter functions were few in

number, intuitive, and allowed quantitative analyses to be made easily.

Specific packages have also been designed for the measurement of tag displace-

ments. Kumar and Goldgof [83] used energy minimizing active contour models to

track a SPAMM grid in tagged MR images, while Guttman et al [64] have designed

a package called “findtags” which uses a series of image processing steps to find

the myocardial contours and tags in parallel and radial tagged MR images. The

contours are found by using a morphological closing operator to remove tags in the

myocardium followed by the minimization of a nonlinear combination of local cost

functions. The tags were then detected using template matching based on expected

tag profiles from a tagged spin-echo imaging equation. The package also uses a

graphical user interface (GUI) to help users to adjust incorrectly detected contours

and tags.

These packages have been used by various researchers to both validate and fit

specific models of the LV that reflect its geometry. O’Dell et al [113] used a truncated

series expansion in prolate spheroidal coordinates to fit tag displacement measure-

ments and reconstruct the motion field within the myocardium from a set of or-

thogonal parallel planar tagged MR images. Declerck et al [43] also used orthogonal

parallel planar tagged MR images, but the motion of the myocardium was modeled

using a four-dimensional (4D) planispheric transformation. Again, in an initial step,

“findtags” was used to make measurements of tag displacements. The advantage of

using a 4D planispheric transformation is that it is continuous both in space and

time. Denney and Prince [159] used an estimation theoretic approach modeling the

measurement noise in tracking tags with a white random process. Using smoothness

and incompressibility constraints, they were able to estimate the motion field within
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Figure 2.9: The dotted lines show the deformation of the material coordinate system
with respect to the Cartesian coordinate system.

the myocardium using a Fisher estimation framework. A number of the methods

discussed in the above paragraphs have been compared in Declerck et al [44].

Optical Flow Methods Optical flow methods [70] have also been used for track-

ing tag patterns in tagged MR images. Figure 2.9 shows an 2D object that is

deforming as time progresses. The image on the left in the figure shows two coor-

dinate systems xy and pxpy whose origins are at the center of the object initially.

pxpy is a Cartesian coordinate system which is fixed in space at time t = 0. The

xy coordinate system is fixed to the object and deforms with the object as time

progresses as shown in the images in the middle and to the right in figure 2.9. The

coordinates of points measured with respect to the xy coordinate system refer to

single particle in the object’s material. We call the xy coordinate system the ma-

terial coordinate system and the points referred to, with respect to this coordinate

system, as material points.

Suppose we take a sequence of images of the deforming object. Let the in-

tensity distribution in the image sequence be given by a function I(p, t) where

p = [px, py]
T and let the deformation of the object be described by a function

q(x, t) = [qx(x, y, t), qy(x, y, t)]T which takes a point x = [x, y]T , measured in the

material coordinate system at time t = 0, and gives the position that it has moved

to at time t in the pxpy coordinate system.

The image intensity of a material point in the image sequence is given by
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I(q(x, t), t). Differentiating I with respect to t while keeping x = [x, y]T constant

(
∂I

∂t

)

x

= ∇qI.q̇ +

(
∂I

∂t

)

q

(2.25)

where

∇qI =

[(
∂I

∂qx

)

qy,t

,

(
∂I

∂qy

)

qx,t

]T

(2.26)

and

q̇ = [q̇x, q̇y]
T =

[(
∂qx

∂t

)

x,y

,

(
∂qy

∂t

)

x,y

]T

(2.27)

is the velocity field.

In conventional optical flow [70] the rate of change of the image intensity of a

material point is assumed to be zero. This assumption does not hold true in tagged

MR images as the contrast between the tags decays, due to T1 relaxation, during

the cardiac cycle.

A number of methods have been proposed to model this variation in contrast.

The variable brightness optical flow (VBOF) method of Prince and McVeigh [131,

132] used a model of the imaging process to estimate the variation in the brightness

of material points in the myocardium as it undergoes deformation. The image taken

at time t was modeled as the sum of an untagged image, I0(q, t), and an image,

IT (q, t), due to the tag pulse sequence

I(q, t) = I0(q, t) + IT (q, t) (2.28)

where

I0(q, t) = D0(x)e−TE/T2(x)
(
1− e−TR/T1(x)

)
(2.29)

IT (q, t) = D0(x)e−TE/T2(x)(ξ(x)− 1)
(
e−t/T1(x) − e−TR/T1(x)

)
(2.30)

and D0 is the spin density, T1 is longitudinal relaxation time, T2 is the transverse

relaxation time, TE is the echo time, and ξ(x) is the cosine of the magnetization tip

angle at x needed to produce the tag pattern.
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A solution to equation 2.25 was obtained by regularizing the velocity field, q̇, to

be smooth and using a variational framework in which the following integral

S = α2

∫∫ (
∂q̇x

∂x

)2

+

(
∂q̇x

∂y

)2

+

(
∂q̇y

∂x

)2

+

(
∂q̇y

∂y

)2

dx dy +

∫∫ (

∇qI.q̇ +

(
∂I

∂t

)

q

−

(
∂I

∂t

)

x

)

dx dy (2.31)

was minimized at each time instant. In the above equation, α is a regularization

constant which provides a tradeoff between the smoothness of the velocity field and

the noise present in the image sequences. The deformation of the object was then

estimated by integrating the velocity fields obtained over time.

The key difficulty with the VBOF method is that it requires prior knowledge

of the longitudinal and transverse relaxation parameters, the proton density, and

the tagging pattern itself over the entire field of view at end-diastole. Additionally,

to estimate the material time derivative of the image intensity, (∂I/∂t)x, requires

knowledge of the reference map, x(q), at each time instant. If the model of the

imaging process is not sufficiently accurate then the errors in the estimated velocity

fields will accumulate causing errors in the reference maps ultimately degrading the

performance of VBOF to below that of conventional OF methods as time progresses.

Because of the difficulties in estimating the imaging parameters, Gupta and

Prince [63] used a local linear transformation model to take account of the bright-

ness variation in the tagged MR images. The linear transformation was approxi-

mated using the spin-echo tagging equation from MR physics. Although the method

requires less knowledge of the MR imaging parameters it is still dependent on an

appropriate approximation of the longitudinal relaxation parameter of the imaged

tissue.

Dougherty et al [51] circumvented the problem of the modeling the brightness

variation of tagged MR images by preprocessing the images with a series of Laplacian

filters [21] to reduce the intensity variation and enhance edges in the images. A

Laplacian pyramid representation was computed for each frame and the motion
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field between two successive time frames was estimated by minimizing a sum of

squares difference measure of image similarity using a Gauss-Newton optimization

technique.

The optical flow methods discussed above have been developed for motion es-

timation from 2D images and further development is needed before they can be

applied to 3D images.

HARP HARmonic Phase (HARP) MRI [115, 116] is a recent technique which

can be used to derive strain patterns directly from tagged MR images without the

need for feature extraction. The method is based on the fact that the Fourier

transforms of SPAMM images contain a number of distinct spectral peaks. Using a

bandpass filter to extract a peak in the Fourier domain yields a complex harmonic

image, consisting of a harmonic magnitude image which describes the change in

heart geometry as well as the image intensity changes, and a harmonic phase image

which describes the motion of the tag pattern in the myocardium. The advantage

of HARP imaging is that it can be used to directly calculate the strain from the

images.

An image taken immediately after the application of a 2D SPAMM tag pattern

at time t = 0 can be represented by

I(x) = I0(x)s(x;w1, α1, θ1)s(x;w2, α2, θ2) (2.32)

where I is the image that would have been produced without the application of the

tag pattern and s is a modulation function which represents the tag pattern:

s(x;w, α, θ) = cos2(α) + sin2(α) cos(wTx + θ) (2.33)

The parameters in the above equation are the gradient strength and direction, w,

the tip angle, α, and a fixed phase shift, θ, controlling the position of the tag pattern.
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Rewriting equation 2.33 as

I(x) =
4∑

i=0

Di(x; α1, α2) cos(wT
i x + θi) (2.34)

where the functions Di can be obtained by expanding equation 2.32 using equation

2.33, and w0 = 0,w3 = w1+w2, w4 = w1−w2, θ0 = 0, θ3 = θ1+θ2 and θ4 = θ1−θ2.

The images taken at a later time, t, as a function of the spatial position can be

represented as

I(q, t) =
4∑

i=0

Di(x(q(y), t); α1, α2) cos(wT
i x(q(y), t) + θi) (2.35)

where x(q, t) is the reference map at time t and y are the image coordinates. y is

related to q by

q(y) = y1h1 + y2h2 + q0 (2.36)

where h1 and h2 are the directions of the horizontal and vertical axes in the image

and q0 is the origin of the image

In equation 2.35 we see that the image taken at time t is equal to the sum

of a constant image and four images modulated by cosine functions. The Fourier

transform of I(q, t) contains a number of spectral peaks at the locations wi (a

synthetic example is given in figure 2.10). Each peak corresponds to one of the

cosine functions in equation 2.35 and taking the inverse Fourier transform of one

of these peaks yields a magnitude and an angle image which contain information

about the geometry and motion of the LV.

Recently, Pan et al [119] developed a 3D motion tracking technique based on

HARP. Their method used a mesh model, built using SA and LA images, represent-

ing a collection of material points inside the LV wall.
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Magnitude image Angle image

Fourier transform

Figure 2.10: The Fourier transform of a SPAMM tagged MR image contains a num-
ber of spectral peaks in the Fourier domain. Taking the inverse Fourier transform
of a single peak in the Fourier domain yields a magnitude and an angle image which
contain information about the geometry and motion of the LV.
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2.6 Validation

Since there is no agreed gold standard for the extraction of the deformation field in

the myocardium researchers have taken three different approaches to the validating

their work. Each has its own advantages and disadvantages. Existing approaches

are based on

Validation with a cardiac motion simulator Amini et al [7, 4, 5], Huang et

al [72], O’Dell et al [113], Denney and Prince [159], Prince and McVeigh [132],

Gupta and Prince [63], Osman et al [115, 116]

Validation with a phantom Young et al [180], Dougherty et al [51].

Validation with a human observer Kumar and Goldgof [83], Ozturk and McVei-

gh [117].

Of the three methods, validation using a cardiac motion simulator is the most pop-

ular. The advantage of using a motion simulator is that the motion fields generated

in the images are known exactly and can be compared easily with the proposed

algorithm for motion tracking. The disadvantage of this approach is that a sim-

plified model of the cardiac motion and the imaging process is used and does not

completely take into account the difficulties encountered in clinical practice.

The type of motion which can be generated with a phantom are even more simpler

than the ones that can be generated using a motion simulator. This is because of

the difficulty in constructing the model and controlling it during its operation. The

advantage of using a phantom is that no assumptions need to be made regarding

the imaging process.

The final method used for validation is to manually track the motion of the

myocardium in volunteer data using graphical tools written specifically for that

purpose. This method has the advantage of testing the motion tracking on real

images. The disadvantage of this method is that only in-plane displacements can be
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measured at a finite number of points in the myocardium. Furthermore, no ground

truth for quantities such as strain can be obtained in this way.

2.7 Summary

A summary of the work done on tagged MR image analysis is given in table 2.1.

Researchers have predominantly used a grid tag pattern to reconstruct deformation

fields as two components of the 3D motion field can be measured from a single image.

However, complete 3D reconstruction of motion fields requires the acquisition of

additional images in which the tag planes are perpendicular to the grid tag pattern,

and this has been the focus of more recent research. Further work still needs to be

done on using optical flow methods for 3D motion reconstruction.

The work presented in this thesis aims to overcome some of the problems en-

countered in cardiac motion analysis by using image registration techniques. The

advantage of using image registration techniques is that no feature extraction needs

to be performed. Additionally the transformation model used in the registration

algorithm can be used to compute directly the deformation parameters of interest

thus removing the extra step needed for model construction. In the following chap-

ter we review the image registration techniques that have been developed and their

application to cardiac image analysis.
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Authors Tagging Method 2D/3D Tag Localization Motion Reconstruction Validation
Amini et al [7, 4] radial & grid 2D ACM thin-plate splines motion simulator
Amini et al [5] grid 3D ACM B-spline surfaces motion simulator

Young et al [180] grid 3D ACM finite-element model gel phantom
Park et al [121, 122] grid 3D ACM deformable models none

Kumar & Goldgof [83] grid 2D ACM thin-plate splines manual tracking
Guttman et al [64] radial & parallel 2D ACM/TM none none
O’Dell et al [113] parallel 3D ACM/TM series expansion motion simulator
Declerck et al [43] parallel 3D ACM/TM planispheric transformation none

Denney & Prince [159] parallel 3D ACM/TM Fisher estimation framework motion simulator
Prince & McVeigh [132] grid 2D OF velocity fields motion simulator and phantom

Gupta & Prince [63] grid 2D OF velocity fields motion simulator
Dougherty et al [51] grid 2D OF velocity fields gel phantom

Osman et al [115, 116] grid 2D – HARP motion simulator

Table 2.1: This table summarizes the work which has been done in tagged MR image analysis. The abbreviations used in the table are:
2-dimensional/3-dimensional (2D/3D), active contour models (ACM), template matching (TM), optical flow (OF), harmonic phase
(HARP).
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Chapter 3

Cardiac Image Registration

Patient diagnosis frequently involves the use of information available from images

taken using different imaging modalities. For example, MR images reveal informa-

tion about the proton density in a particular region of the body (the anatomy),

whereas PET images are used to evaluate biological processes by measuring concen-

trations of positron-emitting radioisotopes in living tissue (the physiology). Before

a clinician can make any interpretations based on the complementary information

available in the images, the images must be aligned so that points in one image can

be related to points corresponding to the same anatomical locations in the second

image. Images acquired at different time points may also need to be aligned. This

is necessary, for example, if the effects of a surgical procedure need to be evaluated.

The process of determining the transformation T(x) which maps points in an

image R(x) defined over a domain x ∈ VR to their corresponding positions in the

image S(x) defined over a domain x ∈ VS is called image registration (as shown in

figure 3.1). The transformation which registers the images is found by optimizing a

similarity measure, C, derived from features in the image or the intensities of voxels

in the images.

A schematic diagram of a voxel-based image registration algorithm and its main

components are shown in figure 3.2. The inputs to the registration algorithm are

a fixed image, a moving image and an initial transform estimate that needs to be
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x

y

R

S

x

T(x)

Figure 3.1: The transformation T(x) transforms the point x in the image R into its
corresponding position in the image S.

optimized. During the registration, points in the fixed image are mapped into the

moving image before the similarity measure or metric is evaluated. As the mapped

points will not lie exactly on the discrete grid positions defining the moving image,

an interpolator is needed to estimate the voxel intensities at those points.

In this chapter we review image registration methods that have been developed

for cardiac image analysis. General reviews and introductions to image registration

methods can be found in Maurer and Fitzpatrick [22], Fitzpatrick et al [54], and

Hill et al [68], while Maintz and Viergever [98], who cite a large number of papers,

have classified registration algorithms according to nine different criteria. We begin

by looking at the different types of transformations used to register images.

3.1 Transformation Types

The transformation types used in registration problems can be classified broadly into

two different types: those that preserve the straightness of lines and those that do

not. Rigid, affine, and perspective transformations (which preserve the straightness

of lines) are appropriate for the alignment of images containing static structures such
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Fixed Image

Moving Image

Metric

Interpolator

Optimizer

Transform

Figure 3.2: The main components in a voxel-based image registration algorithm
are the input images, the interpolator, the metric, and the optimizer (adapted from
figure 8.2 in [73]). The inputs to the registration algorithm are the fixed and moving
images. The transformation which registers the moving image to the fixed image is
found by optimizing a similarity measure. Because the image intensities are usually
only defined on a grid of positions an interpolator is needed to interpolate the image
intensities at nongrid locations.

as bone or external rigid objects introduced into the body to aid in the registration

process (such as stereotactic markers). Curved transformations are used to register

images of objects which change in shape over time such as the internal organs of

the body. They are also used register images of organs which show anatomical

variability across a number of different subjects.

3.1.1 Rigid Transformations

A rigid transformation applied to an object preserves distances and angles between

points in the object. In 3D, a rigid transformation maps a point with position vector

x = [x, y, z]T to another point with position vector x′ = [x′, y′, z′]T . It can be defined

by the following equation:

x′ = Rx + t (3.1)

which in matrix form is





x′

y′

z′




=





r00 r01 r02

r10 r11 r12

r20 r21 r22









x

y

z




+





tx

ty

tz




(3.2)
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where R = {rij}, i, j ∈ {0, 1, 2} is a 3× 3 orthogonal rotation matrix describing the

rotational component of the transformation, and t = [tx, ty, tz]
T is a displacement

vector describing the translational component of the transformation. Two conve-

nient ways for parameterizing the rotational component of the transformation are

through Euler angles or quaternions [69].

3.1.2 Affine Transformations

An affine transformation is one which includes scale and shear components as well

as rotation and translation components:

x′ = Ax + t (3.3)

In matrix form





x′

y′

z′




=


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a00 a01 a02

a10 a11 a12

a20 a21 a22









x

y

z




+





tx

ty

tz




(3.4)

where A = {aij}, i, j ∈ {0, 1, 2} is a 3 × 3 matrix which describes the scale, shear,

and rotation components of the transformation while t describes the translation

component of the transformation. In contrast to rigid transformations the matrix

A is not necessarily an orthogonal matrix.

3.1.3 Perspective Transformations

Perspective transformations have the form

x′ =
d

x.p̂
x (3.5)

where the origin is the focal point of the projection rays emanating from the objects

of interest, p̂ is the direction of the normal vector of the projection plane, and d is
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the distance of the origin from the projection plane. The projection plane is defined

by the equation:

x.p̂ = d (3.6)

Perspective transformations are used to model the imaging process that generate

the 2D projection images in imaging modalities such as endoscopy, laparascopy,

microscopy, and direct video acquisition.

3.1.4 Spline-Based Transformations

The rigid, affine, and perspective transformations preserve the straightness of lines

and cannot model the change in shape of an object which has undergone local defor-

mation in the images being registered. To model this deformation, correspondences

between points in the object must be found in the two views of the object for all

points of interest. In practice point correspondences can only be found for a finite

number of locations, xi, in the object, such as at the intersections of surface or line

features in the images being registered. The transformation field at all other points

must be interpolated from the displacements at xi.

Spline-based transformations use blending functions located at the points xi

(called the control points) to compute the transformed positions of all other points.

The blending functions used can have global or local support.

3.1.4.1 Thin-Plate Spline Transformations

A class of transformations which can be used to model the nonrigid deformation

of objects is based on thin-plate spline surfaces. If an infinitely large thin sheet of

metal is displaced vertically at a fixed number of points xi = [xi, yi]
T by differing

amounts fi, then the function which gives the displacement, f , of the sheet of metal

at all other points x = [x, y]T in such a way that the bending energy

E =

∫∫ ((
∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2
)

dx dy (3.7)
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is minimized, is described by the thin-plate splines

f(x, y) = a0 + axx + ayy +
N−1∑

i=0

wiU(||xi − x||) (3.8)

where

U(r) = r2 ln r2 (3.9)

and the coefficients a0, ax, ay, and wi in the above equations can be found by solving

a set of linear equations as shown in [17].

Warping functions in 2D or 3D can be defined by specifying two or three sets of

displacements respectively at each of the points xi. In this case the thin-plate spline

transformations have the form

x′ = Ax +
N−1∑

i=0

wiU(||xi − x||) (3.10)

where A is a matrix describing the affine component of the transformation and the

wi are coefficient vectors which sum to 0 and weight the radial basis functions U(r)

given by:

U(r) =






r2 ln r2 in 2D

r in 3D
(3.11)

Thin-plate spline transformations have been used to characterize bone shapes in

terms of principal warps [17], and also for registration tasks [61].

3.1.4.2 Free-Form Deformations

A 3D free-form deformation [149] is defined over a region Ω

Ω = {[x, y, z]T : xmin ≤ x < xmax, ymin ≤ y < ymax, zmin ≤ z < zmax} (3.12)

by placing a regular grid of (nx + 1) × (ny + 1) × (nz + 1) control points over the

region and specifying the displacement vectors at each control point of the grid. If
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the positions of the control points are given by

xi,j,k = x0 + iδxû + jδyv̂ + kδzŵ (3.13)

where û, v̂, ŵ are the unit basis vectors used to define a local coordinate system

in the grid, δx, δy, δz are the control point spacings in the x-, y-, z-directions

respectively, and i ∈ {0, 1, . . . , nx}, j ∈ {0, 1, . . . , ny}, k ∈ {0, 1, . . . , nz}, then the

transformed position, x′, of a point, x, is given by

x′ = x +
∑

i

∑

j

∑

k

fi,j,k(x)di,j,k (3.14)

where the di,j,k are the displacement vectors at each control point.

One choice for the blending functions fi,j,k are the symmetric B-spline functions

of order n which are defined by the equation

βn(x) =
n+1∑

j=0

(−1)j

n!

(
n + 1

j

)
(x− j + (n + 1)/2)nµ(x− j + (n + 1)/2) (3.15)

where µ(x) is the step function

µ(x) =






0 for x < 0

1 for x ≥ 0
(3.16)

and are plotted in figure 3.3 for n = 0, 1, 2, 3.

