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Tutorial 1:  Analysis of three-dimensional (3D) space. 
 
This tutorial is about the use of vector algebra in the analysis of 3D scenes used in computer graphics 
system. The following notation is used: 
 

• Position vectors are denoted by boldface capital letters: P, Q, V etc. Position vectors are the 
same as Cartesian coordinates, and represent position relative to the origin. 

 
• Direction vectors are indicated by boldface lowercase letters d, n etc. Direction vectors are 

independent of any origin.  
 

• Scalars are represented by italics: a, b, etc. 
  
A plane is an object that is only defined in Cartesian space, however, each plane has a normal vector, 
whose size is non zero, and whose direction is at right angles to that plane. We can find a normal 
vector by taking the cross product of any two direction vectors which are parallel to the plane. 
 
 
 
1. Given three points: 
 

P1 = (10, 20, 5) 
P2 = (15, 10, 10) 
P3 = (25, 20, 10) 

 
find two direction vectors which are parallel to the plane defined by P1, P2 and P3. Hence find a normal 
vector to the plane. 
 
 
 
2. A plane is defined in vector terms by the equation: 
 

0)( 1 =−⋅ PPn  
 
where P = (x, y, z) is the locus of a point on the plane, and P1 is any point known to be in the plane. 
 
For the points given in part 1, expand the vector plane equation to find the Cartesian form of the plane 
equation, (i.e. 0=+++ dczbyax ). 
 
Verify that you get the same result using either P1 or P2. 
 
 
 
3. Write a procedure, in any programming language you like, which takes as input three points and 
returns the coefficients of the Cartesian plane equation (a, b, c and d). 
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4. Starting from any point on a face of a polyhedron, an inner surface normal is a normal vector to the 
plane of the face whose direction points into the polyhedron. 
 
A tetrahedron is defined by the three points of part 1, and a fourth point P4 = (30, 20, 10). Determine 
whether the normal vector that you calculated in part 1 is an inner surface normal, and if not find the 
inner surface normal. 
 
 
 
5. Two lines intersect at a point P1, and are in the directions defined by d1 and d2.  Provided that d1 and 
d2 represent different directions, the two lines define a plane.  
 
Any point on the plane can be reached by travelling from P1 in direction d1 by some distance µ and 
then in direction d2 by a distance ν. 
 
Using this fact construct the parametric equation of any point on the plane of part 1 in terms of µ,ν, P1, 
P2 and P3. By taking the dot product with a normal vector to the plane n, show that the parametric 
plane equation is equivalent to the vector plane equation of part 2. 
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Tutorial 1:  Analysis of three dimensional (3D) space. 
 
 Solutions 
 
 
Q1. The three points P1, P2 and P3 can be used to generate two direction vectors in a number of 
different ways.  For example, we could take  
 

P2 - P1 = (5, -10, 5)  P3 - P1 = (15, 0, 5) 
 
to give the required direction vectors.  Scaling a vector by a constant does not affect its direction so we 
can divide these direction vectors by 2 and 3 respectively to obtain the equivalent direction vectors: 
 

(1, -2, 1)    (3, 0, 1) 
 
We can find the cross product to obtain the normal vector: 
 

(1,  − 2,  1) ×  (3,  0,  1) =  (−2,  2,  6)  
 
Scaling by a half gives the simpler normal vector (-1, 1, 3). 
 
N.B. The rule for obtaining the cross product of two vectors can be represented in a number of 
different ways.  For example 
 

),,(),,(),,( 122131132332321321 bababababababbbaaa −−−=×  
 
The same rule expressed using i, j, k notation is: 
 

kjikjikji 122131132332321321 )()( bababababababbbaaa −+−+−=++×++  
 
If you are familiar with matrices, the cross product can be represented as the determinant of a matrix:  
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Q2. We have a general point in the plane, P, and a point P1 known to be in the plane from part 1: 
P = (x, y, z)  P1 = (10, 20, 5) 

 
The difference between these vectors gives a vector parallel to the plane: 

