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Abstract

In this work, different techniques for the automated extraction of biomarkers for
Alzheimer’s disease (AD) from brain magnetic resonance imaging (MRI) are pro-
posed. The described work forms part of PredictAD (www.predictad.eu), a joined
European research project aiming at the identification of a unified biomarker for AD
combining different clinical and imaging measurements. Two different approaches are
followed in this thesis towards the extraction of MRI-based biomarkers: (I) the ex-
traction of traditional morphological biomarkers based on neuronatomical structures
and (II) the extraction of data-driven biomarkers applying machine-learning tech-
niques. A novel method for a unified and automated estimation of structural volumes
and volume changes is proposed. Furthermore, a new technique that allows the low-
dimensional representation of a high-dimensional image population for data analysis
and visualization is described. All presented methods are evaluated on images from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI), providing a large and diverse
clinical database. A rigorous evaluation of the power of all identified biomarkers to
discriminate between clinical subject groups is presented. In addition, the agreement
of automatically derived volumes with reference labels as well as the power of the
proposed method to measure changes in a subject’s atrophy rate are assessed. The
proposed methods compare favorably to state-of-the art techniques in neuroimaging
in terms of accuracy, robustness and run-time.
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Chapter 1

Introduction

Alzheimer’s disease (AD) is the most common cause of dementia. It is a devastating

disease for those who are affected and presents a major burden to caretakers and

society. The worldwide prevalence of AD is predicted to quadruple from 26.6 million

in 2006 to more than 100 million by the year 2050. Even a modest delay of 1 year in

the disease onset and progression could reduce the number of cases by 9 million [20]

which makes an early diagnosis paramount.

Genetic risk factors for AD have been identified [92, 71]. A definitive diagnosis,

however, requires histological examination of brain tissue. In order to decide on a po-

tential treatment of individuals, the identification of people at risk at an early stage of

disease development is required. Mild cognitive impairment (MCI) is a heterogeneous

syndrome that increases the risk of developing AD markedly. However, not all MCI

subjects convert to AD. A focus in the search for biomarkers of AD type pathology

therefore lies in predictors of disease progression among the MCI subjects.

In this thesis, methods for an automated extraction of such biomarkers from brain

magnetic resonance imaging (MRI) data are developed. Section 1.1 starts with an

overview on different AD-biomarkers proposed. The research presented in this thesis

was done as part of the European research project PredictAD which aims at defining

a unified biomarker for AD. A brief presentation of the aims of the project are given

in Section 1.2. Most analysis presented in this work is based on imaging data from
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the Alzheimer’s Disease Neuroimaging Initiative (ADNI) which is presented in Section

1.3. The contribution of this thesis is summarized in Section 1.4.

1.1 Biomarkers for AD

The methods used to assess the possibility of a given individual to be affected by

dementia can be broadly divided into two categories: (I) psychological tests and (II)

quantitative measurements. Psychological tests like the Mini-mental State Exami-

nation (MMSE) [54] or the Clinical Dementia Rating (CDR) [110] are used in most

memory clinics to assess the cognitive state of a new patient. They typically involve

several questions testing the short-term memory of the patient. While an existing

impairment can be identified in most cases, a much earlier identification of people at

risk is necessary to enable a successful treatment. AD is caused by neurofibrillary tan-

gles and neuritic plaques [19]. Degenerative changes in the human neurotransmitter

system lead to atrophy in selected brain regions [149].

A promising approach for detecting the disease at its earliest stage is to study

the generation of tangles and plaques. The concentration of the tau-protein and the

amyloid-beta-peptide Aβ42 in the cerebrospinal fluid (CSF) are commonly associated

with the risk of developing AD [138]. While obtaining a CSF sample is invasive, this

biomarker can give a good assessment of a patient’s state.

A decrease in brain metabolism of glucose and oxygen caused by AD can be iden-

tified by Positron Emission Tomography (PET) with the use of a Fludeoxyglucose

18F (FDG) tracer [25]. PET in combination with the Pittsburgh Compound B (PiB)

tracer has found recent attention as a biomarker for AD [78]. It selectively binds to

Aβ deposits and thereby images beta-amyloid deposits.

Structural images acquired with MRI on the other hand allow to analyze the current

state of brain degeneration. The volume of brain structures and their change over time

are widely accepted as biomarkers for AD, e.g., [81]. A more detailed introduction to

biomarkers for AD can be found in, e.g., [138].

2



1.2 PredictAD

The work presented in this thesis has been developed during the research project

PredictAD (www.predictad.eu). PredictAD is a multinational project funded by the

European Union aiming at developing a standardized and objective solution that en-

ables an earlier diagnosis of Alzheimers disease, improved monitoring of treatment

efficacy and enhanced cost-effectiveness of diagnostic protocols. Apart from MRI-

based biomarkers as discussed in this work, it involves PiB PET, electrophysiological

data (TMS/EEG), molecular data, demographic data and clinical tests. The aim is

to combine the different biomarkers into a Computer Aided Diagnosis (CAD) tool to

assist in clinical decision making [105].

1.3 Imaging data

The evaluation of the methods presented in this work is performed on images obtained

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [111]. The

aim of ADNI is to develop biomarkers of AD in elderly subjects. The primary goal

has been to test whether serial MRI, PET, other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of MCI

and AD.

A lumbar puncture is performed in a subset of subjects to extract CSF concen-

tration and ratio data for the following biomarkers: Tau, Aβ42, and P-tau181. A full

genetic study is employed at baseline, extracting more than 620,000 markers including

APOE-genotype which has been associated with AD [92]. The cognitive assessment

performed in ADNI includes the widely used MMSE and CDR tests. The bottom part

of Table 1.3 gives an overview on measurements taken for the different subject groups

at different visits.

In ADNI, MRI scans are taken from all participants in regular intervals. Approx-

imately 200 cognitively normal older individuals are followed for 3 years, 400 people

with MCI are followed for 3 years, and 200 people with early AD are followed for 2
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Type Baseline Month 6 Month 12 Month 18 Month 24 Month 36
Normal 231 215 202 n.a. 174 136
S-MCI 241 198 183 149 131 92
P-MCI 168 160 154 135 121 81
AD 198 166 145 n.a. 111 n.a.
Total 838 739 684 284 537 309

MMSE/CDG x/x/x x/x/x x/x/x -/x/- x/x/x x/x/-
CSF x/x/x -/-/- x/x/x -/-/- x/x/x x/x/-

Table 1.1: 1.5T ADNI MRI images available in January 2011. The bottom part shows
the visits when cognitive tests (MMSE, CDG) and the CSF-based markers are taken
for CN/MCI/AD. x: measure available, -: no measure available.

years (www.adni-info.org). The clinical group of all subjects is re-assessed at every

visit. Retrospectively discriminating between MCI subjects with a stable diagnosis

(S-MCI) and progressive MCI (P-MCI) subjects that convert to AD, allows to test the

ability of biomarkers measured at baseline to predict such a conversion.

An overview of the 1.5T MR images that were available in January 2011 is presented

in Table 1.3. Every chapter of this thesis gives an overview on the particular subset

of images used in that analysis. A more detailed description of image acquisition and

preprocessing in ADNI is given in Appendix A.1

For a subset of ADNI images, a reference hippocampus segmentation is available

which is used for the evaluation of parts of this work. This reference is based on a semi-

automatically generated and manually corrected segmentation. A detailed description

of the protocol is given in Appendix A.1.1.

1.4 Thesis contributions

This thesis presents methods for an automated extraction of biomarkers from serial

MRI images. The types of methods presented can be divided into two categories.

The first category includes methods that extract traditional biomarkers based on an

automated segmentation of brain structures and their volumes or volume changes. De-

veloped methods that deal with structural brain segmentation are covered in Chapters

3, 4 and 5. The second category of methods employs methods from machine learning
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to derive more data-driven biomarkers. Developed methods that use such approaches

are presented in Chapters 6 and 7. Chapter 8 presents a comprehensive analysis where

the biomarkers developed in this work are combined with other automatically derived

MR-biomarkers to test the power of a combined biomarker to classify between different

subject groups.

The reminder of this section gives a more detailed overview on the contributions

of this thesis.

1.4.1 Multi-atlas segmentation of diverse populations with

automated intensity-refinement

Chapter 3 describes a fully automated method to combine multi-atlas label propaga-

tion with an intensity-based refinement step based on graph cuts. Building on this,

Chapter 4 describes a novel framework to automatically propagate a set of labeled

atlases through to a diverse set of images. The presented method can significantly im-

prove segmentation with multi-atlas segmentation in cases where available atlases are

based on only a sub-population of the target dataset. It is robust to differences in the

MR sequence of images used, and only requires minimal parameter setting. Since the

manual labeling of atlas images is time-consuming and expensive, such a framework

can be particularly useful in the automated analysis of large diverse clinical image

databases as required in, e.g., clinical trials.

1.4.2 Consistent segmentation of image sequences to measure

atrophy

Extending on the multi-atlas framework described above, Chapter 5 describes a method

for the segmentation of longitudinal image sequences. Measuring longitudinal brain

development may allow to draw more accurate conclusions on a subject’s clinical state

than a cross-sectional comparison alone. For the accurate measurement of volume

changes, a consistent segmentation at baseline and follow-up is required. The ap-
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proach presented in this work is based on the simultaneous segmentation of all time

points in a unified optimization step. The resulting segmentation allows the accurate

measurement of atrophy allowing a promising classification accuracy and a high sta-

tistical power to reliably measure changes in atrophy rate, a widely used measure of

drug efficacy.

1.4.3 Manifold learning combining imaging with non-imaging

information to classify subjects

A data-driven approach for the extraction of biomarkers is proposed in Chapters 6 and

7. Manifold learning is applied to a set of brain images, defining a low-dimensional rep-

resentation of the population. Traditionally based on pairwise similarities between all

images, Chapter 6 describes an extension to an established manifold learning technique

to incorporate metadata available for the analyzed subjects. Data like genotype, or

Aβ42 can give additional information beyond MR appearance and can be expected to

better model the resulting low-dimensional representation. After finding such a low-

dimensional representation it can be used to perform classification between clinical

subject groups. The presented results show a classification accuracy that compares

favorably to established neuroanatomical biomarkers and a significant improvement

with the incorporation of non-imaging metadata.

Chapter 7 presents different ways to model longitudinal brain development in a

low-dimensional manifold representation. Classification results improve significantly

when using longitudinal information.

1.4.4 Comprehensive analysis of the developed biomarkers

Finally, Chapter 8 presents a comprehensive analysis on the ability of the proposed

biomarkers in combination with other measures extracted from MRI to discriminate

between clinical subject groups. A clear improvement in classification accuracy is

observed for a combination of several biomarkers.
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Chapter 2

Background

This chapter gives an overview on some of the most important developments in the

two main fields, this thesis deals with. While individual chapters in this work give an

introduction to the topic covered and place it within the context of existing methods,

this chapter gives an introduction to the research area in a broader sense. The first

part describes some of the most prominent methods for an automated segmentation of

brain structures and atrophy measurement. In the second part, established methods

for dimensionality reduction are presented.

2.1 Brain atlases

Brain atlases are defined by anatomical labels in a stereotaxic space, i.e., a standardized

coordinate system that establishes a mapping from the voxel in one brain to the

corresponding voxel in a second brain. Aligning an unseen image with the defined

labels in the reference space allows to use this prior knowledge when processing the

unlabeled image. A distinction can be made between probabilistic atlases that give at

every voxel a probability of observing a particular structure, and atlases that give the

manual labeling of an individual brain image.

One of the first printed atlases that describe relations between different brain struc-

tures in a common space is the Talairach atlas [131] presented in 1967. First digital

3D atlases were designed in the 1980’s, e.g., [11]. Most of the early brain atlases
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were based on the manual labels on a small number of subjects. Probabilistic atlases

developed later are, due to the time intesive labeling, mostly based on automated

segmentation, e.g., [33]. A set of 30 manually labeled brain atlases that is used in this

work is described in the next section.

2.1.1 Hammers brain atlases

In this thesis, a set of 30 brain atlases is used, each being manually delineated into 83

anatomical structures [67, 64]1. The MR images used for atlas creation were acquired

from young healthy subjects (age range 20-54, median age 30.5 years). Information on

MR acquisition and a definition of the 83 delineated structures is given in Appendix

B.

Figure 2.1.1 shows the manual segmentation overlaid on one of the 30 atlas MR

images.

(a) Transverse (b) Coronal (c) Sagittal

Figure 2.1: Manually delineated structures on a brain atlas

2.2 Atlas based brain segmentation

A straight forward use of (manually) labeled atlas images is to transform them to the

coordinate system of an unseen image and use the label maps to obtain the desired

segmentation in target space. Early work in atlas based brain segmentation has been

published by Collins et al. [32] and Christensen et al. [27] in the mid-1990’s. In this

1www.brain-development.org
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work, a single atlas image is nonlinearly aligned with a target image and the resulting

transformation is used to propagate the structural label maps into target space. Figure

2.2 illustrates the concept of atlas-based segmentation.

Figure 2.2: Atlas based brain segmentation: an atlas image is registered with the
unseen image and atlas labels are propagated.

Such approaches crucially depend on the alignment of the atlas to the target im-

age. The resulting segmentation fails in areas where the underlying registration fails.

There are two general directions of research to overcome this limitation. In the first

direction, a single individual atlas or a probabilistic atlas are used in combination with

an intensity model to define the final segmentation. The second direction proposes to

register multiple labeled atlases and to use techniques from machine learning to ob-

tain a final segmentation from the individual atlas labels. In this thesis, methods are

proposed that follow recent attempts to combine both conceptual directions.

In the reminder of this section, an overview on the development of both sketched

paths is presented.

2.2.1 Atlas segmentation incorporating intensity modeling

Early work combining atlas-based brain segmentation with an intensity model is the

tissue classification framework proposed by van Leemput et al. [142]. In this work,

probabilistic brain atlases for the three tissue classes white matter (WM), gray matter

(GM) and cerebrospinal fluid (CSF) are used to initialize an expectation maximization

(EM) framework to segment the image. Initialized from the probabilistic atlases,

model parameters for Gaussian distributions describing the three tissue classes are
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optimized with convergence of the algorithm. The method automatically corrects for

MR intensity inhomogeneities and performs Markov random field based regularization

of the segmentation to achieve a smooth labeling.

Building the basis for the widely used Freesurfer segmentation tool2, Fischl et

al. [53] presented a method that uses a probabilistic atlas in combination with an

intensity model to segment 37 anatomical structures in addition to the three tissue

classes. In this work, Gaussian intensity distributions for the structures of interest

are learned from a set of labeled images. A probabilistic atlas build from all reference

segmentations is then aligned with an unseen target image to give a spatial prior for the

different structures. Following initialization, an MRF is defined on the target image

with the data term being defined by the spatial prior together with the intensity model

and smoothness constraints enforcing a consistent segmentation.

Ashburner and Friston [7] propose a unified segmentation framework that combines

registration to a template space with tissue classification at the same time. In regis-

tration algorithms like the one used in the popular SPM software package3 that are

driven by a tissue classification, a combined approach is expected to improve results

for both tasks. The objective function optimized in this work employs a mixture of

Gaussians (MOG) model to represent the three tissue classes that accounts for smooth

intensity variations caused by MR inhomogeneity. A deformable spatial prior incor-

porated into the objective function allows to include registration to a standard space

into the model. This joined objective function is then optimized using an Iterated

Conditional Modes (ICM) approach.

A hierarchical model for brain segmentation into tissue classes and anatomical

structures has been proposed by Pohl et al. [113]. In a top to bottom approach,

a subdivision of the brain according to prior information is performed along a tree

structure representing the brain at different resolutions. In this tree, ”brain”, e.g., is a

parent node of ”WM”, ”GM”, ”CSF”. The segmentation at every level is performed by

an EM-based algorithm similar to the one for tissue class segmentation described above

2http://surfer.nmr.mgh.harvard.edu/
3http://www.fil.ion.ucl.ac.uk/spm/
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[142]. While such a hierarchical approach allows to easily subdivide the segmentation

problem, it implicitly assumes a perfect segmentation in the higher levels, making it

impossible to recover from segmentation errors in later stages.

More recently, specialized methods to tackle more specific problems have been

published. A method that delivers a state of the art automated segmentation of hip-

pocampus and amygdala has been proposed by Chupin et al. [31, 30]. Here, an

initial segmentation of both structures obtained from a registered probabilistic atlas

and estimated intensity models is iteratively deformed in a topology preserving man-

ner. Neuroanatomical landmarks not only derived from hippocampus and amygdala

but also from neighboring structures are used to define a Markovian energy func-

tion following empirical descriptions of patterns in brain anatomy. Hippocampus and

amygdala bordering regions are then deformed in an alternating fashion, optimizing

the Markovian energy function using the ICM algorithm.

2.2.2 Multi-atlas segmentation

The idea behind multi-atlas segmentation is to make atlas-based segmentation more

robust against errors in the registration of an atlas image by registering multiple atlases

with the target image before obtaining a consensus segmentation from the individual

labels. This concept is illustrated in Figure 2.3.

In [116], Rohlfing et al. show on images of bee brains how the segmentation

accuracy can be improved by registering multiple atlases instead of a single atlas.

Using an approach from pattern recognition, ”Vote Rule” decision fusion is carried out,

assigning to each voxel the label that receives the most ”votes” from the individual

atlases. This framework has been shown to significantly improving atlas segmentation

and was successfully applied to human brain segmentation with the 30 atlas images

described in Section 2.1.1 by Heckemann et al [73].

Different strategies to select suitable atlases in an atlas segmentation scheme, in

particular multi-atlas segmentation, have been proposed. The STAPLE algorithm

presented by Warfield et al. [148] describes a general framework to give a probabilis-
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Figure 2.3: Multi-atlas brain segmentation. Multiple atlas images are registered with
the unseen images and all atlas labels are propagated to the target. The final segmen-
tation is obtained from fusing the individual segmentations.

tic estimate of a segmentation by weighting a number of individual segmentations

while considering the performance of every individual segmentation. An EM frame-

work is described that iteratively estimates the true segmentation by weighting all

individual segmentations and then updating the final segmentation estimate based on

these weightings. Aljabar et al. [1] propose a different strategy that a-priori selects

a set of atlases from an atlas pool before performing multi-atlas segmentation with

majority vote [116, 73]. Based on simple intensity-based metrics or subject-based

meta-information, all available atlases are ranked according to their suitability for a

given query image. By using the top-ranked images as atlases, registration error can

be kept to a minimum resulting in an optimized segmentation.

More sophisticated atlas-selection techniques allowing a local assignment of suitable

atlases have been proposed recently [4, 119].
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2.2.3 Multi-atlas segmentation incorporating intensity mod-

eling

Recent work proposes a combination of multi-atlas segmentation and intensity-based

refinement. van der Lijn et al. [140] propose to generate a target-specific probabilistic

hippocampus atlas by registering multiple atlas images. The obtained spatial prior is

combined with a previously learned intensity model for the hippocampus to define an

MRF-based energy function which is then optimized using graph cuts. Chapter 3 of

this thesis presents a fully automated extension of this framework that takes advantage

of multiple defined brain structures. Lötjönen et al. [102] use the popular EM algo-

rithm described for tissue class segmentation above [142] to refine the segmentation

estimate obtained from multi-atlas segmentation. A comparison of this algorithm with

the graph-cut based approach presented in this thesis (Chapter 3) has been published

in [104].

2.3 Atrophy measurement

Intra-subject brain changes over time have been shown to provide a more accurate

biomarker for AD than cross-sectional differences.

Several methods to accurately measure structural volume changes in brain images

have been developed. Freeborough and Fox [57] proposed the boundary shift integral

(BSI) which quantifies structural volume change between rigidly registered repeat MR

scans. Based on the segmentation in baseline and follow-up scan, the shift of an

object boundary is measured. Structural volume loss is then estimated by integrating

over the intensity differences in the shifted area. Differences are only evaluated over

a defined intensity window to get more robust against segmentation errors. While

initially based on whole-brain atrophy and manual segmentation of baseline and follow-

up scan, a recent publication applies it successfully on hippocampal atrophy in the

ADNI database using a fully automated multi-atlas segmentation approach [97].

Another technique based on the registration between follow-up and baseline image
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is Structural Image Evaluation, using Normalization, of Atrophy (SIENA) [127]. This

technique starts with extracting the brain at baseline and follow-up using a tessellated

surface mesh. After co-registering both images, a combined brain mask is produced.

Using a gradient-based edge detector, the method then finds all brain surface points

in both images to estimate the motion of each point over time. Matching the gradient

points in both images, finally allows to measure atrophy on a voxel basis.

Deformation-based morphometry (DBM) [8] was originally proposed as a method to

measure inter-subject differences from the deformation fields obtained from non-rigidly

aligning a set of subjects to a template space. In the original publication, non-rigid

deformations are parametrized by a linear combination of discrete cosinus transform

(DCT) basis functions [5]. Analyzing the coefficients of individual deformation fields

allows to identify anatomical group differences resulting in systematically different

deformation fields. Freeborough and Fox [58] propose to model intra-subject brain

deformations by inspecting the deformation fields obtained from registering a follow-

up scan to its baseline using a fluid registration algorithm [32]. Determining the

Jacobian matrix of the deformation field at voxel level allows to measure whether

there is expansion (Jacobian determinant > 1) or contraction (Jacobian determinant

< 1). Integrating the Jacobian determinant over a region of interest gives an estimate

of atrophy in this region. With nonrigid registration using free-form deformation

based on B-splines [118], this technique was successfully applied to measuring cerebral

atrophy in MR brain images [17]. A cross-sectional analysis of the ADNI database

based on DBM was recently published by Hua et al. [77].

More recent approaches to measure atrophy include a method developed by Thomp-

son et al. [134] that uses 3D surface meshes based on manual segmentations at base-

line and at follow-up to extract 3D maps of structural development. This method was

applied to measure hippocampal atrophy in ADNI with an automated hippocampal

segmentation method [109]. Xue et al. [156] present a framework to measure atrophy

from the segmentation of baseline and follow-up scan. This work shows how a more

accurate measurement of atrophy can be achieved by incorporating spatial constraints
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into a 3D segmentation method for the simultaneous analysis of longitudinal images.

2.4 Manifold learning

The second part of this thesis presents different techniques to apply dimensionality

reduction techniques for the extraction of biomarkers. In this section, different widely

used techniques for dimensionality reduction are presented. The overview given follows

the detailed description of manifold learning techniques given by van der Maaten et

al. [141].

A set of images X = {x1, ...,xN} ∈ RD is described by N images xi, each being

defined as a vector of intensities, where D is the number of voxels per image or region

of interest (typically D >1,000,000 for brain MR images). Assuming x1, ...,xN lie on

or near an d-dimensional manifold M embedded in RD, it is possible to learn a low

dimensional representation Y = {y1, ...,yN} with yi ∈ Rd of the input images in M

of the input images.

In many of the techniques described, a matrix is typically used to represent the

relations between pairs of data items, which, for the purpose of this thesis, can be

assumed to be images. The matrix in turn, may be viewed as representing a graph to

model the data in which each node is an image and the weight of each edge denotes the

similarity or dissimilarity between the image pair it joins. A broad distinction can be

made between methods that use a complete graph to model the relations among the

data and those methods that use a sparser representation with a smaller number of

edges, restricted to local neighborhoods. All the methods below seek to optimize some

form of objective function via the matrix representation. The techniques are described

as spectral as the optimization is often carried out using the eigenvalue-eigenvector

structure of the associated matrix.

A schematic overview of manifold learning techniques is given in Figure 2.4.
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Figure 2.4: In the schematic illustration above, the images xi , 1≤i≤N (left) are com-
pared in pairs and measures of similarity or distance between them are obtained. The
measures define a N×N matrix representing the edge weights in a graph representation
of the data. The graph/matrix representation may be either full (dense, W above) or
sparse (W′), illustrations of both cases are shown above. Typically, the eigenvalue-
eigenvector structure of the matrix (or of a matrix derived from it) is used to derive a
coordinate representation for an embedded manifold representation yi of the original
data. The first two dimensions of yi are schematically shown above.

2.4.1 Dense spectral techniques

This section describes dense techniques for manifold learning, using a full matrix of

pairwise relations to learn the low-dimensional representation. The full data matrix

X is constructed so that its i-th row is the data item xi and the low dimensional

representation Y similarly contains yi as its rows.

PCA

Principal Component Analysis (PCA) [84] is a popular and widely used linear dimen-

sionality reduction technique. PCA aims to describe as much of the variance in the

data using only a few principal components. The problem is described as finding the
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linear mapping function M that optimizes the objective function

max
M

trace
(
MT cov (X) M

)
(2.1)

where cov (x) is the sample covariance matrix of X. The linear mapping is defined

by the first d eigenvectors of the eigenproblem

cov (X) M = λM. (2.2)

From this, the mapping into low-dimensional space is defined as Y = XM

Kernel PCA

Kernel PCA [123] is a nonlinear extension of classic PCA. A kernel matrix K is defined

from the data points in D-dimensional space with

kij = κ (xi,xj) , (2.3)

where κ can be any function that results in a positive-semidefinite K. A centering

operation is performed subsequently to make the defined features zero-mean and com-

puting the d principal eigenvectors vi and eigenvalues λi of K, leads to the eigenvectors

ai of the associated covariance matrix:

ai =
1√
λi

vi. (2.4)

The low-dimensional embedding of image xi is then defined as

yi =

{
N∑
j=1

a
(j)
1 κ (xj,xi) , ...,

N∑
j=1

a
(j)
d κ (xj,xi)

}
(2.5)

where a
(j)
i is the j-th entry of vector ai.
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MDS

Multidimensional scaling (MDS) [36] is a linear technique closely related to PCA.

It is based on a distance matrix D with dij representing the distance between two

high-dimensional data items xi and xj. MDS seeks to find the low-dimensional rep-

resentation that best preserves the pairwise distances in the high-dimensional space.

This is carried out by minimising the objective function

φ(Y) =
∑
ij

(
d2
ij − ‖yi − yj‖2) (2.6)

with ‖yi − yj‖ being the distance between two datapoints in d-dimensional space,

d�D. The optimal embedding for this objective function can be obtained through a

singular value decomposition of the Gram matrix K = XXT which may be derived

from the distance matrix D.

Isomap

Isomap [133] is a nonlinear embedding technique that builds upon the MDS approach.

In Isomap pairwise distances dij are not measured directly between data items xi and

xj but on a neighborhood graph G connecting all N data items. This graph is defined

by either connecting every data item xi to its k closest neighbors or to all subjects

within some fixed radius ε. After constructing G, the distances dij are estimated as

the shortest path distances dGij within the graph. The final embedding coordinates yi

are obtained by applying classical MDS to the distance matrix DG =
{
dGij
}

.