The symmetric cubic B-spline functions are commonly used and ensure that x′

can be differentiated twice with respect to x. They can be obtained from equa-
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Figure 3.3: The B-spline functions of order n = 0, 1, 2, 3.

tion 3.15 by setting n = 3:

β3(x) =






(2 + x)3/6 for −2 ≤ x < −1

(4− 6x2 − 3x3)/6 for −1 ≤ x < 0

(4− 6x2 + 3x3)/6 for 0 ≤ x < 1

(8− 12x + 6x2 − x3)/6 for 1 ≤ x < 2

0 otherwise

(3.17)

The free-form deformation is then obtained by setting

fi,j,k(x) = β3

(
x− xi,j,k

δx

)
β3

(
y − yi,j,k

δy

)
β3

(
z − zi,j,k

δz

)
(3.18)

and is given by

x′ = x +
nx∑

i=0

ny∑

j=0

nz∑

k=0

β3

(
x− xi,j,k

δx

)
β3

(
y − yi,j,k

δy

)
β3

(
z − zi,j,k

δz

)
di,j,k (3.19)

where [xi,j,k, yi,j,k, zi,j,k]
T = xi,j,k.
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Figure 3.4: The Bernstein polynomials for n = 0, 1, 2, 3.

Another choice for the blending functions are the Bernstein polynomials

Bi,n(u) =

(
n

i

)
ui(1− u)n−i (3.20)

which are plotted in figure 3.4 for n = 0, 1, 2, 3. In this case the free-form deformation

is obtained by setting

fi,j,k(x) =

(
nx

i

)
(1− s)nx−isi

(
ny

j

)
(1− t)ny−jtj

(
nz

k

)
(1− u)nz−kukdi,j,k (3.21)

where s, t, u ∈ [0, 1] and are such that:

x = x0 + snxδxû + tnyδyv̂ + unzδzŵ (3.22)

Free-form deformations have been used to model the nonrigid deformation of

breast tissue [142], the heart, and the brain. They have also been used in the

computer graphics field for morphing 2D images [86] and also for deforming 3D

geometrical models [149] using Bernstein polynomials.
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3.1.5 Physical Models of Deformation

3.1.5.1 Elastic Models

The deformation of objects can also be modeled directly using physical models of

the forces acting within it. In elastic media the Navier-Stokes equilibrium equations

for linear elasticity

µ∇2u + (λ + µ)∇(∇.u(x)) + F(x) = 0 ∀x ∈ VR (3.23)

give the displacement field u(x) arising from the internal forces, F, acting on the

body, where λ and µ are Lamé coefficients and are related to the elastic properties

of the medium.

The external force F is chosen to match corresponding regions in each image

of the registration. Bajcsy and Kovačič [14] chose a force derived from the local

correlation of the intensities in the images.

3.1.5.2 Viscous Fluid Models

Large deformations are sometimes necessary to register images, especially for in-

tersubject or atlas-to-subject registration tasks. Registration algorithms which use

regularization terms to ensure the smoothness of the transformations tend to penal-

ize large deformations.

Viscous fluid models [33] allow for large deformations of objects while maintain-

ing the transformations to be smooth. They are governed by the Navier-Stokes

partial differential equation

µ∇2v + (λ + µ)∇(∇.v) + F(x) = 0 (3.24)

where v is the instantaneous velocity of a material point at position x at time t,

µ and λ are viscosity constants, and F is the force per unit volume acting on the

body.
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3.2 Similarity Measures

To register two images a measure of the degree of alignment of the images is required,

which can be based on point, surface or intensity features present in the images.

For point and surface based methods some preprocessing is required to extract the

features of interest before the registration can be performed.

3.2.1 Point Based Methods

Point-based registration relies on the identification of corresponding sets of points

{xi : i ∈ {0, 1, . . . , N}} and {yi : i ∈ {0, 1, . . . , N}}, in the target and source images

respectively. The points xi and yi can be external markers introduced into the

image by rigid structures such as stereotactic frames or markers placed on the skin,

or they can be anatomical features present in the images themselves. The points can

be located manually or, if they are clearly discernible, with an automatic algorithm.

Alignment is achieved by minimizing the distance between the points xi and the

transformed points T(yi).

C =
∑

i

w2
i ||xi −T(yi)||

2 (3.25)

where the wi are weighting coefficients that measure the degree of confidence to

which the point features have been located.

For rigid transformations a least squares fitting procedure can be used [9]. Meth-

ods also exist for rigid transformations with isotropic and nonisotropic scaling, per-

spective transformations, and spline based transformations [54].

3.2.2 Surface Based Methods

Surface-based image registration is achieved by finding the transformation which

aligns corresponding surface features present in the images being registered. Sur-

faces in an image can be represented by a polygonal model (for example as a col-
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lection of triangles), through implicit equations, or in a parametric form. If the

contrast between the boundary of a surface and the background is sufficient then

a contour extraction algorithm such as the marching cubes algorithm [92] will gen-

erate a triangulation of the surface. The number of triangles generated increases

with the dimensions of the image and for large images it may be necessary to run a

decimation algorithm to reduce the number of triangles in the surface [148].

Intuitively, the similarity between two surfaces can be estimated by measuring

the distance between corresponding points in the two surfaces. If we denote the two

surfaces to be registered by R (the fixed surface) and S (the moving surface), and

a set of points on the surface S by {yi}, then a measure of similarity between these

two surfaces is given by

C =

√√√√
N∑

i=1

w2
i ||xi −T(yi)||2 (3.26)

where wi is a weight assigned to the point yi and controls the degree to which that

point affects the computed similarity measure, and xi is the closest point on the

surface R which corresponds to T(yi). Pelizarri et al [124] used the intersection of

the line joining the centroid of the surface R with the transformed points T(yi) to

define the closest points, xi. This was called the “head and hat” algorithm as the

registration process could be visualized as the fitting of the point set {yi} (the hat)

to the surface R (the head).

The distance between a point and a surface can be precomputed using Euclidean

distance transforms [42] but at the cost of reduced accuracy since the surfaces need

to be converted into discrete binary representations.

The iterative closest point (ICP) algorithm [16] decomposes the surfaces being

registered into point sets: the fixed surface point set and the moving surface point

set. The algorithm works by iteratively finding points on the moving surface point

set which are closest to the points in the fixed surface point set, registering the two

point sets together (using a point-based registration algorithm), and applying the
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resulting transformation to the moving surface point set.

3.2.3 Intensity Based Methods

The voxel intensities in an image can be used to directly measure the similarity

between two images. The main attraction of intensity based methods is that no

prior feature extraction is necessary.

3.2.3.1 Sum of Squared Differences

If the images to be registered differ only by Gaussian noise then it can be shown

that the optimal similarity measure is the sum of squared differences (SSD) of the

intensities of the voxels in the two images [170]. The sum of squared differences

between two images being registered is given by

CSSD =
∑

i

[R(xi)− S(T(xi))]
2 ∀i such that T(xi) ∈ VS (3.27)

where VS is the spatial region covered by the image S.

3.2.3.2 Correlation Coefficient

If the intensities of corresponding voxels in the images to be registered are linearly

related then it can be shown that the optimal measure of image similarity is the

correlation coefficient between the voxel intensities [170]

CCC =

∑
i[R(xi)− 〈R〉][S(T(xi))− 〈S(T(xi))〉]

{
∑

i[R(xi)− 〈R〉]2
∑

i[S(T(xi))− 〈S(T(xi))〉]2}1/2

∀i such that T(xi) ∈ VS (3.28)

where 〈R〉 is the mean intensity of voxels in image R and 〈S(T(xi))〉 is the mean

intensity of the voxels in the transformed image S(T(xi)).
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3.2.3.3 Mutual Information

Mutual information (MI) is an entropy based measure of the similarity between

two images and is not dependent on the specific functional relationship between the

intensity distributions in the pair of images being registered, making it particularly

suitable for cross-modality image registration.

The entropy of a discrete random variable, X, is defined by

H(X) = −
∑

x

fX(x) log fX(x) (3.29)

where fX(x) = P({X = x}) is the probability that the random variable X takes

the value x. The entropy of X is a measure of the uncertainty in the value that X

will take when it is measured. The more evenly distributed fX(x) is, the larger the

uncertainty or entropy.

Similarly, for a pair of discrete random variables, X and Y , the joint entropy

H(X, Y ) is defined by

H(X, Y ) = −
∑

x

∑

y

fX,Y (x, y) log fX,Y (x, y) (3.30)

which is a measure of the uncertainty in the values that X and Y will both take

when they are measured.

From these definitions the mutual information, I(X; Y ), between a pair of dis-

crete random variables, X and Y , is defined by [41]

I(X; Y ) =
∑

x

∑

y

fX,Y (x, y) log
fX,Y (x, y)

fX(x)fY (y)
(3.31)

where fX,Y (x, y) is the joint probability mass function of the random variables X,

and Y . I(X, Y ) is a measure of the distance (the Kullback-Leibler distance) between
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the two probability mass functions pX,Y (x, y) and qX,Y (x, y) defined as

pX,Y (x, y) = fX,Y (x, y) (3.32)

qX,Y (x, y) = fX(x)fY (y) (3.33)

For example, in the special case when X and Y are independent then pX,Y (x, y) =

qX,Y (x, y) = fX,Y (x, y) = fX(x)fY (y) and I(X; Y ) = 0. Thus, the mutual informa-

tion can be viewed as a measure of the independence of the two variables X and

Y .

I(X, Y ) can also be written as [41]

I(X; Y ) = H(X) + H(Y )−H(X, Y ) (3.34)

= H(X)−H(X|Y ) (3.35)

= H(Y )−H(Y |X) (3.36)

where the conditional entropy H(Y |X) is defined as

H(Y |X) = −
∑

x

∑

y

fX,Y (x, y) log fY |X(y|x) (3.37)

and similarly for H(X|Y ).

Equation 3.35 can be interpreted as saying that there is a reduction in the uncer-

tainty of X due to the knowledge of Y . Similarly, equation 3.36 can be interpreted

as saying that there is a reduction in the uncertainty of Y due to the knowledge of

X.

If the intensities of the voxels in the images to be registered are viewed as being

generated by two random variables X and Y then mutual information can be used

as a measure of similarity if we assume that the images are registered when the

mutual information between the intensities of the images is maximized. The use of

mutual information as an image similarity measure was proposed independently by
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Viola [170] and Collignon et al [34].

The probability density functions of X and Y can be estimated using histograms.

For example if the range of intensities corresponding to the random variable X are

[Xmin, Xmax], they can be grouped into N bins each of fixed width Xw

Xw =
Xmax −Xmin

N
(3.38)

The bins are labelled BX,0, BX,1, . . . , BX,N−1 and the corresponding range of intensi-

ties are [Xmin, Xmin +Xw), [Xmin +Xw, Xmin +2Xw), . . . , [Xmin +(N − 1)Xw, Xmin +

NXw]. The probability density function of X is then estimated by taking a cer-

tain number of random samples in the image and incrementing the count of the

corresponding bin. The probability that a voxel lies within a particular range of

intensities is then given by dividing the number of voxels in the corresponding bin

by the total number of samples taken.

The limited number of samples taken in estimating the probability density func-

tions of X and Y can lead to errors in the computation of the mutual information.

To help make a more stable estimate of the mutual information histogram smoothing

techniques such as Parzen windowing [162] can be used.

3.2.3.4 Normalized Mutual Information

The estimation of the probability distributions of the image intensities in the fixed

and moving images are dependent on the amount of image overlap. In certain cases

it is possible for the images to become increasingly misaligned while the mutual

information increases because of a decrease in image overlap. Studholme et al [156],

suggested the use of a normalized measure of mutual information

N(X; Y ) =
H(X) + H(Y )

H(X, Y )
(3.39)

which was empirically found to be less sensitive to the amount of image overlap.
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Although mutual information based measures have been used successfully for

many image registration tasks, it discards all spatial information and thus decreases

its robustness. To overcome this problem extensions have been proposed which

make use of gradient information [128] and the co-occurrence matrices of neighboring

voxels’ intensities [138]. A recent review of image registration algorithms based on

mutual information is given in Pluim et al [129].

3.3 Cardiac Applications

A recent review of image registration methods for cardiac images acquired using

different imaging modalities is given in Mäkelä et al [99]. Image registration plays a

crucial role in many stages of the functional analysis of cardiac images. We review

some of the main applications of image registration for cardiac image analysis in the

following subsections.

3.3.1 Motion Correction

To compensate for the motion of the heart induced by the breathing of the patients

during MR image acquisition, several slice tracking methods have been developed.

Manke et al [102] used fast rigid and affine image registration techniques to model

the respiratory motion of the heart from low-resolution 3D images. The motion

parameters obtained from the registration were then used to correct for motion in

coronary MR angiography examinations.

Regional myocardial blood flow can be measured using PET but techniques

such as these require greater time than a single breath hold to acquire images,

and so models of respiratory motion have also been used to reduce blurring due to

respiratory motion. Motion correction in Turkington et al [166] was achieved using

a simple translational model with correlation being used to measure the degree of

similarity between the image frames, while a 4D affine model of respiratory motion

was used by Klein et al [81] to correct for motion in gated PET images using a least
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squares difference voxel similarity measure.

A difficulty encountered when using intensity based measures for registration

of PET images is the considerable variation in intensities due to the first-pass of

the contrast agent. Delzescaux et al [47], rather than use intensity information to

effect registration, used the contour of the LV, RV and myocardium to build several

registration models. These were then registered to the image sequences acquired by

using a generalization of the distance map [101].

McLeish et al [106] have built a statistical model of the motion of the heart by

registering images taken at different time points in the breathing cycle to a template

image taken at exhalation. Such a model can be used for motion correction during

scanning.

3.3.2 Image Fusion

Before the complementary information available from different imaging modalities

such as PET, SPECT, and MRI can be used, the images must be registered to each

other.

Registration of PET and SPECT images to MR images is a common applica-

tion of image registration as it provides a means for the detection of ischemic and

infarcted regions of the myocardium (section 1.3.3). Because of the much lower

resolution of PET/SPECT images it is common for some feature extraction to be

done on the PET/SPECT images before registration is performed.

Mäkelä et al [100] used surface and point-based registration methods to fuse data

from MR and PET images and magnetocardiography (MCG) data. Declerck et al [46]

developed a method for comparison of rest and stress blood perfusion SPECT images

with a template of normal blood perfusion map by using an affine transformation

to register the rest and stress perfusion images to each other and a local spline

transformation to map the template to the stress image. The ICP algorithm was

used by Santarelli et al [146] to fuse MR and PET images and functional information
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which can be extracted from MR images have also been combined with coronary

vasculature visible in CT angiography data to assess coronary artery disease [157].

3.3.3 Atlas and Statistical Shape Model Construction

Prior information about the shape and average intensities of cardiac structures can

be used to aid in the analysis of cardiac MR images. To do this the variation in the

images arising from the different image acquisition parameters must be removed by

aligning the images into a common coordinate system.

Frangi et al [57] constructed statistical shape models of the LV, RV and my-

ocardium by first aligning a set of manual segmentations of the cardiac struc-

tures into a common coordinate system using the global registration algorithm of

Studholme et al [155]. As the images to be registered were labelled structures, two

different voxel similarity measures were introduced, the label consistency and the

κ statistic. The label consistency measured how many of the labels in the images

being registered mapped onto each other; and the κ statistic, frequently used in

biomedical research, measured the agreement between the classifications of the car-

diac structures in the images during registration. A dense set of landmarks were

then defined on the atlas using the marching cubes algorithm [92] and the nonrigid

registration algorithm of Rueckert et al was used to propagate the landmarks into

the segmented images after alignment. A principal component analysis (PCA) on

the positions of the landmarks was then performed to derive a statistical model of

the shape variability of the cardiac structures.

Lotjonen et al constructed a four chamber statistical shape model of the heart

from multiple short-axis and long-axis images of the heart by registering segmented

images of the chambers from a number of volunteers.

Perperidis et al [125] developed a 4D registration algorithm for the spatio-

temporal alignment of cardiac image sequences acquired from different subjects so

that comparisons of cardiac function could be made between them. Their transfor-
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mation model, T(x, t), mapped points in a 4D image I(x, t) into their corresponding

positions in a reference 4D image. The transformation was decomposed into a spa-

tial and temporal part, each of which was affine in nature. To register two image

sequences a similarity measure based on normalized mutual information (NMI) was

maximized. Because the motion of the heart cannot be completely described by an

affine transformation, an extended algorithm was presented in [126] which used a

free-form deformation to model the motion of the heart.

3.3.4 Segmentation

Before global quantitative measures such as the EF can be estimated the cardiac

structures (LV, RV, and myocardium) must be first segmented. In some cases seg-

mentation is also required in an initial step before deformation parameters can be

extracted in the myocardium. Some researchers have investigated the use of image

registration to aid in the segmentation of cardiac structures. The advantage of using

image registration is that prior information about both the shape and intensities of

structures in the heart can be made use of.

Lelieveldt et al [88] constructed models of the thorax using constructive solid

geometry (CSG) modeling techniques where the individual structures within the

CSG model were represented by fuzzy implicit surfaces. This model was then used to

segment thoracic MRI images by using the boundaries of the fuzzy implicit surfaces

and the tissue-air transitions in the MRI images to define an energy function which

was minimal when the model was registered to the MRI images.

Lorenzo-Valdés et al [94] used a population-specific atlas, constructed using the

method of Frangi et al [57], and a subject-specific atlas constructed by registering

all images taken during the cardiac cycle to the end-diastolic time frame to segment

4D cardiac MR images. The end-diastolic image was segmented by registering the

population-specific atlas to the subject-specific atlas. The segmentations were then

propagated to all other time frames by registering the segmented subject-specific
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atlas to all other time frames. A 4D probabilistic atlas was constructed in [95] to

segment cardiac structures using the EM algorithm [48] and 4D Markov random

fields.

3.3.5 Motion Analysis

Image registration techniques have also been applied for cardiac motion tracking.

Petitjean et al [127] proposed the use of a generalized information-theoretic mea-

sure [130] called exclusive f -information to register successive image pairs in a tagged

MR image sequence. Ledesma-Carbayo et al [85] computed the displacement field in

2D sequences of US images by registering each frame in the sequence to a reference

image taken at end-diastole using a SSD measure of image alignment.

3.4 Summary

In contrast to other organs in the body, the heart is continuously in motion, making

registration of cardiac images a challenging task. No single method exists which can

solve all problems encountered in cardiac image registration. Nonelastic registra-

tion methods have been used primarily for motion compensation and image fusion

applications; and elastic registration algorithms have been used to correct for the

variability in the anatomy of the heart both in time (for tasks such as segmentation)

and across different subjects (for atlas construction).

Although some work has been done on using image registration for motion field

reconstruction in cardiac images, the advantages of using such an approach as well

as the difficulties encountered have not been fully investigated. In the following

chapters we investigate the use of image registration for cardiac motion analysis.
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Chapter 4

Analysis of 3D Myocardial Motion

in Tagged MR Images Using

Nonrigid Image Registration

One of the fundamental reasons limiting the widespread use of tagged MRI in the

clinical environment is the lack of automated tools to aid in the extraction and

analysis of the motion fields within the myocardium. A number of methods have

been proposed in recent years to help with this task (section 2.5.2), but many need

substantial manual intervention and user interaction, while others are limited to 2D

motion analysis or require special imaging sequences. The main difficulties arise

from the loss of contrast between tag stripes, due to T1 relaxation, as the heart

contracts during its cycle, and the need to estimate through-plane motion.

In this chapter we propose a new method for the extraction and analysis of

the deformation field within the myocardium based on nonrigid image registration.

The registration algorithm we use is based on free-form deformations and the maxi-

mization of NMI [142], and was originally developed for the registration of contrast

enhanced MR breast images for the detection of cancerous lesions. We have modi-

fied this algorithm in a way so that it may be used for the extraction and analysis of

the full four-dimensional (4D) deformation field within the myocardium of the LV.
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To do this we make use of both tagged SA and LA images of the LV.

The advantage of using this approach, firstly, is that tag localization and defor-

mation field reconstruction are done simultaneously; and secondly, we have made

no assumptions about the nature of the tag pattern used and so the algorithm will

be applicable to images with radial, parallel or grid tag patterns.

In section 4.1 we describe the nonrigid registration algorithm and how it is used

to recover the deformation field within the myocardium. In section 4.2 validation

results using a cardiac motion simulator and experiments conducted on volunteer

data are presented. Finally, section 4.3 summarizes our work. The main contribu-

tions of this chapter are the modifications which have been made to the registration

algorithm of Rueckert et al [142], namely the use of a weighted sum of NMI as a

similarity measure and the corresponding changes to the optimization algorithm.

The work presented in this chapter has been published in [25], [26], and [29].

4.1 Registration of Tagged MR Images

In a normal healthy adult the left ventricle undergoes a number of different types of

deformation as it pumps blood out to the body [8]. Not only does the myocardium

thicken as the LV contracts but it also undergoes a twisting motion. It is also

known that the base of the LV moves approximately 10 mm from base to apex

during systole [113]. Since the imaging planes defined in an MR scanning session

are stationary with respect to the coordinate system of the scanner, this results in a

problem for the tracking of material points within the myocardium—not all points

will stay within a single plane during the cardiac cycle. Thus, to fully reconstruct

the deformation field within the myocardium, we need to acquire multiple-slice SA

and LA images of the LV.

Figure 4.1 shows a typical configuration of imaging planes which could be used

to reconstruct the deformation field within the myocardium. The figure shows

a series of short-axis planes (SA1, SA2, . . . , SA8) and a series of long-axis planes
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(LA1, LA2, . . . , LA7) which define an imaging volume enclosing the LV. A set of SA

and LA images are also shown, to the right in the figure, corresponding to one of

the SA imaging planes and one of the LA imaging planes throughout the cardiac

cycle.