P−P1  =  (x −10,  y− 20,  z− 5)  
 
This vector is therefore perpendicular to the plane normal n = (-1, 1, 3), so we have: 

n ⋅  (P−P1) = 0  
 
Which can be used to find the Cartesian plane equation as follows: 

n ⋅  (P−P1) =  0

⇒ (−1,  1,  3) ⋅  (x −10,  y− 20,  z− 5) =  0

⇒ −x  +  10 +  y −  20 +  3(z− 5) =  0

⇒ −x  +  y +  3z −  25 =  0

 

 
The same equation can be obtained using P2 instead: 

P−P2  =  (x −15,  y−10,  z−10)  
 

n ⋅  (P−P2 ) =  0

⇒ (−1,  1,  3) ⋅  (x −15,  y−10,  z−10) =  0

⇒ −x  +  15 +  y −  10 +  3(z−10) =  0

⇒ −x  +  y +  3z − 25 =  0

 

 
Q3. The following pseudocode gives an example of how the coefficients of a Cartesian plane equation 
might be obtained using three given points in a plane: 
 

TYPE Vector = Array [0..2] of REAL; 
 
PROCEDURE PlaneEquation(P1,P2,P3: Vector;VAR a,b,c,d: REAL); 

 
VAR d1,d2: Vector; 
 
(* Find two vectors parallel to the plane *) 
FOR j:0 .. 2  

d1[j] = P2[j]-P1[j]; 
d2[j] = P3[j]-P1[j]; 

END FOR 
 
(* Find the normal vector to the plane n = [a,b,c] = d1 x d2 *) 
a := d1[1]*d2[2] - d1[2]*d2[1] 
b := d1[2]*d2[0] - d1[0]*d2[2] 
c := d1[0]*d2[1] - d1[1]*d2[0] 
(* take the dot product with P-P1 *) 
d := -(a*P1[0]+b*P1[1]+c*P1[2]) 
 

END PlaneEquation; 
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Q4. Let n be a surface normal to the tetrahedron.  If it is an inner normal, it points in the same 
direction as a vector from the face defined by P1, P2, P3 to the fourth point P4.  This is illustrated on the 
left in the following diagram: 
 

 
 
The right hand side illustrates the case where n is not an inner surface normal, i.e. an outward surface 
normal.  From these diagrams, we can see that, wherever n is placed on the face, the angle it makes 
with the vector to P4 will be acute when n is an inner surface normal and obtuse otherwise.  Using the 
fact that the dot product of two vectors a, b can be expressed in terms of the angle θ  between them:  
 

θcosbaba =⋅  
 
if 90<θ , we have 0cos >θ  and hence 0>⋅ba , otherwise we have 0<⋅ba when θ  is obtuse. 
 
It does not matter where n is placed in the plane, so we can place it at P1, the two cases can therefore 
be illustrated as follows: 
 
 

 
 
Take the dot product of the normal vector and the vector from P1 to P4, i.e.: 
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Since the result is negative the angle between these two vectors is bigger than 90, and so the normal 
vector must be the outward surface normal. An inner surface normal can be obtained by negating the 
outer normal, i.e. the inner surface normal can be given by (1, -1, -3). 
 
Q5.  In the parametric plane equation, we have a starting point, which we can choose as P1, two 
parameters νµ, and two direction vectors d1, d2 that are parallel to the plane.  The direction vectors 
might be chosen as follows for example: 
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Putting it all together, a general point P can be expressed by the parametric plane equation: 
 

211   ddPP νµ ++=  
 
We can take the dot product of both sides with the normal vector n: 
 

ndndnPnP ⋅+⋅+⋅=⋅ 211   νµ  
 
Because the vectors d1, d2 are parallel to the plane, they are perpendicular to the normal vector by 
definition.  Their dot product with n is therefore zero which means that the last two terms on the right 
hand side vanish.  So we obtain: 
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This demonstrates that the parametric plane equation is equivalent to the vector plane equation given 
in part 2. 