2.4.2 Sparse spectral techniques

In this section, some of the available sparse techniques for manifold learning are de-

scribed that focus on retaining the local similarities measured in the input space.
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LLE

A low-dimensional manifold constructed with Locally Linear Embedding (LLE) [117]

aims to preserve the local neighborhoods of the high-dimensional data in the learned

low-dimensional space. The method assumes a locally linear relationship between

neighboring data points. The idea is to represent every data item xi as a weighted

combination of its k closest neighbors in the high-dimensional space. This defines a

set of weights wij for the k neighbors of xi and the aim is to find a low-dimensional

representation yi that respects this weighting. The LLE objective function is defined

as

φ(Y) =
∑
i

∥∥∥∥∥yi −
k∑
j=1

wijyij

∥∥∥∥∥
2

subject to
∥∥y(k)

∥∥2
= 1. (2.7)

With the sparse weight matrix W, the embedding is obtained from the d eigen-

vectors corresponding to the smallest nonzero eigenvalues of (I−W)T (I−W).

Hessian LLE

Using the same concept of local linearity as LLE, Hessian LLE [43] minimizes the

curvature of the high-dimensional manifold when learning the low-dimensional repre-

sentation. The method enforces local isometry between the distances in both spaces.

Applying PCA to every datapoint xi and its k nearest neighbors gives an approxima-

tion of the local tangent space at every data point. The mapping function M obtained

from the d principal components at every point xi is then used to give an estimator for

the Hessian Hi of the manifold at that data point [43]. From the Hessian estimators

in tangent space, a matrix H is constructed with entries

Hlm =
∑
i

∑
j

(
(Hi)jl × (Hi)jm

)
(2.8)

The eigenvectors that correspond to the d smallest eigenvectors of H are used to

define the low-dimensional embedding Y that minimizes the curvature of the manifold.
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Laplacian eigenmaps

Laplacian eigenmaps [14] aims to learn a manifold representation that preserves a set

of similarities in a local neighborhood for the high-dimensional data. Weights wij are

defined as the similarities between subjects within a local neighborhood and set to

zero for all other pairings. Similarities can be derived from distances dij using a heat

kernel such as

wij = e−
d2
ij
t . (2.9)

The LE embedding is obtained by minimizing the objective function

φ(Y) =
∑
ij

‖yi − yj‖2wij = 2YTLY (2.10)

where L = D −W is the graph Laplacianmatrix which is derived from the weight

matrix W and the diagonal degree matrix D =
∑

j wij. The LE objective function

is optimized under the constraint that yTDy = 1 which removes an arbitrary scaling

factor in the embedding and prevents the trivial solution where all yi are zero. The

yi that optimize the objective function are defined by the eigenvectors corresponding

to the smallest nonzero eigenvalues of the generalized eigenvalue problem Ld = λDd.

2.4.3 Application of manifold learning

With different manifold learning techniques being tailored to address different dimen-

sionality reduction problems, each involving several parameters to set, an application

is not always straight forward. Depending on the expected underlying space, a choice

has to be made for a linear or nonlinear technique. The nonlinear techniques de-

scribed above minimize an objective function based on a local neighborhood in the

input space. A crucial parameter with these methods is k, the number of neighbors

considered for every subject and therefore defining the expected degree of nonlinearity.

Another important choice has to be made regarding the input measure, whether it is

based on a distance metric or a pure similarity measure. While a distance measure can
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MDS LLE

HLLE LE

Figure 2.5: 2D embeddings obtained with different dimensionality reduction techniques
to 167 images acquired from AD patients (blue) and 231 images from healthy controls
(red).

be converted into a similarity (e.g. by using the heat kernel given in Equation 2.9), this

conversion brings an additional parameter, here t, with it. Equally, a similarity-based

measure can be converted into a distance measure only under certain assumptions.

The application of an embedding technique that readily deals with the available input

measure is therefore recommended. The input measure used with manifold-learning

in this thesis is derived from intensity-similarities. With Laplacian eigenmaps being

able to readily deal with similarities, it is used for all applications described in the

following.

As an illustration, results obtained from different embedding techniques are dis-

played in Figure 2.5. The four plots show manifold embedding coordinates obtained

using MDS, LLE, HLLE and Laplacian eigenmaps (LE). For 167 images acquired from
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subjects with Alzheimers disease and 231 images from healthy controls, the pairwise

similarity measure sij is defined as the cross correlation between each pair of images

xi and xj. For the distance-based learning methods, the similarity sij is transformed

into a distance dij with dij = 1 − sij. A neighborhood size of k = 15 is used for all

sparse methods. The first two dimensions of the resulting embedding coordinates are

plotted for each of the different methods (AD subjects are plotted in blue and healthy

controls in red).
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Chapter 3

Automated intensity-refinement

with multi-atlas label propagation

This chapter is based on:

Robin Wolz, Paul Aljabar, Rolf A. Heckemann, Alexander Hammers, Daniel Rueckert.

”Segmentation of Subcortical Structures and the Hippocampus in Brain MRI using

Graph-Cuts and Subject-Specific A-Priori Information”. ISBI 2009, Boston, USA,

Juli 2009.

Abstract

This chapter describes a general framework for the segmentation of subcortical struc-

tures and the hippocampus in magnetic resonance brain images based on multi-atlas

label propagation and graph cuts. The label maps obtained from multi-atlas segmen-

tation are used to build a subject-specific probabilistic atlas of a structure of interest.

From this atlas and an intensity model estimated from the unseen image, a Markov

random field-based energy function is defined and optimized via graph cuts. Compared

to a previously proposed approach, this method does not rely on manual training of

the intensity model. It is applied to five subcortical structures and the hippocampus.

The presented method is used to segment the hippocampus on 60 ADNI images and an

average overlap (Dice coefficient) of 0.86 was obtained with reference segmentations.
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3.1 Introduction

The accurate and robust segmentation of subcortical brain structures and the hip-

pocampus in magnetic resonance images is an increasingly important step in the diag-

nosis of Alzheimer’s disease. Although much research has been published in this area

[53, 113, 73, 122, 10], no method has established itself in routine clinical use. One well-

validated approach relies on combining the segmentations obtained from non-rigidly

aligning multiple manually labeled atlases with the target image [73]. The final label

at each voxel is determined by applying vote-rule decision fusion. This method makes

no use of the target intensity information. Considering such information, however,

potentially results in further improvements to the quality of multi-atlas segmentation.

Combining prior knowledge of the intensity and spatial distribution of an object

of interest in the contextual framework of a Markov random field (MRF) is an es-

tablished technique for brain segmentation (e.g. [53, 122, 140]). In these approaches

spatial information in the form of a probabilistic atlas and an estimation of the proba-

bility distribution of the target structure’s intensities are used to formulate an energy

function. Introduced by Greig et al. [65] and proposed as a generic method for finding

the global optimum for labeling tasks in computer vision by Boykov et al. [18], graph

cuts have been widely used for optimization in this area.

Recently, two brain segmentation methods based on MRFs and graph cuts have

been introduced: Song et al. [128] proposed a method for tissue class segmentation of

2D MR images. Their spatial prior is defined as a probabilistic atlas that is affinely

registered to the target image. The intensity distributions of white matter (WM), gray

matter (GM), and cerebrospinal fluid (CSF) are modeled using Gaussian distributions.

Another promising approach, proposed by van der Lijn et al. [140] for segmenting the

hippocampus, can be considered an extension of the multi-atlas segmentation approach

of [73] and tackles the previously described problem as follows: instead of directly

fusing the individual segmentations obtained from registering multiple atlases to the

target image, they are used to build a probabilistic atlas which is combined with

statistical intensity models for foreground and background to formulate an energy
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function to be minimized. A limitation of this method is the reliance on a strictly

controlled training of its statistical intensity model where a Gaussian distribution for

the hippocampus and a Parzen estimate of the background distribution are defined

on the manually labeled atlas images. This approach requires the use of identical MR

sequences for the atlas (training images) and target (subject images).

This chapter describes a generalized framework for the segmentation of subcortical

brain structures and the hippocampus in MR images which overcomes these problems

by directly estimating the Gaussian distribution for the foreground from the target

image. Furthermore, a spatially varying mixture of Gaussians (MOG) model for the

background is used in order to better model the different background parts surrounding

a structure of interest. The method is extended to five subcortical structures and the

hippocampus and evaluated on 60 ADNI images.

3.2 Method

The task of segmenting an image I into structures of interest can be described as

assigning a label fp ∈  L to each voxel p ∈ I. A MRF-based energy function can be

formulated as

E(f) =
∑
p∈I

Dp(fp) + λ
∑
{p,q}∈N

Vp,q(fp, fq), (3.1)

where N is a neighborhood of voxels and f is the labeling of I [18]. The data term

Dp(fp) measures the disagreement between a probabilistic model and the observed

data. Vp,q(fp, fq) is a smoothness term penalizing discontinuities in N . The parameter

λ weights the influence of the data term and the smoothness term. For the evaluation

described in Section 3.3 it was set to an empirically determined value of λ = 0.5.

To optimize Equation (3.1) with graph cuts, a graph G =< V,E > with a node v ∈

V for each voxel p is defined on image I. Its edges e ∈ E consist of connections between

each node v and two terminal nodes s, t as well as connections between neighboring

voxels. The terminals s and t represent the two labels describing foreground and
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background. By determining an s-t cut on G, the desired segmentation can be obtained

[18]. The data term in the MRF model defines the weights of the edges connecting

each node with both terminals and the smoothness term encodes the edge weights of

neighboring nodes. The segmentation with graph cuts is illustrated in Figure 3.1.

Figure 3.1: Segmentation with graph cuts. A graph is defined on the target image in
which every voxel is represented by a node. Source and sink nodes represent foreground
and background and weights from every node to source and sink are defined according
to the energy model. Edges connecting neighboring nodes enforce smoothness. The
final segmentation is obtained by finding the minimum cut of the defined graph.

To guarantee a global optimum, this segmentation based on graph cuts can only be

applied to a binary segmentation problem where an image is segmented into foreground

and background. To segment multiple structures, the algorithm can be applied for each

structure Si independently before consolidating the individual segmentations in a final

step. (Equivocal voxels are labeled according to the spatial prior introduced in Section

3.2.1).

3.2.1 Estimation of a subject-specific data term

The weights of the edges connecting each node with the terminals are determined from

a spatial prior and a model of the intensity distribution of the structure of interest.

To estimate the corresponding parameters as accurately as possible, both models are

derived from the unseen target image.
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Spatial prior

Various authors have used prior spatial knowledge in the shape of a probabilistic atlas

for MRF-based brain segmentation (e.g. [122, 142, 128, 140]). While most of these

approaches rely on affinely aligning a fixed probabilistic atlas for tissue classes or

individual structures, van der Lijn et al. [140] use the propagated labels from multi-

atlas segmentation [73] to build a subject-specific probabilistic atlas directly in the

coordinate system of the unseen image. Building an atlas from multiple registrations

compensates for errors in the constituent atlases and registrations. Here, a similar

approach is proposed using a non-rigid registration method [118] to align all N atlases

with the target image. The parameter settings for image alignment are based on the

well-evaluated procedure described in [73]. By applying the resulting transformations

T j to each label set f j, each atlas is warped to the target image’s coordinate frame.

For each voxel p, the prior probability of its label being fi is therefore

PA(fi) =
1

N

∑
j=1,...,N

 1, fi = f ji

0, else
(3.2)

PA defines the spatial prior contribution to the data term in the graph cuts model.

Intensity model

The intensity prior for tissue classes or specific structures is usually modeled by a Gaus-

sian probability distribution. The main challenge is the accurate and robust estimation

of its parameters. In [142], van Leemput et al. describe an expectation-maximization

based method to successively improve an initial estimate of the parameters of tissue

class distributions. For the hippocampal segmentation proposed in [140], the parame-

ters of the Gaussian distribution are estimated a priori from manually labeled training

images, which restricts the method to test and training images with identical MR se-

quences. To arrive at a more generally applicable method, in this work the parameters

of the Gaussian distribution of the structures of interest are directly estimated from

the unseen target image. It is estimated from all those voxels which at least 95% of
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the atlases assign to this particular structure. The intensity component of the source

link weight for a given voxel p with intensity yp and structure fi is denoted by Ps and

is estimated from the intensity distribution model, i.e. Ps(p, fi) = P (yp|fi).

For many subcortical structures, the background is not typically homogeneous.

Therefore, it is meaningful to describe its intensity distribution by a multivariate model

instead of a single Gaussian distribution. Van der Lijn et al. [140] proposed a Parzen

window estimated from a manually outlined area around the hippocampus on training

images. To enable a more robust approach that does not rely on manual training and

to allow for a more detailed description by using different models for different parts of

the background, a spatially varying mixture of Gaussians (MOG) model is used in this

work. The MOG model is defined by the general Gaussian distributions of the three

tissue classes based on the method described in [142] and the more precise distributions

of the defined regions of interest (subcortical structures and hippocampus) based on

the target specific atlas described above. When segmenting a particular structure i

with label fi, the Gaussian intensity distributions of all other structures with labels fj,

j 6= i and of the tissue classes Tk, k = 1, ..., 3 are combined to estimate the probability

of the voxel belonging to the background. This is carried out using spatial priors for

the structures (obtained as described above) and for the tissue classes (obtained from

previously generated and non-rigidly aligned probabilistic atlases). The probability of

a voxel being in the background with respect to structure i is estimated by:

P (yp|fi,back) = (1− γstruct)
∑

k=1,...,3

γkP (yp|Tk)

+ γstruct

∑
j=1,...,N,j 6=i

γjP (yp|fj), (3.3)

where γk is the tissue spatial prior, γj = PA(fj) is the structure spatial prior and

γstruct =
∑

j=1,...,N,j 6=i γj. Equation 3.3 provides the intensity component of the edge

weight from voxel p to the sink node t for the current structure, denoted by Pt(p, fi),

i.e. Pt(p, fi) = P (yp|fi,back)

The intensity and spatial contributions, Px, x ∈ s, t and PA, are combined to give
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the data term that defines the edge weights connecting each node to the source s and

sink t. It is defined as the log-likelihood:

Dp(fi) = −α lnPx(p, fi)− (1− α) lnPAx(fi) (3.4)

With PAs(fi) = PA(fi) and PAt(fi) = 1 − PA(fi). The parameter α governs the

influence of PA and Px on the final segmentation result.

3.2.2 Smoothness term

Following [128], a smoothness term based on intensity y as well as the intervening

contour probabilistic map B (derived from the gradient image) are used to define the

weights of edges connecting two neighboring voxels p and q:

Vp,q(fp, fq) = c

(
1 + ln

(
1 +

1

2

(
|yp − yq|

σ

)2
))−1

+ (1− c)
(

1− max
x∈Mp,q

(Bx)

)
(3.5)

where Mp,q is a line joining p and q, and σ is the robust scale of image I [128]. The

parameter c controls the influence of the boundary- and intensity based part and is

empirically set to 0.5.

3.3 Data and Results

The method was evaluated on 60 T1-weighted 1.5T MR images from different sub-

jects in the ADNI database described in Section 1.3 . The subjects in this study are

classified into three groups: Alzheimer’s patients (AD), patients showing mild cogni-

tive impairment (MCI) and control subjects (controls). From each group 20 subjects

were selected randomly. For each image a reference hippocampal segmentation was

provided by ADNI (see Appendix A.1.1).
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Two different sets of atlases were used for the segmentation. The first set consisted

of 30 ADNI images with corresponding hippocampus labels as described in Section

A.1.1. The subjects were different from those used for evaluation, and had been classi-

fied as AD, MCI, and controls (10 each). The first set of atlases was applied to compare

the proposed method with the reference delineation for the hippocampus and multi-

atlas segmentation. The second set of atlases consisted of the 30 Hammers atlases that

are manually delineated into 83 structures and described in Section 2.1.1. This atlas

set was used to segment the following structures for visual inspection: hippocampus,

amygdala, putamen, thalamus, nucleus accumbens and caudate nucleus.

3.3.1 Comparison with manually labeled data

Table 3.1 shows the average overlap (similarity index, SI, or Dice coefficient) for the

segmentation of the hippocampus for standard multi-atlas segmentation and the pro-

posed method.

multi-atlas 0.842 ± 0.030 [0.739-0.894]
proposed method 0.860 ± 0.024 [0.787-0.897]

Table 3.1: Average SI overlap for hippocampus segmentation.

Figure 3.2 shows the difference between both methods for the 60 test images. This

difference is statistically significant with p < 0.001 on Student’s two-tailed paired

t-test.

The improvements with the presented method are similar to those reported in

[140], but are obtained without manually training the intensity models. To show the

importance of such a sequence independent model, the proposed method was adapted

to use a previously trained intensity model. The intensity distribution of the manually

delineated hippocampi and the three tissue classes (WM, GM, CSF) was estimated on

10 MR ADNI-images which were acquired on the same scanner. Testing this model on

30 ADNI-images from different scanners at different sites, the average hippopcampal

overlap was 0.851 compared to 0.848 for standard multi-atlas segmentation and 0.867

for the proposed method.
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Figure 3.2: Difference between multi-atlas segmentation and the proposed method for
the hippocampus segmentation in 60 test cases.

3.3.2 Visual inspection

Visual inspection of the segmentation results obtained from the second atlas set con-

firm the results described above and show improved segmentation results compared

with standard multi-atlas segmentation.

Figure 3.3 shows the 3D-rendering for the 6 segmented structures and in a trans-

verse slice the results for the thalamus, putamen and caudate.

(a) 3D rendering
(b) Overview

Figure 3.3: (a) shows a 3D-rendering of the segmentation result for the proposed
method for all structures: thalamus (blue), putamen (yellow), caudate (pink), hip-
pocampus (green), amygdala (red) and nucleus accumbens (turquoise). (b): Trans-
verse section showing segmentation outlines superimposed on an MR image.

In Figure 3.4 the results of multi-atlas segmentation, and the improved segmenta-

tion based on the proposed method are shown for the left hippocampus and amygdala

for the MR image of an AD-patient. Furthermore examples of the subject specific atlas
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which the proposed method builds on, are displayed. In this example, incorporating

the automatically trained intensity model avoids substantial false-positive labeling.

(a) Multi-atlas (b) New method

(c) Atlases for hippocampus (d) Atlas for amygdala

Figure 3.4: (a) shows the segmentation results for multi-atlas segmentation (b): results
for the proposed method. (c-d): Subject specific probabilistic atlases for hippocampus
and amygdala (a higher intensity encodes a higher probability).

3.4 Conclusion

In this chapter, a method for subcortical brain segmentation in MR images based

on subject-specific a priori information of spatial extent and intensity distribution of

structures of interest was described. Label maps obtained from multi-atlas segmenta-

tion are used to generate a subject-specific probabilistic atlas. This atlas is paired with

intensity models for both the foreground and the background to formulate an MRF-

based energy function. In contrast to a previously proposed method, this algorithm

does not rely on manual training of the intensity models. Therefore, this method is
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more generally applicable as it is not tied to a specific MR sequence or contrast qual-

ity. A Gaussian distribution for the foreground model is directly estimated from the

target image, while the background model is described by a mixture of Gaussians esti-

mated from a tissue class segmentation, a subject-specific atlas and non-rigidly aligned

atlases for tissue probabilities. The proposed method was evaluated on pathological

image data from the ADNI study, increasing the SI overlap for the segmentation of

the hippocampus significantly from 0.842 with standard multi-atlas segmentation to

0.860.

The following chapter describes a framework that uses the algorithm proposed here

to propagate a set of atlases in a stepwise fashion to a diverse set of images, thereby

reducing registration errors and increasing segmentation accuracy.
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Chapter 4

LEAP: Learning Embeddings for

Atlas Propagation

This chapter is based on:

Robin Wolz, Paul Aljabar, Joseph V. Hajnal, Alexander Hammers, Daniel Rueckert.

”LEAP: Learning Embeddings for Atlas Propagation”. NeuroImage, 49(2):1316-1325,

2010

Abstract

A framework for the automatic propagation of a set of manually labeled brain atlases

to a diverse set of images is described. A manifold is learned that allows the iden-

tification of neighborhoods which contain images that are similar based on a chosen

criterion. Within the new coordinate system, the initial set of atlases is propagated

to all images through a succession of multi-atlas segmentation steps. This breaks the

problem of registering images which are very ”dissimilar” down into a problem of reg-

istering a series of images which are ”similar”. A set of 30 atlas images from young

and healthy subjects is propagated to 796 images from elderly dementia patients and

healthy controls from the ADNI study. The overlap of the automated hippocampus seg-

mentation with reference labels is used for evaluation. An increasing gain in accuracy

of the new method, compared to standard multi-atlas segmentation, is demonstrated

34



with a greater difference between atlas and image. The classification performance be-

tween clinical groups based on 83 structures, shows a significant improvement when

using the described method compared to standard multi-atlas segmentation.

4.1 Introduction

Since brain anatomy varies significantly across subjects and can undergo significant

change, either during aging or through disease progression, finding an appropriate way

of dealing with anatomical differences during feature extraction has gained increasing

attention in recent years. Amongst the most popular methods for dealing with this

variability are atlas-based approaches: These approaches assume that the atlases can

encode the anatomical variability either in a probabilistic or statistical fashion. When

building representative atlases, it is important to register all images to a template that

is unbiased towards any particular subgroup of the population [135]. Two approaches

using the large deformation diffeomorphic setting for shape averaging and atlas con-

struction have been proposed by Avants et al. [9] and Joshi et al. [85], respectively.

Template-free methods for co-registering images form an established framework for

spatial image normalization [129, 9, 158, 101, 15]. In a departure from approaches

that seek a single representative average atlas, two more recent methods describe

ways of identifying the modes of different populations in an image dataset [16, 120].

To design variable atlases dependent on subject information, a variety of approaches

have been applied in recent years to the problem of characterizing anatomical changes

in brain shape over time and during disease progression. Davis et al. [40] describe a

method for population shape regression in which kernel regression is adapted to the

manifold of diffeomorphisms and is used to obtain an age-dependent atlas. Ericsson

et al. [48] propose a method for the construction of a patient-specific atlas where

different average brain atlases are built in a small deformation setting according to

meta-information such as sex, age, or clinical factors.

Methods for extracting features or biomarkers from MR brain image data often
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begin by automatically segmenting regions of interest. A very popular segmentation

technique is to use label propagation which transforms labels from an atlas image to

an unseen target image by bringing both images into alignment. Atlases are typically,

but not necessarily, manually labeled. Early work using this approach was proposed

by Bajcsy et al. [11] as well as more recently Gee et al. [60] and Collins et al. [32].

The accuracy of label propagation strongly depends on the accuracy of the underlying

image alignment. To overcome the reliance on a single segmentation, Warfield et al.

[148] proposed STAPLE, a method that computes for a collection of segmentations a

probabilistic estimate of the true segmentation. Rohlfing et al. [116] demonstrated

the improved robustness and accuracy of a multi-classifier framework where the labels

propagated from multiple atlases are combined in a decision-fusion step to obtain

a final segmentation of the target image. Label propagation in combination with

decision fusion was successfully used to segment a large number of structures in brain

MR images by Heckemann et al. [73].

Due to the wide range of anatomical variation, the selection of atlases becomes

an important issue in multi-atlas segmentation. The selection of suitable atlases for

a given target helps to ensure that the atlas-target registrations and the subsequent

segmentation are as accurate as possible. Wu et al. [155] describe different methods for

improving segmentation results in the single atlas case by incorporating atlas selection.

Aljabar et al. [1] investigate different similarity measures for optimal atlas selection

during multi-atlas segmentation. Rikxoort et al. [143] propose a method where atlas

combination is carried out separately in different sub-windows of an image until a

convergence criterion is met. These approaches show that it is meaningful to select

suitable atlases for each target image individually. Although an increasing number

of MR brain images are available, the generation of high-quality manual atlases is a

labor-intensive and expensive task (see e.g., [67]). This means that atlases are often

relatively limited in number and, in most cases, restricted to a particular population

(e.g. young, healthy subjects). This can limit the applicability of the atlas database

even if a selection approach is used. To overcome this, Tang et al. [132] seek to produce

36



a variety of atlas images by utilizing a PCA model of deformations learned from

transformations between a single template image and training images. Potential atlases

are generated by transforming the initial template with a number of transformations

sampled from the model. The assumption is that, by finding a suitable atlas for

an unseen image, a fast and accurate registration to this template may be readily

obtained. Test data with a greater level of variation than the training data would,

however, represent a significant challenge to this approach. Additionally, the use of a

highly variable training dataset may lead to an unrepresentative PCA model as the

likelihood of registration errors between the diverse images and the single template

is increased. This restriction makes this approach only applicable in cases were a

good registration from all training images to the single initial template can be easily

obtained.

The approach followed here aims to propagate a relatively small number of atlases

through to a large and diverse set of MR brain images exhibiting a significant amount

of anatomical variability. The initial atlases may only represent a specific subgroup of

target image population and the method is designed to address this challenge. As pre-

viously shown, atlas-based segmentation benefits from the selection of atlases similar

to the target image [155, 1]. Here, a framework is proposed that ensures this by first

embedding all images in a low dimensional coordinate system that provides a distance

metric between images and allows neighborhoods of images to be identified. In the

manifold learned from coordinate system embedding, a propagation framework can be

identified and labeled atlases can be propagated in a step-wise fashion, starting with

the initial atlases, until the whole population is segmented. Each image is segmented

using atlases that are within its neighborhood, meaning that deformations between

dissimilar images are broken down to several small deformations between compar-

atively similar images and registration errors are reduced. To further minimize an

accumulation of registration errors, an intensity-based refinement of the segmentation

is done after each label propagation step. Once segmented, an image can in turn be

used as an atlas in subsequent segmentation steps. After all images in the popula-
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tion are segmented, they represent a large atlas database from which suitable subsets

can be selected for the segmentation of unseen images. The coordinate system into

which the images are embedded is obtained by applying a spectral analysis step [28]

to their pairwise similarities. As labeled atlases are propagated and fused for a partic-

ular target image, the information they provide is combined with the intensity-model

presented in Chapter 3.

The initial set of atlases used consists of the 30 atlases from young and healthy

subjects described in Chapter 2.1.1. The proposed method is used to propagate this

initial set of atlases to 796 ADNI baseline images 1.3. Results show that this approach

provides more accurate segmentations due, at least in part, to the associated reductions

in inter-subject registration error.

4.2 Materials and Methods

4.2.1 Subjects

The 796 available ADNI baseline images that were available in July 2009 were used

for evaluation. An overview on the subjects is given in Table 4.1: For each subject

group the number of subjects, the male/female distribution, the average age and the

average result of the mini-mental stat examination (MMSE) [54] are shown.

N M/F Age MMSE
Normal 222 116/106 76.00 ± 5.08 [60-90] 29.11 ± 0.99 [25-30]
MCI (all) 392 254/138 74.68 ± 7.39 [55-90] 27.02 ± 1.79 [23-30]
-S-MCI 230 155/75 74.88 ± 7.77 [55-90] 27.29 ± 1.80 [24-30]
-P-MCI 162 99/63 74.62 ± 6.96 [55-88] 26.63 ± 1.71 [23-30]
AD 182 91/91 75.84 ± 7.63 [55-91] 23.35 ± 2.00 [18-27]

Table 4.1: Information relating to the subjects whose images were used in this study.