Consider a material point P in the myocardium at a position x = [x, y, z]T at

time t = 0 (corresponding to end-diastole) that moves to another position x′ at time

t = iτ where τ is the time interval between two consecutive time frames and i is the

frame number (figure 4.2). The problem, simply stated, is to find the transformation

T for all time frames, n, such that:

T(x, nτ) = x′ (4.1)

We propose to represent T using a series of free-form deformations [87] as described

in the next subsection.

4.1.1 Combined nonrigid registration of SA and LA images

The algorithm used to calculate the transformation T(x, t) is based on the non-

rigid registration algorithm of Rueckert et al [142]. In their paper, registration was

achieved by optimizing a cost function measuring the similarity between two images

as well as the smoothness of the deformation needed to align the images. The sim-

ilarity measure used is based on NMI and is particularly suited for application to

tagged MR images since it is not dependent on changes in intensity in the images,

as is the case in our application. Although the transformation model is a hierar-

chical one consisting of a global affine transformation and a local transformation

(defined by a free-form deformation (FFD)), the motion of the heart is predomi-

nantly nonrigid, so we focus on the local transformation. The cost function used in

the registration algorithm is the sum of two terms:

CT = −Csimilarity(A,T(B)) + λCsmooth(T) (4.2)
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LA1 LA2 LA3 LA4 LA5 LA6 LA7

Figure 4.1: A typical configuration of imaging planes required to fully reconstruct
the deformation field consists of both short-axis (SA) planes as well as long-axis
(LA) planes. The images on the right show the corresponding set of tagged MR
images for the SA5 and LA4 imaging planes.
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t = 0 t = iτ

Figure 4.2: To reconstruct the deformation field within the myocardium we must
relate points in the myocardium from images taken at time t = 0 (end-diastole) to
their corresponding positions in images taken at a later time t = iτ . This figure also
shows that the myocardium moves through the imaging planes as the LV contracts
(as can be seen from the relative positions of the material point indicated by the
red circle).

The first term, Csimilarity(A,T(B)), is a measure of the similarity between the images

being registered where A and B are the images being registered and T(B) is the

image B transformed so that it is aligned with image A. The second term is measure

of the smoothness of the transformation and is the 3D counterpart of the the 2D

bending energy of thin sheet of metal. It is given by

Csmooth =
1

V

∫∫∫ [(
∂2T

∂x2

)2

+

(
∂2T

∂y2

)2

+

(
∂2T

∂z2

)2
]

dx dy dz (4.3)

where V is the volume over which the transformation is defined. As the motion of

the heart is small between time frames we have found that the regularization term

can be omitted by setting λ = 0.

To apply the algorithm in [142] for motion tracking in cardiac MR images sev-

eral modifications are necessary. In particular, the existing algorithm can only be

applied to either SA or LA images which means that through-plane motion of the

heart will not be accounted for. If only the SA images are used, then the output
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from the registration algorithm will be a transformation in which the component

perpendicular to the SA direction is zero. Similarly if only the LA images are used

then the component of the output transformation in the direction perpendicular to

the LA images will be zero. Moreover, the separate motion fields obtained from the

SA and LA images cannot be combined to yield the correct motion field. Therefore,

we have modified the registration algorithm and the voxel similarity measure to

work with SA and LA images simultaneously, producing a single 3D motion field.

For the purposes of explanation we will assume that we have acquired a series

of multiple-slice SA and LA images enclosing the whole of the LV and for the entire

cardiac cycle as shown in figure 4.1. A volumetric free-form deformation (FFD) is

defined, as in section 3.1.4.2, on a domain Ω by a mesh of (nx+1)×(ny +1)×(nz +1)

control point displacement vectors Φ. The domain Ω corresponds to the volume of

interest and includes both the short-axis image slices SAj as well as long-axis image

slices LAj . The domain Ω defines a single coordinate system in which to perform

the tracking of the LV throughout the cardiac cycle. The choice of the coordinate

system in which to define the control point lattice is essentially arbitrary. This is

because the directions in which the control points move in order to describe the

deformation of the myocardium is independent of the orientation of the coordinate

system in which the free-form deformation is defined. We have chosen a coordinate

system whose x- and y-axes are aligned with the short-axis image planes, as this is

the most natural coordinate system to work in.

To track the cardiac motion throughout multiple time frames we adopt a multi-

level FFD as suggested by Schnabel et al. [147] where the transformation T is

represented as the sum of a series of local FFDs

T(x, nτ) = x +

n∑

h=1

uh(x) (4.4)

uh(x) =
nx∑

i=0

ny∑

j=0

nz∑

k=0

β3

(
x− xi,j,k

δx

)
β3

(
y − yi,j,k

δy

)
β3

(
z − zi,j,k

δz

)
φh

i,j,k (4.5)
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where φh
i,j,k is the control point displacement vector at position [xi,j,k, yi,j,k, zi,j,k]

T =

xi,j,k, and δx, δy, and δz are the control point spacings in the x-, y-, and z-directions

respectively. The spacings between the control points Φ in the x- and y-directions

are chosen to be approximately equal to the tag spacing, while the spacing in the

z-direction is chosen to be equal to the distance between the SA slices. As we are

concerned only with recovering the deformation field within the myocardium we

need a segmentation of the myocardium at end-diastole. This we obtain by noting

that although the SPAMM tag pattern is retained by the myocardium as the LV

contracts, the tag pattern in the center of the LV is completely spoiled by the blood

flowing within it. At the end of the cardiac cycle the configuration of the tag pattern

has returned to the state it was in at end-diastole except for its absence within the

blood pool. This fact allows us to segment the myocardium in the images taken at

end-diastole by segmenting the image taken at the end of the cardiac cycle. The

segmentation, which is obtained manually, is then overlaid on the images taken

at end-diastole to define the myocardium at that time point. An example of how

a mid-ventricular SA slice at end-diastole is segmented is shown in figure 4.3. A

problem with this approach is that the final image in the sequence acquired may not

correspond exactly with end-diastole. To help with the segmentation of the end-

diastolic image and reduce the chance of errors during the motion field reconstruction

untagged images may be acquired in addition to the tagged images.

A plane from the control point grid defining a local FFD is shown in figure 4.4

overlaid on a segmentation of the myocardium at end-diastole. Control point dis-

placement vectors which cannot affect this field are marked as passive and not opti-

mized. The bounding box, Ωi,j,k, of each control point position, xi,j,k, is defined as

the volume in which the deformation field is affected when the displacement vector

at that control point is modified and is given by

Ωi,j,k = {(x, y, z) : xmin ≤ x < xmax, ymin ≤ y < ymax, zmin ≤ z < zmax} (4.6)
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A B C

Figure 4.3: A mid-ventricular SA slice at end-diastole is segmented by first segment-
ing the image taken at the end of the cardiac cycle (A). The segmentation obtained
is then overlaid on the end-diastolic image (B) to yield a segmentation of that im-
age(C). The other SA and LA image slices are segmented in a similar way giving us
the segmented SA and LA volume images at end-diastole.

where

xmin = xi,j,k − 2δx, xmax = xi,j,k + 2δx

ymin = yi,j,k − 2δy, ymax = yi,j,k + 2δy

zmin = zi,j,k − 2δz, zmax = zi,j,k + 2δz

(4.7)

The bounding box is used to mark those control points which cannot affect the

deformation field in the myocardium as passive. For example, control point A, whose

bounding box contains a part of the myocardium, is marked as active. Whereas,

control point B, whose bounding box does not contain the myocardium at all, is

marked as passive and not optimized during the registration process. Thus the blood

pool, the right ventricle and other parts of the body are not considered during the

registration process. This allows us to not only obtain more accurate results but

also to perform the registration much more quickly.

4.1.1.1 Similarity Measure

To achieve registration between images a similarity measure based on the weighted

sums of the NMI of the images being registered is used. As normalized mutual

information is a statistical measure of the relationship between the intensities in

two images and makes no assumption about their functional dependence it is robust

to any intensity changes which occur over time.
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A

B

Figure 4.4: This figure shows a SA view of the heart segmented at end-diastole.
Control points which cannot affect the deformation field in the myocardium are
marked passive. For example control point B is marked as passive while control
point A remains active.

The NMI between two images, A and B, is defined by (equation 3.39)

N(A; B) =
H(A) + H(B)

H(A, B)
(4.8)

where H(A) and H(B) are the marginal entropies of the intensity distributions in

images A and B respectively, and H(A, B) is the joint entropy of the intensity

distributions in the two images. To register the SA and LA images taken at time

t = nτ to the images taken at time t = 0 we optimize a cost function which is

based on the sum of the NMI [156] between the images being registered. Because

the similarity measure is coupled to both the short- and long-axis image sets, we

are able to recover the complete three-dimensional motion of the myocardium. This

is because a single 3D transformation is optimized which must maximize both the

similarity between the short- and long-axis images. Thus, the through plane motion

that is present in the short-axis images is described by the transformation because

of the presence of the long-axis images which it must also simultaneously register,

and vice versa.

Since the SA and LA images typically contain different numbers of voxels, we

weight the separate components of the NMI in the similarity measure according to

the numbers of voxels in the myocardium in the segmented SA and LA images taken
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at end-diastole (t = 0)

wS =
N(Sseg)

N(Sseg) + N(Lseg)
(4.9)

wL =
N(Lseg)

N(Sseg) + N(Lseg)
(4.10)

where N(Sseg) and N(Lseg) are the numbers of voxels in the myocardium in the

segmented images taken at end-diastole. Thus, the similarity measure is given by

C(Φ) = wS
H(Sseg) + H(T(Snτ ))

H(Sseg,T(Snτ ))
+ wL

H(Lseg) + H(T(Lnτ ))

H(Lseg,T(Lnτ ))
(4.11)

where the Φ are the parameters defining the local transformation, T, Sseg and Snτ

are the volume images formed by the SA slices at times 0 and nτ respectively, and

Lseg and Lnτ are the volume images formed by the LA slices. It is important to

note that equation 4.11 only measures the similarity of the intensities of the SA and

LA images between two time points. No extraction of features such as tag lines or

intersections is used to calculate the optimal transformation.

4.1.1.2 Interpolation

To calculate the similarity measure (equation 4.11), we need to compute the NMI

between the segmented short- and long-axis images (corresponding to time t = 0

at end-diastole) and the images (corresponding to a later time t) according to the

current estimate of the free-form deformation. The contribution from the short-

axis images which corresponds to the first term of the sum in equation 4.11 is

calculated as follows: For each point, x, in the segmented short-axis image we find its

corresponding position, T(x, nτ), in the SA volume image at time nτ , the intensity of

the transformed point being Snτ (T(x, nτ)). Since T(x, nτ) will not fall directly onto

a voxel location, the intensity at this location must be interpolated. For parallel,

contiguous SA image slices (as used here), the tag planes at time t = 0 intersect

the imaging plane at the same location for all slices and trilinear interpolation is an
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appropriate interpolation scheme to use. The pairs of intensities are then stored in

a two dimensional histogram which holds the joint probability distribution of voxel

intensities in the two images. The NMI for the short axis images are then easily

calculated from the joint probability distribution histogram.

The contribution from the long-axis images corresponding to the second term

of the sum in equation 4.11 is calculated similarly. However, we must account

for the fact that T(x, nτ) is defined relative to the SA planes. The positions of the

voxels in the LA images are transformed into this coordinate system by using a rigid

transformation, RSA←LA, which maps points in the LA images to their corresponding

positions in the SA coordinate system. This transformation is readily computed from

the positions and orientations of the images stored in the DICOM headers of the

images, thus the geometric relation between the SA and LA images is always known

in the acquisition.

Figure 4.5 shows SA and LA views of the LV (for clarity we have used untagged

images of the LV). The transformation which maps a point x expressed in homo-

geneous coordinates, [xLA, yLA, zLA, 1]T , from the LA coordinate system to the SA

coordinate system is given by the rigid homogeneous transformation

RSA←LA =





eSA
x .eLA

x eSA
x .eLA

y eSA
x .eLA

z (OLA −OSA).eSA
x

eSA
y .eLA

x eSA
y .eLA

y eSA
y .eLA

z (OLA −OSA).eSA
y

eSA
z .eLA

x eSA
z .eLA

y eSA
z .eLA

z (OLA −OSA).eSA
y

0 0 0 1





(4.12)

We then transform this point by the free-form deformation to obtain the position

of the deformed point. Finally, we transform the deformed point back to the long-

axis coordinate system by using the inverse rigid transformation R−1
SA←LA. The

position of the point, x, after it has been deformed, in the long-axis coordinate

system is R−1
SA←LA(T(RSA←LA(x), t)).

As before the transformed point in the LA coordinate system will not necessarily
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Figure 4.5: The xyz-coordinates of a point v in the LA coordinate system can be
converted to the xyz-coordinates in the SA coordinate system by using the positions,
and orientations of the SA and LA images stored in the DICOM headers of the
images. For clarity, untagged images of the LV are shown in this figure.
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lie exactly at the center of a voxel in the LA images and we need to interpolate the

surrounding voxel intensities to obtain the LA voxel intensity at the transformed

point. The interpolation is further complicated by the fact that some transformed

points may lie entirely outside the LA imaging planes. There are three common con-

figurations in which the LA planes are often acquired, and for each, an appropriate

interpolation scheme must be chosen:

• Multiple LA images are acquired as a set of parallel contiguous slices (in a

similar manner as the SA image slices). In this case trilinear interpolation can

be used.

• Multiple LA images are acquired as a set of radial planes. Here trilinear

interpolation cannot be used since the image planes are not contiguous and

the distance between the LA planes varies in the radial direction of the LV. In

this case, the interpolation of new intensities is difficult. One possible approach

would involve a separate interpolation scheme for each LA plane in which the

transformed point is projected onto the corresponding LA imaging plane and

the new intensity is then calculated using bilinear interpolation. This approach

is only correct if the deformed point has not moved by more than 1/2 the plane

thickness in the direction perpendicular to the LA plane. Otherwise we would

be extrapolating image intensities rather than interpolating them.

• Multiple sets of LA images are acquired in arbitrary orientations. This case

is similar to the previous case where the LA images are acquired radially. For

each set of LA images we can employ a separate interpolation scheme, either

based on bilinear or trilinear interpolation depending on whether each set of

LA images consists of one or more parallel contiguous slices. This interpolation

scheme has been used for the simulator and volunteer data sets used in this

chapter.

From the above it becomes apparent that the imaging protocol used dictates

the interpolation scheme which can be used. The simplest and most accurate way
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Registration Parameter Value
No. of histogram bins 64
No. of iterations 20
No. of steps 8
Length of steps 15
ǫ 0.0001

Table 4.1: The parameters controlling the registration algorithm. The values given
in the table were found empirically to give good registrations.

of recovering the motion field within the myocardium is to use a set of parallel

and contiguous set of SA and LA image planes, but this choice may not always be

available in the clinical environment where the cost and time taken to acquire the

scans must also considered.

Once the intensities of the point v in its original and transformed positions,

L0(v) and Lnτ (T
−1
SA←LA(T(TSA←LA(v), nτ))) respectively, have been found they are

stored in a two dimensional histogram and used to calculate the NMI for the long-

axis images. Finally, the contributions to the similarity measure (equation 4.11) are

weighted by the number of voxels in the SA and LA images (equations 4.9 and 4.10).

4.1.2 Optimization Procedure

The optimization procedure used to maximize the similarity measure is an iterative

gradient ascent technique similar to the one used by Rueckert et al. [142]. The

difference in our case is that now we are trying to register both the short- and

long-axis images with a single transformation. The gradient ascent optimization

procedure used to optimize the control point displacement vectors for time t = nτ

is shown in algorithm 1 and the parameters controlling the optimization are shown

in table 4.1.

4.1.3 Summary of Motion Tracking Algorithm

The estimation of the deformation field T proceeds in a sequence of registration

steps as shown in figure 4.6. In this figure, the symbols Siτ and Liτ represent the
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Algorithm 1 The gradient ascent optimization procedure used to compute uh(x)

1: L← Maximum length of steps, N ← Number of steps
2: while N > 0 do
3: I ← Number of iterations
4: while I > 0 do
5: Compute the gradient vector of the similarity measure

∇C =
∂C({φh

i,j,k})

∂{φi,j,k}
(4.13)

6: repeat
7: Cold ← Evaluate similarity measure
8: for all control point displacement vectors φh

i,j,k do
9:

φh
i,j,k ← φh

i,j,k + L

(
∇C

||∇C||

)

i,j,k

(4.14)

10: end for
11: Cnew ← Evaluate similarity measure
12: until Cnew < Cold + ǫ
13: I ← I − 1
14: end while
15: L← L/2, N ← N − 1
16: end while

volume images constructed from the SA and LA images respectively at time t = iτ .

To recover the deformation field at time t = nτ the SA and LA volume images

at this time, Snτ and Lnτ , are registered to the segmented volume images of the

myocardium at time t = 0, Sseg and Lseg, respectively.

After registering the volume images taken at time t = τ to the segmented volume

images taken at t = 0 we obtain a multi-level FFD (MFFD) consisting of a single

FFD representing the motion of the myocardium at time t = τ . To register the

volume images from t = 2τ a second level is added to the sequence of FFDs and

then optimized to yield the transformation at time t = 2τ . This process continues

until all the volumes in the sequence are registered, as shown in figure 4.6, allowing

us to relate any point in the myocardium at time t = 0 to its corresponding position

throughout the sequence.
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Figure 4.6: The SA and LA volume images, Siτ and Liτ respectively, taken at time
t = iτ are registered simultaneously to their corresponding volume images taken at
time t = 0 to recover the deformation field within the myocardium.
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Parameter Type of Motion
k1 Radially dependent compression
k2 Left ventricular torsion

k3, k4 Ellipticallization in LA and SA planes respectively
k5, k6, k7 Shear in x, y, and z directions respectively
k8, k9, k10 Rotation about x, y, and z axes respectively

k11, k12, k13 Translation in x, y, and z directions respectively

Table 4.2: The 13 k-parameters controlling the cardiac motion simulator.

4.2 Results

4.2.1 Cardiac Motion Simulator Data

For the purposes of validation, a cardiac motion simulator as described in Waks et

al [171] was implemented. The motion simulator is based on a 13-parameter model

of left-ventricular motion developed by Arts et al [8] and is applied to a volume rep-

resenting the LV that is modelled as a region between two confocal prolate spheres

while the imaging process is simulated by a tagged spin-echo imaging equation [132].

The 13 parameters and the types of motion to which they correspond are shown in

table 4.2. To compare how well the registration algorithm performed in reconstruct-

ing the deformation field, when the deformation field is known, nine sets of images

were generated from the simulator showing three different types of nonrigid motion.

Three sets of images, A1, A2, A3, showing compressional motion were generated by

varying k1 as shown below:

k1 = −0.01t where t = 0, 1, . . . , 9 (4.15)

Gaussian noise with a mean of 0 and standard deviations, σ, of 8 and 16 were added

to image sets A2 and A3 respectively. No noise was added to image set A1. Another

three sets of images, B1, B2, B3, showing compressional and torsional motion were

generated by varying k2 in addition to k1:

k1 = −0.01t, k2 = 0.01t where t = 0, 1, . . . , 9 (4.16)
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Parameter Description Value
λi Inner radius 0.25
λo Outer radius 0.60
δ/cm Focal radius 4.00
D0 Spin density 300.0
TE/s Echo time 0.03
TR/s Pulse repetition time 10.0
T1/s Longitudinal relaxation time 0.6
T2/s Transverse relaxation time 0.1
θ Tip angle of tag pattern 45.0◦

SAx × SAy × SAz SA voxel sizes 0.5× 0.5× 10 mm
LAx × LAy × LAz LA voxel sizes 0.5× 0.78125× 6.4 mm

Table 4.3: The parameter values used to generate the simulator image sets.

Similarly, Gaussian noise with a mean of 0 and standard deviations of 8 and 16

were added to image sets B2 and B3 respectively, while no noise was added to image

set B1. The final sets, C1, C2, C3, showing ellipticallization, compressional, and

torsional motion were generated by varying k1, k2, k3 and k4 according to:

k1 = −0.01t, k2 = 0.01t, k3 = −0.01t, k4 = −0.01t where t = 0, 1, . . . , 9 (4.17)

Again, Gaussian noise with a mean of 0 and standard deviations of 8 and 16 were

added to image sets C2 and C3 respectively. The images generated consisted of both

SA and LA images. The SA slices were located at z = −45,−35, . . . , 45 (in mm)

with respect to the origin defined by the LV model [171]. Two sets of LA images were

produced which were perpendicular to each other and also to the SA images. The

two sets of LA image slices were located at positions x = −16,−9.6,−3.2, 3.2, 9.6, 16

(in mm) and y = −16,−9.6,−3.2, 3.2, 9.6, 16 (in mm) respectively.

Figures 4.7, 4.8, and 4.9 display some representative SA and LA slices, taken from

the image sets in which no noise has been added, showing the deformation of the

LV at three different time frames (t = 0, 5, 9). The model and imaging parameters

used in generating the images are given in table 4.3. The tag spacing in all images

was 20π/8mm.

For each set of images, a transformation, T(x, t), which gave the deformation of
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(a) SA Images

(b) LA Images

Figure 4.7: The images shown in (a) and (b) are, respectively, SA (z = 15.0mm)
and LA (y = −3.2mm) images taken from image set A1 showing the deformation of
the myocardium at time frames 0, 5, and 9.
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(a) SA Images

(b) LA Images

Figure 4.8: The images shown in (a) and (b) are, respectively, SA (z = 15.0mm)
and LA (y = −3.2mm) images taken from image set B1 showing the deformation of
the myocardium at time frames 0, 5, and 9.
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(a) SA Images

(b) LA Images

Figure 4.9: The images shown in (a) and (b) are, respectively, SA (z = 15.0mm)
and LA (y = −3.2mm) images taken from image set C1 showing the deformation of
the myocardium at time frames 0, 5, and 9.
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the model LV was calculated using the registration algorithm described in section 4.1

for all times t. The relative error, ρ(t), in the displacement vectors of points in the

LV estimated from the transformation T(x, t) was then calculated. ρ(t) is defined

as

ρ(t) =
1

N

∑

x∈myo

||usim(x, t)− u(x, t)||

||usim(x, t)||
× 100% (4.18)

where u(x, t) = T(x, t)− x is the displacement estimated by the registration algo-

rithm at position x and at time t, and usim is the true displacement calculated from

the motion simulator. The summation is carried out over only those points that are

in the myocardium, N being the total number of such points.

Figures 4.10(a), 4.10(b), 4.10(c) show the variation of the relative error, ρ, in the

estimated displacements for the three different types of motion. Each of the figures

shows that the relative error is the largest at time frame t = 1. ρ decreases between

time frames t = 1 and t = 6 and remains relatively constant for later time frames.

This is to be expected as the displacements of points in the myocardium at earlier

time frames (t < 4) are of the order of the voxel size making an accurate estimate

of the deformation field more difficult to obtain at these times than at later times

(t >= 4) when the displacements are much larger than the voxel size. The addition

of noise also decreases the accuracy of the estimated deformation fields especially at

the start of the image sequences.

We also computed the root mean square (RMS) error, δ(t), in the estimated

displacements. δ(t) is defined as

δ(t) =

√
1

N

∑

x∈myo

||usim(x, t)− u(x, t)||2 (4.19)

Figures 4.11(a), 4.11(b), 4.11(c) show plots of the variation of the RMS errors as a

function of time for the three different types of motion. As can be seen the RMS

error increases to a maximum of 0.3mm at t = 9 but remains below the voxel size.

These results indicate that the motion of the myocardium can be tracked very well
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Figure 4.10: This figure shows the variation of the relative error in the estimated
displacements for the three different types of motion generated from the LV simulator
and for different amounts of Gaussian noise added to the images.
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even when significant amounts of noise are added.

In addition to deformations, strains have been shown to be clinically useful in-

dicators of abnormal cardiac function [111]. The Lagrangian strain (equation 2.17),

at a particular position x and time instant t, can be expressed in matrix form as

E(x, t) =
1

2
(J(x, t) + JT (x, t) + JT (x, t)J(x, t)) (4.20)

where J(x, t) is the Jacobian matrix of the deformation field u(x, t)

J(x, nτ) =





∂ux(x,nτ)
∂x

∂ux(x,nτ)
∂y

∂ux(x,nτ)
∂z

∂uy(x,nτ)
∂x

∂uy(x,nτ)
∂y

∂uy(x,nτ)
∂z

∂uz(x,nτ)
∂x

∂uz(x,nτ)
∂y

∂uz(x,nτ)
∂z




(4.21)

and ux(x, nτ), uy(x, nτ), and uz(x, nτ) are the x-, y-, and z-components of the

deformation field u(x, nτ). The deformation field at time t = nτ is

u(x, nτ) = T(x, nτ)− x (4.22)

=
n∑

h=1

uh(x) (4.23)

Expressing u(x, nτ) in terms of µh
i,j,k, νh

i,j,k and ξh
i,j,k, the x-, y-, and z-components

of the control point displacement vectors at the positions xi,j,k we obtain

ux(x, nτ) =

n∑

h=1

uh
x(x)

=
n∑

h=1

nx∑

i=0

ny∑

j=0

nz∑

k=0

β3

(
x− xi,j,k

δx

)
β3

(
y − yi,j,k

δy

)
β3

(
z − zi,j,k

δz

)
µh

i,j,k

uy(x, nτ) =

n∑

h=1

uh
y(x)

=

n∑

h=1

nx∑

i=0

ny∑

j=0

nz∑

k=0

β3

(
x− xi,j,k

δx

)
β3

(
y − yi,j,k

δy

)
β3

(
z − zi,j,k

δz

)
νh

i,j,k
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Figure 4.11: This figure shows the variation of the RMS error in the estimated
displacements for the three different types of motion generated from the LV simulator
and for different amounts of Gaussian noise added to the images.

120



uz(x, nτ) =

n∑

h=1

uh
z(x)

=
n∑

h=1

nx∑

i=0

ny∑

j=0

nz∑

k=0

β3

(
x− xi,j,k

δx

)
β3

(
y − yi,j,k

δy

)
β3

(
z − zi,j,k

δz

)
ξh
i,j,k

The components of the Jacobian matrix of the deformation field can then be obtained

from the above equations by finding the spatial derivatives of ux(x, nτ), uy(x, nτ)

and uz(x, nτ). For example

∂ux(x, nτ)

∂y
=

n∑

h=1

nx∑

i=0

ny∑

j=0

nz∑

k=0

β3

(
x− xi,j,k

δx

)
dβ3

dv

dv

dy
β3

(
z − zi,j,k

δz

)
µh

i,j,k

=
1

δy

n∑

h=1

nx∑

i=0

ny∑

j=0

nz∑

k=0

β3

(
x− xi,j,k

δx

)
dβ3

dv
β3

(
z − zi,j,k

δz

)
µh

i,j,k

where

v =
y − yi,j,k

δy
(4.24)

and

dβ3

dv
=






(2 + v)2/2 for −2 ≤ v < −1

−(3v + 4)v/2 for −1 ≤ v < 0

(3v − 4)v/2 for 0 ≤ v < 1

−(3v2 − 4v + 4)/2 for 1 ≤ v < 2

0 otherwise

(4.25)

The other components of the Jacobian matrix can found similarly and substituted

into equations 4.20 and 4.21 to obtain the strain.

To determine how accurately we could determine the strain distribution in the

myocardium, simulated image sets showing a more realistic motion of the my-

ocardium were generated using the k-parameter values given in figure 4 of [171]

which were derived from a bead experiment on a dog heart [8]. A series of short-

and long-axis images were generated for 10 equally spaced time instants between

end-diastole and end-systole. These are plotted in figure 4.12. The parameter val-

ues from k8 to k13 were set to 0 as these only control the rigid motion of the simulated

121



0 1 2 3 4 5 6 7 8 9

t

-0.1

-0.05

0

0.05

0.1

1k

(a) k1

0 1 2 3 4 5 6 7 8 9

t

-0.1

-0.05

0

0.05

0.1

2k

(b) k2

0 1 2 3 4 5 6 7 8 9

t

-0.04

-0.02

0

0.02

0.04

3k

(c) k3

0 1 2 3 4 5 6 7 8 9

t

-0.05

-0.04

-0.03

-0.02

-0.01

0

4k

(d) k4

0 1 2 3 4 5 6 7 8 9

t

-0.02

-0.015

-0.01

-0.005

0

5k

(e) k5

0 1 2 3 4 5 6 7 8 9

t

-0.025

-0.02

-0.015

-0.01

-0.005

0

6k

(f) k6

0 1 2 3 4 5 6 7 8 9

t

-0.1

-0.08

-0.06

-0.04

-0.02

0

7k

(g) k7

Figure 4.12: Plots showing the variation of the k-parameters of the LV simulators
from end-diastole to end-systole obtained from a bead experiment on a dog [171, 8].
The data used to generate this plots were taken from figure 4 of [171].

LV. Figure 4.13 show representative SA and LA views of the generated images at

time frames 0, 5, and 9. The model and imaging parameters used to generate the

images were the same as those given in table 4.3 apart from the inner and outer

radii, λi and λo, which were set to 0.35mm and 0.65mm respectively.

Figure 4.14 shows plots of the radial, circumferential, and longitudinal strain

maps computed directly from the motion simulator for time t = 9. The three

rows in the figure, from top to bottom, correspond to SA views of the LV at posi-

tions z = −15mm, z = 5mm, and 25mm respectively, and the three columns from

left to right show the radial, circumferential, and longitudinal strains respectively.

Figure 4.15 shows the corresponding strain maps computed from the method pre-

sented in this chapter, while figure 4.16 shows the differences between the true and
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(a) SA Images

Figure 4.13: The images show in (a) and (b) are, respectively, SA (z = 15.0mm)
and LA (y = −3.2mm) images taken from the simulated images generated using the
k-parameter values given in figure 4.12.
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estimated strain maps. As can be seen from a comparison of the radial and circum-

ferential strain maps in the figures there is excellent agreement between the ones

computed directly from the motion simulator and those computed using image regis-

tration. There is less of agreement between the longitudinal strain maps, particularly

in the mid ventricular slice (z = 5mm). This is because the regional characteristics

of the simulated displacement field have been effectively under-sampled with the

imaging parameters chosen in table 4.3. Increasing the frequency of the tag spac-

ing would reduce the under-sampling of the displacement field characteristics and

thereby enable a much more accurate recovery of the strain maps. Additionally, in-

creasing the resolution of the images used would also allow a more accurate estimate

of the strain maps.

Finally, we visualized the strain maps computed from the motion simulator and

the free-form deformations obtained from image registration using tensor ellipsoids

(section 2.2.2.3). Figure 4.17 shows a tensor ellipsoid plot of the strain computed

directly from the motion simulator and figure 4.18 shows the corresponding plot

computed from the free-form deformations. The three SA slices shown in the two

figures are at the same positions as those shown in figures 4.14 and 4.15. As can

be seen from the two figures the principal strain directions computed from the free-

form deformations agree very well with the true principal strain directions but the

magnitude of the strain in the radial direction is underestimated by the free-form

deformation in the endocardial regions. This indicates that the regional characteris-

tics of the displacements field are more difficult to estimate in those regions with the

chosen imaging parameters. To improve the strain estimates near the endocardium

images with a smaller tag spacing would need to be used.

4.2.2 Human Data

Tagged MR data from 11 healthy volunteers was acquired with a Siemens Sonata

1.5 T scanner consisting of a series of SA and 0, 2, or 3 LA slices covering the whole of
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Figure 4.14: This figure shows plots of the radial, circumferential, and longitudinal
strains in the myocardium computed directly from the motion simulator for the k-
parameter values in figure 4.12 at time t = 9. The three rows from top to bottom
show SA views of the strain maps at z = −15mm, z = 5mm, and z = 25mm
respectively, and the three columns from left to right show the radial, circumferential,
and longitudinal strains respectively.
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Figure 4.15: This figure shows plots of the radial, circumferential, and longitudinal
strains in the myocardium computed from the free-form deformations obtained from
the registration algorithm for the simulator images generated from the k-parameter
values in figure 4.12. The strain maps shown here should be compared with the true
strain maps in figure 4.14.
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Figure 4.16: This figure shows the differences between the true (figure 4.14) and
estimated (figure 4.15) strain maps.
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Figure 4.17: This figure shows plots of the strain in the myocardium computed
directly from the motion simulator for the k-parameter values in figure 4.12 at time
t = 9. The three rows from top to bottom show SA views of the strain maps at
z = −15mm, z = 5mm, and z = 25mm respectively. The axes of the ellipsoids have
been scaled by a factor of 10.
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Figure 4.18: This figure shows plots of the strain in the myocardium computed
from the free-form deformations obtained from the registration algorithm for the
simulator images generated from the k-parameter values in figure 4.12. The strain
maps shown here should be compared with the true strain maps in figure 4.17.
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Figure 4.19: SA and LA images taken from a volunteer at three different times,
end-diastole (left column), mid-systole (middle column), end-systole (right column).
The top row shows SA images, and the next three rows show horizontal long-axis
(HLA), left ventricular out-flow tract (LVOT), and vertical long-axis (VLA) images
respectively. The orientation of the LA slices with respect to the SA slices is shown
on the right.

the LV. For two of the volunteers no LA slices were acquired, for one volunteer 2 LA

slices were acquired and for the remaining eight volunteers 3 LA slices were acquired.

A cine breath-hold sequence with a SPAMM tag pattern was used with imaging

being done at end expiration. The image voxel sizes were 1.40× 1.40× 7mm, with

the distance between slices being 10 mm, and 10–18 images were acquired during

the cardiac cycle, depending on the volunteer. The images taken at end-diastole,

mid-systole, and end-systole for one of the volunteers are shown in figure 4.19. The

figure also shows the orientation of the LA images with respect to the SA images.

The imaging parameters for this volunteer were a repetition time of 40 ms, an echo

time of 4 ms, and a 15◦ flip angle.

The deformation field within the myocardium for each of the volunteers was

constructed by using the method described in section 4.1. To assess how well the

registration algorithm performed in tracking the motion of the myocardium for vol-
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unteer data, tag-intersection points were detected manually by an observer in three

different SA slices (apex, mid-ventricle and base) and one LA slice for all time

frames between end-diastole and end-systole. The average number of intersection

points which could be tracked in the LA slices was 17 compared to the average num-

ber in the SA slices which were 15, 22, and 19 in the apical, mid-ventricular, and

basal slices respectively. The RMS error, δ(nτ), between the in-plane displacements

estimated from the registration algorithm and the true in-plane displacements as

measured by the observer were then computed for each time frame n. δ(nτ) for a

particular SA or LA imaging plane is defined as

δ(nτ) =
1

N

∑

i

||u(xi, nτ)− [n̂.u(xi, nτ)] n̂− t(xi, nτ)||2 (4.26)

where u(xi, nτ) is the estimated displacement of the i-th tag intersection point at

time frame n, t(xi, nτ) is the true in-plane displacement of the i-th tag intersection

point at time frame n, n̂ is the unit vector normal to the plane of interest, and

N is the total number of tag intersection points. The results obtained are shown

in figure 4.20. The figure shows that for most of the volunteers the RMS errors

in the in-plane displacements were below the voxel size for most of systole. The

minimum error in the estimated in-plane displacements were found to be in the

mid-ventricular SA slices. This is because there is relatively little through-plane

motion of the LV in this imaging plane in comparison to the horizontal HLA and

basal slices. Additionally, the mid-ventricular region of the LV has been sampled

to a greater extent than the other regions of the LV, as can be seen for one of

the volunteers in figure 4.19, enabling a better estimate of the motion field in that

region.

4.2.2.1 Visual Assessment of Motion Tracking

In the case of tagged MR images, a visual assessment of the registration can be

obtained by using so-called “virtual tag grids”. These virtual tag grids enable a
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Figure 4.20: These graphs show the variation of the RMS error in the estimated
in-plane displacements obtained from the registration algorithm as compared with
the manual tracking of tag intersection points in different slices for the 11 volunteers.
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qualitative understanding of how well the motion tracking in a sequence of tagged

MR images has been achieved (figure 4.21). Virtual tag grids are placed on the

tagged images by the user and deform with time according to the transformation

T(x, nτ) computed from the registration algorithm. If the motion tracking has been

performed accurately the virtual tag grids will follow the underlying tag pattern in

the images and can be used to determine the validity of the nonrigid registration.

As can be seen in figure 4.21, the virtual tag grids follow the underlying tag pattern

in the images indicating the very good performance of the registration algorithm in

recovering the deformation field in the myocardium.

In figures 4.22 and 4.23 the output transformation obtained from the registration

algorithm was used to estimate the deformation of two tag planes which were per-

pendicular to the SA images at time t = 0. In figures 4.24 and 4.25 the deformation

of two tag planes perpendicular to the LA image planes at t = 0 are shown. As can

be seen in the figures the planes follow the underlying tag pattern. These results

indicate a very good performance in the motion tracking.

In figure 4.26 we have produced a 3D arrow plot showing the motion of the

myocardium. The figure clearly shows the contraction of the LV as well as its

shortening in the longitudinal direction.

4.2.2.2 Derivation of Strain Parameters

To assess abnormal contractility in a particular region of the myocardium clinicians

often use bullseye plots. In a bullseye plot the entire three-dimensional region of

the LV is mapped onto a series of concentric rings on a two dimensional plane,

with the inner most ring representing the apex of the LV, and the outer most ring

representing the base of the LV. Within a particular region of the myocardium we

can calculate the average value of the strain and assign it to the corresponding

sector in the bullseye plot. The bullseye plot obtained can then be compared with

the strain distribution in a normal subject to determine if there is any abnormal

contractility resulting from coronary artery disease. To help with this task Cerqueira
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Figure 4.21: This figure shows a series of tagged images taken from one of the
volunteers. A virtual tag grid has been placed on the tag pattern at end-diastole
and allowed to deform with time according to the deformation field calculated. As
time progresses the virtual tag grid can be seen to follow the underlying tag pattern
and so we can say that the deformation field has been reconstructed accurately.
The first three rows show basal, mid-ventricular, and apical SA images respectively.
The fourth row shows a horizontal LA image. The first, second, and third columns
correspond to end-diastole, mid-systole, and end-systole respectively. Animations
of these virtual tag grids can be found on the accompanying CD.
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Figure 4.22: This figure shows the estimated deformation of a tag plane which is
perpendicular to the SA image planes at time t = 0. An animation of the deforming
tag plane can be found on the accompanying CD.
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Figure 4.23: This figure shows the estimated deformation of a tag plane which is
perpendicular to the SA image planes at time t = 0. An animation of the deforming
tag plane can be found on the accompanying CD.
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Figure 4.24: This figure shows the estimated deformation of a tag plane which is
perpendicular to the LA image planes at time t = 0. An animation of the deforming
tag plane can be found on the accompanying CD.
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Figure 4.25: This figure shows the estimated deformation of a tag plane which is
perpendicular to the LA image planes at time t = 0. An animation of the deforming
tag plane can be found on the accompanying CD.

138



Figure 4.26: Arrow plots showing the motion of the myocardium from a normal
volunteer. The images, from left to right correspond to end-diastole, mid-systole,
and end-systole respectively.

et al [23] have recommended the assignment of individual segments to the three

major coronary arteries as shown in figures 4.27(a) and 4.27(b), with the recognition

that there is variability in the coronary artery blood supply to the different regions

of the myocardium, especially for segment 17 which can be supplied by any of the

three arteries.

Figure 4.28 shows bullseye plots of the average radial, circumferential, and lon-

gitudinal strains computed at end-systole for the 11 volunteers and figures 4.29,

4.30, and 4.31 show the variation of the radial, circumferential, and longitudinal

strains with time for the volunteers. The horizontal axes in the strain-time plots

have been rescaled to represent the percentage of the cardiac cycle from end-diastole

to end-systole.

As can be seen from these plots the radial strain increases during systole over the

entire myocardium reflecting the thickening of the myocardium in the radial direc-

tion. The radial strain is the greatest in the anterolateral region of the myocardium.

The circumferential strain decreases during systole reflecting the shortening of the

myocardium in the circumferential direction during systole. In addition the cir-

cumferential strain is also seen to increase slightly towards the apical region of the

myocardium. Similar results have been reported by Moore et al [111], and Declerck

et al [43]. There is larger variation in the computed longitudinal strain for the vol-
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(a) Left ventricular segmentation

1 Basal anterior
2 Basal anteroseptal
3 Basal inferoseptal
4 Basal inferior
5 Basal inferoseptal
6 Basal anterolateral
7 Mid anterior
8 Mid anteroseptal
9 Mid inferoseptal
10 Mid inferior
11 Mid inferolateral
12 Mid anterolateral
13 Apical anterior
14 Apical septal
15 Apical inferior
16 Apical lateral
17 Apex

(b) Recommended names of seg-
ments

Figure 4.27: Bullseye plot showing the recommended names of the 17 myocardial
segments in the LV and the assignment of the segments to the territories of the left
anterior descending (LAD), right coronary artery (RCA), and the left circumflex
coronary artery (LCX). Adapted from figures 4 and 5 of [23].
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Figure 4.28: This figure (from left to right) shows bullseye plots of the average
radial, circumferential, and longitudinal strains in the myocardium computed at
end-systole for the 11 normal volunteers.

unteer subjects. In some regions of the heart the strain decreases during systole (for

example the mid inferior and apical inferior regions of the LV), while in other regions

there is no clear discernible pattern in the strain variation (for example the lateral

regions of the heart). The longitudinal strain is the most difficult parameter to

estimate because of the relatively small number of LA slices acquired in comparison

with the number of SA slices acquired.

4.3 Summary

In this chapter we have presented a novel method for tracking the motion of the

myocardium in the LV using nonrigid image registration. An existing nonrigid

registration algorithm (Rueckert et al [142]) was used as the basis for the method

presented in this chapter. To extract the 4D motion field in the myocardium from

the multiple sets of SA and LA images acquired during the cardiac cycle, the SA

and LA images taken during systole were registered to the corresponding segmented

images taken at end-diastole. To achieve this registration the similarity measure used

in [142] (and hence the interpolation procedure) was modified to use the weighted
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Figure 4.29: This figure shows plots of the radial strain in the different regions of the heart computed from the free-form deformations
obtained from the registration algorithm for the 11 volunteers.
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Figure 4.30: This figure shows plots of the circumferential strain in the different regions of the heart computed from the free-form
deformations obtained from the registration algorithm for the 11 volunteers.
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Figure 4.31: This figure shows plots of the longitudinal strain in the different regions of the heart computed from the free-form
deformations obtained from the registration algorithm for the 11 volunteers.
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sum of the NMI of the SA and LA images being registered. The modified similarity

metric was maximized using a gradient ascent algorithm to simultaneously register

the SA and LA images and extract the deformation field in the myocardium.

We evaluated our method using a cardiac motion simulator and found that the

motion and strain fields computed using image registraton were very similar to the

true motion and strain fields generated by the simulator. We also reconstructed

the deformation field within the myocardium for 11 volunteers and showed that the

RMS tracking error was below 2 mm for most parts of the cardiac cycle between

end-diastole and end-systole.