For a subset of 182 of the 796 images, a semi-automated delineation for the hip-

pocampus was provided by the ADNI consortium (Section A.1.1) and used as reference

labels to evaluate the method.
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4.2.2 Atlases

The initial set of atlases is defined by the 30 atlas images described in Chapter 2.1.1.

Since no manual segmentations based on the Hammers protocol exists for the ADNI

label maps used for evaluation of label overlaps, the definition of the hippocampus in

the initial atlas was changed to make it consistent with manual hippocampus label

maps provided by ADNI. An example of the ADNI delineation of the hippocampus on

one of the 30 atlases is given in Figure 4.1.

(a) Transverse (b) Coronal (c) Sagittal

Figure 4.1: Manually delineated structures on a brain atlas

4.2.3 Overview of the method

To propagate an initial set of atlases through a dataset of images with a high level of

inter-subject variance, a manifold representation of the dataset is learned where images

within a local neighborhood are similar to each other. The manifold is represented

by a coordinate embedding of all images. This embedding is obtained by applying a

spectral analysis step [28] to the complete graph in which each vertex represents an

image and all pairwise similarities between images are used to define the edge weights

in the graph. Pairwise similarities can be measured as the intensity similarity between

the images or the amount of deformation between the images or as a combination of

the two.

In successive steps, atlases are propagated within the newly defined coordinate

system. In the first step, the initial set of atlases are propagated to a number of

images in their local neighborhood and used to label them. Images labeled in this way
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become atlases themselves and are, in subsequent steps, further propagated throughout

the whole dataset. In this way, each image is labeled using a number of atlases in its

close vicinity which has the benefit of decreasing registration error. An overview on the

segmentation process with the LEAP (Learning Embeddings for Atlas Propagation)

framework is depicted in Figure 4.2.

(1) Embed images (2) Select images for propagation

(3) Register atlases (4) Propagate labels and refine (5) Iterate (2) - (4)

Figure 4.2: Process of atlas propagation with LEAP. All labeled (atlases) and un-
labeled images are embedded into a low-dimensional manifold (1). The N closest
unlabeled images to the labeled images are selected for segmentation (2). The M
closest labeled images are registered to each of the selected images (an example for
one image is shown in (3)). Intensity refinement is used to obtain label maps for each
of the selected images (4). Steps (2) - (4) are iterated until all images are labeled.

4.2.4 Graph Construction and Manifold Embedding

In order to determine the intermediate atlas propagation steps, all images are embed-

ded in a manifold represented by a coordinate system which is obtained by applying a

spectral analysis step [28]. Spectral analytic techniques have the advantage of gener-

ating feature coordinates based on measures of pairwise similarity between data items

such as images. This is in contrast to methods that require distance metrics between

data items such as multidimensional scaling (MDS) (see Chapter 2.4). After a spec-

tral analysis step, the distance between two images in the learned coordinate system is
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dependent not only upon the original pairwise similarity between them but also upon

all the pairwise similarities each image has with the remainder of the population. This

makes the distances in the coordinate system embedding a more robust measure of

proximity than individual pairwise measures of similarity which can be susceptible to

noise. A good introduction to spectral analytic methods can be found in [145] and

further details are available in [28].

The spectral analysis step is applied to the complete, weighted and undirected

graph G = (V,E) with each image in the dataset being represented by one vertex

vi. The non-negative weights wij between two vertices vi and vj are defined by the

similarity sij between the respective images. In this work intensity based similarities

are used (see Section 4.3.1). A weights matrix W for G is obtained by collecting the

edge weights wij = sij for every image pair and a diagonal matrix T contains the

degree sums for each vertex dii =
∑

j wij. T gives a measure of how well every node

is connected in the neighborhood graph. This reflects how similar an image is to the

remainder of the population.

The normalized graph Laplacian L is then defined by [28]

L = T−1/2(T−W)T−1/2. (4.1)

The Laplacian L encodes information relating to all pairwise relations between the

vertices and the eigendecomposition of L provides a low-dimensional representation

for each vertex1. The dimension of the low-dimensional space derived from a spectral

analysis step can be chosen by the user. In this work, each dimension for the feature

data was tested in turn while assessing the ability to discriminate between the four

subject groups (young, AD, MCI and older control subjects). The discrimination

ability was measured using the average inter-cluster distance based on the centroids

of each cluster for each feature dimension. For the groups studied, it was maximal

when using two-dimensional features and reduced thereafter (see Figure 4.3). A 2D

1The spectral embedding process described here is conceptually closely related to Laplacian eigen-
maps as described in Chapter 2.4.2 [145]
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representation is therefore used as a coordinate space in which to embed the data.
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Figure 4.3: The discrimination ability for different chosen feature dimensions among
the four subject groups (healthy young, elderly controls, MCI, AD). The best discrim-
ination was achieved using a two dimensional embedding space which therefore was
used to define the distances between images.

4.2.5 Segmentation Propagation in the Learned Manifold

In order to propagate the atlas segmentations through the dataset using the learned

manifold, all images I ∈ I are separated into two groups, containing the labeled and

unlabeled images. These groups are indexed by the sets L and U respectively. Initially,

L represents the initial atlas images and U represents all other images. Let d(Ii, Ij)

represent the Euclidean distance between images Ii and Ij in the manifold, the average

distance from an unlabeled image Iu to all labeled images is:

d̄(Iu,L) =
1

|L|
∑
l∈L

d(Iu, Il) (4.2)

At each iteration, the images Iu, u ∈ U with the N smallest average distances d̄(Iu)

are chosen as targets for propagation. For each of these images, the M closest images

drawn from Il, l ∈ L are selected as atlases to be propagated. Subsequently, the index

sets U and L are updated to indicate that the target images in the current iteration

have been labeled. Stepwise propagation is performed in this way until all images in

the dataset are labeled.

N is a crucial parameter as it determines the number of images labeled during each
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iteration and therefore it strongly affects the expected number of intermediate steps

that are taken before a target image is segmented. It needs to be set according to the

diversity of the used dataset. A small value of N may be required in a very diverse

dataset to guarantee that only ’similar’ images need to be registered in every step. In

a less diverse dataset, the value for N may be set to a larger value in order to avoid

the unnecessary accumulation of registration errors. M defines the number of atlas

images used for each application of multi-atlas segmentation. A natural choice is, to

set M to the number of initial atlases. Independent of the choice of N , the number

of registrations needed to segment K images is M ×K. The process of segmentation

propagation in the learned manifold is summarized in Algorithm 1.

Algorithm 1 Segmentation propagation in the learned manifold

Set L to represent the initial set of atlases
Set U to represent all remaining images
while |U| > 0 do

for all Iu ∈ U do
calculate d̄(Iu,L)

end for
Reorder index set U to match the order of d̄(Iu,L)
for i = 1 to N do

Select M images from Il, l ∈ L that are closest to Iui
Register the selected atlases to Iui
generate a multi-atlas segmentation estimate of Iui

end for
Transfer the indices {u1, . . . , uN} from U to L

end while

4.2.6 Multi-atlas propagation and segmentation refinement

Each label propagation is carried out by applying the graph-cuts based method de-

scribed in Chapter 3. By incorporating intensity information from the unseen image

into the segmentation process, errors done with conventional multi-atlas segmentation

can be overcome [140, 153].

Each registration used to build the subject-specific probabilistic atlas (see Chapter

3, Equation 3.2) is carried out in three steps: rigid, affine and non-rigid. Rigid and

affine registrations are carried out to correct for global differences between the images.
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In the third step, two images are non-rigidly aligned using a free-form deformation

model in which a regular lattice of control point vectors are weighted using B-spline

basis functions to provide displacements at each location in the image [118]. The

deformation is driven by the normalized mutual information [130] of the pair of images.

The spacing of B-spline control points defines the local flexibility of the non-rigid

registration. A sequence of control point spacings was used in a multi-resolution

fashion (20mm, 10mm, 5mm and 2.5mm).

4.3 Experiments and Results

4.3.1 Image similarities

An intensity-based similarity between a pair of images Ii and Ij is used in this appli-

cation. This similarity is based on normalized mutual information (NMI) [130] which

is with the entropy H(I) of an image I and the joint entropy H(Ii, Ij) of two images

defined as

NMIij =
H(Ii) +H(Ij)

H(Ii, Ij)
(4.3)

For the first part of the evaluation, that aims at accurately segmenting the hip-

pocampus, the similarity measure between a pair of images is estimated as the NMI

over a region of interest (ROI) around the hippocampus. In the second part of the

evaluation, the influence of using whole-brain similarities in contrast to a ROI is as-

sessed. The framework is general and a user can choose the similarity measure and

region of interest appropriate to the region or structure being segmented.

To define the hippocampus ROI, all training images were automatically segmented

using standard multi-atlas segmentation [73]. The resulting hippocampal labels were

then aligned to the MNI152-brain T1 atlas [106] using a coarse non-rigid registration

modeled by free-form deformations (FFDs) with a 10mm B-spline control point spacing

[118] between the corresponding image and the atlas. The hippocampal ROI was then
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defined through the dilation of the region defined by all voxels which were labeled as

hippocampus by at least 2% of the segmentations. To evaluate the pairwise similarities,

all images were aligned to the MNI152-brain atlas using the same registrations used for

the mask building. Figure 4.4 shows the ROI around the hippocampus superimposed

on the brain atlas used for image normalization.

(a) Transverse (b) Coronal (c) Sagittal

Figure 4.4: The MNI152 brain atlas showing the region of interest around the hip-
pocampus that was used for the evaluation of pairwise image similarities

4.3.2 Coordinate system embedding

The method for coordinate system embedding described in Section 4.2.4 was applied

to a set of images containing the 30 initial atlases and the 796 ADNI images. The

first two features from spectral graph analysis were used to embed all images into a

2D coordinate system. The results of coordinate system embedding are displayed in

Figure 4.5. The original atlases form a distinct cluster on the left hand side of the

graph at low values for the first feature. Furthermore it can be seen that control

subjects are mainly positioned at lower values, whereas the majority of AD subjects

is positioned at higher values. The hippocampal area for chosen example subjects

is displayed in Figure 4.5. These types of observations support the impression that

neighborhoods in the coordinate system embedding represent images that are similar

in terms of hippocampal appearance.

All 796 images were segmented using five different approaches:

I Direct segmentation using standard multi-atlas segmentation [73].
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Figure 4.5: Abscissa and ordinate show first and second coordinates respectively of a
low-dimensional embedding space. Embedded are 30 atlases based on healthy subjects
and 796 images from elderly dementia patients and age matched control subjects.
Details of images showing the hippocampus in example subjects.

II Direct segmentation using multi-atlas segmentation in combination with an in-

tensity refinement based on graph cuts [140, 153] (see Chapter 3).

III LEAP with M=30 and N=300 and no intensity refinement after multi-atlas seg-

mentation.

IV LEAP (see Section 4.2.2) with M=30 and N=1.

V LEAP with M=30 and N=300.

4.3.3 Evaluation of hippocampus segmentations

For evaluation, the automatic segmentation of the ADNI images were compared with

the semi-automated and manually corrected hippocampus segmentations described in

Appendix A.1.1. This comparison was carried out for all of the images for which ADNI

provides a reference segmentation (182 out of 796). Comparing these 182 subjects

(Table 4.2) with the entire population of 796 subjects (Table 4.1) shows that the
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subgroup is characteristic of the entire population in terms of age, sex, MMSE and

pathology.

N M/F Age MMSE
Normal 57 27/30 77.1 ± 4.60 [70-89] 29.29 ± 0.76 [26-30]
MCI 84 66/18 76.05 ± 6.77 [60-89] 27.29 ± 3.22 [24-30]
AD 41 21/20 76.08± 12.80 [57-88] 23.12 ± 1.79 [20-26]

Table 4.2: Characteristics of the subjects used for comparison between manual and
automatic segmentation

An example for the segmentation of the right hippocampus of an AD subject is

shown in Figure 4.3.3. A clear over-segmentation into CSF space and especially an

under-segmentation in the anterior part of the hippocampus can be observed, both

in the case of multi-atlas segmentation with and without intensity-based refinement

(methods I and II). The fact that the intensity-based refinement cannot compensate

for this error is due to the high spatial prior in this area that is caused by a significant

misalignment of the majority of atlases in this area. The resulting high spatial prior

cannot be overcome by the intensity-based correction scheme. When using the pro-

posed framework without intensity-refinement (method III), the topological errors can

be avoided, but the over-segmentation into CSF space is still present. The figure also

shows that all observed problems can be avoided by using the proposed framework.

The average overlaps as measured by the Dice coefficient or similarity index (SI)

[42] for the segmentation of left and right hippocampus on the 182 images used for

evaluation are shown in Table 4.3. The difference between all pairs of the five methods

is statistically significant with p < 0.001 on Student’s two-tailed paired t-test.

(a) direct (b) direct, GC (c) LEAP, N=300 (d) manual

Figure 4.6: Comparison of segmentation results for the right hippocampus on a trans-
verse slice.
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left hippocampus right hippocampus
direct 0.775 ± 0.087 [0.470-0.904] 0.790 ± 0.080 [0.440-0.900]
direct, GC 0.820 ± 0.064 [0.461-0.903] 0.825 ± 0.065 [0.477-0.901]
LEAP, N=300, no GC 0.808 ± 0.054 [0.626-0.904] 0.814 ± 0.053 [0.626-0.900]
LEAP,N=1 0.838 ± 0.023 [0.774-0.888] 0.830 ± 0.024 [0.753-0.882]
LEAP,N=300 0.848 ± 0.033 [0.676-0.903] 0.848 ± 0.030 [0.729-0.905]

Table 4.3: Similarity index (SI) for hippocampus segmentation.

These results clearly show an improved segmentation accuracy and robustness for

the proposed method. A hypothesis is that by avoiding the direct registration of

images whose distance in the embedded space is too large but instead registering

the images via multiple intermediate images improves significantly the segmentation

accuracy and robustness of multi-atlas segmentation. To test this hypothesis, the

development of segmentation accuracy was evaluated as a function of distances in the

coordinate system embedding as well as the number of intermediate steps. Figure 4.7

shows this for the five segmentation methods in the form of ten bar plots: Each bar

plot corresponds to the average SI overlap of 18 images (20 in the last plot). The first

plot represents the 18 images closest to the original atlases, the next plot represents

images slightly further from the original atlases and so on. These results show the

superiority of the proposed method over direct multi-atlas segmentation approaches

in segmenting images that are different from the original atlas set.

With increasing distance from the original atlases in the learned manifold, the accu-

racy of direct multi-atlas segmentation (method I) as well as multi-atlas segmentation

with intensity-based refinement (method II) steadily decreases. By contrast, LEAP

with both parameter settings shows a steady level of segmentation accuracy. It is

interesting to see, that the described method with a step width of N = 1 (method IV)

leads to worse results than the direct multi-atlas methods up to a certain distance from

the original atlases. This can be explained by registration errors accumulated through

many registration steps. With increasing distance from the atlases, however, the gain

from using intermediate templates, outweighs this registration error. Furthermore, the

accumulated registration errors do not seem to increase dramatically after a certain

number of registrations. This is partly due to the intensity-based correction in every
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Figure 4.7: Development of segmentation accuracy with increasing distance from the
original set of atlases. Each subset of images used for evaluation is represented by one
bar plot.

multi-atlas segmentation step which corrects for small registration errors. Segmenting

the 300 closest images with LEAP before doing the next intermediate step (N = 300,

method V), leads to results at least as good as and often better than those given by the

direct methods for images at all distances from the initial atlases. The importance of

an intensity-based refinement step after multi-atlas segmentation is also underlined by

the results of method III. When applying LEAP without this step, the gain compared

to method I gets more and more significant with more intermediate steps, but the

accuracy still declines significantly which can be explained by a deterioration of the

propagated atlases (note that for the first 300 images, method II and method V are

identical, as are methods I and III). The influence of N on the segmentation accuracy

is governed by the trade-off between using atlases that are as close as possible to the

target image (small N) and using a design where a minimum number of intermediate

steps are used to avoid the accumulation of registration errors (large N). Due to the
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Figure 4.8: Average hippocampal volumes for manual and automatic segmentation
using method IV.

computational complexity of evaluating the framework, the evaluation was restricted

to two values for N .

4.3.4 Volume measurements

A reduction in hippocampal volume is a well-known factor associated with cognitive

impairment (e.g. [80, 115] ). To measure the ability of our method to discriminate

clinical groups by hippocampal volume, we compared the volumes measured on the 182

manually labeled images to the ones obtained from our automatic method (method

V, LEAP with M = 30 and N = 300). Boxplots showing these volumes for the left

and right hippocampus are displayed in Figure 4.8. The discriminative power for the

volume of left and right hippocampus between all pairs of clinical groups is statistically

significant with p < 0.05 on a Student’s t-test but is slightly less significant than the

manual discrimination. The power of automatically derived volumes to discriminate
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Figure 4.9: A Bland-Altman plot showing the agreement between volume measure-
ment based on manual- and automatic segmentation of the hippocampus (method
IV). The solid line represents the mean and the dashed lines represent ±1.96 standard
deviations.

between clinical subject groups is presented in Section 4.3.5.

A Bland-Altman plot of the agreement of the two volume measurements is shown in

Figure 4.9. This plot supports the impression of the volume measures in Figure 4.8 that

the automated method tends to slightly overestimate the hippocampal volumes. This

over-segmentation is more significant for small hippocampi. The same phenomenon has

been described for an automatic segmentation method before by [68]. The intraclass

correlation coefficient (ICC) between the volume measurements based on the manually

corrected and automatic segmentation is 0.898 (ICC (3,1) Shrout-Fleiss reliability

[125]). This value is comparable to the value of 0.929 reported in [112] for inter-rater

reliability.
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4.3.5 Segmentation of 83 brain structures

To further evaluate the proposed LEAP framework, its application to all 83 anatom-

ical structures in the used atlas is evaluated. Since no manual labels based on the

atlas protocol are available for the ADNI data, classification accuracy between clinical

groups is evaluated to test the ability of the derived structural volumes to serve as a

biomarker for AD.

Segmentation using whole brain similarities

The segmentation propagation of hippocampal label maps with LEAP presented in

Section 4.3.3 is based on pairwise similarities evaluated over an ROI around the hip-

pocampus. For a global distance measure, a manifold embedding for the whole brain

is used here to propagate the whole brain atlas. To accommodate for inter-subject

differences on a coarser level, an affine registration is used to measure pairwise whole

brain similarities in contrast to the non-rigid registration described in Section 4.3.1.

After registering all subjects to the MNI152 brain template, pairwise similarities are

evaluated over the whole brain as described in Equation 4.3. The first two embedding

coordinates from applying the spectral embedding step to the obtained whole brain

similarity matrix is presented in Figure 4.10.

Comparing this embedding to the embedding based on hippocampal appearance

and presented in Figure 4.5, it can be seen that the manually labeled young and healthy

atlas subjects are still clustered on the left hand side. However, the discrimination

between healthy controls and AD subjects is less clear in the embedding based on

whole brain similarities. This result is expected when considering the more significant

changes in hippocampal appearance related to the development of AD.

Based on inter-subject distances in the manifold based on whole brain similarities,

LEAP is applied to all 83 defined atlas regions. Intensity-based refinement as proposed

in Chapter 3 is applied to structures with a homogeneous gray-value only. These are

structures 1-4, 19, 34-46, 49, 74 and 75 from the list given in Table B.1.

Extracted volumes for all 83 regions are used as a feature to discriminate between
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Figure 4.10: First two embedding coordinate for 796 ADNI images together with 30
manually labeled atlas images obtained from applying a spectral embedding step to
pairwise similarities evaluated over the whole brain after an affine normalization to a
template space.

clinically relevant subject groups. The volumes used for classification in all experiments

described in this chapter are corrected for subject age using a multiple linear regression

model. Support vector machines (SVM’s) are used in a leave-25%-out fashion to

discriminate AD subjects from healthy controls (AD vs CN) as well as progressive MCI

subjects from healthy controls (P-MCI vs CN) and stable MCI subjects (P-MCI vs S-

MCI). Classification accuracies for the three comparisons with automatically extracted

volumes for all 83 structures are displayed in Figure 4.11. Classification accuracy

(ACC), sensitivity (SEN) and specificity (SPE) for the volumes that at least for one

comparison performed better than chance (sensitivity and specificity larger than zero),

are presented in Table 4.4.

To explore the potential of several volume measurements to improve classification

accuracy, different methods to compare more than one measure were compared. In the

first method, SVM-based classification was applied in the d -dimensional space formed

53



Structure AD vs CN S-MCI vs P-MCI CN vs P-MCI
ACC / SEN / SPE ACC / SEN / SPE ACC / SEN / SPE

Hippocampus, r 72.6 / 64.4 / 79.4 59.3 / 18.4 / 87.2 70.3 / 56.6 / 80.0
Hippocampus, l 74.1 / 70.1 / 77.4 62.1 / 31.1 / 83.2 72.4 / 63.9 / 78.5
Amygdala, r 77.6 / 72.1 / 82.2 61.5 / 31.6 / 81.9 72.7 / 59.7 / 81.9
Amygdala, l 74.5 / 69.9 / 78.2 63.0 / 33.7 / 82.9 70.0 / 57.9 / 78.6
Gyri parahippocampalis, r 65.6 / 46.2 / 81.5 59.0 / 0.1 / 99.1 59.4 / 11.9 / 93.2
Gyri parahippocampalis, l 63.4 / 47.5 / 76.5 59.9 / 5.4 / 97.0 63.1 / 26.5 / 89.1
Sup. temporal gyru (post.), r 56.3 / 28.8 / 78.9 59.3 / 1.3 / 98.9 57.1 / 5.3 / 93.9
Sup. temporal gyru (post.), l 57.2 / 27.9 / 81.3 59.4 / 4.1 / 97.0 57.7 / 2.8 / 96.8
Med. and inf. temp. gyri, r 60.6 / 32.5 / 83.6 60.6 / 7.3 / 96.9 56.8 / 2.9 / 95.2
Med. and inf. temp. gyri, l 59.2 / 33.4 / 80.3 60.1 / 11.4 / 93.3 61.2 / 22.0 / 89.1
Cerebellum, l 56.1 / 20.7 / 85.1 59.5 / 0.0 / 100.0 58.4 / 0.0 / 99.9
Brainstem 57.8 / 28.1 / 82.3 59.5 / 0.0 / 100.0 58.9 / 14.4 / 90.5
Insula, l 56.0 / 24.7 / 81.7 59.0 / 1.6 / 98.1 58.6 / 6.1 / 95.9
Occipital lobe, r 57.7 / 14.2 / 93.3 59.3 / 2.7 / 97.8 58.2 / 1.6 / 98.5
Cingulate gyrus (anterior), l 58.0 / 27.7 / 82.7 58.9 / 0.3 / 98.9 58.4 / 1.5 / 99.0
Cingulate gyrus (anterior), r 56.9 / 24.1 / 83.9 58.8 / 0.0 / 98.9 57.6 / 3.7 / 95.9
Posterior temporal lobe, l 54.7 / 17.2 / 85.5 60.4 / 6.5 / 97.0 58.0 / 3.1 / 97.1
Posterior temporal lobe, r 57.2 / 22.6 / 85.5 58.9 / 4.0 / 96.3 57.9 / 3.4 / 96.7
Nucleus accumbens, l 60.1 / 44.5 / 72.9 59.3 / 4.2 / 96.9 61.1 / 24.6 / 87.1
Nucleus accumbens, r 55.8 / 2.3 / 99.6 59.5 / 2.8 / 98.1 60.7 / 14.4 / 93.6
Putamen, r 57.8 / 23.2 / 86.2 58.8 / 0.9 / 98.1 59.6 / 23.2 / 85.5
Thalamus, l 64.0 / 49.7 / 75.7 59.2 / 3.7 / 97.0 64.7 / 40.1 / 82.2
Thalamus, r 62.9 / 47.7 / 75.4 59.1 / 2.3 / 97.8 66.2 / 42.3 / 83.2
Pallidum, globus pallidus, l 57.4 / 22.2 / 86.2 59.4 / 0.0 / 99.9 57.6 / 2.6 / 96.8
Corpus callosum 59.5 / 38.7 / 76.5 60.0 / 3.5 / 98.4 59.2 / 22.4 / 85.3
Lat. ventricle, front. horn., r 66.3 / 46.6 / 82.5 57.7 / 3.3 / 94.7 63.5 / 32.0 / 85.9
Lat. ventricle, front. horn., l 62.3 / 40.2 / 80.4 57.7 / 1.9 / 95.7 61.0 / 30.7 / 82.6
Lat. ventricle, temp. horn, r 68.4 / 45.5 / 87.1 60.7 / 16.6 / 90.7 65.3 / 33.1 / 88.3
Lat. ventricle, temp. horn, l 69.7 / 43.5 / 91.2 60.5 / 12.0 / 93.6 65.6 / 28.3 / 92.2
Third Ventricle 60.3 / 39.2 / 77.6 58.8 / 1.9 / 97.6 58.4 / 16.0 / 88.6
Sup. parietal gyrus, l 57.7 / 18.5 / 89.9 59.0 / 0.1 / 99.1 58.2 / 1.2 / 98.7
Sup. parietal gyrus, r 57.2 / 18.1 / 89.3 58.8 / 0.4 / 98.6 57.6 / 0.6 / 98.2
Medial orbital gyrus, l 55.9 / 9.3 / 94.1 59.8 / 7.1 / 95.7 59.7 / 13.0 / 93.0
Medial orbital gyrus, r 56.9 / 14.2 / 91.9 58.9 / 2.3 / 97.5 59.5 / 13.7 / 92.1

Table 4.4: Classification accuracy (ACC), sensitivity (SEN) and specificity (SPE)
achieved with support vector machines (SVMs) based on automatically determined
volumes. Results are displayed for all structures for which the classification accuracy
of at least one comparison performed better than chance.
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Figure 4.11: Classification accuracy for three different clinical groupings achieved from
83 delineated brain structures.

by d independent volumetric measures. In the second method, AdaBoost [59] is used

to find a suitable classifier from a set of volumes. In AdaBoost, a strong classifier

is defined by iteratively selecting weak classifiers to improve it’s performance on a

training dataset. Similar to the SVM-based approach, AdaBoost was applied on the

volumes by applying a leave-25%-out approach.

Table 4.4 shows that the best performance for every classification task is achieved

with individual volumes obtained from either hippocampus or amygdala. The four

volumes from these two structures are therefore used to define a first feature set (set

I). The second set (set II) is defined by all structures represented in Table 4.4 with

which a discrimination between at least one pairing of clinical groups with an accuracy

higher than chance is possible. The third set (set III) consists of all 83 structural

volumes.

Classification accuracy, sensitivity and specificity for SVM and AdaBoost with vol-

ume sets I, II and III are displayed in Table 4.5. Combining different volumes shows a
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clear improvement in classification accuracy, in particular for the discrimination from

healthy control subjects. Best classification rates are achieved when applying SVMs to

feature set II and AdaBoost to all 83 structures (set III). However, AdaBoost shows a

significantly better performance on the S-MCI vs P-MCI classification. Furthermore,

feature set II is build based on classification performance which makes it less suitable

for an application in practice. It can also be seen that the application of the boosting

approach to the relatively small set I (4 volumes) performs worse than a direct appli-

cation of SVM. This could be explained by the hypothesis that classifier selection only

helps to improve accuracy if a large number of weak classifiers are available.