The main advantage of the method proposed in this chapter, compared to the

other methods available, is that tag localization and deformation field reconstruction

are performed simultaneously. Thus, clinically relevant contractility parameters like

circumferential or radial strain in the myocardium can be calculated directly from the

transformation T(x, t) obtained from the nonrigid registration algorithm. Another

advantage is the fact that we have made no assumptions regarding the nature of

the tag pattern in the acquired images; the presented algorithm will be able to cope

with parallel, radial or grid tag patterns.

Although we have shown that image registration is a viable technique for cardiac

motion tracking using tagged MR images, the transformation model used in the

algorithm does not take into account the expected motion of the heart, namely the

radial thickening, circumferential contraction, and the longitudinal contraction. In

the following chapter we investigate the use of a cylindrical free-form deformation

to reconstruct the deformation field in the myocardium of the LV. This is expected

to improve the accuracy of the deformation field reconstruction.
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Chapter 5

Analysis of Myocardial Motion

and Strain Patterns Using a

Cylindrical B-Spline

Transformation Model

In the previous chapter we presented a method for the reconstruction of the motion

field in the myocardium of the LV using a nonrigid image registration algorithm

based on free-form deformations (FFDs). Although the results presented proved

that the deformation field reconstructed was accurate enough for clinically useful

parameters such as strains to be derived, the FFD model used was a generic trans-

formation model and incorporated no prior information about the expected types of

motion of the myocardium of the LV.

In this chapter we present a novel method for tracking the motion of the my-

ocardium in tagged MR images of the heart using a nonrigid registration algorithm

based on cylindrical free-form deformations (CFFDs) and the optimization of a

cost function based on NMI. Our key idea is that the CFFDs models more closely

the geometry and motion of the LV than the FFDs in Cartesian coordinates. In

particular the displacement vectors at each control point defining the CFFDs are
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described in terms of unit basis vectors, êr, êθ, and êz, which are aligned with the

radial, circumferential, and longitudinal directions respectively, and enable the ra-

dial thickening, circumferential contraction, and longitudinal contraction of the LV

to be described in a more natural way.

This chapter is organized as follows. Section 5.1 presents a brief review of the

coordinate systems used in describing the deformation of the LV. In section 5.2

the CFFDs are defined and our motion tracking algorithm is described. As in

chapter 4, validation of our method has been performed by using a cardiac motion

simulator [171] and tagged MR data acquired from a group of normal volunteers.

These results are presented in section 5.3. Finally, in section 5.4, we summarize our

work. The work presented in this chapter has been published in [28] and [27]

5.1 Coordinate Systems used in Cardiac Defor-

mation Modelling

The primary reason for choosing a coordinate system different from a Cartesian

coordinate system in describing the motion of the LV is to simplify the description

of its shape and motion. In addition, choosing a coordinate system more closely

related to the shape of the LV sometimes simplifies the decomposition of the motion

into its radial, circumferential, and longitudinal parts, thus allowing the results of

the deformation field reconstruction to be interpreted more easily. In the following

three subsections we describe three commonly used coordinate systems to model the

deformation of the LV beginning with the prolate spheroidal coordinate system.
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f η = constant

λ = constant

Figure 5.1: The prolate spheroidal coordinate system (the x-axis is not shown but
is perpendicular to the page and points upwards). The focal points f are located
at [0, 0,−1]T and [0, 0, 1]T . The surfaces of constant λ and η resemble closely the
surface shape of the LV.

5.1.1 Prolate Spheroidal Coordinate System

A point, (λ, η, φ), in the prolate spheroidal coordinate system (figure 5.1) has the

following Cartesian coordinates

x = δ sinh λ sin η cos φ (5.1)

y = δ sinh λ sin η sin φ (5.2)

z = δ cosh λ cos η (5.3)

where δ is a fixed parameter called the focal radius and is the distance from the origin

to either focal point of the prolate sphere. As can be seen in figure 5.1 the surfaces of

constant λ and η resemble the endocardial and epicardial surfaces of the LV enabling

the shape of the LV to be described easily. The compact representation of the shape

of the LV that can be obtained in the prolate spheroidal coordinate system has been

utilized for building finite element models of the LV (Young et al [180, 179]). A

problem which must often be dealt with when building such models is finding the

optimal values of the LV surface radii and focal radius so that the the focal points
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of the coordinate system do not lie too close to the apex of the LV as quantities of

interest such as deformation parameters cannot be defined at these points. Prolate

spheroidal coordinates have also been used for displacement field fitting by O’Dell

et al [113].

5.1.2 Planispheric Coordinate System

The planispheric coordinate system has properties of both the cylindrical and spher-

ical coordinate systems (Declerck et al [45, 43]). It is defined as shown in figure 5.2.

Two points are chosen, xC and xB, xC being the center of the LV cavity and xB

the center of the base of the LV. For each point x = [x, y, z]T a center point xH is

defined on the line segment joining xC and xB such that

xH − xC = (1− cos θ)(xB − xC) (5.4)

xH and hence θ are found numerically using the Newton-Raphson method. The point

xH is chosen as the center of a spherical polar coordinate system and the spherical

polar coordinates (r, θ, φ) of the point x are found. The planispheric coordinates

(X, Y, R) are then given by

X =
θ

π
cos φ (5.5)

Y =
θ

π
sin φ (5.6)

R =
r

σr

(5.7)

where σr is a normalization constant.

Declerck et al [45] defined a 4D transformation in this coordinate system to
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Figure 5.2: The planispheric coordinate system (the x-axis is not shown but is
perpendicular to the page and points upwards). The center is located at xC =
[0, 0,−1]T and the base is located at xB = [0, 0, 1]T .

describe the motion of the LV using a system of linear equations

X ′ = a0X − a1Y + a2 (5.8)

Y ′ = a1X + a0Y + a3 (5.9)

R′ = a4R + a5 (5.10)

where the ai are continuous and differentiable functions of r, θ, φ, and t. In the

above equations X ′ and Y ′ are transformed by a similarity transformation (a simi-

larity transformation is a combination of rotation, uniform scaling, and translation

components), and R′ is related to R by an affine transformation. The main ad-

vantage of the planispheric transformation is the reduced number of parameters

needed to define it enabling the motion of the LV to be decomposed into its radial,

circumferential, and longitudinal components easily.
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5.1.3 Cylindrical Coordinate System

A point (r, θ, z) in a cylindrical coordinate system has the following x- and y-

coordinates in a Cartesian coordinate system (the z-coordinate remains unchanged)

x = r cos θ (5.11)

y = r sin θ (5.12)

Recently Deng and Denney [49] have used a cylindrical B-spline transformation

model to compute the strain in the myocardium of the LV using tagged MR images.

The difference between the approach presented in [49] and the one presented in this

chapter is that Deng and Denney assume that the tag lines have been identified in

each image in the sequence being analyzed by one of several previously published

techniques [6, 65, 180]. So the cylindrical B-spline motion model is not used directly

to estimate the motion of the myocardium during the cardiac cycle.

Of the three coordinate systems the planispheric and prolate-spheroidal coor-

dinate systems most closely resemble the shape of the LV. We have chosen to in-

vestigate free-form deformations defined in a cylindrical coordinate system mainly

because of the simplicity of their definition in this coordinate system. However, it

must be stated that transformations defined using a prolate-spheroidal coordinate

system or a planispheric coordinate system may also help to improve the accuracy

of motion tracking using image registration.

5.2 Registration of Tagged MR Images

The technique presented in this chapter is a fully automated one that uses nonrigid

image registration combined with a cylindrical free-form deformation (FFD) model

to extract the motion field within the myocardium from tagged MR images. As in

chapter 4, we take account of through-plane motion of the myocardium by using

both short-axis (SA) and long-axis (LA) images of the LV to recover the complete
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3D motion of the myocardium over time. The transformations obtained can be used

to directly calculate various clinically relevant parameters like strain.

5.2.1 Definition of Cylindrical Free-Form Deformations

We define the transformation T(x, t) which maps points in the myocardium at time

t = 0 to their corresponding positions at time nτ using a series of cylindrical free-

form deformations as described below. A cylindrical free-form deformation (CFFD)

is defined on a domain Ω

Ω = {(r′, θ′, z′) : R′min ≤ r′ < R′max, 0 ≤ θ′ < 2π, Z ′min ≤ z′ < Z ′max} (5.13)

corresponding to the volume of interest by a mesh of control points (nr′ +1)× (nθ′ +

1)× (nz′ + 1), where nr′ + 1 is the number of control points in the radial direction,

nθ′ + 1 is the number of control points in the circumferential direction, and nz′ + 1

is the number of control points in the longitudinal direction. The cylindrical control

point grid is aligned with the left ventricle by calculating the center of mass of

the myocardium in the apical and basal short-axis image slices; the line joining the

apex to the base then defines the LA of the left ventricle. A shearing and translation

transformation, S, is calculated which aligns this axis with the axis of the cylindrical

control point grid. Thus, each r′θ′-plane in the cylindrical coordinate system is

aligned with a short-axis image plane. The shearing and translation transformation

is given by the homogeneous transformation matrix

S =





1 0 −ax−bx

az−bz

axbz−azbx

az−bz

0 1 −ay−by

az−bz

aybz−azby

az−bz

0 0 1 −az

0 0 0 1





(5.14)

where a = [ax, ay, az]
T , and b = [bx, by, bz]

T represent the positions of the apex

and the base of the left ventricle respectively. We calculate the coordinates of a
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point, x = [x, y, z]T , in the myocardium in the cylindrical coordinate system by first

multiplying [x, y, z, 1]T by S to obtain





x′

y′

z′

1





= S





x

y

z

1





(5.15)

and then converting to cylindrical polar coordinates (the z′-coordinate remains un-

changed)

r′ =
√

x′2 + y′2 (5.16)

θ′ = arctan2(y′, x′) (5.17)

where arctan2(y′, x′) is the standard C++ math library function that calculates the

arctangent of y′/x′, taking into account the quadrant that θ lies in, which depends

on the signs of x′ and y′.

The position that a point in the myocardium moves to at time t = nτ is

T(x, nτ) = x +

n∑

h=1

uh(Sx) (5.18)

where uh(Sx = x′ = [x′, y′, z′]T ) is defined by a CFFD

uh(x′) =

nr′∑

i=0

nθ′∑

j=0

nz′∑

k=0

β3

(
r′ − r′i,j,k

δr′

)
β3
(
fθ′(θ

′, θ′i,j,k, δθ′)
)
β3

(
z′ − z′i,j,k

δz′

)
φ′i,j,k

(5.19)

Here φ′i,j,k is the control point displacement vector at position [r′i,j,k, θ
′
i,j,k, z

′
i,j,k] (in

cylindrical coordinates) and δr′, δθ′ , and δz′ are the control point spacings in the r′-,

θ′-, and z′-direction respectively. fθ′(θ
′, θ′i,j,k, δθ′) is a function which measures the

relative angular distance between θ′ and θ′i,j,k and whose range is restricted to be in

the interval [-2, 2). The coordinate systems involved and the relationship between
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Figure 5.3: The three coordinate systems involved in computing the deformation
of the myocardium using cylindrical free-form deformations. The xyz-coordinates
system is the global coordinate system and is the coordinate system of the MR
images. The x′y′z′ coordinate system is defined with respect to the line that joins
the apex to the base of the LV. And the r′θ′z′ coordinate system is defined with
respect to the axes of the x′y′z′ coordinate system.

them are shown in figure 5.3 and an example of a CFFD control point grid aligned

with the LA of the LV is shown in figure 5.4.

The strain can be obtained by first computing the Jacobian matrix of the defor-

mation described by the cylindrical free-form deformations and using equation 4.20.

Expressing the displacement of a point x′ at time t = nτ

u(x′, nτ) = T(x′, nτ)− x′ (5.20)

in terms of its x′-, y′-, and z′-components we obtain

ux′(x′, nτ) =
n∑

h=1

uh
x′(x′)

=
n∑

h=1

nr′∑

i=0

nθ′∑

j=0

nz′∑

k=0

β3

(
r′ − r′i,j,k

δr′

)
β3
(
fθ′(θ

′, θ′i,j,k, δθ′)
)
β3

(
z′ − z′i,j,k

δz′

)
×

(µh
i,j,kêr′.êx′ + νh

i,j,kêθ′ .êx′ + ξh
i,j,kêz′.êx′) (5.21)
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Figure 5.4: This figures shows the control point grid of a CFFD aligned with the
LA of the LV.
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uy′(x′, nτ) =

n∑

h=1

uh
y′(x′)

=

n∑

h=1

nr′∑

i=0

nθ′∑

j=0

nz′∑

k=0

β3

(
r′ − r′i,j,k

δr′

)
β3
(
fθ′(θ

′, θ′i,j,k, δθ′)
)
β3

(
z′ − z′i,j,k

δz′

)
×

(µh
i,j,kêr′.êy′ + νh

i,j,kêθ′.êy′ + ξh
i,j,kêz′ .êy′) (5.22)

uz′(x
′, nτ) =

n∑

h=1

uh
z′(x

′)

=
n∑

h=1

nr′∑

i=0

nθ′∑

j=0

nz′∑

k=0

β3

(
r′ − r′i,j,k

δr′

)
β3
(
fθ′(θ

′, θ′i,j,k, δθ′)
)
β3

(
z′ − z′i,j,k

δz′

)
×

(µh
i,j,kêr′.êz′ + νh

i,j,kêθ′ .êz′ + ξh
i,j,kêz′.êz′) (5.23)

where µh
i,j,k, νh

i,j,k, and ξh
i,j,k are the components of the control point displacement

vectors in the r′-, θ′-, and z′-directions respectively, êr′ , êθ′ , êz′ are unit vectors in

the r′-, θ′-, and z′-directions respectively, and êx′, êy′ , and êz′ are unit-vectors in

the x′-, y′-, and z′-directions respectively.

The components of the Jacobian matrix, J′(x′, nτ), of the deformation field

(in the x′y′z′ coordinate system) can then be found by using the chain rule for

differentiation. For example

∂ux′(x′, nτ)

∂y′
=

n∑

h=1

nr′∑

i=0

nθ′∑

j=0

nz′∑

k=0

[
dβ3

du

du

dy′
β3
(
fθ′(θ

′, θ′i,j,k, δθ′)
)
+

β3

(
r′ − r′i,j,k

δr′

)
dβ3

dfθ′

dfθ′

dy′

]
β3

(
z′ − z′i,j,k

δz′

)
(µh

i,j,kêr′ .êx′ + νh
i,j,kêθ′ .êx′ + ξh

i,j,kêz′.êx′)

where

u =
r′ − r′i,j,k

δr′
(5.24)

and the first derivative of β3 is given in equation 4.25. Using equations 5.16 and

5.17 we obtain

∂ux′(x′, nτ)

∂y′
=

n∑

h=1

nr′∑

i=0

nθ′∑

j=0

nz′∑

k=0

[
1

δr′

dβ3

du

y

r′
β3
(
fθ′(θ

′, θ′i,j,k, δθ′)
)
+

1

δθ′
β3

(
r′ − r′i,j,k

δr′

)
dβ3

dfθ′

x′

r′2

]
β3

(
z′ − z′i,j,k

δz′

)
(µh

i,j,kêr′ .êx′ + νh
i,j,kêθ′ .êx′ + ξh

i,j,kêz′ .êx′)
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The other components of the Jacobian matrix of the deformation field can be com-

puted in a similar way. The Jacobian matrix of the deformation field in the xyz-

coordinate system is then

J(x, nτ) = J′(x′, nτ)S[1, 2, 3; 1, 2, 3] (5.25)

where S[1, 2, 3; 1, 2, 3] is the sub-matrix formed from the first three rows and columns

of the matrix in equation 5.14.

5.2.2 Combined Nonrigid Registration of SA and LA Im-

ages

The estimation of the deformation field T(x, t) proceeds in a similar way to that

given in section 4.1.1. Since we are only interested in recovering the motion field

within the myocardium we use segmented images of the myocardium at end-diastole

as the images to register to. We also set the control point displacement vectors which

cannot affect the motion field in the myocardium to be passive and do not consider

them during the optimization process as shown in figure 5.5. This not only allows

us to produce more accurate results but also to do the registration more quickly.

The motion field reconstruction is achieved as shown in figure 4.6 by registering the

volume images taken during the cardiac cycle to the segmented volume images taken

at end-diastole.

5.3 Results

5.3.1 Cardiac Motion Simulator Data

In this subsection we present validation results using cardiac motion simulator data.

In the following subsection we will present results on data acquired from normal

human volunteers. As in chapter 4 we conducted experiments on the nine sets of
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A

B

Figure 5.5: This figure shows a SA view of the heart segmented at end-diastole.
Control points which cannot affect the deformation field in the myocardium are
marked passive. For example point B is marked as passive while point A remains
active.

images A1–A3, B1–B3, C1–C3. For each set of images the deformation of the my-

ocardium was computed using the method presented in section 5.2. The relative

errors, ρ(t) (equation 4.18), and the RMS errors, δ(t) (equation 4.19), in the dis-

placement vectors of points in the myocardium estimated from the transformation

T(x, t) was then computed. The relative errors in the computed displacement vec-

tors are plotted in figures 5.6(a), 5.6(b), and 5.6(c), and the RMS errors in the

computed displacement vectors are plotted in figures 5.7(a), 5.7(b), and 5.7(c).

As can be seen from a comparison of figures 4.10 and 5.6, and figures 4.11 and 5.7

the registration algorithm based on cylindrical free-form deformations has performed

slightly worse than the algorithm based on Cartesian free-form deformations. This

result clearly needs to be explained.

Figure 5.8 shows plots of the relative error in the computed displacement field

for image set C1 for the same SA slices as those shown in figure 4.17. As can

be seen in the figure the relative errors are larger near the epicardium and the

endocardium for both FFDs and CFFDs. This is to be expected as the deformation

of the myocardium near the borders is more difficult to estimate than within the

borders. But in the images on the right the CFFDs can be seen to have performed

worse in the apical and basal slices than the FFDs but performed slightly better in
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Figure 5.6: This figure shows the variation of the relative error in the estimated
displacements for the three different types of motion generated from the LV simulator
and for different amounts of Gaussian noise added to the images.
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Figure 5.7: This figure shows the variation of the RMS error in the estimated dis-
placements for the three different types of motion generated from the LV simulator
and for different amounts of Gaussian noise added to the images.
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the mid-ventricular slice than the FFDs, especially near the epicardium. This is due

to the fact that the only the mid-ventricular part of the LV resembles a cylinder.

The canine simulator images were also used to test the performance of the cylin-

drical free-form registration algorithm in estimating strains. The derived radial,

circumferential, and longitudinal strain maps corresponding to the ones shown in

figure 4.14 are presented in figure 5.9, while the differences between the true and

estimated strains are shown in figure 5.10. Tensor ellipsoid plots showing the prin-

cipal strain directions are shown in figure 5.11. As can be seen from the figures the

estimated strain maps, although similar to the true ones, are not as accurate as the

ones estimated using Cartesian FFDs.

5.3.2 Human Data

We also used the data from section 4.2.2 to reconstruct the deformation fields in the

hearts of a group of normal volunteers. For each of the volunteers the deformation

field within the myocardium was calculated using the method presented in section 5.2

for all times between end-diastole and end-systole. The control point spacings in

the radial, circumferential, and longitudinal directions were 8 mm, π/4, and 10

mm respectively. As in chapter 4, to test the performance of the method, tag-

intersection points in four different imaging planes (basal SA slice, mid-ventricular

SA slice, apical SA slice, and horizontal LA slice) were tracked manually by a human

observer. The RMS error between the estimated and observed displacements of the

tag-intersection points are given in figures 5.12(a), 5.12(b), 5.12(c), and 5.12(d) for

apical SA, mid-ventricular SA, basal SA, and HLA slices respectively. Comparison

of these figures with the corresponding ones for the FFD (figures 4.20(a), 4.20(b),

4.20(c), and 4.20(d) respectively) show that, again, the CFFDs have not performed

as well as FFDs. However, comparing figures 4.20(b) and 5.12(b) shows that for 7 of

the 11 volunteers the CFFDs performed better than the Cartesian FFDs in tracking

the motion of the myocardium, for 1 volunteer the performance was the same, and
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Figure 5.8: This figure shows a comparison of the relative errors in the displacements
computed using FFDs (left) and CFFDs (right) for image set C1. The positions of
the SA slices shown here are the same as those in figure 4.17.
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Figure 5.9: This figure shows plots of the radial, circumferential, and longitudinal
strains in the myocardium computed from the cylindrical free-form deformations
obtained from the registration algorithm for the simulator images generated from the
k-parameter values in figure 4.12. The strain maps shown here should be compared
with the true strain maps in figure 4.14.
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Figure 5.10: This figure shows the differences between the true (figure 4.14) and
estimated (figure 5.9) strain maps.
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Figure 5.11: This figure shows plots of the strain in the myocardium computed from
the cylindrical free-form deformations obtained from the registration algorithm for
the simulator images generated from the k-parameter values in figure 4.12. The
strain maps shown here should be compared with the true strain maps in figure 4.17.
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Figure 5.12: These graphs show the variation of the RMS error in the estimated
in-plane displacements obtained from the registration algorithm as compared with
the manual tracking of tag intersection points in different slices for the 11 volunteers.

for the remaining 3 the CFFDs performed worse. So, the CFFDs have performed

slightly better than the Cartesian FFDs in tracking the motion of the myocardium

in the mid-ventricular region of the LV. This can again be explained by the fact that

the shape of the LV near the mid-ventricle resembles a cylinder and the CFFDs are

able to track the motion of the LV more accurately in this region than the Cartesian

FFDs.

Increasing the control point spacing in the radial and circumferential directions

had a deterimental effect on the performance of the motion tracking algorithm as

shown in figure 5.13.

We also visualized the tag tracking in the form of virtual tag grids in figure 5.14.

Here a grid has been overlaid on SA and LA views of the heart at end-diastole and
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Figure 5.13: These graphs show the variation of the RMS error in the estimated
in-plane displacements obtained from the registration algorithm as compared with
the manual tracking of tag intersection points in different slices for the 11 volunteers.
In this figure control point spacings of 4 mm and π/8 were used in the radial and
circumferential directions respectively.
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been allowed to deform with the calculated transformations as the heart contracts.

From the output transformations we also computed the radial, circumferential,

and longitudinal strains in different regions of the myocardium. A bullseye plot of

the average radial, circumferential, and longitudinal strains computed at end-systole

for the 11 volunteers is shown in figure 5.15. While figures 5.16, 5.17, and 5.18 show

the variation of the radial, circumferential, and longitudinal strains over time. These

should be compared with the corresponding bullseye plots (figure 4.28) and graphs

showing the variation in strain over time (figures 4.29, 4.30, and 4.31). The results

are similar to those obtained in chapter 4. The radial strain is the greatest in the

anterolateral part of the myocardium while the circumferential strain is uniform

around the center of the LV and increases towards the apex. The estimation of the

longitudinal strain is again made difficult by the relatively small number of LA slices

acquired for the study.

5.4 Summary

In this chapter we investigated the use of a cylindrical free-form deformation (CFFD)

for describing the motion of the myocardium of the LV. We validated our method

using a cardiac motion simulator. The results presented showed that the CFFD

performed slightly worse than the registration algorithm based on Cartesian FFDs

except for the mid-ventricular region of the LV where its accuracy is slightly better

than that of Cartesian FFDs for both simulated data and human volunteer data.

The radial and circumferential strain maps computed for the human volunteer data

are also comparable to those reported in other studies [111, 43].

The results presented in this chapter show that the coordinate system used can

have a significant impact on the accuracy of image registration in tracking the motion

of the heart. In a patient study tagged MR images may only be one of the many

different imaging modalities used to obtain a comprehensive view of the anatomy

and function of the heart. If, for example, tagged MR images are only acquired
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Figure 5.14: This figure shows a series of tagged images taken from one of the
volunteers. A virtual tag grid has been placed on the tag pattern at end-diastole
and allowed to deform with time according to the deformation field calculated. As
time progresses the virtual tag grid can be seen to follow the underlying tag pattern
and so we can say that the deformation field has been reconstructed accurately.
The first three rows show basal, mid-ventricular, and apical SA images respectively.
The fourth row shows a horizontal LA image. The first, second, and third columns
correspond to end-diastole, mid-systole, and end-systole respectively. Animations
of these virtual tag grids can be found on the accompanying CD.
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Figure 5.15: This figure (from left to right) shows bullseye plots of the average
radial, circumferential, and longitudinal strains in the myocardium computed at
end-systole for the 11 volunteers.

in the mid-ventricular region of the LV, CFFDs may prove to be more suitable for

performing motion analysis in this region of the LV.

A limitation of the registration techniques presented in this and the previous

chapter for cardiac motion tracking is that deformation parameters can only be

computed for discrete time instants (namely the times at which the images have

been acquired). In the following chapter we investigate the use of 4D FFDs for

cardiac motion tracking. 4D FFDs are parameterized by a temporal variable in

addition to the three spatial variables and ensure computed deformation parameters

are temporally smooth as well as being spatially smooth.
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Figure 5.16: This figure shows plots of the radial strain in the different regions of the heart computed from the free-form deformations
obtained from the registration algorithm for the 11 volunteers.
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Figure 5.17: This figure shows plots of the circumferential strain in the different regions of the heart computed from the free-form
deformations obtained from the registration algorithm for the 11 volunteers.
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Figure 5.18: This figure shows plots of the longitudinal strain in the different regions of the heart computed from the free-form
deformations obtained from the registration algorithm for the 11 volunteers.
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Chapter 6

Cardiac Motion Tracking in

Tagged MR Images Using a 4D

B-Spline Motion Model and

Nonrigid Image Registration

In the previous two chapters we presented methods for cardiac motion tracking in

tagged MR images using nonrigid image registration and transformation models

based on Cartesian and cylindrical coordinate systems. The transformation models

used in both of these methods suffer from the same limitation—deformation para-

meters can only be evaluated at discrete time instants and they are not temporally

smooth.

In this chapter we present a method for tracking the motion of the heart in

tagged MR images using nonrigid image registration by maximization of NMI with

a four dimensional (4D) B-spline transformation model. We track the motion of

the myocardium of the left ventricle (LV) by registering a sequence of images taken

during systole to a set of reference images taken at end-diastole. Registration is

achieved by optimizing the mutual informations between the images being regis-

tered and the reference images. The transformation used to register the sequence
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of images is a 4D B-spline transform. This allows us to describe the deformation of

the LV in a way that is both spatially and temporally smooth. The advantage of

using a 4D B-spline transform is that strains, displacements, and velocities can be

calculated at any arbitrary time between end-diastole and end-systole. The ability

to evaluate deformation parameters at arbitrary time instants is important practi-

cally as deformation fields obtained from different volunteers can be compared more

easily.

This chapter is organized as follows. In section 6.1 we detail the 4D image

registration method developed for cardiac motion tracking using tagged MR images.

As in the previous two chapters we have validated our method using a cardiac

motion simulator and data acquired from a group of normal volunteers and the

results obtained are presented in section 6.2. Finally, in section 6.3 we summarize

our work. The work presented in this chapter has been published in [30].

6.1 Registration of 4D Tagged MR Images

The method proposed in this chapter is to pose the problem of tracking the motion

of the heart as a 4D registration problem. In order to measure through-plane motion

we again need to acquire images with tag planes in the SA and LA directions. We

represent the 4D images in which the tag planes are perpendicular to the SA and

LA image planes as S4D(x, t) and L4D(x, t) respectively.

To track the motion of the heart we need to find a transformation, T(x, t), which

describes how a particular material point at position x in the myocardium at time

t = 0 moves over time. In chapters 4 and 5 we estimated this transformation in

a sequence of registration steps in which the volume images, Snτ and Lnτ , taken

during systole were registered simultaneously to the segmented volume images, Sseg

and Lseg respectively. In this chapter we propose to estimate T(x, t) by registering

the 4D volume images S4D(x, t) and L4D(x, t) simultaneously to the 4D volume
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Figure 6.1: These images show one slice from a 4D image in which the horizontal
axis represents the x-direction and the vertical axis represents time (untagged im-
ages have been used for clarity). The regions corresponding to the LV, RV, and
myocardium are also indicated. To reconstruct the deformation field in the my-
ocardium the image on the right, in which the LV is moving, is registered to the
image on the left, in which the LV is stationary.

images S4Dseg(x, t) and L4Dseg(x, t) respectively, where

S4Dseg(x, t) = Sseg(x) (6.1)

L4Dseg(x, t) = Lseg(x) (6.2)

and Sseg and Lseg are the segmented volume images of the myocardium at end-

diastole. The 4D registration which needs to be performed is illustrated in figure 6.1

for the SA direction.

Performing this registration yields a transformation, T(x, t), which maps points

in the 4D images, S4Dseg(x, t) and L4Dseg(x, t), in which the myocardium is sta-

tionary, to their corresponding positions in the images S4D(x, t) and L4D(x, t), in

which the myocardium is moving. The transformation used to effect the registration

is represented as a 4D B-spline FFD

T(x, t) = x + u(x, t) (6.3)
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where

u(x, t) =
nt∑

l=0

nx∑

i=0

ny∑

j=0

nz∑

k=0

β3

(
t− tl

δt

)
β3

(
x− xi,j,k

δx

)
β3

(
y − yi,j,k

δy

)
×

β3

(
z − zi,j,k

δz

)
φi,j,k,l (6.4)

and the φi,j,k,l are the 3D displacement vectors at the positions of the (nx + 1)(ny +

1)(nz + 1)(nt + 1) control points, δx, δy, δz are the control point spacings in the

x-, y-, z-directions respectively, tl are the time instants at which the images haven

been acquired in constructing the 4D images, and δt is the time interval between

the control points in the temporal direction. The x-, y-, and z-axes of the 4D

FFD are aligned with the x-, y-, and z-axes of the segmented SA image S4Dseg

as in chapter 4. In chapter 4 the deformation field at a particular time point was

computed by summing a sequence of FFDs over time (equations 4.4 and 4.5). In

equation 6.4 the deformation is computed by blending the displacement vectors in

the temporal direction in addition to the spatial directions and ensures temporal

smoothness of the deformation field.

Again, we set the control point displacement vectors which cannot affect the

deformation field within the myocardium to be zero and do not consider them during

the optimization process. This is done in exactly the same way as shown in figure 4.4.

6.1.1 Combined Nonrigid Registration of SA and LA Im-

ages

A suitable similarity function must now be found which measures the degree to

which the 4D images, S4D and L4D, have been registered with the segmented 4D

images, S4Dseg and L4Dseg respectively. The NMI between the segmented 4D SA

volume image, S4Dseg, and the transformed 4D SA volume image, T(S4D), so that

it has been registered to the segmented image with the current estimate of the
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transformation T(x, t) is

N(S4Dseg;T(S4D)) =
H(S4Dseg) + H(T(S4D))

H(S4Dseg,T(S4D))
(6.5)

A similar equation for the LA images can be written as

N(L4Dseg;T(L4D)) =
H(L4Dseg) + H(T(L4D))

H(L4Dseg,T(L4D))
(6.6)

Equations 6.5 and 6.6 can then be weighted according to the number of voxels in

the segmented SA and LA volume images and summed to yield a similarity function

similar to the ones used in chapters 4 and 5. This approach would be suitable

for 4D image registration of images in which there are no tags present (such as

untagged anatomical images of the LV or images of the brain). However, tagged

MR image analysis is complicated by the fact that as the LV contracts tag planes

can move from their initial position in a direction perpendicular to the tag plane

direction and become aligned with an adjacent tag plane at a later time. During

the optimization procedure the transformation estimate can become trapped at a

local maximum. This happens because locally the initial transformation estimate

(the identity transformation) is already at its optimum according to the intensity

based similarity criterion used. In addition the intensities of voxels in the images,

S4D and L4D, varies over time.

To account for these complications we evaluate the following similarity measure

in which each time frame in the transformed 4D images, T(S4D) and T(L4D), is

compared with the corresponding time frame in the stationary 4D images, T(S4Dseg)

and T(L4Dseg)

C =
n∑

l=0

wS
H(S4Dseg(x, lτ)) + H(T(S4D(x, lτ)))

H(S4Dseg(x, lτ),T(S4D(x, lτ)))
+

wL
H(L4Dseg(x, lτ)) + H(T(L4D(x, lτ)))

H(L4Dseg(x, lτ),T(L4D(x, lτ)))
(6.7)
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where wS and wL are the weights given in equations 4.9 and 4.10, and n + 1 is the

total number of time frames.

6.1.2 Optimization Procedure

To stop the transformation, T(x, t), from getting trapped at local maxima we use a

two-stage optimization procedure. In the first stage we separate the optimization of

the control point displacement vectors in the spatial and temporal directions. We

consider each value of the control point index l (in the temporal direction) in turn,

from l = 1 to l = nt, and optimize only the subset of control point displacement

vectors for which the temporal index is equal to the value being considered. As

modifying a control point displacement vector while keeping the control point index

l (in the temporal direction) constant changes the displacement field u(x, t) only

within the time interval [tmin(l), tmax(l)) where

tmin(l) = tl − 2δt (6.8)

tmax(l) = tl + 2δt (6.9)

the similarity measure, C, need only be evaluated for those time frames which fall

within the time interval [tmin(l), tl). We denote the similarity measure evaluated

within this time interval as C[tmin, tl). The subset of control point displacement vec-

tors are optimized so that C[tmin, tl) is maximized using a gradient ascent technique

similar to the one in algorithm 1. After optimizing the control point displacement

vectors for index l we use the recursive filtering technique of Unser et al [167] to

interpolate the motion field so that

T(xi,j,k, tm) =






T(xi,j,k, tl) for m > l

T(xi,j,k, tm) for m ≤ l
(6.10)
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This provides a good initial estimate of the transformation field at time t = tl+1.

We then repeat the optimization of the control point displacement vectors for each

index > l. This is similar to the approach we took in chapters 4 and 5 and ensures

that the registration algorithm does not get trapped at a local maximum during the

second stage of the optimization procedure.

In the second stage all the control point displacement vectors are optimized

simultaneously so as to maximize the similarity measure (equation 6.7). A gradient

ascent algorithm is used during the second stage of the optimization also.

6.2 Results

6.2.1 Cardiac Motion Simulator Data

We repeated the experiments conducted in chapters 4 and 5 on the simulator images

A1–A3, B1–B3, C1–C3 by reconstructing the motion fields within the myocardium

using the method presented in section 6.1. The control point spacings in the spatial

direction were the same as those chosen in chapter 4 and the control point spacing in

the temporal direction was chosen to be equal to the time between two consecutive

time frames. We then computed the relative, ρ(t) (equation 4.18), and RMS errors,

δ(t) (equation 4.19), in the reconstructed motion fields. The relative errors in the

reconstructed motion fields are plotted in figures 6.2(a), 6.2(b), and 6.2(c), while

the RMS errors are plotted in figures 6.3(a), 6.3(b), and 6.3(c).

Comparison of figures 6.2 and 6.3 with figures 4.10 and 4.11 respectively show

that the 4D registration algorithm presented in this chapter performs marginally

better than the algorithm used in chapter 4 when there is no noise present in the

images. The 4D tracking algorithm is not as robust to the presence of noise in the

images as indicated by the σ = 8 and σ = 16 curves.

The canine simulator images were also used to test the performance of the 4D

registration algorithm in estimating strain fields. To compute the strain the Jaco-
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Figure 6.2: This figure shows the variation of the relative error in the estimated
displacements for the three different types of motion generated from the LV simulator
and for different amounts of Gaussian noise added to the images.
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Figure 6.3: This figure shows the variation of the RMS error in the estimated dis-
placements for the three different types of motion generated from the LV simulator
and for different amounts of Gaussian noise added to the images.
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bian matrix of the deformation field u(x, t) = [ux(x, t), uy(x, t), uz(x, t)]T must be

calculated. The Lagrangian strain tensor can then be expressed in terms of the

Jacobian matrix (equation 4.20). The components of the Jacobian matrix can be

computed easily by differentiating 6.4 with respect to x, y, and z. For example

∂ux(x, t)

∂y
=

1

δy

nt∑

l=0

nx∑

i=0

ny∑

j=0

nz∑

k=0

β3

(
t− tl

δt

)
β3

(
x− xi,j,k

δx

)
dβ3

dv
β3

(
z − zi,j,k

δz

)
µi,j,k,l

(6.11)

where the µi,j,k,l are the x-components of the control point displacement vectors,

and v and dβ3/dv are given in equations 4.24 and 4.25 respectively.

The computed radial, circumferential, and longitudinal strains for the canine

simulator images are shown in figure 6.4 and the differences between the true and

estimates strain maps are shown in figure 6.5. Tensor ellipsoid plots of the strain

are shown in figure 6.6.

6.2.2 Human Data

We also repeated the experiments on human volunteer data and reconstructed the

deformation fields within the hearts of a group of normal volunteers. For each of the

volunteers the deformation field within the myocardium was calculated using the

method presented in section 6.1 for all times between end-diastole and end-systole.

As in the previous chapters we tested the performance of the method by comparing

the displacements of tag-intersection points in four different imaging planes com-

puted using the 4D FFD with those measured by a human observer. The RMS er-

ror between the estimated and observed displacements of the tag-intersection points

are given in figure 6.7(a), 6.7(b), 6.7(c), and 6.7(d) for apical SA, mid-ventricular

SA, basal SA, and HLA slices respectively. Comparison of these figures with the

corresponding figures in chapter 4 (figures 4.20(a), 4.20(b), 4.20(c), and 4.20(d) re-

spectively) show that the 4D registration algorithm has performed not as well as

the 3D registration algorithm in chapter 4. The 4D registration algorithm is not as

robust as the 3D registration algorithm to the presence of noise in the images. We
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Figure 6.4: This figure shows plots of the radial, circumferential, and longitudi-
nal strains in the myocardium computed from the 4D free-form deformations ob-
tained from the registration algorithm for the simulator images generated from the
k-parameter values in figure 4.12. The strain maps shown here should be compared
with the true strain maps in figure 4.14.
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Figure 6.5: This figure shows the differences between the true (figure 4.14) and
estimated (figure 6.4) strain maps.
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Figure 6.6: This figure shows plots of the strain in the myocardium computed from
the 4D free-form deformations obtained from the registration algorithm for the sim-
ulator images generated from the k-parameter values in figure 4.12. The strain maps
shown here should be compared with the true strain maps in figure 4.17.
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Figure 6.7: These graphs show the variation of the RMS error in the estimated in-
plane displacements obtained from the registration algorithm as compared with the
manual tracking of tag intersection points in different slices for the 11 volunteers.

also see from the graphs that the errors in the displacements of the tag-intersection

points are not zero at time t = 0. This happens because the control point displace-

ment vectors at later times influence the deformation field at time t = 0. As we

have not constrained the deformation field produced by the 4D FFD to remain zero

at the start of the cardiac cycle during the optimization process, small errors result

in the computed deformation field at time t = 0.

Figure 6.8 shows a visualization of the tag tracking in the form of virtual tag

grids. Looking at the circled areas in the figure we see that there are certain regions

in the myocardium where the registration algorithm has not been able to accurately

track the motion of the myocardium—in the basal SA and LA slices two tag lines

have been mapped to the same tag line in the end-diastolic image. Thus the two-step
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optimization procedure we are using is not able to recover the deformation field in

the myocardium accurately in all cases and manual intervention may be necessary.

From the output transformations we also computed the radial, circumferential,

and longitudinal strains in different regions of the myocardium. A bullseye plot of

the average radial, circumferential, and longitudinal strains computed at end-systole

for the 11 volunteers is shown in figure 6.9. While figures 6.10, 6.11, and 6.12 show

the variation of the radial, circumferential, and longitudinal strains over time in

different regions of the heart. These should be compared with the corresponding

bullseye and strain plots in chapter 4.

6.3 Summary

In this chapter we presented a 4D registration algorithm for cardiac motion tracking.

The experiments we conducted on simulator data showed that the 4D registration

algorithm is able to track the motion of the myocardium slightly more accurately

than the methods presented in chapters 4 and 5 when there is no noise present in

the images. In real MR images, where noise is present, the registration algorithm

is not as accurate in recovering the deformation field as the methods presented in

chapters 4 and 5. Two difficulties are encountered which are limitations of the

optimization procedure used. Firstly, we have not constrained the 4D FFD to be

zero at the start of the cardiac cycle; and secondly, the optimization procedure

can sometimes map two tag lines in a particular image taken during the cardiac

cycle to a single tag line in the image taken at end-diastole. One way of solving

this problem might be to interpolate a 4D FFD from the output deformation field

computed in chapter 4. The interpolated 4D FFD could then be provided as an

input to the registration algorithm. The input transformation obtained in this way

would provide a good estimate of the deformation field and so stop the optimization

procedure from getting trapped at local maxima.

Although a good estimate of the initial 4D deformation field could be obtained
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Figure 6.8: This figure shows a series of tagged images taken from one of the vol-
unteers. A virtual tag grid has been placed on the tag pattern at end-diastole and
allowed to deform with time according to the deformation field calculated. As time
progresses the virtual tag grid can be seen to follow the underlying tag pattern and
so we can say that the deformation field has been reconstructed accurately. The
first three rows show basal, mid-ventricular, and apical SA images respectively. The
fourth row shows a horizontal LA image. The first, second, and third columns cor-
respond to end-diastole, mid-systole, and end-systole respectively. Animations of
these virtual tag grids can be found on the accompanying CD.
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Figure 6.9: This figure (from left to right) shows bullseye plots of the average radial,
circumferential, and longitudinal strains in the myocardium computed at end-systole
for the 11 volunteers.

in this way, a more efficient procedure would be to make use of prior information

about the expected types of motion of the LV to re-parameterize the 3D FFDs used

in chapter 4 in terms of the major modes of variation in the deformation fields. The

motion tracking can be performed much more quickly as the re-parameteriziation

of the FFDs in terms of the major modes reduces the dimensions of the parameter

search space during optimization. In the next chapter we show how such a statistical

model of deformation can be built.
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Figure 6.10: This figure shows plots of the radial strain in the different regions of the heart computed from the free-form deformations
obtained from the registration algorithm for the 11 volunteers.