Regional similarities

In this section, the influence of using a local similarity measure as done in Section 4.3.1

in contrast to using a global measure as done in Section 4.3.5 is assessed. In a first

test, the overlaps of an automatically derived hippocampus segmentation using the

two measures with 182 reference hippocampus segmentations (Appendix A.1.1) are

compared. Figure 4.12 shows average SI overlaps for the 10 subject groupings used

in Figure 4.7 when using whole brain similarities (blue) and hippocampus similarities

(grey) to define LEAP propagation with N=300 labelings per step and M=20 atlases.

Average SI values for all 182 subjects are SI=0.845±0.032 for whole brain similarities

and SI=0.848±0.027 for hippocampus similarities. While the results obtained with

AD vs CN S-MCI vs P-MCI CN vs P-MCI
Method / volume set ACC / SEN / SPE ACC / SEN / SPE ACC / SEN / SPE

SVM
I: Hippo./Amygdala 78.7 / 74.2 / 82.4 61.5 / 35.3 / 79.4 75.2 / 67.3 / 80.7
II: selected 83.8 / 79.9 / 86.9 58.7 / 40.1 / 71.3 77.6 / 70.2 / 82.9
III: all 83 structures 82.3 / 78.9 / 85.1 59.4 / 44.7 / 69.4 76.8 / 70.1 / 81.5

AdaBoost
I: Hippo./Amygdala 72.9 / 68.3 / 76.6 59.5 / 48.7 / 66.8 68.8 / 59.8 / 75.2
II: selected 83.0 / 78.8 / 86.4 60.9 / 48.2 / 69.5 75.8 / 67.3 / 81.8
III: all 83 structures 83.2 / 78.6 / 86.9 63.2 / 49.3 / 72.6 76.3 / 66.9 / 82.9

Table 4.5: Classification results achieved with the combination of different structural
volumes. Support vector machines (SVM) and AdaBoost were used on different sets
of volumes to perform classification.
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Figure 4.12: Label overlaps (SI) for automated hippocampus segmentation with
semi-automated reference segmentations. Compared are segmentations obtained with
LEAP when using a similarity measure over the whole brain (blue) to a similarity mea-
sure defined in a region around the hippocampus (grey). Results for both approaches
are represented for 10 groups of subjects as described before for Figure 4.7.

hippocampus similarities show slightly higher mean values with a lower standard de-

viation, a paired t-test shows no significant difference between the two distributions

with p = 0.32.

In a second test, the influence of the input similarity to LEAP on the classifica-

tion accuracy with the resulting volumes is examined on three exemplar structures.

Apart from the hippocampus, LEAP was independently applied to amygdala and the

parahippocampal gyrus, where the latter is an example for a structure for which, due

to it’s inhomogeneity, no intensity-based correction after every atlas-propagation step

is applied. Obtained classification accuracies after measuring combined volumes (right

+ left) based on local similarities, are displayed in the bottom part of Table 4.6. In

addition to the rates achieved with individual volumes, the combination of all vol-

umes is used for SVM- and AdaBoost-based classification as described in the previous

Section. Classification results are at least as good as the ones for a global similarity

measure presented in Table 4.4. For comparison, the top part of Table 4.6 shows

the classification accuracy achieved with the volumes obtained from directly register-

ing the manually labeled atlases to all target images and performing intensity-based

refinement, where applicable.
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AD vs CN S-MCI vs P-MCI CN vs P-MCI
Method / Structure ACC / SEN / SPE ACC / SEN / SPE ACC / SEN / SPE

Direct propagation
Hippocampus 68.6 / 50.3 / 83.6 60.5 / 10.3 / 94.6 67.1 / 50.9 / 78.7
Amygdala 73.7 / 64.0 / 81.7 62.7 / 34.6 / 81.8 74.0 / 64.4 / 80.7
Gyri parahippocampalis 59.3 / 28.4 / 84.6 59.0 / 0.0 / 100.0 59.0 / 10.0 / 93.9

SVM combined 77.4 / 73.1 / 81.0 61.9 / 33.7 / 81.2 73.7 / 62.9 / 81.3
Adaboost combined 69.6 / 64.5 / 74.5 55.8 / 40.7 / 66.0 63.3 / 52.2 / 71.2

LEAP Local
Hippocampus 77.0 / 71.0 / 81.9 61.0 / 27.9 / 83.5 74.8 / 64.3 / 82.3
Amygdala 79.8 / 75.5 / 83.3 62.7 / 36.2 / 80.8 76.2 / 67.7 / 82.3
Gyri parahippocampalis 72.7 / 63.7 / 80.0 60.6 / 15.4 / 91.4 70.5 / 50.9 / 84.4

SVM combined 79.8 / 73.6 / 84.1 63.8 / 35.7 / 82.9 75.2 / 62.3 / 84.4
Adaboost combined 73.3 / 69.3 / 76.6 61.1 / 47.9 / 70.2 67.1 / 56.8 / 74.4

Table 4.6: Classification accuracies achieved for selected structural volumes. The top
part of the table shows results after direct propagation of atlas images, the bottom
part shows the results after applying LEAP where pairwise similarity is measured in
a region around the structure of interest.

4.4 Discussion and Conclusion

This chapter described the LEAP framework for propagating an initial set of brain

atlases to a diverse population of unseen images via multi-atlas segmentation. The

process starts by embedding all atlas and target images in a coordinate system where

similar images according to a chosen measure are close. The initial set of atlases is

then propagated in several steps through the manifold represented by this coordinate

system. This avoids the need to estimate large deformations between images with sig-

nificantly different anatomy and the correspondence between them is broken down into

a sequence of comparatively small deformations. The formulation of the framework

is general and is not tied to a particular similarity measure, coordinate embedding or

registration algorithm.

LEAP was applied to a dataset of 796 images acquired from elderly dementia pa-

tients and age matched controls using a set of 30 atlases of healthy young subjects. In a

first step, the method was applied to the task of hippocampal segmentation and consis-

tently improved segmentation results were achieved compared to standard multi-atlas

segmentation. Furthermore, a consistent level of accuracy for the proposed approach

was achieved with increasing distance from the initial set of atlases and therefore with
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more intermediate registration steps. The accuracy of standard multi-atlas segmen-

tation, on the other hand, steadily decreased. This observation suggests three main

conclusions: 1) The decreasing accuracy of the standard multi-atlas segmentation sug-

gests that the coordinate system embedding used is meaningful. The initial atlases

get less and less suitable for segmentation with increasing distance. 2) The almost

constant accuracy of the proposed method suggests that, by using several small de-

formations, it is possible to indirectly deform an atlas appropriately to a target in a

way that is not matched by a direct deformation with multi-atlas segmentation. 3)

The gain from restricting registrations to similar images counters the accumulation of

errors when using successive small deformations.

The presented results indicate that, if many intermediate registrations are used, the

segmentation accuracy initially declines quickly but then remains relatively constant

with increasing distance from the initial atlases. The initial decline can be explained

by an accumulation of registration errors which results from many intermediate reg-

istration steps. The reason why the accuracy does not monotonically decline is likely

to be due to the incorporation of the intensity model during each multi-atlas segmen-

tation step. By automatically correcting the propagated segmentation based on the

image intensities, the quality of the atlas can be preserved to a certain level.

In further tests, the presented framework was applied to whole-brain segmentation,

evaluating 83 structural volumes in 796 images. Using classification accuracy as an

indicator of the quality of the segmentation, the ability of automatically determined

volumes to classify between different clinical subject groups was tested. The results

show that combining multiple volumes can substantially improve classification rates.

Furthermore, based on three exemplar regions, it could be observed that structural

volumes obtained with LEAP perform significantly better in discriminating clinical

groups than volumes obtained from standard multi-atlas segmentation (Table 4.6).

Further tests evaluated the sensitivity of the LEAP framework to the similarity

measure used to define the low-dimensional manifold space which in turn is used to

determine the step-wise propagation scheme. When using hippocampal label over-
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lap as a measure of accuracy, no significant difference can be observed between using

whole-brain similarities and using similarities specifically evaluated in a region around

the hippocampus. Two main conclusions can be drawn from this finding: 1) there

is a correlation between similarities evaluated over the whole brain and similarities

evaluated over the hippocampal ROI. This is plausible when assuming that whole

brain similarities are mainly influenced by ventricular appearance and a correlation

between ventricular- and hippocampal atrophy. 2) The proposed framework is rela-

tively robust with respect to the segmentation order in the learned manifold. This

can be explained by the registration algorithm being able to ’bridge the gap’ between

different images as long as they are ’reasonable’ similar. In addition, mis-labellings

occurred by registration are, up to a certain level, corrected by the intensity-based

refinement step.

Apart from the obvious application of segmenting a dataset of diverse images with

a set of atlases based on a sub-population, the proposed method can be seen as an

automatic method for generating a large repository of atlases for subsequent multi-

atlas segmentation with atlas selection [1]. Since the manual generation of large atlas

databases is expensive, time-consuming and in many cases unfeasible, the proposed

method could potentially be used to automatically generate such a database.

Notwithstanding the challenge represented by variability due to image acquisition

protocols and inter-subject variability in a dataset as large and as diverse as the one

in the ADNI-study, the results achieved with the proposed method compare well to

state of the art methods applied to more restricted datasets [140, 108, 30, 68] in terms

of accuracy and robustness.

The next chapter presents an extension of this framework to longitudinal image

datasets so that atrophy rates can be accurately determined.
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Chapter 5

Consistent segmentation of

longitudinal images to measure

atrophy

This chapter is based on:

Robin Wolz, Rolf A. Heckemann, Paul Aljabar, Joseph V. Hajnal, Alexander Ham-

mers, Jyrki Lötjönen, Daniel Rueckert. ”Measurement of hippocampal atrophy using

4D graph-cut segmentation: Application to ADNI”. NeuroImage, 52(1):109-118, 2010

Abstract

This chapter describes a new method of measuring atrophy of brain structures by simul-

taneously segmenting longitudinal magnetic resonance (MR) images. In this approach

a 4D graph is used to represent the longitudinal data: edges are weighted based on

spatial and intensity priors and connect spatially and temporally neighboring voxels

represented by vertices in the graph. Solving the min-cut/max-flow problem on this

graph yields the segmentation for all timepoints in a single step. By segmenting all

timepoints simultaneously, a consistent and atrophy-sensitive segmentation is obtained.

The application to hippocampal atrophy measurement in 568 image pairs (baseline and
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month 12 follow-up) as well as 362 image triplets (baseline, month 12, month 24)

confirms previous findings for atrophy in AD and healthy aging. Highly significant

correlations between hippocampal atrophy and clinical variables (MMSE and CDR)

were found and atrophy rates differ significantly according to subjects’ ApoE genotype.

Based on one year atrophy rates, a correct classification rate of 82% between AD and

control subjects is achieved. Power analysis shows that 67 and 206 subjects are needed

for the AD and MCI groups respectively to detect a 25% change in volume loss with

80% power and 5% significance.

5.1 Introduction

The hippocampus is one of the first structures in the brain to be affected by Alzheimer’s

disease [19], and hippocampal volume and especially atrophy over time has been shown

to correlate with disease progression, e.g. [37, 82]. Estimates of hippocampal atrophy

in longitudinal MR images can give insights into onset and progression of dementia and

can serve as biomarker helping to discriminate dementia patients from healthy sub-

jects. Since manual determination of the volume of brain structures is time-consuming

and requires careful examination of intra-rater and inter-rater reliability, many efforts

have been devoted to developing automated methods of atrophy rate measurement:

Freeborough and Fox [57] proposed the boundary shift integral (BSI) that measures at-

rophy from the difference of a structure’s boundaries in baseline and registered follow-

up scan. SIENA is a method that quantifies atrophy from the movement of image

edges between timepoints [127]. In tensor-based morphometry (TBM), the Jacobian

determinants obtained from non-rigidly registering a follow-up scan to its baseline are

integrated to measure atrophy [17, 93]. Alternatively, volume differences can be estab-

lished by segmenting a structure of interest at different timepoints [55, 13, 109, 124]. A

technique proposed by [134] that combines 3D parametric surface mapping of a struc-

ture at baseline and follow-up with automatic segmentation has recently been applied

to the measurement of hippocampal atrophy in subjects from the ADNI study [109].
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When measuring subtle volume changes caused by atrophy, a consistent segmentation

procedure for all timepoints is crucial. Simultaneous segmentation of image sequences

has been shown to increase the accuracy of atrophy measurement [156].

The majority of existing segmentation methods address single timepoints only. The

method described in Chapter 3 combines graph cuts [18] and multi-atlas label prop-

agation [73] for the segmentation of brain structures. In Chapter 4, this algorithm is

embedded in a robust framework to automatically propagate a set of atlases through

to a diverse image set. This chapter builds on this framework and extends the algo-

rithm to the simultaneous segmentation of a series of MR images acquired from the

same subject.

A subject-specific probabilistic atlas of a structure of interest is generated for each

baseline image. After affine registration of follow-up scans to their baseline scan, this

probabilistic atlas is used as spatial prior for all timepoints. This spatial prior, to-

gether with an intensity model derived from the unseen image, provides the data term

to a Markov random field (MRF) which defines a graph on the image sequence con-

necting each voxel to a foreground and background label. To define a regularization

term, additional edges between neighboring voxels within each image and between

corresponding voxels along the time axis are defined. These constraints enforce a

consistent segmentation within each image and across the series. Solving a single

min-cut/max-flow problem on the graph defined on all timepoints yields segmenta-

tions for all images in one single step. Compared to existing methods, the additional

smoothness constraint linking images along the time axis reduces the risk of spurious

segmentation differences between the timepoints caused by random noise or artefacts

in a particular image. Our hypothesis is that a simultaneous segmentation enables

more accurate and consistent measurement of atrophy compared to segmenting the

timepoints independently of each other.

The proposed method is applied to image pairs of 568 subjects from the ADNI study

for whom a baseline and a month 12 follow-up scan was available. Subsequently, it

was applied to the subset of 362 subjects for whom image triplets obtained at baseline,
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month 12 and month 24 were available. For each series, atrophy rates were determined

and its suitability as a discriminant between clinical groups was tested. Furthermore,

the correlation of atrophy rates with Mini-Mental State Examination (MMSE, [54])

and Clinical Dementia Rating (CDR, [110]) scores was tested.

5.2 Materials and Methods

5.2.1 Image data

From the ADNI data described in Chapter 1.3, those subjects were used for whom a

baseline and month 12 follow-up 1.5T scan were available (n=568). For 362 subjects

within this population, a month 24 follow-up image was also available. All images

were downloaded in April 2009. For 112 subjects, progression from MCI to AD has

been reported during the study. Independently analyzed were the subject group that

converted between baseline and month 12 follow-up (P-MCI≤12) and the group that

converted at any point after the month 12 scan (P-MCI>12), as well as the group of

subjects which had a stable diagnosis of MCI (S-MCI). While the ADNI study aims to

follow all subjects for 36 months, for most subjects the examination for this timepoint

was not available when this study was conducted, which means that some subjects

in the S-MCI group are likely to convert to P-MCI>12 in the future. An overview of

the subject groups is given in Table 5.1: For each group the total number of subjects,

number of females, and the average MMSE and CDR scores are shown, along with

the development of these clinical values over time. The mean age for all subjects of

75.3±6.6 years and the mean time passed between baseline and month 12 scan of

12.96±1.32 months do not vary significantly on t-test between the groups.

Table 5.2 shows for the subset of subjects for which three timepoints (baseline,

month 12, month 24) were available, the total number, number of females as well as

the average change in MMSE and CDR scores between baseline and month 24. The

average time between baseline and month 24 follow-up scan was 24.96±1.09 months

with no significant difference between the groups. There is no significant difference for
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Table 5.1: Clinical and demographical overview of the study population. Mean age of
75.3 ± 6.6 years and mean time between both scans of 12.96 ± 1.32 months for the
whole population does not vary between subject groups.

N (F) MMSE ∆MMSE CDR ∆CDR

CN 163 (73) 29.08±1.03 -0.07±1.39 0±0 0.02±0.19
MCI 279 (101) 27.02±1.74 -0.72±2.64 0.5±0 0.04±0.20
S-MCI 167 (60) 27.25±1.71 -0.03±2.35 0.5±0 0.02±0.15
P-MCI>12 63 (22) 26.57±1.57 -0.97±1.95 0.5±0 0.04±0.14
P-MCI≤12 49 (21) 26.88±1.89 -2.79±2.83 0.5±0 0.20±0.25
AD 126 (63) 23.48±1.85 -2.59±4.09 0.74±0.25 0.22±0.49

the clinical values at baseline and month 12 between this subset and the whole set as

described in Table 5.1.

For 11 subjects in the MCI group and two subjects in the AD group, a reversion to

the control and MCI group respectively has been reported. For eight and two subjects

respectively, a 24 month scan is available. These subjects were excluded from the

analysis.

Table 5.2: Subpopulation for which three timepoints were available. The number of
subjects, number of females and average change in MMSE and CDR during 24 months
are given for the six subject groups.

N(F) ∆MMSE ∆CDR

CN 114 (54) -0.16±1.29 0.06±0.16
MCI 165 (55) -2.11±3.79 0.10±0.32
S-MCI 90 (29) -0.47±2.58 0.03±0.17
P-MCI>12 47 (16) -4.02±4.04 0.16±0.29
P-MCI≤12 28 (10) -4.18±4.22 0.41±0.45
AD 83 (39) -4.43±5.64 0.47±0.58

5.2.2 Hippocampus atlases

The atlases used to automatically segment the hippocampus in baseline and follow-

up images are based on the hippocampal label maps provided by ADNI (Appendix

A.1.1). Although other hippocampus definitions exist (e.g. [112, 67]) and can be used

with the described method, the protocol used by ADNI was applied to allow better

comparison with other methods.
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5.2.3 4D image segmentation with graph-cuts

Building on the graph-cuts based segmentation of individual 3D MR images described

in Chapter 3, this section describes an extension to 4D, dealing with sequences of MR

images.

When independently segmenting every 3D image in a longitudinal sequence, the

segmentation of a structure may vary between scans even if there are only small varia-

tions in the intensity [156]. This is more likely near indistinct boundaries, e.g. between

hippocampus and amygdala. To be more robust against intensity variations between

timepoints and against differences caused by image noise, the segmentation frame-

work is extended from a single image to the simultaneous segmentation of a sequence

of images. This is achieved by extending the graph defined by the MRF-based energy

function in Equation 3.1 E(f) =
∑

p∈I Dp(fp) + λ
∑
{p,q}∈N Vp,q(fp, fq) from 3D to 4D.

A 4D image I is not only defined by spatial coordinates x, y, z but also by a time

coordinate t. 4D images are generated for each subject by affine registration of the

follow-up scans to their baseline image, establishing correspondence between voxels in

4D. For a 4D image, a voxel px,y,z has a 8-neighborhood N which incorporates the two

temporally adjacent voxels px,y,z,t−1 and px,y,z,t+1 into the standard 6-neighborhood in

3D. The smoothness constraint thus applies both in space and time, and the segmen-

tations at different timepoints are forced to be consistent in areas where only a small

gray value difference between the images exists. The difference in the segmentation

result of neighboring timepoints can then be expected to reflect intensity differences

caused by atrophy and is less likely to be caused by noise in individual images.

Energy terms

The data term Dp(fp), consisting of a spatial prior and a probabilistic intensity model,

as well as the smoothness term Vp,q(fp, fq) are estimated in a similar fashion to the

ones proposed for 3D segmentation in Chapter 3. To deal with a diverse set of images,

the LEAP framework described in Chapter 4 is used to register multiple atlases to

every baseline images in order to estimate the spatial prior. After applying LEAP, N
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atlases have been registered to every image in the dataset. The spatial probability of

observing a structure of interest (foreground) is determined for each voxel px,y,z,t from

these atlases:

PA(p, fF ) =
1

N

N∑
j=1

 1, fF = fF,j

0, else
(5.1)

with fF defining the foreground label.

After affine registration of follow-up images to their baseline, the probabilistic atlas

produced for the baseline image is used for all timepoints. To establish one-to-one

correspondences, voxel grids of follow-up images are aligned with that of the baseline

using an interpolation based on B-splines [139]. Tissue loss resulting from Alzheimer’s

disease can be observed as a shift of the boundaries of anatomical structures [57]. This

means that differences in the segmentations of different timepoints can be expected

to lie primarily in the boundary region of structures. Since the prior probability

values of the atlas are low in the boundary regions, the segmentation in these areas

depends mainly on the intensity model. A consistent gray value difference between

two timepoints at a particular location therefore results in a segmentation difference

which will be interpreted as atrophy.

To account for global intensity differences in individual scans, intensities in the

follow-up scans are matched to those in the baseline scan using linear regression. A

Gaussian probability distribution as the intensity model PF (p, fF ) is then estimated

from all timepoints. It is defined from the voxels in the image sequence where the

prior probability PA of observing the structure of interest is at least 95%.

Simplifying from the general background model described in Chapter 3, Equation

3.3, the probability PB(p, fB) of observing the background label fB at a certain voxel p

with intensity yp is estimated from a mixture-of-Gaussians (MOG) model for three tis-

sue classes (white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF)). It

is defined by Gaussian distribution parameters τk, k = 1, 2, 3 and previously generated

and non-rigidly aligned probabilistic atlases γk:
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PB(p, fB) =
3∑

k=1

γkP (yp|τk). (5.2)

The smoothness term Vp,q determining the weight of an edge connecting two vox-

els p, q is based on intensity differences between neighboring voxels as well as image

gradients, as originally proposed in [128] and described in more detail in Chapter 3,

Equation 3.5. To discriminate between spatial edges (within timepoints) and tempo-

ral edges (between timepoints), additional weighting parameter αspat and αtemp are

introduced into the MRF energy function described in Equation 3.1, allowing to give

different weights to temporal and spatial edges. The 4D graph-cut model is illustrated

in Figure 5.1.

Figure 5.1: 4D graph cut segmentation: images acquired at two timepoints are con-
nected by additional smoothness constraints (black edges) when compared to a 3D
graph cut model.

5.3 Experiments and Results

The proposed 4D graph cuts method was applied to the two image sets described in

Section 5.2.1: Set 1, consisting of 555 image pairs at baseline and month 12 follow-up

and Set 2, consisting of 352 image triplets at baseline, month 12, and month 24.

Figure 5.2 shows a typical segmentation result for baseline and month 12 images
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on a transverse section of the right hippocampus in a subject with AD. The atrophy-

related discrepancy of the strong GM-CSF boundary is accurately captured and, more

importantly, a consistent segmentation across timepoints is produced in areas where

the hippocampus is not defined by clear boundaries.

(a) (b)

Figure 5.2: Segmentation of the right hippocampus in an AD subject. baseline (a)
and month 12 follow-up (b) segmentation using 4D graph cuts.

5.3.1 Hippocampal atrophy after 12 and 24 months

Hippocampal atrophy rates in image Set 1 are shown in Table 5.3. All subject groups

show a statistically significant volume loss with p<0.001 on a paired t-test. Mean

atrophy rates (%) are shown along with the standard deviations displayed for the

three clinical groups (AD, MCI, controls (CN)) as well as the different groupings of

MCI subjects introduced in Section 5.2.1.

Table 5.3: Hippocampal atrophy rates (%) in 555 subjects over 12 months. Number
of subjects are given in parentheses. Mean±std

CN (163) MCI (268) AD (124)
r 0.78±1.77 2.19±2.88 3.82±2.25
l 0.92±1.89 2.36±2.47 3.96±2.51
r+l 0.85±1.59 2.34±2.12 3.85±1.99

S-MCI (156) P-MCI (112) P-MCI≤12 (49) P-MCI>12 (63)
r 1.68±3.12 2.97±2.28 3.27±2.09 2.75±2.41
l 1.67±2.23 3.41±2.44 4.00±2.20 2.98±2.53
r+l 1.72±1.91 3.23±2.10 3.61±1.91 2.88±2.23

Table 5.4 shows the average atrophy rates (%) over 24 months when segmenting

baseline, 12 month and 24 month images simultaneously.

69



Table 5.4: Hippocampal atrophy rates (%) in 352 subjects over 24 months. Number
of subjects are given in parentheses. Mean±std

CN (114) MCI (157) AD (81)
r 1.52±2.29 4.36±3.26 6.71±3.27
l 1.80±2.19 4.65±3.49 6.87±3.19
r+l 1.66±2.07 4.50±3.12 6.74±2.89

S-MCI (82) P-MCI (75) P-MCI≤12 (28) P-MCI>12 (47)
r 3.55±3.02 5.33±3.29 5.32±3.45 5.33±3.23
l 3.46±3.30 6.08±3.18 6.43±3.72 5.88±2.83
r+l 3.50±2.90 5.70±2.96 5.86±3.36 5.61±2.74
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Figure 5.3: Hippocampal volume loss in % from baseline after 12 and 24 months.
Box-and whisker plots for AD, P-MCI, S-MCI, CN.

Figure 5.3 shows box-and-whisker plots of atrophy rates over 12 and 24 months for

normal controls, MCI converters (P-MCI), subjects with stable MCI (S-MCI), and AD

subjects. The difference in atrophy rate between all clinical groups (CN, MCI, AD)

is statistically significant (p<0.001) on a two-sample (unpaired) t-test. No significant

difference was observed between P-MCI and AD, which can be explained by the fact

that subjects in the P-MCI group later convert to the AD group and are therefore

likely to be pathomorphologically similar.

To investigate the consistency of the proposed method as well as the influence

of additional constraints when segmenting more than two timepoints, the measured

atrophy obtained for the first year when segmenting two and three timepoints simul-

taneously was compared. T-tests indicate no significant difference between the means

of matched samples (p=0.57). A Bland-Altman plot comparing both measures is dis-

played in Figure 5.4. The plot shows good agreement between the two measurements
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with few outliers.
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Figure 5.4: Comparison of volume loss after 12 months when segmenting two (method
a) or three (method b) timepoints simultaneously. Dashed lines represent the 95%
confidence interval of the mean (solid line).

5.3.2 Correlation with clinical values

Image set 1 (555 subjects with month 12 follow-up) was used to determine the cor-

relation of atrophy with clinical data. Table 5.5 shows Pearson’s r-values for the

correlation of atrophy with MMSE, CDR, and the change of both values over one

year. Correlations are displayed for the whole image set as well as for the clinical

groups individually.

Since CDR does not vary within the MCI and CN groups at baseline, no meaningful

correlation can be measured. When using all subjects, a significant correlation in the

anticipated direction could be observed in all tests. Correlations were almost as strong

for the MCI group and were still significant for the left hippocampus when looking at

the AD group separately.
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Table 5.5: Correlation of 12-month atrophy rates with clinical values. Number of
subjects are given in parentheses. (a: p<0.001, b: p<0.01)

all (555) CN (163) MCI (268) AD (124)
MMSE r −0.43a −0.13 −0.31a −0.17

l −0.52a −0.09 −0.38a −0.26b

∆MMSE r 0.30a 0.16 0.26a 0.13
l 0.36a 0.14 0.32a 0.22b

CDR r 0.38a N.A. N.A. 0.14
l 0.47a N.A. N.A. 0.22b

∆CDR r −0.21a −0.06 −0.15b −0.15
l −0.27a −0.08 −0.20a −0.23b

5.3.3 ApoE genotype

Further tests were carried out to gain an understanding of the influence of a subjects’

ApoE genotype (determined by the ApoE alleles carried) on hippocampal atrophy.

Humans carry two out of three possible ApoE alleles (ε2, ε3, ε4). Carriers of ApoE4

have been shown to have a higher risk of developing AD, while ApoE2 carriers have a

lower risk [92]. Table 5.6 shows the results of a two-tailed t-test comparing the atrophy

rates for ε3/3 and ε3/4 carriers (ε2/2, ε2/4, ε4/4 carriers were excluded). Significant

differences between the genotypes can be observed when looking at all subjects simul-

taneously, but also within subgroups – controls, MCI and the combination of both. No

significant difference of atrophy rates in the left hippocampus can be observed when

only looking at the control group.

Table 5.6: T-statistics for the hypothesis of atrophy rates over 12 months in ε3/3 and
ε3/4 carriers come from the same distribution. The number of subjects carrying E3
and E4 respectively is given in parentheses. a: p<0.001

all CN (96/42) MCI (115/141) CN & MCI (211/183)
r −6.09a −3.21a −2.95a −5.03a

l −5.33a −1.1 −2.60a −4.01a

Additionally, atrophy rates for the ε2/3 and ε3/3 carriers were compared. The

only fairly significant difference in atrophy rates, however, could be observed for the

left hippocampus when using all subjects (t=2.28, p = 0.02) or when combining CN

and MCI groups (t=2.13, p=0.03).
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5.3.4 Discrimination between clinical groups based on atro-

phy

Automatically determined atrophy values were tested for their power to discriminate

between subject groups. Receiver operating characteristic (ROC) curves for atrophy-

based classification after 12 and 24 months are displayed in Figure 5.5. The area under

the curve (AUC) to classify CN vs AD, CN vs MCI, CN vs P-MCI and P-MCI vs S-

MCI are 0.88, 0.71, 0.83, and 0.72 respectively when using atrophy rates measured

over 12 months. Measuring atrophy over 24 months, results in values of 0.92, 0.77,

0.86, and 0.71, respectively.
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Figure 5.5: ROC curves show the discrimination between subject groups. The area
under the curve (AUC) for Controls vs AD, Controls vs MCI, Controls vs P-MCI and
P-MCI vs S-MCI are 0.88 (0.92), 0.71 (0.77), 0.83 (0.86), and 0.72 (0.71), respectively.
AUC’s for rates after 24 months are given in parentheses.

A bootstrapping approach that has previously been used for classification based on

hippocampal volume [29] was used to evaluate the classification rate between pairs of

clinical groups: for each group 75% of the subjects were randomly selected for training.

The remaining 25% were then classified according to their difference from the mean

rates estimated in the training sets. The average classification rate, sensitivity and

specificity for different groups after 5000 runs is displayed in Table 5.7. Values based

on atrophy rates after 24 months are given in parentheses.

Using atrophy rates from the first year of observation, a classification rate of 75%-

82% is obtained when discriminating between healthy controls and AD patients or

73



Table 5.7: Classification results using automatically determined atrophy rates after 12
months and after 24 months in parentheses.

AD/CN MCI/CN P-MCI/CN P-MCI≤12/CN P-MCI>12/CN
Class. rate 82%(86%) 63%(72%) 76%(83%) 80%(82%) 75%(84%)
Sensitivity 81%(85%) 59%(65%) 73%(79%) 76%(69%) 72%(83%)
Specificity 83%(87%) 71%(83%) 78%(85%) 81%(86%) 75%(85%)

P-MCI/S-MCI P-MCI≤12/S-MCI P-MCI>12/S-MCI
Class. rate 66%(67%) 70%(67%) 64%(68%)
Sensitivity 62%(66%) 66%(61)% 63%(70)%
Specificity 68%(69%) 72%(70)% 64%(68)%

subjects that develop AD during the study. Of clinical interest is the identification of

subjects converting from MCI to AD. Early and reliable detection of these subjects

could support clinical decisions for or against therapy with disease-modifying drugs.

Hippocampal atrophy over the first year correctly identified 70% of subjects who con-

verted from MCI to AD in the same period. An even more interesting result is the

classification rate of 64% between subjects who did not convert within the entire ob-

servation period and subjects who converted after 12 months. Taking atrophy rates

after 2 years, better results are achieved in all pairings except P-MCI≤12 vs S-MCI.

5.3.5 Sample size calculation

For each patient group, the sample size needed in a hypothetical two-arm study to

detect a reduction in the mean annual rate of atrophy was estimated. With a chosen

effect size of ∆ and a standard deviation σ, the following formula can be used to

estimate the sample size needed:

n =
2σ2

(
z1−α/2 + z1−β

)2

∆2
(5.3)

Following ADNI guidelines, ∆ was set to 0.25µ where µ is the mean atrophy rate of

the corresponding group (see Tables 5.3, 5.4). The significance level (α) was set to

0.05 and the power (1−β) to 0.8. The cutoff points of the standard normal probability

distributions matching the defined significance and statistical power are z1−α/2 ≈ 1.96

and z1−β ≈ 0.84 respectively.
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The total estimated sample sizes for both arms needed to detect a 25% reduction

in the AD and MCI groups in intervals of 12 and 24 months are displayed in Table

5.8.

Table 5.8: Estimated sample sizes for both arms that would be needed to detect a 25%
reduction in atrophy in the AD and MCI groups in intervals of 12 and 24 months.

Interval AD MCI
12 months 67 206
24 months 46 121

5.3.6 Segmentation accuracy

Test re-test reliability

To test the reliability of the proposed method, ten image pairs that were each ac-

quired from the same ADNI subject in the same study session were independently

segmented. When randomly selecting a reference segmentation for each pairing, the

average volume difference to the second segmentation is not statistically significant1.

The average absolute difference between the measurements is 1.2± 1.3% of their aver-

age value. Applying the presented 4D graph cuts method to these image pairs reduces

the average absolute difference to 0.34 ± 0.36%. This shows that segmentations ob-

tained simultaneously from multiple time points are more consistent than single-time

point segmentations.

Comparison of simultaneous to semi-automatic independent segmentation

To assess the importance of segmenting images from all timepoints simultaneously,

atrophy estimates were compared to those based on the label maps provided by ADNI

as described in Section 5.2.2. These label maps have previously been used to study

hippocampal atrophy in work by Schuff et al. [124]. The similarity index (SI) [42] was

used to measure average overlaps between the manually corrected label maps and the

segmentation produced by the proposed method. The average overlap for 262 baseline

1The hypothesis that the distribution has zero mean can not be rejected with p = 0.32
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and month 12 follow-up images is 0.83±0.04. There is no significant difference between

left and right hippocampus.

The subset of images for which label maps at baseline and month 12 were provided

by ADNI was used to compare both approaches of atrophy measurement. Resulting

atrophy rates (%) are shown in Table 5.9. Despite the significant differences in mean

values, there is good correlation between both measures with r = 0.45 and p < 0.001

when looking at all values. The correlation is still high and significant (p < 0.001)

when looking at AD and MCI groups separately (r = 0.61, r = 0.42 respectively).

Table 5.9: Average atrophy rates (%) for the subset of image Set 1 for which hip-
pocampal label maps were provided by ADNI. Atrophy rates based on these label
maps are compared to automatically determined rates based on the proposed method.
Numbers of subjects are given in parentheses. mean±std

CN (85) MCI (122) S-MCI (65) P-MCI (57) AD (55)
ADNI labels 1.10±5.82 3.23±5.58 2.72±5.49 3.81±5.66 6.27±4.84
4D graph-cuts 0.9±1.61 2.31±2.08 1.82±1.89 2.87±2.16 3.67±1.82

Figure 5.6 shows ROC curves, demonstrating the ability of both measurements to

discriminate between clinical groups. Although the mean difference between clinical

groups is higher with the independent ADNI label maps, classification results are

better with the proposed graph-cuts approach performing simultaneous segmentation.

The AUC for the classification between CN vs AD improves from 0.76 to 0.87 while the

clinically most interesting classification between P-MCI and S-MCI is improved from

0.58 to 0.66. The improvement with the described method can be explained by the

larger precision of the proposed method, evidenced by the lower standard deviation of

the atrophy rates measured. The sample sizes required to detect a 25% reduction in

atrophy in the AD and MCI groups confirm this observation with substantially lower

values for the proposed method. Atrophy rates based on the label maps provided by

ADNI result in samples sizes for both arms of 150 and 750 subjects for the AD and

MCI groups respectively. Applying 4D graph-cuts to this subset results in reduced

sample sizes of 62 and 204 subjects respectively.
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Figure 5.6: ROC curves show the discrimination between subject groups. The area
under the curve AUC for (ADNI labels/4D graph-cuts) Controls vs AD, Controls vs
MCI, Controls vs P-MCI and P-MCI vs S-MCI are 0.76/0.87, 0.60/0.70, 0.63/0.77,
and 0.58/0.66, respectively.

Temporal smoothness term

To assess the influence of the weighting factors αtemp and αspat introduced in Section

5.2.3 that weights spatial and temporal edges individually, atrophy measurement over

12 months for Set 1 was performed with different parameter settings. While small

parameter changes do not influence the segmentation outcome substantially, weight-

ing spatial edges with around 20 times higher than temporal edges leads to a robust

framework that results in consistent segmentations but is still flexible enough to ac-

curately detect atrophy. Depending on the structure to be segmented and expected

difference over time, temporal constraints can be varied in different settings.

Setting αtemp = 0 leads to average atrophy rates of 3.94±2.13, 2.32±2.31, 0.87±1.66

for the AD, MCI and CN groups respectively. The increased difference in mean values

does not outweigh the increase in standard deviation and therefore results in slightly

worse classification results and larger sample sizes needed to detect change2.

2Classification was performed as described in Section 5.3.4, results are not shown here. Using
Equation 5.3 shows slightly higher sample sizes compared to the ones reported in Section 5.3.5.
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5.4 Discussion and Conclusion

This chapter presented a 4D graph-cut segmentation method and applied it to mea-

suring hippocampal atrophy in longitudinal MR images from AD patients, subjects

with MCI as well as age matched healthy controls. In the evaluation, 568 image

pairs (baseline and month 12 follow-up) as well as 362 image triplets (baseline, month

12, month 24 follow-up) were segmented simultaneously. The resulting atrophy rates

confirm previous results for hippocampal loss in AD and healthy aging, with atrophy

rates significantly higher in AD (3.85±1.99 vs. 0.85±1.59). The values are in the same

range as atrophy rates for both groups reported in a recently published meta-analysis

of hippocampal loss rates in AD which combines nine studies using manual and auto-

matic approaches [12]. Two recent studies report substantially different atrophy rates

for a similar subset of ADNI subjects: Morra et al. [109] with AD: 5.59±7.24, CN:

0.66±5.96 and Schuff et al. [124] with AD: 4.4±5.88, CN: 0.8±5.63 3. While the

hippocampus atlases used in the presented work are based on the same protocol used

in [124], the differences to the atrophy rates reported in [109] may partly be explained

by a potential difference in region definition. In addition, both previous studies re-

port relatively large confidence intervals which make an estimate of mean values less

reliable.

Atrophy rates in subjects with progressive MCI were found to be significantly

higher than in subjects with a stable diagnosis of MCI. Furthermore, subjects with

stable MCI show higher atrophy rates than control subjects. These results confirm

findings by [147] and are also supported by the finding of significantly reduced cortical

thickness in the P-MCI group compared to the S-MCI group reported in, e.g., [87].

Our results furthermore show that subjects converting to AD during the first year of

the study showed significantly higher atrophy in that time period. More interesting,

however, is the significantly higher atrophy rate of subjects converting to AD after

year one. This suggests that substantial loss in hippocampal volume can be observed

3Standard deviations were calculated from 95% confidence intervals and standard errors respec-
tively as well as sample sizes provided in the original work.
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before a conversion to AD is diagnosed with psychological tests.

Automatically determined atrophy rates over 12 months were used to determine

their correlation with clinical variables, comparing the achieved results to previously

reported values using a similar subset of ADNI images [109]. Due to differences in

the ADNI subjects used, a direct numerical comparison of both methods is not pos-

sible. Stronger and statistically more significant correlations indicate, however, that

the method proposed in this work achieves better accuracy. When using all subjects,

a strong and highly significant correlation between atrophy rates and MMSE, CDR

as well as the change of both variables over time could be observed. Taking into ac-

count the definition of these clinical variables and the difference in atrophy reported,

these correlations are as expected. When looking at the MCI group separately, the

correlation is almost as significant. In the AD group, however, only a relatively poor

correlation between atrophy and clinical variables was measured for the left hippocam-

pus. This confirms findings by [109]. Apart from the lower power to detect correlation

caused by the relatively small group size, a potential explanation is the heterogeneity

of the AD group with respect to change in clinical variables (see Table 5.1). The

absence of a significant correlation for the control group can probably be explained by

the small amount of variation of both atrophy rates and clinical variables.

In further tests, the influence of a subject’s ApoE gene status on hippocampal

atrophy was investigated. The presented results show a statistically highly signifi-

cant difference between ε3/3 and ε3/4 carriers when combining all subject groups.

Remarkably, the difference is still significant when looking at control or MCI groups

only. Only a weak significance could be measured for the difference in atrophy rates

of ε2/3 and ε3/3 carriers.

The reported atrophy rates can be used to classify between clinical subject groups.

Although to our knowledge no classification results based on hippocampal atrophy have

been published for the ADNI group so far, other classifiers have been proposed. Based

on baseline volume of the hippocampus, [29] report a rate of 64% for the clinically

important classification between MCI-converters (P-MCI) and subjects with stable
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MCI (S-MCI). In [62], a more sophisticated classifier based on hippocampal shape

features achieves discrimination between MCI and controls with an accuracy of 80%.

Hippocampal atrophy rates over 12 months based on 4D graph-cuts distinguish

between controls and AD or MCI with a classification rate of 82% and 67% respectively.

A discrimination of MCI converters from healthy subjects and especially from MCI

non-converters is of clinical importance. With the proposed method, all converters

could be discriminated from controls with a rate of at least 75%. Atrophy rates over

12 months allow the identification of 70% of the subjects that convert from MCI to AD

in the same period. The classification rate of 64% between non-converters and subjects

that converted after month 12 shows that an indication of future conversion can be

obtained before clinical tests identify the subjects as AD patients. Taking atrophy

rates over two years, better results are achieved in all pairings except P-MCI≤12 vs

S-MCI. This can probably be partly explained by missing information about subjects

that progress from the S-MCI group to the P-MCI group after 24 months. Although

all subjects are followed for 36 months in the ADNI study, the final examination is

not available for the majority of subjects. Some subjects are likely to convert to AD

after month 24 but are assigned to the S-MCI group, which spuriously reduces the

classification rates. Another factor is probably the relatively small sample size for the

interval between month 12 and 24 (especially for P-MCI≤12), which results in relatively

large confidence intervals around the mean atrophy rate (see Table 5.4).

A high level of agreement between the individual hippocampal segmentations gen-

erated by the proposed method and semiautomatically generated reference segmenta-

tions provided by ADNI (SI 0.83 ± 0.04) was found. Atrophy rates calculated on the

basis of both methods were strongly correlated. Significant differences between the

two approaches are seen when the comparison is based on classification rates and sta-

tistical power: On these criteria, the 4D graph-cuts based method is clearly superior.

One explanation for this superiority could be the presence of increased temporal con-

straints when segmenting images of all timepoints simultaneously: this leads to higher

consistency within the ensembles of measurements on which the atrophy calculation is
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based. A comparison of the presented 4D graph-cuts approach to different state-of-the

art methods for an automated measurement of atrophy is presented in Table 9.3 in

Chapter 9 of this thesis.
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Chapter 6

Biomarker extraction from

manifold learning

This chapter is based on:

Robin Wolz, Paul Aljabar, Joseph V. Hajnal, Jyrki Lötjönen, Daniel Rueckert. ”Non-

linear Dimensionality Reduction Combining MR Imaging with Non-Imaging Informa-

tion Medical Image Analysis”. Submitted, 2011

Abstract

Going on from the traditional biomarkers presented before, this chapter describes a

method based on machine learning for biomarker extraction. In a low-dimensional

manifold representation of inter-subject brain variation, the manifold coordinates of

each image capture information about structural shape and appearance and, when a

phenotype exists, about the subject’s clinical state. A novel feature of the presented

framework is the incorporation of subject meta-information into the manifold learning

step. Information such as gender, age or genotype is often available in clinical studies

and can inform the classification of a query subject. Such information, whether dis-

crete or continuous, is used as an additional input to manifold learning, extending the

Laplacian eigenmap objective function and enriching a similarity measure derived from

pairwise image similarities. The biomarkers identified with the proposed method are
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data-driven in contrast to a-priori defined biomarkers derived from, e.g., manual or

automated segmentations. They form a unified representation of both the imaging and

non-imaging measurements, providing a natural use for data analysis and visualization.

The described method is tested using ApoE genotype, the CSF-concentration of Aβ42

as non-imaging metadata and hippocampal volume as a derived imaging-biomarker for

subject classification. Achieved classification results compare favorably to what has been

reported in a recent meta-analysis using established neuroimaging methods.

6.1 Introduction

Like the measurements extracted with the methods presented in Chapters 3, 4 and 5,

many of the well-established biomarkers for dementia from magnetic resonance (MR)

images are based on traditional morphometric measures, such as the volume or shape

of brain structures [55, 49, 124, 30] and their change over time [57, 127, 17, 93]. More

recently, models based on machine learning techniques have been proposed which

seek discriminating features over the whole brain or within a defined region of inter-

est [51, 50, 144, 62]. Finding a low-dimensional representation of complex and high-

dimensional data is a central problem in machine learning and pattern recognition.

Many methods have been proposed to learn the underlying low-dimensional space of

intrinsically low-dimensional data lying in a high-dimensional space. Linear models

like principal component analysis (PCA) [84] and multi-dimensional scaling (MDS)

[36] have been extensively used for dimensionality reduction. More recently non-linear

methods like ISOMAP [133], locally linear embedding (LLE) [117] and Laplacian eigen-

maps (LE) [14] have been proposed to better model highly non-nonlinear data. A more

detailed overview on manifold learning techniques is given in Chapter 2.

Aljabar et al. [2] applied spectral analysis [145] to pairwise label overlaps obtained

from a structural segmentation to discriminate AD patients from healthy controls. Fo-

cusing on intensity-based similarities between MR brain images, Klein et al. [88] used

vectors defined by the similarities of a given query subject with a cohort of training
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images as features from which to learn a classifier. Computer vision applications, par-

ticularly for face recognition, also use pairwise similarities to learn a low-dimensional

subspace and to classify unseen images mapped to this space [24, 72, 157]. These

methods are typically linear, making it easy to transform data from image space into

the learned subspace, but this linearity can limit the ability to generalize to complex

datasets. Indeed, recent work suggests that the complex natural variation of brain

images is best described by nonlinear models [63, 66]. This chapter aims to learn

the manifold1 structure of brain images in healthy ageing and neurodegeneration by

considering both clinically labeled and unlabeled image data.

Nonlinear dimensionality reduction of a set of brain images with Laplacian eigen-

maps (LE) is based on pairwise image similarities that can be evaluated either over the

whole image or in a region of interest (ROI). A weighted similarity graph is built that

represents neighborhood information in the image data set. With the Laplacian of the

graph, a low-dimensional embedding that respects the input relations is determined.

The LE objective function, which is based on edge weights in the similarity graph,

places more similar images in the input space closer in the embedded space. Building

on this principle, a method is proposed that extends the LE objective function in order

to learn a manifold not only defined by pairwise image similarities but also by some

metadata available for the subjects under consideration. Such metadata in a clinical

setting can be discrete (e.g. gender) or continuous (e.g. age). The described method

extends the similarity graph defined in LE by a set of additional nodes representing a

number of discrete states or intervals of a continuous variable. The weights from every

subject to these nodes are defined based on the subjects’ metadata. This approach

groups subjects with similar metadata closer in the manifold. The proposed method

is related to previous work where binary label information in partially labeled data

sets is used to enforce constraints in a low-dimensional manifold representation [34]

. Optimizing the extended LE objective function, results in an embedding that incor-

porates metadata and pairwise image similarities at the same time. The coordinates

1Here, the terms ”manifold learning/embedding” and ”dimensionality reduction” are used inter-
changeably.
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of a particular subject in the low-dimensional space can then be regarded as encoding

information about the shape and appearance of the brain as well as the state of the

meta-variable and thus about clinically relevant differences across the population de-

scribed by both measures. Images with clinical labels can be used to infer information

about unlabeled images in their neighborhood within the learned geometrical space.

Support vector machines (SVM) are used to perform classification of unlabeled

subjects in the low-dimensional manifold. Furthermore, the power of the manifold

representation to predict clinical variables by fitting a multiple linear regression model

of clinical data versus manifold coordinates is tested.

The contribution of this chapter can be summarized as follows: a method for the

extraction of a unified biomarker combining imaging information with non-imaging

metadata is described. Such a unified representation makes its use for data analysis

and for visualization in a potential clinical application more powerful. The method

can handle discrete and continuous metadata and offers a natural way to deal with

incomplete information. Compared to classical biomarkers, the proposed method is

data-driven and only requires minimal a-priori information. In the evaluation, the 420

ADNI subjects are used for which a measurement of the cerebrospinal fluid (CSF)

-concentration of the Aβ42 protein and the subject’s ApoE genotype were available.

In addition to these meta variables, the power of automatically derived hippocampal

volumes as derived MR-based meta-information is tested as well as the ability of the

proposed method to combine different metadata in a single manifold learning step.

6.2 Method

6.2.1 Manifold learning using pairwise image similarities

A set of images X = {x1, ...,xN} ∈ RD is described by N images xi, each being

defined as a vector of intensities, where D is the number of voxels per image or region

of interest. Assuming x1, ...,xN lie on or near an d-dimensional manifoldM embedded

in RD, a low dimensional representation Y = {y1, ...,yN} with yi ∈ Rd of the input
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images inM may be learned. From the available dimensionality reduction techniques

(see Chapter 2.4), Laplacian eigenmaps (LE) [14] are used to be able to directly deal

with image similarities in contrast to distances. The embedding function is

f : X→ Y, yi = f (xi) .

An undirected weighted graph G = 〈V,E〉 with N nodes V representing the images and

edges E connecting neighboring nodes is defined on X. Edge weights are defined based

on pairwise image similarities sij. A k-nearest neighbor graph is defined, where the

weight wij = sij if xi is among the k nearest neighbors of xj or vice versa and wij = 0

otherwise. The wij are combined to form the weight matrix W. Image similarities

sij are typically based on intensity differences or a deformation-based metric either

of which may be evaluated over the whole brain or in a region of interest. A low-

dimensional representation yi = f (xi) that respects the pairwise similarities wij can

be obtained by minimizing the energy function

∑
ij

(yi − yj)
2wij. (6.1)

This energy function ensures that more similar images in the input space are closer

together in the embedded space. With the diagonal degree matrix D =
∑

j wij , this

can be reformulated as

∑
ij

(yi − yj)
2wij =

∑
ij

(
y2
i + y2

j − 2yiyj
)
wij

=
∑
i

y2
iDii +

∑
j

y2
jDjj − 2

∑
ij

yiyjwij = 2yTLy (6.2)

with the graph Laplacian L = D−W. Since L is positive semidefinite, the minimiza-

tion problem can be formulated as

argmin yTLy
y

yTDy=1

(6.3)
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where the constraint yTDy=1 removes an arbitrary scaling factor in the embedding

and prevents the trivial solution where all y’s are set to zero [14]. Finding the yi’s

that optimize this objective function can be formulated in closed form as finding the

eigenvectors associated with the d smallest non-zero eigenvalues of the generalized

eigenvector problem

Lν = λDν. (6.4)

6.2.2 Manifold learning incorporating non-imaging informa-

tion

In many settings, an additional variable zi providing further information on subject

i may be available in addition to MR imaging data. Such meta-information can in-

form judgments such as clinical diagnosis. A method is proposed to incorporate such

information into the manifold learning process (Section 6.2.1). The hypothesis is that

by using this additional information, a more accurate representation of the population

can be obtained leading to a more reliable biomarker in the low-dimensional space.

Metadata available in a clinical setting can be defined by discrete categories (two or

more), or by a continuous variable. Examples of discrete variables are gender, blood-

or genotype. Continuous variables can be, e.g., a subject’s age, weight or measure-

ments derived from a phenotype associated with the disease of interest. In [34], a

graph G describing the LE objective function in Equation 6.1 is extended by two

nodes, each representing one of two classes available for training data. Connecting

each training subject with its respective class node imposes the class differences in the

training data on the manifold structure. Assuming generalizability between labeled

and unlabeled nodes, a more accurate classification performance on the test data is

expected. Extending this idea, the proposed method uses metadata available for all or

a subset of subjects in contrast to the class labels itself to enrich the low-dimensional

representation. The proposed framework supports to incorporate metadata from one

or more measures, each defining M discrete classes or a continuous interval leading to

a fuzzy-class membership.
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Graph G is extended by M nodes V̂ representing the metadata variable z and called

support nodes in the following. By connecting each image xi to the support nodes with

weights defined according to the value of zi, the distribution of the meta-variable will

influence neighborhoods in the low-dimensional representation. In the discrete setting

with zi ∈ Zd = {z1, ..., zM}, the weight ŵim between subject i and the mth support

node is defined by

ŵim =

 1, if zi = zm

0, otherwise.
(6.5)

In order to map a continuous metadata variable zi ∈ Zc =
[
za, zb

]
to a discrete

number of support nodes, the input space is subdivided into M subintervals z̄m ∈

Zm
c =

[
za,m, zb,m

]
, k = 1, ...,M . Each of these subinterval is then represented by a

support node in graph G. The bounds of the M subintervals are defined as

za,m = Pz

(
(m− 1)

100

M

)
zb,m = Pz

(
m

100

M

)
(6.6)

where Pz (x) gives the xth percentile of interval z. With the mean value µm =

1
|Zm|

∑
z∈Zm z of interval z̄m, the continuous weight ŵim between subject i and the

mth support node is defined based on the distance between zi and µm, grouping sub-

ject i closer to subjects with a similar value of z:

ŵim =


1
c

(1 + (zi − µm)2)
−1

, if zi is available

0 , otherwise.
(6.7)

where c is a normalising constant to ensure
∑

m ŵim = 1. The weighting schemes in the

discrete and continuous settings for the case where an additional variable z is available

for all images are illustrated in Figure 6.1. Incorporating the M support nodes V̂ and

the weights ŵim, leads to an extended Laplacian eigenmaps (E-LE) objective function
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Figure 6.1: Weights defined between image nodes xi and support nodes representing
metadata Z. In the discrete setting (left), equally weighted edges are defined according
to Equation 6.5. In the continuous setting (right), weights to both additional nodes
are defined according to Equations 6.6 and 6.7. A higher weight is illustrated by a
thicker edge.