191



0 20 40 60 80 100

elcyccaidracfotnecreP

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

θ
θ
E

(a) Basal Septal

0 20 40 60 80 100

elcyccaidracfotnecreP

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

θ
θ
E

(b) Basal Anterior

0 20 40 60 80 100

elcyccaidracfotnecreP

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

θ
θ
E

(c) Basal Lateral

0 20 40 60 80 100

elcyccaidracfotnecreP

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

θ
θ
E

(d) Basal Inferior

0 20 40 60 80 100

elcyccaidracfotnecreP

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

θ
θ
E

(e) Mid Septal

0 20 40 60 80 100

elcyccaidracfotnecreP

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

θ
θ
E

(f) Mid Anterior

0 20 40 60 80 100

elcyccaidracfotnecreP

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

θ
θ
E

(g) Mid Lateral

0 20 40 60 80 100

elcyccaidracfotnecreP

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

θ
θ
E

(h) Mid Inferior

0 20 40 60 80 100

elcyccaidracfotnecreP

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

θ
θ
E

(i) Apical Septal

0 20 40 60 80 100

elcyccaidracfotnecreP

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

θ
θ
E

(j) Apical Anterior

0 20 40 60 80 100

elcyccaidracfotnecreP

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

θ
θ
E

(k) Apical Lateral

0 20 40 60 80 100

elcyccaidracfotnecreP

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

θ
θ
E

(l) Apical Inferior

Figure 6.11: This figure shows plots of the circumferential strain in the different regions of the heart computed from the free-form
deformations obtained from the registration algorithm for the 11 volunteers.

192



0 20 40 60 80 100

elcyccaidracfotnecreP

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

z
z
E

(a) Basal Septal
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(b) Basal Anterior
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(c) Basal Lateral
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(d) Basal Inferior
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(e) Mid Septal
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(f) Mid Anterior
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(g) Mid Lateral
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(h) Mid Inferior
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(i) Apical Septal
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(j) Apical Anterior
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(k) Apical Lateral
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Figure 6.12: This figure shows plots of the longitudinal strain in the different regions of the heart computed from the free-form
deformations obtained from the registration algorithm for the 11 volunteers.
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Chapter 7

Construction of a Statistical

Model for Cardiac Motion

Analysis Using Nonrigid Image

Registration

In this chapter we present a new technique for tracking the movement of the my-

ocardium using a statistical motion model constructed from the motion fields in the

hearts of several healthy volunteers. The key idea is to reduce the dimensions of

the parameter space which needs to be searched in order to track the motion of the

heart using the statistical model. To build the statistical model we track the motion

of the myocardium in a group of volunteers using the nonrigid registration technique

developed in chapter 4. We then map the motion fields obtained into a common

reference coordinate system. A principal component analysis (PCA) is performed

on the motion fields to extract the major modes of variation in the fields between the

successive time frames. The modes of variation obtained are used to re-parameterize

the FFDs and build our statistical motion model. The results of using our model to

track the motion of the heart in normal volunteers are also presented.

This chapter is organized as follows. Section 7.1 begins with a brief review of re-
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lated work on statistical shape models and statistical deformation models, section 7.2

describes how we have built our motion model of the heart, section 7.3 explains the

model-based motion tracking, and section 7.4 presents our results for normal volun-

teers. Finally, section 7.5 summarizes the work presented in this chapter. The work

presented in this chapter has been published in [32].

7.1 Related Work

7.1.1 Statistical Shape and Deformation Models

The key idea of statistical shape models (Cootes et al [38]) is to build a model of

a particular class of shape given a set of examples of this shape. By examining the

statistics of the example shapes and their variability the model can be just as flexible

as a deformable model and yet be specific to the class of structures it represents.

The specificity of the derived statistical shape model increases the robustness of

image interpretation with the model even in the presence of noise or occlusion.

A statistical shape model is constructed from a set of labelled points derived

from a set of images containing the example shapes. These points are usually chosen

manually. The N + 1 shapes are represented in form of shape vectors, X0, · · · ,XN ,

where each shape vector Xi consists of a concatenation of M + 1 landmarks

xij = [xij , yij, zij ]
T , j = 0 . . .M (7.1)

describing the contour or surface of the shape of interest:

Xi = [xT
i0,x

T
i1, . . . ,x

T
iM ]T = [xi0, yi0, zi0, xi1, yi1, zi1, . . . , xiM , yiM , ziM ]T (7.2)

Since the example shapes may have arbitrary orientations and scales they must

first be aligned so that the variability in the shape vectors resulting from these

changes in pose and scale can be eliminated. Cootes et al describe an iterative

195



procedure for the alignment of the shapes in which the weighted sum of squares

distances between equivalent points on different shapes is minimized. The weight

assigned to a particular point is computed by measuring the variance in the distance

of that point from the other points in the shape over the class of shapes involved.

A point which tends to move a great deal with respect to the other points in the

shape is given a low weight, while a point which is stationary with respect to the

other points in the shape is given a high weight. The shape vectors Xi are assumed

to have been aligned in this way.

Each shape vector Xi can be thought of as a point in a 3(M + 1) dimensional

space and that the N points lie within some region of this space called the allowable

shape domain. Any point within the allowable shape domain represents a plausi-

ble shape from the class of shapes being considered. Cootes et al assume that the

allowable shape domain is approximately ellipsoidal and proceed to build the sta-

tistical shape model based on this assumption by performing a principal component

analysis (PCA) on the example shape vectors [55]. The basic idea behind PCA is

to transform the set of coordinate variables describing the shape vectors into a new

set of coordinate variables which are uncorrelated with respect to each other. This

is done as described in the following paragraphs.

The center of the allowable shape domain is the mean shape vector

〈X〉 =
1

N + 1

N∑

i=0

Xi (7.3)

and the deviation of each shape from the mean is:

dXi = Xi − 〈X〉 (7.4)

The covariance matrix, S, of the mean corrected shape vectors is then computed

using:

S =
1

N + 1

N∑

i=0

dXidX
T
i (7.5)
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Since S is a symmetric matrix it can be written in the form

S = ΦΛΦT (7.6)

where Φ is an orthogonal matrix and Λ is a diagonal matrix. This implies that:

ΦTSΦ = Λ (7.7)

The above equation can be thought of as rotation in 3(M + 1) dimensions which

transforms the vector of correlated coordinate variables dX into a vector of uncor-

related coordinate variables dY. The components of the vector dY are related to

the components of the vector dX by:

dY = ΦT dX (7.8)

Equation 7.6 also implies that

SΦ = ΦΛ (7.9)

which is equivalent to

Sφi = λiφi (7.10)

where the φi are the 3(M +1) column vectors of Φ and the λi the 3(M +1) diagonal

elements of Λ. The elements of the matrix Φ can be found by solving for the

eigenvectors and eigenvalues of the matrix S.

Any shape, X, in the training set can be rewritten in terms of the eigenvectors

of the covariance matrix

X = 〈X〉+
3M−1∑

j=0

pjφj (7.11)

which is also written as:

X = 〈X〉+ Φp (7.12)

p is called the parameter vector for the shape vector X. The components pj can be
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found easily by making use of the fact that the φj are orthogonal to each other:

pj = φT
j (X− 〈X〉) = φT

j dX (7.13)

The eigenvectors of the covariance matrix correspond to the axes of the 3(M +

1) dimensional ellipsoid, and the axes with the largest eigenvalues represent the

transformed coordinate variables with the largest variances. In many cases most of

the variation in the shape vectors can be described by a relatively small number of

transformed variables, so that the the allowable shape domain can be approximated

by an ellipsoid in a lower dimensional space. The number of dimensions, L, needed

to approximate a particular shape vector can be chosen so that the sum of variances

of the first L transformed variables is greater than or equal to a sufficiently large

proportion, f , of the total variance λT :

L∑

i=0

λi ≥ fλT = f

3M∑

i=0

λi (7.14)

The class of shapes under investigation can be reparameterized in terms of the

major modes of variation given by the eigenvectors φi and new examples can also be

generated from within the allowable shape domain by choosing a shape vector such

that the components of the parameter vector, p, are restricted to lie in a suitable

range:

X ≈ 〈X〉+ Φp (7.15)

A typical choice is 3 standard deviations for each mode, j, of variation:

−3
√

λj ≤ pj ≤ 3
√

λj (7.16)

The re-parameterization of the shape vector in terms of the major modes of variation

provides a systematic way of generating new examples of the class of shapes under

consideration. Cootes et al call the reparameterized shape models active shape
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models (ASMs). ASMs have been used widely for image segmentation tasks [93,

59, 150] as well as for locating structures in brain and heart images and shape

analysis [37, 160].

Active appearance models (AAMs) [36] are an extension of ASMs which attempt

to model the intensities of pixels within the boundaries of the shape models. These

have been used to segment images of the heart in MRI and ultrasound images of

the heart [110, 18, 109].

The concept of statistical deformation models (SDMs) [75, 58] is closely related

to the idea of statistical shape models, however the key difference is that the PCA is

used to analyze motion fields rather than shape landmarks. This concept has been

successfully applied for modelling of anatomical variability of neurological structures

across a population of subjects.

7.2 Construction of a Statistical Model of Cardiac

Motion

There are three main parts to the construction of our motion model. Firstly, in

section 7.2.1, we define the notation used to describe the motion fields for all times

between end-diastole and end-systole for the different subjects. Secondly, in sec-

tion 7.2.2, the motion fields obtained are mapped into a common coordinate system

so that a comparison across subjects may be performed. Finally, in section 7.2.3,

we build our motion model by performing a principal component analysis (PCA)

of the motion fields in the common coordinate system for all the volunteer subjects

to obtain the most dominant modes of motion between any two consecutive time

frames.
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7.2.1 Myocardial Motion Analysis

The method we use to track the motion of the heart is described in chapter 4. In

this section we define the notation used to describe the construction of the statistical

motion model.

For a single subject, S, consider a point in the myocardium at end-diastole,

x′0 = [x′0, y
′
0, z
′
0]

T , which moves to another point x′nτ = [x′nτ , y
′
nτ , z

′
nτ ]

T at time nτ .

The transformation which gives the position that a point in the myocardium has

moved to at time nτ is written as

TS(x′0, nτ) = x′0 +
n∑

h=1

uS,h(x′0) (7.17)

where uS,h are the FFDs computed in chapter 4. The actual motion fields are given

by:

uS(x′0, nτ) = TS(x′0, nτ)− x′0 =

n∑

h=1

uS,h(x′0) (7.18)

The FFDs, uS,h, which describe the motion between two successive time frames are

used to construct our statistical motion model.

7.2.2 Transformation of Myocardial Motion Fields

To make an objective comparison of the cardiac motion fields derived from different

subjects requires their alignment in a common coordinate system. For this purpose

we use a technique developed by Rao et al [134, 133] which aligns cardiac MR images

from different subjects into a common spatial coordinate system and also transforms

the motion fields from these subjects into a common spatial coordinate system.

7.2.2.1 Temporal Alignment of Motion Fields

Typically, the length of the cardiac cycles will vary from subject to subject. Fur-

thermore, in prospectively gated MR imaging acquisitions, the trigger delay and

temporal resolution of the acquired images can vary from acquisition to acquisi-
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tion. To compensate for the temporal misalignment resulting from these factors, we

manually determine an affine temporal mapping which aligns the end-diastolic and

end-systolic time points of each subject S with the corresponding time points in a

reference subject R. Using this temporal mapping we can align and re-sample the

motion fields from different subjects into a common temporal coordinate system.

Suppose that the end-systolic time frames for subjects S and R are nS and

nR respectively. To simplify the discussion assume also that the end-diastolic time

frames are 0 for both subjects and the time interval between end-diastole and end-

systole is the same for both volunteers, i.e., nSτS = nRτR. The sequence of FFDs

describing the motion fields for subjects S and R have nS and nR levels respectively.

We need to re-sample the sequence of FFDs describing the motion field for subject

S so that it has the same number levels as subject R. This is achieved by linear

interpolation. For example the control point displacement vectors of the sequence

of FFDs of subject S re-sampled so that it has nR levels can be computed easily

from the following equation

uS(x′, nτR) = (1− α)uS(x′, naτ) + αuS(x′, (na + 1)τ) (7.19)

where

na =

⌊
n

nR
nS

⌋
(7.20)

α =
n

nR
nS − na (7.21)

and n ∈ {1, 2, . . . , nR − 1}. When n = nR

uS(x′, nRτR) = uS(x′, nSτS) (7.22)
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7.2.2.2 Spatial Alignment of Motion Fields

We now have a set of transformations for each subject which have the same number

of levels and which cover the same portion of the cardiac cycle (in our case this is

from end-diastole to end-systole). However, each motion field is still defined in its

own intrinsic spatial coordinate system. To map the motion fields into a common

spatial coordinate system we also need to calculate a mapping between the end-

diastolic anatomy of subject S and the reference subject R. We use this mapping to

transform the myocardial motion fields uS(x, nτR) into the coordinate system of R.

The transformation between subjects R and S can be obtained using a registration

of the end-diastolic images of both subjects. This yields a mapping F between

the coordinate systems of subjects R and S which are represented by (x, y, z) and

(x′, y′, z′) respectively:

F : (x, y, z) 7−→ (x′(x, y, z), y′(x, y, z), z′(x, y, z)) (7.23)

We are now in a position to transform the motion fields of the subject S defined in the

coordinate system (x′, y′, z′) into the coordinate system of R, (x, y, z). If the motion

vector at a point with position vectors x′0 = [x′0, y
′
0, z
′
0]

T in the coordinate system of

S is equal to uS, this will transform to a vector ũS at the location x0 = [x0, y0, z0]
T

in the coordinate system of R, where:

x0 = F−1(x′0) (7.24)

In order to determine ũS, consider a path

L : x(θ), θ ∈ [0, 1] (7.25)
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defined in the coordinate system of R that represents the transformed motion vector,

i.e.,

x(0) = x0 (7.26)

x(1) = F−1(x′0 + uS) (7.27)

Integrating the differential elements of the path from θ = 0 to θ = 1 gives:

ũS = x(1)− x(0) =

∫ 1

0

dx(θ)

dθ
dθ (7.28)

Writing x′(θ) as the path L defined in the coordinate system of S and by using the

chain rule for differentiation the components of dx′(θ)/dθ are

dx′

dθ
=

∂x′

∂x

dx

dθ
+

∂x′

∂y

dy

dθ
+

∂x′

∂z

dz

dθ
(7.29)

dy′

dθ
=

∂y′

∂x

dx

dθ
+

∂y′

∂y

dy

dθ
+

∂y′

∂z

dz

dθ
(7.30)

dz′

dθ
=

∂z′

∂x

dx

dθ
+

∂z′

∂y

dy

dθ
+

∂z′

∂z

dz

dθ
(7.31)

These can be written in matrix form as

dx′(θ)

dθ
= J(x(θ))

dx(θ)

dθ
(7.32)

where

J(x(θ)) =





∂x′

∂x
∂x′

∂y
∂x′

∂z

∂y′

∂x
∂y′

∂y
∂y′

∂z

∂z′

∂x
∂z′

∂y
∂z′

∂z





∣∣∣∣∣∣∣∣∣∣
x=x(θ)

(7.33)

Multiplying both sides of equation 7.32 by J−1(x(θ)) we obtain

dx(θ)

dθ
= J−1(x(θ))

dx′(θ)

dθ
(7.34)
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and substituting into equation 7.28 we finally get:

ũS =

∫ 1

0

J−1(x(θ))
dx′(θ)

dθ
dθ (7.35)

This integral can then be approximated by dividing the interval [0, 1] into nθ subin-

tervals of length δθ,

ũS ≃

nθ−1∑

k=0

J−1(x(k))(x′(k+1) − x′(k)) (7.36)

where x′(k) = x′0 + kδθuS and x(k) = F−1(x′(k)). Figure 7.1 illustrates how equa-

tion 7.36 is evaluated using the recursion formula f given by:

f(x′(0)) = x0 (7.37)

f(x′(k+1)) = f(x′(k)) + J−1(f(x′(k)))(x′(k+1) − x′(k)),

k = 0, . . . , nθ − 1 (7.38)

7.2.3 Principal Component Analysis of Myocardial Motion

Fields

The motion fields for each subject at this stage have been re-sampled temporally so

that the transformations describing them have the same number of levels and they

have also been mapped into the common coordinate system of subject R (the ˜ is

used to signify this fact):

T̃S(x, nτ) = x +

n∑

h=1

ũS,h(x) (7.39)

In our application we apply a PCA directly to the free-form deformations, ũS,h,

describing the cardiac motion fields [140, 139]. Suppose that we have N +1 free-form
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x0

F

x′0 x′(1) x′(2) x′(3) x′(4)

J−1(x0)

f(x′(1))

J−1(f(x′(1))

f(x′(2))

J−1(f(x′(2))

f(x′(3))

J−1(f(x′(3))

≈ F−1

f(x′(4))ũS

uS

Figure 7.1: This figure (from [133]) illustrates how the motion vector uS in the
coordinates system of the subject S is transformed into the coordinate system of
R. The transformation F is used to transform the point x0 into the coordinate
system of S. The motion vector at the transformed point x′0 is then divided into
nθ subintervals (here nθ = 4). The vector x′(1) − x′(0) is then transformed by the
Jacobian matrix of the transformation F evaluated at x0 to find the transformed
vector in the coordinate system of R. The transformed vector is then appended to
x0 to obtain the position f(x′(1)) at which the Jacobian matrix is evaluated and then
used to transform the interval x′(2)−x′(1). The subsequent intervals are transformed
in a similar way and appended to yield the final transformed vector ũS.

deformations described as vectors:

X̃0, X̃1, · · · , X̃N (7.40)

For each subject, the vector X̃i corresponds to a concatenation of M + 1 = (nx +

1)× (ny + 1)× (nz + 1) 3D control point displacement vectors

X̃i = [d̃T
0 , d̃T

1 , · · · , d̃T
M ]T (7.41)

describing the motion of the myocardium between two particular time frames. The

goal of SDMs is to approximate the distribution of X̃ using a parameterized linear

model of the form

X̃ =
〈
X̃
〉

+ Φ̃p̃ (7.42)

where
〈
X̃
〉

is the average of the control point displacement vectors (or average
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motion field) for all N + 1 subjects

〈
X̃
〉

=
1

N + 1

N∑

i=0

X̃i (7.43)

and p̃ is the model parameter vector. The columns of the matrix Φ̃ are formed from

the eigenvectors of the covariance matrix S̃:

S̃ =
1

N

N∑

i=0

(
X̃i −

〈
X̃
〉)(

X̃i −
〈
X̃
〉)T

(7.44)

From this, we can calculate the principal modes of variation of the control point

displacement vectors (or the associated FFD) as the eigenvectors φ̃i and corre-

sponding eigenvalues λ̃i (sorted so that λ̃i ≥ λ̃i+1) of S̃. If Φ̃ contains the L <

min{M + 1, N + 1} eigenvectors corresponding to the largest nonzero eigenvalues,

we can approximate any motion field within the population group under investi-

gation using equation 7.42 where Φ̃ = (φ̃0|φ̃2| · · · |φ̃L−1) and p̃ is a L dimensional

vector given by p̃ = Φ̃T
(
X̃−

〈
X̃
〉)

. The vector p̃ defines the parameters of the

statistical motion model. By varying these parameters we can generate different

instances of a FFD which describes the class of motion fields under analysis using

equation 7.42.

There are two different ways in which we can perform a statistical analysis of

the motion fields ũS,h. We can either treat the motion fields between any two time

frames separately and perform a separate PCA of the motion fields for each time

interval. Alternatively, we can pool all motion fields for all subjects and for all

times and perform only a single PCA to build a statistical model of cardiac motion.

These two ways of performing the PCA are illustrated in figures 7.2(a) and 7.2(b)

respectively. In the following we will discuss both methods.
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Figure 7.2: The two ways in which the PCA can be performed when building the
statistical motion model. The motion fields between any two time frames can be
treated separately and a set of PCAs can be performed for each time interval (a), or
alternatively the motion fields for all subjects and for all time frames can be pooled
together and a single PCA can be performed.
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7.2.3.1 Building Separate Statistical Motion Models For Each Phase of

the Cardiac Cycle

Between any two times we have a set of FFDs describing the motion of the heart

between those two times. For example between t = 0 and t = τ these are given by

the first levels of ũSi for the different subjects Si:

ũS0,1, ũS1,1, . . . , ũSN ,1 (7.45)

These motion fields are described by a set of control point displacement vectors for

each subject

X̃S0,1, X̃S1,1, . . . , X̃SN ,1 (7.46)

where subject S0 is the same as subject R.

We perform a PCA on these control point vectors to obtain the major modes

of variation in the motion of the heart between time frames 0 and 1 (i.e. at the

beginning of the contraction). These are described by a set of eigenvectors, Φ̃1

and eigenvalues, Λ̃1. Similarly we can perform a PCA on the control point vectors

describing the motion of the heart between all other successive time frames. This

yields nR sets of eigenvectors and eigenvalues describing the major modes of variation

between those successive time frames. The eigenvectors and values obtained

Φ̃h, Λ̃h where h ∈ {1, 2, . . . nR} (7.47)

are then used to parameterize our statistical motion model. The advantage of this

method is that by restricting the PCA to the motion fields at a particular time

instant the tracking will use only those variations in motion specific to the time

instant in question.

Figure 7.3 shows the first mode of variation in the transformed motion fields for

the start of the cardiac cycle.
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Figure 7.3: Arrow plots showing the first mode of variation in the computed de-
formation fields in the reference coordinate system of one volunteer at the start of
the cardiac cycle. The variation in the deformation fields are shown, from top to
bottom, in the basal, mid-ventricular and apical SA slices respectively. The second
column represents the mean deformation field; and the first and third columns cor-
respond to the subtraction and addition respectively of three standard deviations in
the first mode of variation of the deformation field.
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7.2.3.2 Building a Single Statistical Motion Model for the Entire Car-

diac Cycle

Pooling the cardiac motion fields, ũSi,h, for all subjects and between all time frames

and performing a PCA on these motion fields yields a single set of eigenvectors, Φ̃,

and eigenvalues, Λ̃ for all time frames. Our model now consists of a sequence of

FFDs with nR levels but with each level being parametrized by the single set of

eigenvectors Φ̃. The eigenvectors Φ̃ contain information about both the intra- and

intersubject variation in the cardiac motion. The model can be used to track the

motion of the heart by registering the sequence of SA and LA images taken during

systole to the SA and LA images taken at end-diastole by optimizing the model

parameter vectors p̃ at each level. The advantage of this method is that it does not

require a temporal alignment of the cardiac cycle of the subject whose heart motion

is being tracked, but the disadvantage of this method is that it does not take into

account the variation in the motion of the heart over time. Figure 7.4 shows the

first mode of variation in the deformation field over the entire cardiac cycle.