γ
∑
ij

(yi − yj)
2wij +

∑
im

(yi − ŷm)2 ŵim (6.8)

with ŷm representing the cluster center of state zm of a discrete variable or of the

interval z̄m of a continuous meta-variable. The extended low-dimensional embedding

space is described by

Y′ = {ŷ1, ..., ŷM ,y1, ...,yN} , ŷm,yi ∈ Rd. (6.9)

In this embedding, the proximity of subject i to the mth group (discrete or continuous)

and its centroid ŷm is determined by the weights ŵim defined by the metadata as well

as image-based weights wij . A low weight of parameter γ arranges the subjects mainly

according to the metadata, whereas a high value of γ is closer to the standard embed-

ding with Laplacian eigenmaps which considers only pairwise image similarities. The

influence, γ has on the embedding is illustrated in Figure 6.2. In a synthetic example,

pairwise similarities for 16 nodes are defined from a set of distances between points

in 2D to arrange them in a grid-shaped embedding when using standard Laplacian
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eigenmaps. Every node is associated with a randomly assigned meta-variable varying

between zero and one which is encoded by the color in Figure 6.2. In panel (a) with

γ = 1, the embedding is dominated by the value of the meta-variable. Panel (b) shows

an embedding influenced by both measures and panel (c) shows an embedding close

to the one obtained with LE for γ = 50.

y
1

y 2

(a) γ = 1

1 2
3

4

56

7

8

9

10

11

12

13

14 15

16

1 2
3

4

56

7

8

9

10

11

12

13

14 15

16

1 2
3

4

56

7

8

9

10

11

12

13

14 15

16

1 2
3

4

56

7

8

9

10

11

12

13

14 15

16

1 2
3

4

56

7

8

9

10

11

12

13

14 15

16

1 2
3

4

56

7

8

9

10

11

12

13

14 15

16

1 2
3

4

56

7

8

9

10

11

12

13

14 15

16

1 2
3

4

56

7

8

9

10

11

12

13

14 15

16

1 2
3

4

56

7

8

9

10

11

12

13

14 15

16

1 2
3

4

56

7

8

9

10

11

12

13

14 15

16

1 2
3

4

56

7

8

9

10

11

12

13

14 15

16

1 2
3

4

56

7

8

9

10

11

12

13

14 15

16

1 2
3

4

56

7

8

9

10

11

12

13

14 15

16

1 2
3

4

56

7

8

9

10

11

12

13

14 15

16

1 2
3

4

56

7

8

9

10

11

12

13

14 15

16

1 2
3

4

56

7

8

9

10

11

12

13

14 15

16

y
1

y 2

 

 

0.2

0.5

0.8

(b) γ = 8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

y
1

y 2

(c) γ = 50

Figure 6.2: First two embedding coordinates with varying influence of γ. A high weight
leads to an embedding similar to the one obtained with classic Laplacian eigenmaps
(c). A very low weight embeds the images mainly based on metadata (a).

With the N ×M matrix Ŵ defining the weights between subject i and the M

support nodes, an extended weight matrix

W′ =

 I 1
2
ŴT

1
2
Ŵ γW

 (6.10)

based on the objective function in Equation 6.8 is derived, where I is an M×M identity

matrix. Following Equations 6.2 and 6.4 to solve the generalized eigenvector problem

associated with the extended weight matrix, yields the embedding coordinates which
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optimize the objective function in Equation 6.8.

6.2.3 Extraction of biomarkers

Assuming the pairwise similarities sij and the metadata variable zi represent clinically

relevant differences between relevant clinical groups, a subject’s manifold coordinates

yi can be used as a biomarker to support inferences about their clinical state.

Classification

When aiming at classifying unlabeled subjects for which no clinical label is available,

information from labeled subjects can be used to make a decision. Please note that

”unlabeled” in this context refers to the clinical label (e.g. AD, healthy control) that is

to be predicted. Every subject (labeled or unlabeled) may or may not have metadata

associated with it that can be used to enrich the manifold learning as described in

Equations 6.5 and 6.7.

When dealing with a two-class problem, the coordinates of N ′ labeled training

images {yj, dj} , j = 1, ..., N ′ < N,yj ∈ Rd with clinical labels dj ∈ {−1, 1} is used

to train a classifier on the derived manifold coordinates yj = yj1, ..., yjd. Support

Vector Machines (SVMs) minimize a Lagrangian energy function which leads to the

hyperplane

a · y − b = 0 (6.11)

in the manifold space that best separates the two subject groups [22]. The location of

embedding coordinates of the N − N ′ unlabeled images in relation to this plane can

then be used to classify them. While SVMs provide a natural way to separate the

learned manifold space, other classifiers based on, e.g., a Linear Discriminant Analysis

[90] or a k-nearest neighbor classifier [35] could be applied.
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Regression

A continuous assignment can be achieved by, e.g., building a linear regression model

between a clinical variable d̂j versus manifold coordinates yj1, ..., yjd:

d̂j = a0 +
d∑
i=1

aiyji (6.12)

Learning such a model from a subset of subjects for which clinical labels exist, allows its

application to unlabeled subjects and predictions to be made about clinical information

associated with those subjects.

6.3 Data and Results

The proposed method is evaluated by performing classification in the learned manifold

space between AD patients, subjects with MCI and healthy controls. Furthermore, the

power to predict clinical variables is evaluated by performing regression versus the score

of a Mini-Mental State Examination (MMSE) [54]. Incorporating relevant subject-

information in the form of metadata is expected to better model the difference between

two populations, leading to an improved classification and regression performance.

Finally, the performance of the described method in comparison to other approaches

that combine different measures to perform classification is inspected.

6.3.1 Subjects

ADNI provides the ApoE genotype (determined by the ApoE alleles carried) for all

subjects. Humans carry two out of three possible ApoE alleles (ε2, ε3, ε4). Carriers

of ε4 have been shown to have a higher risk of developing AD, while ε2 carriers have

a lower risk [92]. In addition an Aβ42 protein analysis of cerebrospinal fluid (CSF) is

available for a subset of ADNI subjects. A decrease in the concentration of this protein

has been shown to be associated with a development of AD [138]. In this chapter, the

1.5T T1-weighted baseline images of the 420 subjects for which a CSF analysis was
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available were used. Out of 201 MCI subjects, 89 were progressive, i.e. were diagnosed

as converting to AD as of October 2010. Stable (S-MCI) and progressive (P-MCI)

subjects where therefore analyzed independently2. Table 6.1 presents an overview of

the subjects studied and their metadata as well as their MMSE scores used for clinical

diagnosis.

Table 6.1: Subject data of the study subjects are shown for the different groups. Non-
imaging metadata in the form of ApoE genotype and Aβ42 concentration as well as
the derived imaging metadata, hippocampus volume, are presented. Carriers of the
ApoE ε2/ε4 alleles are shown. The remaining subjects only carry the ε3 allele. There
is no significant difference in age between the clinical groups with an average age of
74.95±7.03 years.

Subject Data Non-Imaging metadata Derived metadata

CN
S-MCI
P-MCI
AD

N (F) MMSE
116 (56) 29.12 ± 1.02
112 (36) 27.16 ± 1.75
89 (33) 26.64 ± 1.8
103 (43) 23.55 ± 1.87

ε2/ε4 Aβ42 (pg/ml)
16/28 202.3 ± 57.5
9/49 178.9 ± 61.6
1/52 146.3 ± 46.30
4/63 147.5 ± 45.8

Hippo. Vol. (cm3)
4.53 ± 0.55
4.26 ± 0.59
3.93 ± 0.65
3.92 ± 0.73

6.3.2 Pairwise image similarities

To measure pairwise image similarities, all 420 study images were aligned to the

MNI152-brain T1 atlas [106] using a coarse non-rigid registration modeled by free-

form deformations (FFDs) with a 10mm B-spline control point spacing [118] between

the corresponding image and the atlas. A coarse non-rigid registration allows align-

ment of structures of interest while retaining inter-subject variation to measure image

similarities. While the proposed framework is general and, for example, allows the

use of a deformation-based metric, an intensity-based similarity measure was selected

for this work. This choice was based on the expectation of only relatively subtle dif-

ference between individual images in a defined region of interest. Cross correlation

(CC) between pairs of images xi and xj, is used to specify the similarity sij defining

the weight wij for manifold learning when optimizing the objective functions in Equa-

tions 6.1 and 6.8. CC was selected in favor of an entropy-based measure like mutual

2Note that since the ADNI study is still ongoing it is likely that some subjects will convert from
the S-MCI group to the P-MCI group in the future.
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information [130] since all images are based on the same modality (MRI) and a linear

relationship between image intensities is expected. CC is defined as:

sij =

∑
k (xi,k − x̄i) (xj,k − x̄k)√∑

k (xi,k − x̄i)2∑
k (xj,k − x̄j)2

(6.13)

where xi,k denotes the gray value at the k th voxel and x̄i denotes the mean gray value

of image i. The medial temporal lobe and in particular hippocampus and amygdala

have been shown to be predominantly affected by onset and progression of MCI and

AD [45]. The evaluation of pairwise similarities were therefore restricted to a region

defined around both structures in the template space (see Figure 6.3).

(a) Transverse (b) Coronal (c) Sagittal

Figure 6.3: Orthogonal views of MNI152 space showing the ROI around hippocampus
and amygdala used to evaluate pairwise image similarities.

6.3.3 Experiments

Based on the objective function given in Equation 6.1, traditional Laplacian eigen-

maps was applied to obtain a low-dimensional representation of all 420 study images

using image similarities sij only. The neighborhood size k used to define graph G

did not substantially influence results when varying between 10 and 50 and was set

to k = 20 following results presented in [63]. In addition to classic LE, the extended

objective function proposed in Equation 6.8 was used to incorporate both discrete and

continuous metadata into the manifold learning process. ApoE genotype and Aβ42
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concentration were used as clinical, non-imaging information3. In addition, automati-

cally determined hippocampal volumes extracted with the LEAP framework described

in Chapter 4 were used as a derived imaging biomarker to enrich the manifold learning

process. Average hippocampal volumes (right + left) for the different subject groups

are displayed in the very right column of Table 6.1. Furthermore, the impact of adding

support nodes to more than just one meta-variable was evaluated. In particular, the

combination of CSF with hippocampal volume and CSF with hippocampal volume

and ApoE genotype were tested. The following list gives an overview of the different

experiments performed:

I : Laplacian eigenmaps (LE)

II : Extended LE (E-LE) with ApoE genotype

III : E-LE with Aβ42

IV : E-LE with hippocampal volume

V : E-LE with Aβ42 and hippocampal volume

VI : E-LE with Aβ42, hippocampal volume and ApoE genotype

For the discrete variable in experiment II, ApoE genotype, M = 3 support nodes are

defined, each trivially associated with a possible genotype (z1: subjects that carry at

least one ε2 allele. z2: subjects that carry at least one ε4 allele. z3: subjects that

only carry the ε3 allele). Following Equation 6.5, ŵim is set to one if subject i has

a genotype associated with node m, otherwise it is set to zero. For the continuous

variables in experiments III and IV, Aβ42 concentration and hippocampal volume, a

continuous weighting ŵ is defined as described by Equations 6.6 and 6.7. To accom-

modate the four clinical groups (CN, S-MCI, P-MCI, AD), M = 4 support nodes were

used with subintervals z̄m,m = 1, ..., 4 to describe the metadata as defined in Equation

6.6. For experiments V and VI, that use more than one meta-variable, edges to the

3It should be noted that neither variable is part of the inclusion / exclusion criteria for the different
clinical diagnoses defined by the ADNI study [111].
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support nodes associated with all variables are defined. This results in M = 8 and

M = 11 support nodes for experiments V and VI respectively with weights defined

as in experiments II-IV. Before performing the experiments described below, all em-

bedding coordinates were corrected for subject age using a multiple linear regression

model. Figure 6.4 shows exemplars of the projected embedding onto the first two

coordinate directions when using standard Laplacian eigenmaps (top panel) and the

proposed method with hippocampal volume as metadata (bottom panel). A separat-

ing hyperplane between AD and control subjects as defined by SVM is displayed in

both cases. Better discrimination between the two groups can be observed when using

the proposed method especially for subjects close to the separating plane.

6.3.4 Parameter settings

Dimension d

The selection of the optimal number of embedding coordinates d is not an obvious task.

For different applications in manifold learning of brain images [63, 151, 83, 66, 150],

different numbers of dimensions have been shown to produce good results. To get an

overview of how the proposed classification framework reacts to varying the dimension

of the manifold, classification between clinical groups was performed on the 418 ADNI

baseline images not used in the evaluation (subjects for which no CSF information is

available). Classification accuracy was evaluated for the pairings AD vs CN, P-MCI

vs S-MCI and P-MCI vs CN when varying the dimension d ∈ [1, . . . , 50]. To get a

more robust measure of the optimal embedding dimension, the average accuracy was

evaluated for 10 bins, each covering 5 dimensions. Average classification results and

standard deviation for the 10 bins are displayed in Figure 6.5 (a). A clear improvement

of classification accuracy can be observed when increasing the dimension from bin

one, d ∈ [1, 5], to bin two, d ∈ [6, 10]. From the fourth bin covering d ∈ [16, 20], the

classification accuracy decreases. Following these results, classification performance

was evaluated in all experiments for d ∈ [6, 15] and average classification rates are

reported.
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Weighting factor γ

The weighting factor γ defined in Equations 6.8 and 6.10 determines how much the

final embedding is influenced by image similarities sij and metadata zi. To evaluate the

influence it has on classification accuracy, the performance on the images for which

no CSF measurement is available (N=418) was evaluated when exemplarily using

hippocampal volume as metadata. Figure 6.5 (b) shows classification results averaged

over dimensions d ∈ [6, 15] plotted over varying γ. As γ is increased, initially improved

results finally asymptote to the results obtained with standard LE (illustrated with

the red line in Figure 6.5 (b)). Following these results, the parameter was set globally

to γ = 8 for all experiments described below and all types of metadata. Tuning γ

individually for different types of metadata is expected to further improve results but

requires a more complex training and makes the application to new datasets more

difficult.

6.3.5 Classification

The manifold representations, obtained from standard LE embedding and from the

five experiments using the extended version (E-LE) proposed in this work, are used to

perform classification between the different clinical subject groups. For each relevant

pairing (AD vs CN, S-MCI vs P-MCI, CN vs P-MCI), a leave-25%-out cross-validation

was performed using the image set described in Section 6.3.1 that was not used for

parameter setting as described in Section 6.3.4. Average classification rates after 1,000

runs are determined for every dimension d ∈ [6, ..., 15]. To arrive at a more robust and

generalizable result, average classification rates over these 10 dimensions are reported.

Table 6.2 presents the correct classification rates for all six experiments. For each

experiment, the multiple runs provide a distribution estimate for the corresponding

classification rate4. For each pair of clinical groups, these distributions were used to

carry out unpaired t-tests between the results of methods I (LE) and IV (E-LE with

ApoE, hippo. vol. and Aβ42) with the respectively remaining methods in order to esti-

4All estimated distributions passed a normality test using a Kolmogorov-Smirnov test at α = 0.05.
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mate the significance of any performance improvements when incorporating metadata.

Resulting p-values are presented in Table 6.2. For comparison, correct classification

rates when only using the different sources of meta-information are presented in the

bottom part of Table 6.2.

6.3.6 Regression

The Mini-Mental State Examination is a psychological test to screen for cognitive

impairment. To test the ability of manifold coordinates to predict clinical variables, a

multiple linear regression model of MMSE was fitted versus manifold coordinates. A

model that predicts MMSE from the first d manifold coordinates was used:

MMSE = a0 +
d∑
i=1

aiyi. (6.14)

The model was evaluated for d = 15 and for comparison with work presented in [63] also

for d = 1. Regression results for both dimensions using the manifold representations

from experiments I-VI, are displayed in Table 6.3.

6.3.7 Alternative approaches to incorporate metadata

There are several alternative approaches to perform classification based on multiple

measurements or to learn a manifold based on more than one similarity measure. In

this section, two obvious choices of alternatives are considered:

Concatenation of feature vectors in a SVM-based classification

When performing SVM-based classification, an extended feature vector fi = {yi, zi}

concatenating the manifold coordinates of subject i, yi with its meta-variable zi can

be defined. Classification can then be performed in the resulting d + 1 dimensional

space. Table 6.4 shows classification results using this approach for ApoE genotype,

Aβ42 concentration and hippocampal volume. In addition, p-values for the differences

between these results and the relevant results in Table 6.2 are presented.
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Table 6.3: Statistics from regressing MMSE versus d manifold coordinates using a mul-
tiple linear model. An improvement of statistics can be observed when incorporating
metadata into the manifold learning process. Results are presented for d=15/d=1

t residual R2 F p
I 10.6/10.1 1.76/1.91 0.29/0.20 11.1/102.7 †
II -10.7/-10.2 1.76/1.91 0.29/0.20 11.3/104.2 †
III -11.0/-10.4 1.73/1.89 0.32/0.21 12.5/109.7 †
IV 11.1/10.5 1.73/1.89 0.30/0.21 11.8/109.7 †
V -11.6/-10.9 1.71/1.87 0.33/0.22 13.6/119.5 †
VI 11.9/11.4 1.73/1.84 0.32/0.24 12.5/131.2 †

Table 6.4: Classification accuracy (ACC), sensitivity (SEN) and specificity (SPE)
when incorporating metadata for classification into the SVM featurevector. p<0.001
for differences with the according methods (III, IV) in Table 6.2 are labeled with a
bold classification accuracy.

AD vs CN P-MCI vs S-MCI P-MCI vs CN

ApoE
Aβ42

hippo. vol.

ACC SEN SPE
84.7 79.9 89.0
86.3 83.2 89.1
86.0 81.6 89.3

ACC SEN SPE
63.2 52.7 71.6
64.6 57.9 69.6
63.7 52.3 71.9

ACC SEN SPE
81.1 76.2 84.8
82.3 79.3 85.2
82.9 79.0 86.5

Learning a low-dimensional manifold from a combined similarity measure

The similarity between two instances zi, zj ∈ Zc of a continuous variable can be defined

as ŝij =
abs(zi−zj)

max(Zc)
. With the intensity-based similarity sij, the edge weight used for

manifold learning with LE (Equations 6.1-6.4) can then be defined using a combined

similarity measure:

wij =

 sij + αŝij, if i ∈ Ni or j ∈ Nj

0, else.
(6.15)

where Nx describes the k nearest neighbors to subject x and α defines the relative in-

fluence of the two similarity measures. The classification performance of this approach

to find an LE embedding for ŝij defined by hippocampal volume and Aβ42 concentra-

tion was evaluated. Varying α ∈ [0, 7] and applying SVM-based classification on the

resulting manifold coordinates with the procedure described in Section 6.3.5, results

in the classification rates displayed in Figure 6.6.
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6.4 Discussion

In this chapter, a method to extract biomarkers from MR brain images, combining

imaging information with non-imaging metadata was presented. Laplacian eigenmaps

were used to derive a nonlinear and low-dimensional representation of a set of images.

The graph defined by pairwise similarities and used to define the Laplacian eigen-

maps objective function is extended by support nodes representing metadata. Weights

defined from all image nodes to all support nodes incorporate the metadata into an

extended objective function. Optimizing this target function leads to an embedding

that is expressed by both pairwise image similarities and the similarity represented

by the metadata. The proposed method was evaluated on a large and diverse clinical

dataset (ADNI). The presented results show that the proposed method is able to pro-

duce a classification accuracy between clinical groups with an accuracy that compares

favorably to established and state-of-the-art methods in neuroimaging. Cuingnet et

al. [38] recently presented the comparison of ten different methods for classification

on a subset of ADNI similar to that used in this study. These methods comprise five

high dimensional voxel-based approaches, three methods based on cortical thickness

and two methods based on the hippocampus. Using only imaging similarities, the

proposed manifold-based method outperforms the majority of the ten methods in in-

dividual classification experiments and lags behind only slightly to the STAND-score

[144] when averaging results over the three clinical pairings evaluated. Compared to

most of the other nine methods, the STAND-score had a relatively good performance

in the identification of progressive MCI subjects, resulting in classification accuracies

of 80%, 71% and 81% for AD vs CN, S-MCI vs P-MCI, P-MCI vs CN respectively.

Incorporating non-imaging information into the manifold learning step, yields sub-

stantial and significant improvements in classification accuracy. The individual use of

ApoE genotype, the concentration of Aβ42 and hippocampal volume, improves classi-

fication rates. Using all metadata in one step, further improves results to 88% for AD

vs CN, 67% for P-MCI vs S-MCI and 86% for P-MCI vs CN. These results highlight

the potential role of such metadata as suitably complementary information to MR
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image data in future studies. In addition to classification performance, the ability of

the learned manifold to predict clinical variables was evaluated. Learning a multiple

linear regression model of MMSE versus manifold coordinates, leads to significantly

improved results compared to what has been published using similar data. Gerber et

al. [63] report R2 = 0.05 and a residual of 2.37 when regressing MMSE versus the

first manifold coordinate. Incorporating metadata led to further improved regression

statistics in this sample dataset.

Two alternative approaches to incorporate non-imaging information into a mani-

fold classification setting were discussed. The proposed method shows better classifi-

cation accuracy compared with a method in which image similarities and non-imaging

similarities are combined before performing manifold learning. However, tuning the

weighting factor between the concatenated similarities on the test images, did lead

to results comparable with the proposed method for the sub-comparisons of AD vs

CN and P-MCI vs CN. Compared to an approach where manifold features are com-

bined with a meta-variable before performing SVM-based classification, the proposed

method gave slightly superior performance. The strength of the proposed method,

however, lies in the unified representation of information taken from different mea-

surements. This enables not only classification but can also help in visualizing the

determined biomarker in a clinical environment. Plots of the form shown in Figure 6.4

can potentially enhance interpretation of computer-aided diagnosis (CAD) systems,

such as the one developed in PredictAD (Chapter 1.2). A clinician can locate the

patient studied relative to all other database cases providing information about the

severity of the disease not only the on/off-classification result. Furthermore, the ca-

pability to define a single continuous biomarker facilitates the definition of regression

models such as the one presented in Section 6.3.6. Tests were carried out to evaluate

the influence of the number of embedding dimensions m on training data. Robust

results where achieved for m ∈ [6, 15]. Assuming normalized weights defined on the

metadata and a normalized pairwise similarity measure, the weighting factor γ that

dictates the influence of metadata on the manifold coordinates, can be set globally.
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While individually tuning γ for every type of metadata is expected to lead to better

results, a weighting based on training data was determined and used for all experi-

ments in order to work with a more realistic setting. Many state-of-the-art methods

for the extraction of biomarkers for AD from MR images are computationally expen-

sive (run-time of hours to days) or require complex a-priori information (e.g. manual

segmentation in atlas-based methods) [38]. The proposed method provides a fast and

robust alternative to classify subjects that is generic and data-driven. The computa-

tional time to classify a new subject is around 10 minutes on a standard 8-core desktop

machine including registration to a template space and feature extraction (measuring

pairwise similarities to a training set) as well as classification with SVMs.

In the next chapter, an extension to the developed framework is presented, describ-

ing different ways to incorporate longitudinal information into the manifold learning

process.
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Figure 6.4: Standard embedding using Laplacian eigenmaps based on pairwise image
similarities only (top). Extended embedding using the proposed method with hip-
pocampal volume as metadata (bottom). 103 AD patients are represented by squares,
116 healthy controls by circles. Hippocampal volume (cm3) is encoded in the marker
color. A SVM separating hyperplane in 2 dimensions is displayed. Misclassified sub-
jects with both approaches are highlighted by a black outline (42 with LE, 31 with
E-LE). An improved separating ability can be observed in the extended embedding
especially for subjects close to the separating plane in the original embedding.
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Figure 6.5: (a): Classification rate in the training data set when varying the dimension
of the low-dimensional manifold between 1 and 50. Results are presented as mean rates
over ten bins covering five dimensions each. The high standard deviation observed in
the first bin results from a very low classification rate with d=1. (b): Classification
rate when varying γ between 1 and 50 evaluated for d ∈ [6, 15].
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Figure 6.6: Classification accuracy obtained from defining a combined similarity mea-
sure incorporating both imaging and non-imaging information before performing man-
ifold learning. AD vs CN: blue; S-MCI vs P-MCI: green; CN vs P-MCI: red. Results
with hippocampal volume and Aβ42 are presented over an increasing influence of the
metadata. The dotted lines indicate the classification accuracy obtained with image
similarities only.
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Chapter 7

Manifold learning incorporating

longitudinal data

This chapter is based on:

Robin Wolz, Paul Aljabar, Joseph V. Hajnal, Daniel Rueckert. ”Manifold learning

for biomarker discovery in MR imaging”. Workshop on Machine Learning in Medical

Imaging, MICCAI 2010, Beijing, China, September 2010

Abstract

This chapter presents an extension of the manifold classification framework described

before. Here, a low-dimensional manifold is described by both the inter- and intra-

subject variation in brain MR image data. The key contribution is the incorporation of

longitudinal image information in the learned manifold. In particular, simultaneously

embedding baseline and follow-up scans into a single manifold is compared with the

combination of separate manifold representations for inter-subject and intra-subject

variation. The proposed methods are applied to 362 ADNI subjects to classify healthy

controls, subjects with AD and subjects with MCI. Learning manifolds based on both the

appearance and temporal change of the hippocampus, leads to correct classification rates

comparable with those provided by state-of-the-art automatic segmentation estimates

of hippocampal volume and atrophy.
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7.1 Introduction

Chapter 6 described a method to learn a low-dimensional manifold based on inter-

subject brain variation and subject meta-information representing cross-sectional dif-

ferences across the population. The typical patterns of change in the aging brain are

altered by neurodegenerative diseases such as AD. This makes structural change over

time a reliable biomarker, e.g., [57]. To characterize brain development, this chapter

considers longitudinal brain studies are considered where MR scans at baseline and

after different follow-up intervals are available. The inspection of scans from a single

timepoint allows inferences about the inter-subject variation in the study population.

Comparing two scans taken from the same subject at different timepoints, yields in-

sights into intra-subject variation. Many researchers in computer vision have addressed

the problem of embedding images while considering both intra- and inter-subject varia-

tion, e.g., [133, 23]. The conclusion is that separating intra- and inter-subject variation

can lead to a more powerful model. To further investigate such aspects, two approaches

are proposed to model longitudinal variation. In the first approach, follow-up scans

are simultaneously embedded together with their baseline images. In the second ap-

proach, a separate manifold is learned based on the difference images between two

timepoints representing intra-subject variation.

In the evaluation, the 362 ADNI subjects are used for which at least three time-

points (baseline, month 12 and month 24) were available at time of retrieval (February

2010).

7.2 Method

7.2.1 Manifold learning for cross-sectional data

As described in Chapters 2 and 6, in manifold learning a set of high-dimensional

images X = {x1, ...,xN} ∈ RD is represented in a low dimensional space as Y =

{y1, ...,yN} ∈ Rd with d � D. As before, Laplacian eigenmaps (LE, Chapter 2.4.2)
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are used to perform the embedding to be able to directly take image similarities as an

input measure. In order to learn a low dimensional representation of cross-sectional

data, cross correlation in a region around hippocampus and amygdala (see also Chapter

6.3.2) is evaluated in a k -nn neighborhood of the input data to define the weights wij

in the objective function of Laplacian eigenmaps:

φ(Y) =
∑
ij

‖yi − yj‖2wij = 2YTLY (7.1)

7.2.2 Manifold learning for longitudinal data

One natural approach to account for longitudinal information in the presented manifold

learning framework, is to apply LE to a set of images consisting of both baseline- and

follow-up scans. It has been shown, however, that inter-subject variation can dominate

the embedding and the relatively subtle intra-subject variation can be lost in the low-

dimensional manifold [133, 23]. To further investigate this, two different approaches

are proposed to incorporate longitudinal information into the classification framework:

(a) embedding both timepoints separately and (b) independently embedding baseline

images and difference images representing longitudinal change.

The set of images in a longitudinal study with M visits can be defined as Xij =

{xij : 1 ≤ i ≤ N, 0 ≤ j ≤M − 1} where N is the number of subjects.

The images acquired at the J-th follow-up visit, XJ = {xiJ : 1 ≤ i ≤ N}, are

rigidly aligned with the according baseline scans X0 = {xi0 : 1 ≤ i ≤ N} and resam-

pled in the baseline coordinate system. A set of difference images X∆J = {xi∆J : 1 ≤ i ≤ N}

is then derived with xi∆J = xiJ − xi0.

During LE, the weights wij representing the similarity of two images xi and xj de-

termine the coordinate embedding produced through the objective function in Equa-

tion 7.1. To inspect different approaches for longitudinal modeling, the weights matrix

W is constructed from different sets of data. With the superscript S denoting the data

set used to construct W, the LE mapping for scan j of subject i is given by xij � ySij for

scans and xi∆j � ySi∆j for difference images. With these definitions, the inter-subject
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variation at baseline is defined by yX0
i0 . The combined coordinate embedding y

X0∪Xj

ij

is learned from both variation at baseline and intra-subject change at timepoint j,

and y
X∆j

i∆j finally captures longitudinal change only. Three different feature vectors are

defined from the above embeddings, two of which are obtained by concatenating scans’

embedding coordinates:

A Baseline scans in one manifold: yi,A =
(
yX0
i0

)
∈ Rd

B Two scans per subject in one manifold: yij,B =
(
y
X0∪Xj

i0 ,y
X0∪Xj

ij

)
∈ R2d

C Baseline / difference images in two manifolds: yij,C =
(
yX0
i0 ,y

X∆J
i∆j

)
∈ R2d

7.3 Experiments and results

7.3.1 Subjects

The proposed method was applied to 362 subjects from the ADNI study consisting of

patients with mild AD (N=83, mean MMSE 23), MCI (N=165, mean MMSE 27) and

healthy control subjects (CN, N=114, mean MMSE 29). For each subject, T1-weighted

1.5T MR images were available for the baseline, 12 month and 24 month scans. For the

MCI group, 75 subjects were diagnosed with AD after baseline scanning. Progressive

(P-MCI) and stable (S-MCI) groups were therefore analyzed independently. For eight

subjects in the MCI group and two subjects in the AD group, a reversion to CN and

MCI respectively was reported and these subjects were excluded from the analysis.

7.3.2 Parameter settings

The optimal neighborhood size, k, for the graphs used to learn the embeddings depends

on the dataset. Following the findings for ADNI data presented in Chapter 6, the

parameter was set to k = 20. There is no defined procedure to establish the best

dimension in a learned manifold with LE. Following the results presented in Chapter

6, average classification results when evaluating the framework for d ∈ [6, 15] are

reported.
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Table 7.1: Correct classification results in percentages using different feature vectors
based on scans’ coordinates in the learned manifolds (Section 7.2.2). Vector A is
based on baseline features only. For vector B, baseline and follow-up scans (after 12
or 24 months) are together embedded in one manifold. Vector C consists of features
taken from the baseline embedding and a separate embedding of longitudinal image
differences. Average classification rates (ACC), sensitivity (SEN) and specificity (SPE)
are displayed when varying the dimension of the manifold l ∈ [6, 15].

Feature AD vs CN P-MCI vs S-MCI P-MCI vs CN

A: yi,A
B: yi1,B
B: yi2,B
C: yi1,C
C: yi2,C

ACC SEN SPE
84.2 78.6 88.3
84.9 79.8 88.6
87.9 84.9 90.0
83.7 78.6 87.3
85.4 82.3 87.7

ACC SEN SPE
62.0 58.8 64.7
64.0 61.0 66.6
62.1 61.1 63.0
65.9 60.7 70.2
67.3 63.7 70.3

ACC SEN SPE
80.7 72.4 86.2
80.6 73.4 85.4
81.9 76.1 85.7
77.9 68.9 83.9
82.9 75.9 87.5

7.3.3 Classification

All 1086 study images were aligned with a coarse non-rigid registration [118] to the

MNI152 brain template. Follow-up images after 12 and 24 months were rigidly aligned

with their baseline scans to derive difference images. These images were aligned with

the brain template using the deformation field estimated for the baseline scan. Pairwise

similarities were evaluated between all brain images and between the sets of difference

images representing change over a given time period (month 12 / month 24). Similar-

ities were evaluated over the region around hippocampus and amygdala that has also

been used in Chapter 6 to measure pairwise similarities.

Following the approach described in Chapter 6.2.2, Linear SVMs were then used to

define a separating hyperplane between two subject groups based on the feature vectors

yi,A,yij,B,yij,C . A leave-25%-out approach was applied: for each repetition, 75% of

the subjects in both groups were randomly selected and used to train a SVM classifier.

The remaining 25% of subjects in both groups were used as a test set. 1000 repetitions

were applied for all pairings of clinically interesting groups. Classification rates for the

three feature sets are displayed in Table 7.1. A visualization of the 2D-embedding

for both longitudinal methods is given in Figure 7.1 where the follow-up images used

were the 24 month scans (j = 2). In Figure 7.1 (a), both, baseline images X0 and 24

month follow-up images X2, are embedded together. Figure 7.1 (b) shows the results
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(a) Simultaneous embedding of baseline and 24 month follow-up scans. Trajectories are displayed for
each subject as a dashed line. Subjects with highlighted trajectories are also illustrated in (b) below.
Where changes are very small, only baseline images are displayed for reasons of space.
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(b) Embedding of difference images between baseline and 24 month scan (X∆2). For each clinical
group, subjects with extremely high and low values for the first embedding coordinate are displayed.

Figure 7.1: 2D visualizations of manifolds incorporating longitudinal information. Ex-
emplar images are labeled xij and xi∆j with i = 1, ..., 6 and j = 0, 2 where i represents
the subject id and j the visit number.

of embedding the difference images X∆2 representing longitudinal change in a separate

manifold. Exemplar images of the six subjects that lie at extreme positions within

each group in the difference embedding (b), are displayed in both manifolds. It can be

seen that the extremes of the longitudinal changes, large and small, displayed by the

difference images are also well represented in embedding (a) resulting in extremely long

and short trajectories between the timepoints respectively. Figure 7.2 shows the box-

and-whisker plots for the distance a subject ”moves” in the combined manifold over

12 and 24 months. While there is only a slight trend of a difference in the movement

over 12 months, a clearer separation between the clinical groups can be observed in

the movement over 24 months.
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CN S−MCI P−MCI AD

(a) Month 12

CN S−MCI P−MCI AD

(b) Month 24

Figure 7.2: Box-and-whisker plots for the distance between longitudinal images in a
manifold learned from images at several timepoints.

For comparison, Table 7.2 shows classification results based on automatically deter-

mined hippocampal baseline volumes as described in Chapter 4 and atrophy rates as

described in Chapter 5 for the subset of images used in this study. Additionally, canoni-

cal correlation analysis was applied to measure the correlation of features in the defined

d-dimensional manifolds with hippocampal volume and atrophy rates. The correlation

coefficient r between baseline volume and the coordinates in the baseline embedding

yX0
i0 is reported. In addition, the correlation between the vector y

X0∪Xj

iJ − y
X0∪Xj

i0 de-

scribing the trajectory between two subjects in a combined embedding (see Figure7.1

(a)) and atrophy is presented. Finally, the correlation of atrophy with the coordinates

yX∆J
i∆J in the difference embedding (see Figure 7.1 (b)) is presented.

Table 7.2: Classification results based on hippocampal baseline volume (Chapter 4)
and atrophy (Chapter 5) over 12 and 24 months. The second part of the table shows the
correlation of coordinates in the learned manifolds with baseline volume and atrophy.
d = 20 coordinates of yX0

i0 , yX∆J
i∆J and y

X0∪Xj

iJ are used to determine r. a: p < 10−4

AD
vs

CN

P-MCI
vs

S-MCI

P-MCI
vs

CN

r for

yX0
i0

r for

y
X0∪Xj

iJ − y
X0∪Xj

i0

r for

yX∆J
i∆J

Baseline vol. 75% 59% 73% 0.62a - -
Atrophy M12 82% 66% 76% - 0.63a 0.75a

Atrophy M24 86% 67% 83% - 0.73a 0.87a
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7.4 Discussion and conclusion

This chapter presented an extension of the manifold classification approach described

in Chapter 6, extending it from the use of inter-subject appearance in a data set at

baseline to also incorporating intra-subject changes over time. While classification

rates based on baseline appearance on the used dataset are in line to the baseline

results presented in Chapter 6, a significant improvement can be achieved when con-

sidering longitudinal information. Using a longitudinal embedding based on difference

images, the classification accuracy between P-MCI and S-MCI subjects can be in-

creased from 62% to 67% with 24 month follow-up scans. A combined embedding of

baseline and follow-up scans on the other hand allows to substantially improve AD vs

CN classification. A combination of both approaches is potentially able to achieve a

more stable improvement of classification accuracy. Furthermore, incorporating meta-

data at baseline and follow-up as described in Chapter 6 may lead to a more accurate

representation of the population and hence a more accurate biomarker.

The presented results show that the application of the proposed framework to sim-

ilarities based on a region of interest (ROI) around hippocampus and amygdala leads

to classification results comparable if not superior to those obtained from automati-

cally determined hippocampal volume and atrophy. This shows that the information

that may be learned about a subject’s clinical state from estimates of hippocampal

volume and atrophy is also encoded in the manifolds learned from inter- and intra-

subject variation in the ROI respectively. These conclusions are also supported by

the significant correlation that were found between hippocampus volume and atrophy

with manifold coordinates.

The results presented in this chapter are revised from work published in Wolz et

al. 2010 [150]. Following insights from the work presented in Chapter 6 in this thesis,

data processing has been optimized. The region of interest has been extended from

covering only the hippocampus to also including amygdala. After a more detailed

evaluation, the used manifold dimensions have been generally restricted to d ∈ [6, 15]

from d ∈ [1, 20]. Furthermore, manifold coordinates are corrected for subject age
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using a multiple linear regression model. These factors led to significantly improved

classification rates compared to the original publication.
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Chapter 8

Comprehensive analysis of

MR-derived biomarkers

This chapter is based on:

Robin Wolz*, Valtteri Julkunen*, Juha Koikkalainen, Eini Niskanen, Dong Ping Zhang,

Jussi Mattila, Daniel Rueckert, Hilkka Soininen, Jyrki Lötjönen. Comprehensive Anal-

ysis of MRI Images in Early Diagnostics of Alzheimers Disease. Submitted, 2011

Abstract

Using the different biomarkers proposed in this thesis, this chapter aims to assess the

improvement in classification rate that can be achieved by combining features from

different structural MRI analysis techniques. Classification into the diagnostic groups

was done with automatic MRI methods including hippocampal volume and atrophy,

cortical thickness, tensor-based morphometry and manifold-based learning. The re-

sults show that a comprehensive analysis of MRI images combining multiple methods

improves classification accuracy and predictive power in detecting early AD. The in-

crease in classification accuracy obtained with repeated follow-up MRI may not justify

the additional cost and waiting time.

*Both authors contributed equally
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8.1 Introduction

Recent studies focusing on structural MRI methods have reached correct classification

rates (ACC) of 76-94 % in identifying healthy controls (CN) from patients with AD and

64-82 % in predicting which MCI subjects will convert to AD in the imminent future

[29, 62, 98, 99, 107, 114, 41]. However, comparison of the results is not straightforward

since the study populations and classification methods differ substantially. Also not

all published results are validated by using separate training/testing sets or cross-

validation [98, 99, 41], which can lead to overestimation of a method’s accuracy and

compromise the generalizability of the results.

It has been shown that the early diagnostics of AD can be improved by using

multiple different biomarkers simultaneously. Like the results presented in Chapter 6,

most of these studies have combined MRI-based markers with biomarkers based on

positron emission tomography (PET) [74], cerebrospinal fluid (CSF) [39, 46] or both

[89, 91, 146], but the results vary from no additional benefit [39, 89] to significant

improvement [74, 46]. However, availability of all three biomarkers (CSF, PET, MRI)

is not very common in clinical practice. Obtaining all measures is also laborious

for the patient and clinician, induces delays and increases the costs of the diagnosis

significantly.

Performance of different structural MRI methods have been recently compared

[38], but the full potential of structural MRI has not been investigated thoroughly.

It is not clear (I) which structural MRI methods provide best results, (II) if the

use of several structural methods simultaneously provides an improvement or (III)

if the classification accuracy and predictive power can be enhanced by assessment of

repeated MRI scans during follow-up. In order to find answers to these critical ques-

tions this chapter combines the biomarkers presented in this thesis with other fully

automatically extracted, state-of-the-art MRI based features for AD. In addition to

hippocampal volume (HV), hippocampal atrophy (HA) and manifold-based learning

(MBL), tensor-based morphometry (TBM) as well as cortical thickness (CTH) are
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combined to perform an overall analysis of classification accuracy.

Using HV, HA, TBM and MBL, experiments were carried out on Baseline, Month

12 and Month 24 images taken from 477 subjects from the ADNI database. MRI

features extracted from these images were used separately and combined to perform

classification between CN and AD, to predict a conversion from MCI to AD (classifica-

tion of stable MCI (S-MCI) from progressive MCI (P-MCI)) and to detect prodromal

AD (CN/P-MCI classification). In a separate experiment, HV, TBM, MBL and CTH

were combined on a separate image set consisting of 364 ADNI baseline scans. A linear

discriminant analysis (LDA) was performed to combine the features obtained from the

individual methods.

8.2 Materials and Methods

8.2.1 Subjects

All ADNI subjects (152 CN, 112 S-MCI, 110 P-MCI, 103 AD ) for which a 1.5T T1-

weighted MRI scan at baseline, month 12 and month 24 was available in September

2010 were included in the analysis presented in this chapter. All subjects for which a

reversion from AD to MCI (N=4) or from MCI to CN (N=21) has been reported so

far were excluded from the study.

The toolbox applied for cortical thickness measurement did not achieve satisfac-

tory results on all 477 study subjects. The combination of all available features was

therefore evaluated on the independent subset of 364 baseline images for which a CTH

analysis was acceptably performed. Figure 8.1 gives an overview on the inclusion /

exclusion criteria as well as the different classification tasks performed.

The results presented in this chapter are based on joined work carried out in PredictAD. HV
calculation was performed by JL. HA and MBL analysis was carried out by RW. TBM results are
obtained by JK and VJ performed the CTH measurement. The combined analysis was carried out
by JK.
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Figure 8.1: Inclusion / exclusion criteria

Hippocampal volume

Baseline hippocampal volume was measured using an approach based on fast and ro-

bust multi-atlas segmentation [104]. In this approach, multi-atlas label propagation

is applied in combination with atlas selection to obtain the hippocampus segmenta-

tion. A set of hippocampus atlases is selected from a pool of atlas images according

to image similarity with the query image. After registering all atlases to the query

image, a spatial prior is generated from the multiple label maps. This spatial prior is

then used to obtain a final segmentation based on an expectation maximization (EM)
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segmentation algorithm.

Hippocampal atrophy

Hippocampal atrophy over 12 and 24 months was measured using the method for a

simultaneous and consistent segmentation described in Chapter 5 of this thesis.

Cortical thickness

CTH is measured in the baseline T1-weighted structural MR images by using an

automated computational surface-based method [95, 87]. The pipeline includes reg-

istration of the images to a standard space, correction of error caused by intensity

non-uniformities, tissue segmentation, partial volume effect (PVE) magnitude estima-

tion, creation of two polygon meshes on the cortical surfaces and calculation of the

distance between the adjacent nodes on the surfaces using the t-link metric. As a result

the pipeline measures CTH at sub-millimeter accuracy in 40962 nodes per hemisphere.

Tensor-based morphometry

In tensor-based morphometry, TBM (or deformation-based morphometry, DBM), fea-

tures are extracted from the deformation field obtained from registering a set of sub-

jects to a template space (see Chapter 2). The TBM analysis used here was performed

using a recently presented multi-template approach [94, 21]. Instead of using just

one template to which all the study images are registered, 30 randomly selected im-

ages from the ADNI database were used as template images. Each study image was

registered to each template image. To combine the results of each template image,

the template images were registered to the mean anatomical template generated from

the 30 template images, and all the results were normalized to and presented in this

reference space. For the classification, the mean Jacobian was computed in the 83

ROIs defined in the Hammers brain atlas (Chapter 2.1.1) for each study image and

each template. The mean was computed only in atrophic voxels and it was weighted

based on the voxel-wise group-level p-value. The feature values for the classification
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were obtained by averaging the ROI-wise mean Jacobians of all the 30 templates. The

atrophic voxels and the p-values were obtained from voxel-wise t-tests computed using

a separate training set that was not used in the evaluation of classification accuracy.

Manifold-based learning

Based on the methods described in Chapters 6 and 7, manifold-based features were

extracted. All three timepoints of every subject were used to find a single manifold-

embedding as described in Chapter 7. Following the results presented in Chapter 6,

the first 15 embedding coordinates for each subject and timepoint are then used as a

feature.

8.2.2 Statistical analysis

Statistical Regions-of-Interest

In the analysis of CTH and TBM, information on the regions with statistically sig-

nificant group-level differences between two study groups was used to determine the

feature values. This information was computed from the baseline images of those

ADNI cases for which month 12 and/or month 24 follow-up images were not available

(N = 295 for TBM and N = 233 for CTH), and hence were not used to evaluate the

classification performance.

In CTH, the feature values were computed only from the regions with statistically

significant differences between the two study groups.

To examine statistical differences in CTH between the study groups a t-test was

performed in every cortical node in both hemispheres using Matlab. A correction

for multiple comparisons was done using the false discovery rate (FDR)-correction

method [61]. Age and gender were used as nuisance variables in all CTH analyses.

The level of significance was set to p = 0.05. In order to find the areas with probable

disease related cortical thinning the nodes with the lowest absolute t values were

discarded. Limitations used to form the CTH ROIs from the statistical analysis in the

MCI classifications were: tmin = 3 and number(nodes) > 100 / ROI. This resulted in
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separate ROIs representing the most significant difference between groups of interest.

The mean CTH values calculated separately for each ROI as well as for all significant

points together were then taken as CTH features in the classification tasks. In the TBM

analysis, feature computation was constrained to atrophic voxels as it is known that AD

causes atrophy in cerebral cortex and sub-cortical structures. Also, weighting was used

to emphasize the regions with statistically highly significant group-wise differences.

The required information was extracted from the data using t-tests.

8.2.3 Classification

All feature values were corrected for age and gender using a linear regression model

where control subjects were used as the training set, i.e., the normal, not disease-

related, age and gender related differences in the classification features were removed.

Feature selection was carried out on the corrected feature sets using stepwise regression

[44]. A leave-10%-out strategy was applied where 90% of the subjects were randomly

selected and used to train classification parameters and the remaining 10% were clas-

sified accordingly. The reported classification results are averaged over 250 iterations

of this procedure. The classification procedure is illustrated in Figure 8.1.

Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) was used to perform classification based on the

defined feature sets. LDA is a widely used technique to find a linear combination of

features to best separate several classes [90]. In this work, LDA was used as imple-

mented in the classify function in Matlab with a multivariate normal density model

with uninformative priors (p=0.5).
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8.3 Experiments and results

8.3.1 Image sets

Baseline characteristics of the full data set, referred to as dataset I, for which scans

at baseline, month 12 and month 24 were available are presented in Table 8.1. There

were differences between the study groups in all variables except age (p < 0.05). There

were more men than women in all groups besides the AD group. MMSE scores were

significantly different in the pairwise comparisons between all study groups. Compared

to controls, all other groups had significantly shorter education. Carriers of the APOE4

allele were substantially more abundant in the P-MCI and AD groups.

The second image set (dataset II) used in this study is the subset of baseline scans

used in dataset I for which a cortical thickness measurement was available. The 364

subjects consist of the following sub-groups: 125 CN, 89 S-MCI, 80 P-MCI, 70 AD.

Demographic and clinical data for dataset II does not differ significantly (at threshold

p=0.05) from the full subset, dataset I, described above when comparing whole sets

and when comparing individual clinical groups.

8.3.2 Classification results using dataset I

CN vs AD classification

The classification results of CN and AD subjects are presented in Table 8.2. The

results for ACC / SEN / SPE lie in the range of 80-89%. The manifold based method

gives better classification results than hippocampal volume, but is outperformed by

Table 8.1: Demographic and clinical data of the study subjects. Level of significance
is set to p < 0.05. *Different between the groups. 1Different from controls. 2Different
from all other groups.

N (F) Age MMSE* Education APOE ε4 carriers
CN 152 (35) 76.2±4.9 29.2±0.92 16.1±2.7 29%
S-MCI 112 (28) 75.3±6.8 27.4±1.72 16.1±3.01 47%
P-MCI 110 (40) 74.6±6.8 26.7±1.72 15.7±3.11 67%
AD 103 (48) 75.5±7.2 23.2±2.02 14.8±2.91 69%
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ACC SEN SPE
HC 81 82 80
HA m12 79 81 76
HA m24 86 89 81
MBL bl 84 85 81
MBL m12 86 87 84
MBL m24 88 90 85
TBM bl 86 89 82
TBM m12 88 90 85
TBM m24 89 91 85
Combined bl 89 90 88
Combined m12 89 92 86
Combined m24 91 92 89

Table 8.2: CN vs AD. Accuracy (ACC), sensitivity (SEN) and specificity (SPE) are
presented for hippocampal volume (HC), hippocampal atrophy (HA), manifold learn-
ing (MBL), tensor-based morphometry and the combination of all features. Features
are available at baseline (BL), month 12 (m12) and month 24 (m24).

TBM. The combination of all the baseline measurements improved the results to 89%

/ 90% / 88% (ACC / SEN / SPE).

All individual features allowed improved classification accuracy when based on

follow-up scans. It is remarkable that hippocampal atrophy, the only feature looking at

intra-subject development, performs worse than hippocampal volume when measured

over 12 months.

When using the combined features measured after / over 24 months, overall ACC

/ SEN / SPE improve to 91% / 92% / 89%.

S-MCI vs P-MCI classification

The classification results of S- and P-MCI subjects are presented in Table 8.3. With

only small differences, the rank order of the baseline features from best to worst is

manifold coordinates, hippocampal volume and TBM. The combination of baseline

features improved the results by up to 8% units to 68% / 66% / 71% (ACC / SEN /

SPE). Similar to CN vs AD classification, follow-up information improved classification

rates to up to 72% / 70% / 74% with the combined use of features obtained from images

acquired after 24 months.

123



ACC SEN SPE
HC 66 65 66
HA m12 61 66 55
HA m24 65 65 65
MBL bl 66 67 65
MBL m12 67 66 69
MBL m24 68 68 68
TBM bl 63 65 61
TBM m12 66 68 65
TBM m24 69 69 68
Combined bl 68 66 71
Combined m12 71 70 74
Combined m24 72 70 74

Table 8.3: S-MCI vs P-MCI. Accuracy (ACC), sensitivity (SEN) and specificity (SPE)
are presented for hippocampal volume (HC), hippocampal atrophy (HA), manifold
learning (MBL), tensor-based morphometry and the combination of all features. Fea-
tures are available at baseline (BL), month 12 (m12) and month 24 (m24).

CN vs P-MCI classification

Classification results of CN and P-MCI subjects are presented in Table 8.4. The rank

order of the baseline features from best to worst is TBM, manifold coordinates and

with some distance, hippocampal volume. Combination of baseline features improved

results by up to 10% to 85% / 87% / 82% (ACC / SEN / SPE). The use of follow-

up images improves results to up to 87% / 88% / 86% when using features after 24

months.

8.3.3 Classification results using dataset II

The restricted dataset with N=364 baseline images described above was used to ap-

ply all methods, including cortical thickness measurement. This dataset was used

to perform classification on combinations of baseline features measured with different

methods. Apart from the overall classification results, results for all possible combi-

nations of features are presented. Such an analysis allows drawing conclusions on the

influence of individual features on the classification accuracy obtained with a combined

feature set.

Tables 8.5, 8.6 and 8.7 show the results for CN vs AD, S-MCI vs P-MCI and
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ACC SEN SPE
HC 77 79 76
HA m12 70 74 64
HA m24 77 81 72
MBL bl 81 83 79
MBL m12 82 84 80
MBL m24 83 86 79
TBM bl 83 87 77
TBM m12 84 86 81
TBM m24 86 87 85
Combined bl 85 87 82
Combined m12 86 87 85
Combined m24 87 88 86

Table 8.4: CN vs P-MCI. Accuracy (ACC), sensitivity (SEN) and specificity (SPE) are
presented for hippocampal volume (HC), hippocampal atrophy (HA), manifold learn-
ing (MBL), tensor-based morphometry and the combination of all features. Features
are available at baseline (BL), month 12 (m12) and month 24 (m24).

CN vs P-MCI respectively. When classifying stable from progressive MCI subjects,

the overall best classification accuracy is achieved only when combining all available

features. In both other comparisons, subsets of features are able to give equally good

results to the whole set. In CN vs AD, TBM together with MBL or CTH performs

as good as the whole feature set. In CN vs P-MCI, the combination of these three

features achieves a performance as good as the full set of available features.

8.4 Discussion

In this chapter, the automatic diagnostic capabilities of 4 structural MRI features (CN,

HA, MBL, TBM) was assessed separately and combined in a sample of 477 subjects

with 2 years follow-up data from the ADNI database. In a restricted dataset with 364

subjects, cortical thickness was added as a fifth feature.