7.3 Model-based Nonrigid Registration for Car-

diac Motion Tracking

To use the statistical motion model for tracking the motion in a particular reference

subject R we need to construct the statistical motion model in the coordinate system

of that subject. In our current implementation we are using an affine transformation

to model the mapping F. As a result of this J−1(x(k)) will be constant and the

expression in equation 7.36 reduces to:

d̃S ≃ J−1(dS) (7.48)

210



Figure 7.4: Arrow plots showing the first mode of variation in the computed de-
formation fields in the reference coordinate system of one volunteer over the entire
cardiac cycle. The variation in the deformation fields are shown, from top to bottom,
in the basal, mid-ventricular and apical SA slices respectively. The second column
represents the mean deformation field; and the first and third columns correspond
to the subtraction and addition respectively of three standard deviations in the first
mode of variation of the deformation field.
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Applying this technique to each of the motion fields of the subject gives us a set

of transformed motion fields ũS(x) from which we calculate the statistical motion

model as described in the previous section. Using this statistical motion model we

can re-parameterize the FFD model used for the motion tracking in section 7.2.1

via the modes of variation learned from the motion fields:

uS,h(x) =
nx∑

i=0

ny∑

j=0

nz∑

k=0

β3

(
x− xi,j,k

δx

)
β3

(
y − yi,j,k

δy

)
β3

(
z − zi,j,k

δz

)
×

(〈
X̃h
〉

+ Φ̃hph
)

i,j,k
(7.49)

Here, the control points of the FFD are represented as a linear combination of the

principal modes of variation. Rather than optimizing the location of the control

points, one can optimize the parameter vector ph which controls the modes of the

FFD but provides a much smaller number of degrees of freedom than the number of

control points. This can significantly reduce the number of degrees of freedom for

the motion tracking and the associated computational complexity, while constraining

the registration to statistically likely types of motion.

To track the motion of the heart in a subject we use exactly the same procedure

given in figure 4.6 for all time frames between end-diastole and end-systole except

that now the free-form deformations are controlled by the parameter vector.

7.4 Results

Tagged MR data from 17 healthy volunteers was acquired with a Siemens Sonata

1.5 T scanner and a Philips Gyroscan Intera 1.5 T scanner consisting of series of SA

and LA slices. A cine breath-hold sequence with a SPAMM tag pattern was used

with imaging being done at end expiration. The image voxel sizes were typically

1.40× 1.40× 7 mm, with the distance between slices being 10 mm. We tracked the

movement of the myocardium in all volunteers and transformed the motion fields

obtained into a common coordinate system as described in sections 7.2.1 and 7.2.2.
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Two separate statistical models of the motion of the heart were then built. In

the first model (section 7.2.3.1), each level in the multi-level free form transforma-

tion used for tracking the heart was parametrized by a separate set of eigenvectors

describing the major modes of variation in the motion of the heart at the corre-

sponding time frame. We refer to this as the time-dependent motion model. In the

second model (section 7.2.3.2), each level in the multi-level free form transformation

used for tracking the heart was parametrized by a single set of eigenvectors describ-

ing the major modes of variation in the motion of the heart over the entire cardiac

cycle. We refer to this as the time-independent model.

Figure 7.5 shows a plot of the variance and cumulative variance explained by the

principal modes of the time-dependent motion model at the start of the cardiac cy-

cle. While figure 7.6 shows the corresponding plot for the time-independent motion

model. The first 12 principal modes of the time-dependent model explained 95% of

the total variance in the volunteer motion fields, while the first 49 principal modes

of the time-independent model explained 95% of the total variance in the motion

fields.

To validate the quality of the statistical motion models, we have used both the

time-dependent and time-independent motion models to track the motion of the

heart in 8 healthy volunteers for all time frames between end-diastole and end-

systole. For this purpose we have constructed both motion models without using

the motion fields of the volunteer hearts which were tracked. To compare how well

the motion tracking had been performed using the two models an observer manually

tracked the motion of tag intersection points in 4 different imaging planes for the

volunteers. The estimated displacements of the tag intersection points obtained

from our statistical motion models were then compared with the true displacements

measured by the human observer. The results of the motion tracking for the two

models are shown in figures 7.7 and 7.8 respectively for the different volunteers.

Here we have plotted the RMS error in the displacement of tag intersection points

as a function of time.
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Figure 7.5: Plot of the variance and cumulative variance in the motion fields ex-
plained by the principal modes of the time-dependent statistical deformation model
at the start of the cardiac cycle.

Figure 7.6: Plot of the variance and cumulative variance in the motion fields
explained by the principal modes of the time-independent statistical deformation
model.
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Figure 7.7: These graphs show the variation of the RMS error in the estimated
in-plane displacements obtained from the registration algorithm as compared with
the manual tracking of tag intersection points in different slices for the 11 volunteers
using the time-dependent statistical deformation model.
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Figure 7.8: These graphs show the variation of the RMS error in the estimated
in-plane displacements obtained from the registration algorithm as compared with
the manual tracking of tag intersection points in different slices for the 11 volunteers
using the time-independent statistical deformation model.
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Figures 7.9 and 7.10 show the performance of the motion tracking visually for a

volunteer using the time-dependent and time-independent models.

As can be seen from a comparison of figures 7.7 and 7.8 the time-independent

motion model is able to track the motion of the myocardium much more easily

than the time-dependent model. This is because the FFDs from which the time-

dependent model has been constructed are a subset of the FFDs from which the

time-independent motion model has been constructed.

7.5 Summary

In this chapter we have introduced a new technique for tracking the movement

of the myocardium using a statistical model derived from the motion fields in the

hearts of several healthy volunteers. To build the statistical model we have tracked

the motion of the myocardium in tagged MR images of 17 volunteers using a non-

rigid registration technique based on free-form deformations and mapped the motion

fields obtained into a common reference coordinate system. A principal component

analysis (PCA) was then performed on the motion fields to extract the major modes

of variation in the fields between the successive time frames. The free-form defor-

mations were then reparameterized in terms of the major modes of variation learned

from the statistical model. This can significantly reduce the number of degrees of

freedom for the registration algorithm and the associated computational complexity,

while constraining the motion tracking to statistically likely types of motion.
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Figure 7.9: This figure shows a series of tagged images taken from one of the vol-
unteers. A virtual tag grid has been placed on the tag pattern at end-diastole and
allowed to deform with time according to the deformation field calculated using
the time-dependent statistical deformation model. The first three rows show basal,
mid-ventricular, and apical SA images respectively. The fourth row shows a hori-
zontal LA image. The first, second, and third columns correspond to end-diastole,
mid-systole, and end-systole respectively. Animations of these virtual tag grids can
be found on the accompanying CD.
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Figure 7.10: This figure shows a series of tagged images taken from one of the vol-
unteers. A virtual tag grid has been placed on the tag pattern at end-diastole and
allowed to deform with time according to the deformation field calculated using the
time-independent statistical deformation model. The first three rows show basal,
mid-ventricular, and apical SA images respectively. The fourth row shows a hori-
zontal LA image. The first, second, and third columns correspond to end-diastole,
mid-systole, and end-systole respectively. Animations of these virtual tag grids can
be found on the accompanying CD.
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Chapter 8

Conclusions and Outlook

Cardiac motion analysis is a challenging endeavor. The principal contributions of

this thesis have been the development of nonrigid image registration techniques for

cardiac motion tracking in tagged MR images. In contrast to existing techniques no

assumptions need to be made on the nature of the tag pattern in the images, and

tag localization and deformation field reconstruction are performed simultaneously.

Our main contributions have been:

• In chapter 4 a technique for cardiac motion tracking in tagged MR images using

nonrigid image registration and free-form deformations was developed. The

method presented was validated using a motion simulator and strain patterns

from a group of normal volunteers were derived.

• In chapter 5 the use of a cylindrical free-form deformation model for cardiac

motion tracking using nonrigid image registration was investigated. The cylin-

drical free-form deformations were found to be not as accurate as Cartesian

free-form deformations in being able to capture the motion of the myocardium

in the apical and basal regions of the LV. However, cylindrical free-form de-

formations performed slightly better than Cartesian free-form deformations

in the mid-ventricular region of the LV as the configuration of the control

points defining the deformation conform more closely with the shape of the
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LV in that region. Thus, in certain cases, it might be more suitable to use

cylindrical free-form deformations for cardiac motion tracking.

• In chapter 6 a 4D registration method for motion tracking using 4D free-form

deformations was developed. The advantages of using such a transformation

model is that deformation parameters can be computed at any arbitrary time

instant between end-diastole and end-systole allowing comparisons of motion

fields between different subjects to be made more easily. However, several is-

sues which are related to the two-step optimization procedure used still need to

be solved before the developed 4D registration algorithm can be used routinely

in clinical practice.

• In chapter 7 a statistical motion model was constructed. The motion fields in

a group of volunteers were mapped into the coordinate system of a reference

subject. A PCA of the motion fields was then performed to extract the major

modes of variation in the motion fields. Two different types of PCA were per-

formed, a time-dependent PCA and a time-independent PCA. The free-form

deformations describing the motion of the heart were then reparameterized

using the major modes of variation in the deformation fields. The reduced

number of dimensions in the parameter space which needs to be searched

to find the optimal free-form deformation to register the images taken during

systole to the end-diastolic image significantly reduces the computational com-

plexity of the motion reconstruction problem. However the statistical model

that we have constructed may have difficulties in tracking the motion of pa-

tients’ hearts as the images used in constructing our models were derived from

a group of normal volunteers.
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8.1 Discussion

8.1.1 General Limitations of MR Tagging

A limitation of the proposed methods is that, if there is a sufficiently large motion

between two time frames, the motion tracking algorithms may become confused and

report no motion at all. This can happen if the number of slices acquired and the

temporal resolution of the images is not sufficient to capture the deformation of

the myocardium accurately. For example, we can imagine a hypothetical case in

which the motion of the LV between two successive time frames is such that the tag

planes at time iτ have been displaced by a rigid translation motion equal to the tag

spacing in the direction perpendicular to the tag planes. This would mean that the

tag planes at (i + 1)τ would be aligned with the tag planes at iτ , and so no motion

of the LV would be detected.

It is also possible to argue that this is a limitation of the imaging protocol used

and not of the method itself, since we can acquire images with a higher spatial and

temporal resolution to ensure that there is sufficient information in the images to

accurately recover the motion of the myocardium.

There are a number of other factors related to the image acquisition that have

an influence on the accuracy and robustness of the motion field reconstruction:

• As the tags fade during the cardiac cycle due to T1 relaxation, the motion re-

construction is limited by the duration of time over which the tags are visible.

In the images we have acquired, we have been able to track the motion of the

myocardium accurately from end-diastole to end-systole during which the tags

are clearly visible. With the use of other tag sequences such as CSPAMM [53],

which slow the process of tag fading but at the expense of an increased acqui-

sition time, it may be possible to track the motion of the myocardium over

the entire cardiac cycle.

• The tag spacing and spatial resolution of the images acquired have a direct
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influence on the accuracy of the estimated strain fields, especially in the endo-

cardial region of the myocardium. A smaller tag spacing enables the regional

characteristics of the deformation field to be measured with a greater accu-

racy but would also require the acquisition of images with a higher temporal

resolution.

• Another problem stems from the fact that the complete analysis of 3D cardiac

motion requires the acquisition of images during several different breath-holds.

Thus, to reconstruct an accurate representation of the deformation field within

the myocardium the subject must lie completely still and hold their breath

always in the same position of the respiratory cycle. In particular, for patients

this may be difficult and the longer the image acquisition takes, the more likely

it is that the patient will have moved during that time, and the greater the

chance of errors being introduced into the deformation field reconstruction.

• Another important consideration is the configuration of imaging planes used

to recover the deformation field within the myocardium. A sufficient number

of planes must be chosen so as to cover the region of interest adequately.

Each configuration will have an effect on the accuracy of the motion field

reconstruction as well as the implementation of the tracking algorithm and

in particular, the interpolation scheme used. These issues must be weighed

against the cost and time required to acquire the images in a real clinical

environment.

It is important to realize that the points listed above are limitations of tagged MRI

rather than that of any particular motion tracking method.

8.2 Future Work

We have shown that reliable estimates of strain can be obtained by using image reg-

istration based motion tracking. Future clinical research could be aided by building
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a database of strain patterns seen in normal volunteers. One could build such a

database by recruiting a of group of volunteers whose motion fields could be recon-

structed and mapped into a common coordinate system. The benefit of using such

a database would be that quantitative comparisons could be made with motion and

strain patterns seen in an abnormal heart. It would also be interesting to compare

the strain results obtained from registration with those obtained from other methods

such as HARP.

There are a number of other interesting possibilities for future research. From the

work presented in chapter 5 we have seen that the coordinate system used in defining

the free-form deformations can have a significant impact on the accuracy of motion

tracking using image registration. A possibility for future research is to investigate

the use of free-form deformations defined using lattices of other topologies [96].

Incorporating knowledge of the fiber structure and orientation which can be obtained

from diffusion tensor MR imaging [164] into the transformation model may also

increase the speed and accuracy of image registration.

In the following two subsections we present some initial investigations on two

further research topics of interest: motion tracking in untagged MR images and the

combined analysis of cardiac motion and blood flow in the LV.

8.2.1 Motion Analysis in Untagged MR Images

As we have made no assumptions about the nature of the tag pattern in the MR

images acquired, or even its presence, one can ask the following question: Is there

sufficient texture in untagged images to enable the deformation field to be recon-

structed from these images? To investigate this possibility we also acquired untagged

images of the LV for the volunteer data sets used in chapters 4, 5, and 6. These

images were acquired shortly before the tagged images were acquired so that the

movement of the volunteer between image acquisitions could be minimized. The

image acquisition geometry for the tagged and untagged images was the same. We
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then reconstructed the motion of the heart using the 4D registration algorithm pre-

sented in chapter 6; once using the untagged MR images and once using the tagged

MR images. We labelled the two transformations TTrueFISP and TSPAMM respectively

for each volunteer.

A cylindrical coordinate system was defined whose longitudinal axis passed thr-

ough the center of the LV and was perpendicular to the SA imaging planes. The

myocardium in each SA slice was divided into 16 sectors around the center of the

LV and the average radial, circumferential, and longitudinal displacements were

computed in each sector using the two transformations, TTrueFISP and TSPAMM.

Scatter plots of the radial, circumferential, and longitudinal displacements were

drawn to evaluate how well TTrueFISP and TSPAMM were correlated. The results are

shown in figure 8.1.

Linear regression analysis was then performed on the scatter plots of the motion

fields, the results of which are presented in table 8.1. As can be seen there is a

good correlation between the radial and longitudinal displacements computed from

TTrueFISP and TSPAMM, but there is less of an agreement between the circumferential

displacements. In figure 8.2 we show the motion fields computed from TTrueFISP and

TSPAMM. The first and second rows show arrow plots of the displacement fields in

a mid-ventricular SA slice for one of the volunteers using TTrueFISP and TSPAMM

respectively. As can be seen the motion fields are very similar but there are regions

where not all of the twisting motion has been captured in TTrueFISP. These regions

are indicated by the circles in the third column. In the third and fourth rows, virtual

tag grids have been placed on the SA tagged MR image sequences and have been

deformed over time by TTrueFISP and TSPAMM respectively. From the third row we

see that there is a good agreement in the motion fields computed from the two sets

of images since the virtual tag grid follows the tag pattern in the images.

The results presented in figures 8.1 and 8.2, and table 8.1 show that there is a

correlation between the radial and longitudinal displacements computed from the

tagged and untagged MR images. Figure 8.1(b) also indicates that not all of twisting
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(a) Radial displacement scatter plot
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(b) Circumferential displacement scatter plot

-10

-5

 0

 5

 10

-10 -5  0  5  10

Longitudinal displacements computed using TSPAMM

L
on

gi
tu

d
in

al
d
is

p
la

ce
m

en
ts

co
m

p
u
te

d
u
si

n
g

T
T
ru

eF
IS

P

(c) Longitudinal displacement scatter plot

Figure 8.1: Scatter plots showing the correlation between the radial, circumferential,
and longitudinal displacements computed using TTrueFISP and TSPAMM. Results of
linear regression analysis on these plots are given in table 8.1.
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Line of Best Fit Correlation Coefficient
Radial y = 0.73x− 0.97 0.74

Circumferential y = 0.53x + 0.24 0.43
Longitudinal y = 0.80x + 0.42 0.78

Table 8.1: The results of linear least squares fitting for the radial, circumferential,
and longitudinal displacements computed using TTrueFISP and TSPAMM.

Figure 8.2: The first and second rows show the computed motion fields in a mid-
ventricular SA slice for one of the volunteers using TTrueFISP and TSPAMM respec-
tively. The columns, from left to right, correspond to end-diastole, mid-systole, and
end-systole. Regions of the myocardium which show a discrepancy in the computed
motion fields are indicated by the circles in the third column. In the third and fourth
rows, virtual tag grids have been placed on the SA tagged MR image sequences and
have been deformed over time by TTrueFISP and TSPAMM respectively.
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motion can be detected from the untagged images. These results show that there is

some promise in using image registration techniques for recovering the deformation

field within the myocardium using untagged MR images and it would be fruitful to

further investigate whether the strain patterns computed are still clinically useful.

The statistical motion models that we have developed may also improve the accuracy

of the motion patterns extracted from untagged MR images using image registration.

8.2.2 Combined Analysis of Cardiac Motion and Blood Flow

Another avenue for further research is the combined analysis of cardiac motion and

blood flow. The LV wall motion directly affects the efficiency with which blood can

be pumped out to the rest of the body and it would be clinically useful to determine

whether there is any relationship between the blood flow patterns in the LV and the

motion of the LV wall.

In the following we present some initial results which we have obtained on the

combined visualization and analysis of cardiac motion and blood flow in the LV.

To do this horizontal LA untagged MR images of the LV from a normal healthy

volunteer were acquired and used to reconstruct the deformation field within the

myocardium with a 3D version of the motion tracking algorithm presented in chap-

ter 6. Phase contrast MR images were also acquired from the same volunteer and

used to reconstruct the flow field in the LV. The flow and motion fields were then

visualized together using vector plots. The radial strain in the myocardium was

then calculated and compared with the variation of the average speed of the blood

in the LV over time.

Figure 8.3 shows a visualization of the flow and motion fields together using

arrow plots. The first row shows the time period from early-systole to end-systole.

As can be seen in the figure the free wall of the LV contracts much more than the

septum. At the same time that this contraction occurs, blood is pumped out of the

left ventricle through the aorta with a high velocity. Immediately afterwards the
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atrio-ventricular valve opens, and blood rushes in from the left atrium into the LV,

which can be seen in the second row of the figure. Again the free wall of LV expands

much more than the septum. The final row shows late-diastole when left ventricular

filling has almost been completed. A large vortex is also seen near the end of the

cycle.

Figure 8.4 shows a plot of the radial strain over time. The lateral wall of the

LV experiences the greatest strain. We also computed the average radial strain in

the myocardium as well as the mean squared speed of the blood in the LV. These

results are shown in figures 8.5 and 8.6. Time frames 0 and 18 correspond to the

start and the end of the cardiac cycle respectively, while time frame 7 corresponds

to end-systole. As can be seen in the figures the radial strain increases from 0 and

reaches a maximum of 0.5 at end-systole. During this time the mean squared speed

of the blood increases as blood is pushed out of the outflow tract and decreases to

a minimum at end-systole. After end-systole the strain decreases as the LV relaxes

and when the atrio-ventricular valve opens, the blood flow velocity increases again

as blood pours in from the left atrium.

These results show that simple global relationships between the blood flow and

the motion in the LV can be derived. Further work needs to be done on investi-

gating the relationship between local flow features and local strain patterns in the

myocardium. To do this would require the acquisition of 4D data sets of the blood

flow in the LV in addition to the 4D cardiac MR images. A further possibility would

be to predict blood flow patterns within the LV from the motion of the ventricular

wall by building a computation fluid dynamics (CFD) model.

8.2.3 Conclusions

We have shown that image registration is a viable technique for cardiac motion

analysis. Clinically useful parameters such as strain can be computed directly from

the output transformations obtained from image registration. No user interaction is
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Figure 8.3: The first row shows the contraction of the left-ventricle and the flow out
of the aorta during the time period from early-systole to end-systole. The second
row shows the filling of the left ventricle which occurs just after end-systole. The
final row shows late-diastole when left ventricular filling has almost been completed.
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Figure 8.4: Plot of the radial strain in the myocardium. Blue colors correspond to
negative values in the strain and red to positive values.
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Figure 8.5: Plot of the variation of the mean squared speed of the blood in the LV
over time.
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required during the motion field reconstruction, enabling clinicians and researchers

to make more effective use of their time in investigating the relationship between

CVDs and cardiac motion. It is likely that image registration will play an increas-

ingly important role in cardiac motion analysis.
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[100] T. Mäkelä, Q. C. Pham, P. Clarysse, J. Nenonen, J. Lötjönen, O. Sipilä,
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