When applied separately to baseline features, TBM provided the overall best results

for all the methods, closely followed by MBL. Combining all baseline methods improved

the results in all study experiments. The use of follow-up images further enhanced

classification accuracy by up to 6% in the S-MCI vs P-MCI classification. It shall,

however, be noted that all features apart from hippocampal atrophy do not consider
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ACC SEN SPE
CTH 82 86 76
HC 80 79 82
MBL 86 88 83
TBM 88 89 87
MBL + HC 88 87 90
MBL + TBM 90 90 90
MBl + CTH 89 90 86
HC + TBM 88 88 87
HC + CTH 86 89 82
TBM + CTH 90 91 87
MBL + HC + TBM 90 90 90
MBL + HC + CTH 88 89 88
MBL + TBM + CTH 90 91 89
HC + TBM + CTH 89 90 88
All 90 90 89

Table 8.5: CN vs AD. Results for the combination of different feature sets are pre-
sented. The used feature sets include cortical thickness (CTH), hippocampal volume
(HC), manifold learning (MBL) and tensor-based morphometry (TBM).

ACC SEN SPE
CTH 63 65 60
HC 64 61 67
MBL 64 65 62
TBM 63 61 64
MBL + HC 64 65 61
MBL + TBM 63 61 65
MBl + CTH 64 66 62
HC + TBM 62 61 64
HC + CTH 65 67 64
TBM + CTH 63 65 61
MBL + HC + TBM 65 64 66
MBL + HC + CTH 64 65 62
MBL + TBM + CTH 65 64 66
HC + TBM + CTH 65 65 65
All 66 65 67

Table 8.6: S-MCI vs P-MCI. Results for the combination of different feature sets
are presented. The used feature sets include cortical thickness (CTH), hippocampal
volume (HC), manifold learning (MBL) and tensor-based morphometry (TBM).
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ACC SEN SPE
CTH 78 80 74
HC 77 76 78
MBL 81 85 74
TBM 81 84 75
MBL + HC 81 84 77
MBL + TBM 85 87 80
MBl + CTH 83 86 78
HC + TBM 81 83 79
HC + CTH 81 83 80
TBM + CTH 83 84 80
MBL + HC + TBM 83 87 78
MBL + HC + CTH 84 88 78
MBL + TBM + CTH 86 90 80
HC + TBM + CTH 83 84 80
All 86 89 80

Table 8.7: P-MCI vs CN. Results for the combination of different feature sets are pre-
sented. The used feature sets include cortical thickness (CTH), hippocampal volume
(HC), manifold learning (MBL) and tensor-based morphometry (TBM).

actual intra-subject development. The reported improvements with follow-up data can

therefore be mainly attributed to the pathomorphologically more advanced differences

between the different subject groups. Such a development can be expected to be

particularly significant for the S-MCI vs P-MCI comparison.

The presented results are in line with the results concerning single MRI meth-

ods in the CN/AD classification. Liu et al. reported SEN/SPE of 0.92/0.90 in the

classification of CN/AD subjects using regional cortical volumes in the AddNeuroMed

dataset [98]. In the presented study the results obtained with single methods are lower

(0.80-0.89) but almost identical when the methods were combined. However, Liu and

colleagues did not use cross-validation or separate training/testing sets when produc-

ing the results which could lead to overestimation of the results in a dataset outside

the study cohort. Gerardin et al. [62] acquired a high SEN/SPE of 0.96/0.92 by using

hippocampal shape analysis, but the number of subjects (25 CN, 23 AD) was quite

low in order to produce results with good generalizability. Chupin et al. [30] reported

a SEN / SPE of 75% / 77% (hippocampal volume) and Querbes et al. [114] an ACC

of 85% (cortical thickness), both lower than the results acquired with the combination
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of baseline features or TBM features independently in the presented study.

Varying results concerning AD prediction (S-MCI/P-MCI classification using the

baseline measurements) have been published: Querbes et al. [114] reported an ACC

of 73% (CTH analysis), Liu et al. [99] a SEN/SPE of 76%/68% (amygdala and cau-

date volumes), Chupin et al. [30] a SEN/SPE of 60%/65% (hippocampal volume)

and Davatzikos et al. [39] a SEN/SPE of 95%/38% (SPAREAD index). The results

with separate and combined baseline features presented here lie in the range of these

results (SEN/SPE 67%/65%, 65%/66% and 66%/71% when using MBL, HC and the

combined features, respectively).

There can be several explanations to the variation in the reported results. A

majority of the studies in this field have used different statistical methods and MRI

feature extraction strategies on different datasets, which makes a comparison of the

results complicated. Also the variation in the size of the study samples and the use

(or ignoring) of cross-validation or separate training/testing sets are important factors,

which both have crucial impact on the reliability and generalizability of the results.

Furthermore, since the ADNI study is still ongoing, several subjects labeled as S-MCI

will progress in the future to the P-MCI group.

A recent study with a comparable dataset from ADNI assessed the classification

performance of several structural MRI methods in experiments comparable to this

study [38]. This is the biggest study of classification accuracy on ADNI with automated

MR-based methods so far. A detailed comparison of the results reported in this study

with the results obtained in this thesis is given in the conclusion, Chapter 9.

Some studies have also combined different biomarkers (CSF, MRI, PET) with the

idea of measuring different aspects of AD pathology and thus improve the classifica-

tion accuracy. Hinrichs et al. [74] improved their CN/AD classification ACC by a

few % units to 81% by combining MRI and PET. Eckerström et al. [46] studied the

separation of a unified CN/S-MCI group from P-MCI group with CSF proteins and

manual hippocampal volumes. They found CSF to be superior to MRI (SEN/SPE

95%/79% vs 86%/66%) while the combination performed best (SEN/SPE 90%/91%).
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However, it should be noted that the study sample in that particular study was small

(a total of 68 subjects) and neither cross-validation or separate training/testing sets

were used in order to ensure good generalizability of the results. In [89], the improve-

ment from using multiple biomarkers was not significant and [39] reported marginal

improvements which, however, may be related to the fact the results with only one

biomarker where not very good already. In future work it might be interesting to see

if different measurements are superior for different tasks, i.e., if a particular biomarker

might be more useful for a certain subpopulation than another.

Considering the results of the presented study and those reported in literature, it

seems questionable if the collection of several biomarkers or repeated examinations is

worth the effort and resources. A combination of different features extracted from a

single MRI seems to provide results that are comparable or better than those obtained

with other or multiple biomarkers. However, the use of follow-up scans improves these

numbers by only a fraction. In a clinical point of view, this is interesting since it means

that a single MRI scan provides not only aid to differential diagnostics, but also reliably

describes a persons phase in the CN/AD continuum. MRI is also widely available,

non-invasive and often useful in the differential diagnostics of memory problems thus

making it a compelling option as the first biomarker that would be obtained from a

patient with mild memory problems.
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Chapter 9

Summary and Conclusion

This thesis presents a detailed analysis on the extraction of biomarkers from brain MR

images. From a methodological point of view, several novel approaches are described.

From an application point of view, a rigorous evaluation on a large and diverse image

dataset is presented.

The goal of this work was closely aligned to the project goals during which it

was carried out. PredictAD aims at the development of a unified biomarker for AD

that can be extracted in routine clinical use. Apart from accuracy, a main focus was

therefore set on robustness with computational speed being another important factor.

The ADNI study is the biggest study on MR imaging in dementia so far [111]. With

its large number of participants, the use of dozens of different imaging sites and the

use of equipment from all major scanner vendors, it provides a dataset that is close

to what can be expected in clinical practice. The challenge of this work lied in the

development of methods that can be robustly applied in a general fashion to such a

dataset.

Chapters 3 and 4 presented a framework to apply multi-atlas segmentation in a

robust and automated way to a diverse dataset. Previous work that combined multi-

atlas segmentation with an intensity-based refinement step [140] was extended to be

applicable in a fully-automated way. LEAP, a novel method to propagate a set of

atlases in a step-wise fashion to a diverse dataset, was proposed, significantly improving
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traditional multi-atlas segmentation. In Chapter 5, an extension of this method was

described that provides a consistent segmentation of longitudinal datasets and allows

an accurate measurement of atrophy.

Chapters 6 and 7 propose a new, data-driven approach for biomarker extraction.

In the proposed framework, information derived from inter- and intra-subject imag-

ing similarities can be combined with non-imaging metadata available for the study

subjects. Both measures are combined to define a unified, low-dimensional manifold

representation of the population. In this low-dimensional representation, neighbor-

hoods represent similarity according to the measurements incorporated. Inferences

can be made from subjects with known clinical status to subjects with no defined

label.

Chapter 8 is motivated by the defined goal to obtain an accurate and reliable

biomarker from combining different measurements. A comprehensive analysis of the

biomarkers developed in this thesis in combination with other MR-based measures is

presented.

9.1 Classification performance

With the main goal being the definition of biomarkers for AD, most of the evaluations

presented in this work are based on the power of a particular biomarker to discriminate

between clinically relevant subject groups. A comparison of different methods based

on this aspect is generally difficult due to differences in datasets used for evaluation.

With the ADNI database as a quasi standard in brain imaging for AD, however, a

more objective comparison is possible: Table 9.1 shows sensitivity (SEN) and speci-

ficity (SPE) values for the classification between groups of interest when using the

proposed methods. In addition, results from recent publications using established

methods in neuroimaging are presented. Only studies that were applied to the com-

plete ADNI dataset that was available at the time of publication are presented. Other

studies that use artificially restricted subsets of ADNI are difficult to compare in an
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objective way since inclusion / exclusion criteria are sometimes unclear. While the

ADNI images available in the different studies are still different due to the difference

in date between the studies, good overlap permits comparison between the methods

based on classification performance.

Table 9.1: Comparison of classification results achieved with the proposed method
to state-of-the art methods. I: AD vs CN, II: P-MCI vs S-MCI, III: P-MCI vs CN.
SEN/SPE. Classification accuracy is reported where no SEN/SPE was provided.

Method Ref. Subjects Feature (s) I II III

LEAP: multi-atlas,
int. refinement

Ch. 4 /
[151]

796 BL Volume for 83
structures

79/87 49/73 67/83

LEAP: multi-atlas,
int. refinement

Ch. 4 /
[151]

796 BL Hippocampal
volume

71/82 28/84 64/82

4D graph-cuts Ch. 5 /
[154]

362 BL,
362 M24

Hippocampal
atrophy over 24
months

85/87 66/69 79/85

Manifold Ch. 6 /
[152]

420 BL Manifold
coordinates: image
similarities

81/88 50/72 74/85

Manifold with
metadata

Ch. 6 /
[152]

420 BL Manifold
coordinates: image
similarities and
hippo. vol. / Aβ42

85/90 65/70 82/88

Longitudinal
manifold

Ch. 7 /
[150]

362 BL,
362 M24

Manifold
coordinates: intra-
and inter-subject
variation

82/88 64/70 76/88

Combination of
multiple
biomarkers

Ch. 8 477 BL Hippo. vol.,
Manifold coord.,
tensor based
morphometry

90/88 66/71 87/82

Voxel-based
morphometry

[6, 7, 38] 509 BL gray-matter (GM)
tissue probabilities

81/95 0/100 57/96

STAND-score [144, 38] 509 BL Feature selection
based on GM tissue
probabilities

69/90 57/78 73/85

COMPARE [51, 38] 509 BL Feature selection
based on GM tissue
probabilities

66/86 62/67 49/81

Freesurfer [52, 38] 509 BL Cortical thickness 74/90 32/91 54/96
Freesurfer [53, 38] 509 BL Hippocampal vol. 63/80 61/70 73/74
Probabilistic atlas,
hybrid constraints

[30] 605 BL Hippocampal vol. 75/77 60/65 67/72

Multi-atlas, int.
refinement

[103] 776 BL Hippocampal vol. 80 63 n.a.

Spherical
harmonics

[62, 38] 509 BL Hippocampal shape 69/84 0/100 57/88

132



The discrimination between three pairings of subject groups is of main clinical

interest: the discrimination of Alzheimer’s subjects and subjects with progressive MCI

(P-MCI) from healthy subjects, AD vs CN (listed I in Table 9.1) and P-MCI vs CN

(II). The most challenging yet clinically most important discrimination is between

progressive and stable (S-MCI) MCI subjects (III). A reliable detection of subjects at

risk of converting from MCI allows to decide on potential disease modifying treatments.

The performance of the different methods in all three tasks is presented in Table

9.1. Based on only image similarities at baseline, the presented manifold framework

together with voxel-based morphometry [6] and the STAND-score [144] outperform

the methods based on traditional volumetry and morphometry. The biomarker ex-

tracted from manifold coordinates based on image similarities and metadata result in

the best classification accuracy based on a single method. The overall best classifica-

tion accuracy is obtained in the comprehensive analysis combining multiple different

biomarkers described in Chapter 8 of this thesis.

The methods that use structural volumes for classification perform slightly worse

than the ones based on machine learning. While no single method shows systemati-

cally the best results, the proposed LEAP method with 83 volumes gives the overall

stablest results. Biomarkers incorporating longitudinal development show significantly

better classification performance than the relevant baseline measure. The biggest im-

provement, however, is made in the detection of P-MCI subjects. Since these subjects

undergo fast pathomorphological change, the improved classification accuracy may

mainly be attributed to the more significant inter-subject differences after two years

than the consideration of intra-subject development itself.

9.2 Performance based on other measures

For differential diagnosis, which is the main goal in PredictAD, classification perfor-

mance of a given method is the most important metric to measure its performance.

In other settings, other measures are of higher importance. In the following, several
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such measures are discussed by comparing their performance on the proposed method

to that of state-of-the-art methods.

9.2.1 Label overlaps

When purely evaluating novel methodology, the consistency of an automatically de-

rived measure with some gold-standard is commonly used. For structural segmentation

methods as the one presented in Chapter 4, the volume overlap between a manually

extracted volume and some reference volume is commonly used as a performance mea-

sure. A widely used measure is the Dice overlap or Similarity Index (SI) [42]. It gives

a value of 1 for a perfect overlap between the two volumes compared and a value of 0

for no overlap.

Table 9.2 compares the dice overlap for hippocampus segmentation achieved with

the method presented in Chapter 4 to the results achieved with state-of-the-art auto-

mated approaches.

Table 9.2: Hippocampus label overlap
Method Ref. Subjects SI

LEAP Ch. 4 / [151] 182 (ADNI) 0.85 ± 0.03 (L)
0.85 ± 0.03 (R)

Multi-atlas Heckemann [73] 30 0.81 ± 0.04 (L)
0.83 ± 0.04 (R)

Freesurfer: probabilistic
atlas, intensity model

Fischl [53, 70] 13 0.87

AdaBoost based on gray
image features

Morra [108] 21 0.86 (L)
0.85 (R)

Probabilistic atlas, hybrid
constraints

Chupin [30] 16 0.87 ± 0.02

Multi-atlas, Int. model. van der Lijn [140] 20 0.85 ± 0.04 (L)
0.86 ± 0.02 (R)

Multi-atlas with selection,
Int. model.

Leung [96] 15 (ADNI) 0.93 (L)

Multi-atlas with selection,
Int. model.

Lötjönen [103] 340 (ADNI) 0.87 ± 0.04

Apart from the relatively low SI value achieved with multi atlas-segmentation with

no intensity refinement [73] and the results presented by Leung et al [96] with SI=0.93,

all SI values presented in Table 9.2 lie in the range of 0.85-0.87. Since all evaluations
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are performed on different datasets it is, however, difficult to directly compare the

results. The manual delineation of a reference segmentation is time-intensive and

expensive which restricts the set of reference labels in most studies to around 20-30.

Often, these reference segmentations are based on only a subset of the whole brain

population which makes statements about a method’s robustness difficult. While the

reference labels used in this thesis and by Lötjönen et al. [103] are based on a semi-

automated protocol with manual correction, they cover a much wider population and

are also available for more subjects. Nevertheless, the achieved label overlap with both

methods is in the same area as the results based on a more restricted evaluation.

While the method proposed in [103] outperforms the presented LEAP method, it

is evaluated under different conditions. In this method, atlas-selection is performed

in multi-atlas label propagation where available atlases cover the whole spectrum of

target images. The method presented in Chapter 4 on the other hand is a proof-of-

principle for a framework that propagates a set of atlases based on a sub-population

to a diverse image set. While such a framework can be applied to a diverse image

set without the need of an atlas database that covers the whole population, it results

in similar label overlaps as a method that specifically uses atlases tailored to the

target population. The classification accuracy achieved with the LEAP method applied

to 83 brain structures and presented in Chapter 4, outperforms the one achieved

with the hippocampus segmentation of [103] (see Table 9.1). A conclusion from these

observations is that the selection of suitable atlases from a large database gives the

best results with multi-atlas segmentation. The proposed LEAP method, however,

performs similarly well when only using a small atlas database and is able to produce

significantly superior results in the unavailability of a large database.

9.2.2 Sample size

An important measure in clinical trials is the required sample size to measure a hypo-

thetical treatment effect with a given method [47]. A benchmark defined in the ADNI

study is the sample size needed in a two-arm study to detect a 25% change in annual
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atrophy rate with a power of 80% and 5% significance [111]. In this setting, the sample

size is defined by the relation between mean atrophy rate and its standard deviation.

Table 9.3 presents atrophy rates and resulting sample sizes for several recent studies

on ADNI. The presented 4D-graph cuts method described in Chapter 5 is compared

to a method were a semi-automatic segmentation method is applied to measuring hip-

pocampal atrophy [124], the Boundary Shift Integral (BSI) [96] as well as Deformation

Based Morphometry (DBM) [76].

Recent communication in the neuroimaging community [136, 76, 56] discusses the

importance of relating atrophy rates in dementia to healthy atrophy. Fox et al. [56]

stress that ”sample sizes should ideally be calculated using the excess change over nor-

mal ageing” in order to avoid a potential bias of automated methods. Following this,

sample sizes corrected for healthy ageing (SS II in Table 9.3) are presented alongside

sample sizes resulting from non-corrected atrophy rates (SS I).

Table 9.3: Atrophy rates over 12 months and resulting sample sizes required to detect
a 25% change in atrophy rate with 80% power and 5% significance. All results are
based on ADNI data, sample sizes are reported for both arms (AD/MCI). Sample
sizes are presented for measured atrophy rates (SS I) and atrophy rates corrected for
healthy ageing (SS II). N: Number of subjects used.

Method, ROI Ref. N Atrophy rate (CN/MCI/AD) SS I SS II

4D-graph
cuts,
hippocampus

Ch. 5 /
[154]

555 0.85±1.59/2.34±2.12/3.85±1.99 67/206 110/508

SNT labels,
hippocampus

Schuff
[124]

449 0.87±5.63/2.6±4.51/4.4±5.88 448/1176 696/1705

BSI,
hippocampus

Leung
[57, 96]

682 1.05±1.81/2.77±2.53/4.63±2.78 90/209 151/542

DBM,
temporal
lobe

Hua [76] 431 0.6±0.8/0.8±0.8/1.2±0.8 112/251 446/4014

The presented sample sizes span a wide spectrum, where the proposed 4D graph-

cuts method and the established boundary shift integral outperform the independent

segmentation of several timepoints (SNT) and deformation based morphometry based

on the temporal lobe. While the latter method achieves competitive results with the

former methods when directly using measured atrophy rates, a clear difference can

136



be observed when normalizing for normal ageing. This highlights the importance of

such a normalization step in order to avoid a bias in the estimation of sample sizes in

clinical trials.

9.3 Conclusion

This thesis presented several novel methods for an automated extraction of biomarkers

for Alzheimer’s disease from brain magnetic resonance imaging. While the application

and usability of the presented methods in a clinical environment needs yet to be shown,

the rigorous evaluation on a large and diverse image set as the one presented in ADNI

shows promising results towards this goal. All proposed methods are able to perform a

state-of-the art automated analysis and enrich the neuroimaging community as shown

by their publication in renowned journals and on international conferences.

The described multi-atlas segmentation method (Chapters 3 - 5) provides a unified

framework to measure structural volume and atrophy in longitudinal MR sequences

in a robust and generic way. The multi-atlas segmentation with automated intensity-

refinement which forms the core of this method has been applied in a fast and robust

way, with a run-time of 3-4 minutes on a standard desktop PC [104]. The step-wise

segmentation with LEAP (Chapter 4) and the extension to 4D segmentation (Chapter

5) only require marginal computation time on top.

The novel manifold-based classification framework described in Chapters 6 and 7

forms a fast alternative to traditional biomarkers. The presented classification ac-

curacy performs favorably to many well-established biomarkers. The computation

including all pre-processing requires less than 10 minutes on a standard desktop PC.

The proven robustness of the described methods together with a short run-time

makes them strong contenders for a potential application in a clinical setting.
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9.4 Future work

In future, more work is planned on the presented manifold learning framework. Incor-

porating additional prior knowledge may further improve the achieved classification

and regression results. When simultaneously embedding baseline and follow-up scans

as described in Chapter 7.2.2 and illustrated in Figure 7.1 (a), information about the

acquisition data of individual subjects could be used as prior knowledge when learning

the low-dimensional space. In order to model the natural development of brain struc-

tures over time, a term that penalizes the abrupt deviation of a subject’s movement

from an initial trajectory can be introduced. This would avoid a ”back-and-forth”

movement of a subject that could be caused by errors in the pairwise similarity mea-

sure. Initial tests with an extended Sammon mapping objective [121] function that

incorporates such constraints show promising results. Furthermore, combining the

approaches described in Chapters 6 and 7 may allow to better model disease pro-

gression in a low-dimensional manifold. The incorporation of metadata (e.g. CSF

measurement, hippocampal volume) at baseline and follow-up can be expected to fur-

ther improve the quality of the learned biomarker. More generally, the use of other

imaging modalities apart from structural MRI could be considered. Positron emis-

sion tomography (PET) imaging with the tracers FDG and especially PiB has been

shown to provide powerful biomarkers for Alzheimer’s disease [69]. Potentially less

sensitive to the detection of the desease but less invasive and therefore of interest

are diffusion tensor imaging (DTI) and functional MRI (fMRI) [69]. Combining the

MRI-based features proposed in this thesis with measurements obtained from such

imaging modalities can be expected to lead to a more poweful biomarker. Apart from

the option to combine the obtained features before the classification step, the pro-

posed manifold-learning framework (Chapters 6, 7) offers the possibility to combine

the features before the manifold-learning step to obtain a unified biomarker.

Another area of future research is the definition of the similarity measure used

to perform manifold learning. In most applications described in this thesis, image

similarities where evaluated over anatomically defined regions of interest. A more data-
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driven approach, where the region over which similarities is evaluated is determined

according to the quality of the resulting manifold, is desirable. One possible approach

could be to obtain a boosted similarity measure as done before for distance functions

in k -nn classifiers [137, 3].
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Appendix A

ADNI

A.1 MR image acquisition

In the ADNI study, image acquisition was carried out at multiple sites based on a

standardized MRI protocol [79] using 1.5T scanners manufactured by General Electric

Healthcare (GE), Siemens Medical Solutions, and Philips Medical Systems. Out of

two available 1.5T T1-weighted MR images based on a 3D MPRAGE sequence, we

used the image that has been designated as “best” by the ADNI quality assurance

team [79]. Acquisition parameters on the SIEMENS scanner (parameters for other

manufacturers differ slightly) are echo time (TE) of 3.924 ms, repetition time (TR) of

8.916 ms, inversion time (TI) of 1000 ms, flip angle 8◦, to obtain 166 slices of 1.2-mm

thickness with a 256 × 256 matrix.

All images were preprocessed by the ADNI consortium using the following pipeline:

1. GradWarp: A system-specific correction of image geometry distortion due to

gradient non-linearity [86].

2. B1 non-uniformity correction: Correction for image intensity non-uniformity

[79].

3. N3 : A histogram peak sharpening algorithm for bias field correction [126].

Since the Philips systems used in the study were equipped with B1 correction and
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their gradient systems tend to be linear [79], the preprocessing steps 1. and 2. were

applied by ADNI only to images acquired with GE and Siemens scanners.

A.1.1 Hippocampus reference labels

For a subset of images, ADNI provides reference hippocampus label maps. To define

these label maps, semi-automated hippocampal volumetry was carried out using a

commercially available high dimensional brain mapping tool (Medtronic Surgical Nav-

igation Technologies, Louisville, CO), that has previously been compared to manual

tracing of the hippocampus [75]. First, 22 control points were placed manually as local

landmarks for the hippocampus on the individual brain MRI data: one landmark at

the hippocampal head, one at the tail, and four per slice (i.e., at the superior, inferior,

medial and lateral boundaries) on five equally spaced slices perpendicular to the long

axis of the hippocampus. Second, fluid image transformation was used to match the

individual brains to a template brain [26]. Transformed label maps were inspected

and if necessary manually corrected by qualified reviewers. Empirically, we found that

the resulting hippocampal delineations start anteriorly with their separation from the

amygdalae; include the bulk of the hippocampal subfields CA1-4 [100], the subicu-

lum, the dentate gyrus; miss some of the medial hippocampal head at the level of the

uncus; but contain most of the intralimbic gyrus, the alveus as well as much of the

fimbria, and end posteriorly shortly posterior to where cella media, temporal horn,

and occipital horn fuse on coronal slices.
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Appendix B

Hammers atlas

The 30 T1-weighted MR images used to define the Hammers atlas were acquired with a

1.5T GE MR-scanner using an inversion recovery prepared fast spoiled gradient recall

sequence with the following parameters: TE/TR 4.2 ms (fat and water in phase)/15.5

ms, time of inversion (TI) 450 ms, flip angle 20◦, to obtain 124 slices of 1.5-mm

thickness with a field of view of 18 × 24 cm with a 192 × 256 image matrix.

Table B.1 gives an overview on the 83 structures defined in each atlas image.
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Structure No right No left

Hippocampus 1 2
Amygdala 3 4
Anterior temporal lobe, medial part 5 6
Anterior temporal lobe, lateral part 7 8
Gyri parahippocampalis et ambiens 9 10
Superior temporal gyrus, posterior part 11 12
Medial and inferior temporal gyri 13 14
Lateral occipitotemporal gyrus, gyrus fusiformis 15 16
Cerebellum 17 18
Brainstem, spans the midline 19
Insula 21 20
Occipital lobe 23 22
Cingulate gyrus, anterior part 25 24
Cingulate gyrus, posterior part 27 26
Frontal lobe left, becomes middle frontal gyrus after subdivision of frontal 29 28
Posterior temporal lobe 31 30
Parietal lobe 33 32
Caudate nucleus 35 34
Nucleus accumbens 37 36
Putamen 39 38
Thalamus 41 40
Pallidum, globus pallidus 43 42
Corpus callosum 44
Lateral ventricle, frontal horn, central part and occipital horn 45 46
Lateral ventricle, temporal horn 47 48
Third ventricle 49
Precentral gyrus 51 50
Straight gyrus, gyrus rectus 53 52
Anterior orbital gyrus 55 54
Inferior frontal gyrus 57 56
Superior frontal gyrus 59 58
Postcentral gyrus 61 60
Superior parietal gyrus 63 62
Lingual gyrus 65 64
Cuneus 67 66
Medial orbital gyrus 69 68
Lateral orbital gyrus 71 70
Posterior orbital gyrus 73 72
Substantia nigra 75 74
Subgenual frontal cortex 77 76
Subcallosal area 79 78
Pre-subgenual frontal cortex 81 80
Superior temporal gyrus, anterior part 83 82

Table B.1: 83 Structures
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