

DOC Interactive Computer Graphics Tutorial 8 page 1

Tutorial 8: Radiosity

1. Form factors:

In a radiosity scene the patches are triangular. Two patches are defined as follows:

Patch Points
i (10, 12, 8) (10, 13, 8) (10, 11, 9)
j (5, 6, 12) (5, 6, 13) (8, 6, 12)

Assuming that these two patches are visible from each other calculate the two form factors Fij and

Fji. (Use the centroid of each triangle,)(
3
1

321 PPP ++ , to estimate the distance)

2. The Hemicube:

A hemicube is defined by the top plane z = 1 and side planes x = 1, y = 1, x = -1, y = -1. Assume
that the hemicube pixels all have area ΔA . Derive a formula for the delta form factors of the pixels
on the side planes in terms of the distance r of their centre to the origin (Hint: evaluate cosφ using
a dot product).

3. The Hemisphere:

A form factor is to be computed by a ray casting algorithm. Rays are to be cast from the centre of
the patch with the aim of finding the nearest patch visible by that ray.

The rays are defined by the spherical polar coordinates (θ, φ) and are to be spaced at equal
intervals of 1 degree (180/π radians) in the range 1800 << θ , 1800 << φ .

If the rays are thought to pass through a unit hemisphere which is divided into approximately
square patches around each ray, derive a formula for the delta form factor for the ray.

4. r-refinement:

An r-refinement scheme for a triangular mesh moves each point in the direction of greatest change.
Let (P, B) represent the pairing of a point P with a radiosity value of B. Let its neighbours be
represented by the pairs (P1, B1), (P2, B2), (P3, B3) and (P4, B4).

One suggestion for refining the mesh is to find the direction of greatest change by adding up the
vectors

)(11 PP −− BB)(22 PP −− BB)(33 PP −− BB)(44 PP −− BB

Suggest a way in which the distance each point should be moved. Given the following points:

Point Coordinate Radiosity
P (20, 6, 0) 30
P1 (10, 10, 0) 50
P2 (10, 30, 0) 20
P3 (15, 2, 0) 30
P4 (10, 0, 0) 50

use your method to determine how to move point P

DOC Interactive Computer Graphics Tutorial 8 page 2

Tutorial 8: Radiosity

Solutions

1. Form factors:

Patch Points
i (10, 12, 8) (10, 13, 8) (10, 11, 9)
j (5, 6, 12) (5, 6, 13) (8, 6, 12)

The form factor is given by
2

coscos

r

A
F jji
ij π

φφ
= .

The centroids are: (10, 12, 8.33) and (6, 6, 12.33).

The vector r joining the patches is (4, 6, -4) and 68)4(64 2222 =−++=r , i.e. 68== rr .

Normal vectors can be found from the cross product of the edge vectors:

Patch Edge vectors Cross product Unit normal
i (0, 1, 0) (0, -1, 1) (1, 0 , 0) (1, 0, 0)
j (0, 0, 1) (3, 0, 0) (0, 3, 0) (0, 1, 0)

Thus

r
i

i
4cos =

⋅
=

r
rn

φ and
r

j
j

6cos =
⋅

=
r
rn

φ

The area of a parallelogram spanned by two vectors is given by the magnitude of the cross product
vector. The triangle spanned by the vectors is half the parallelogram, so the patch areas are:

2
11

2
1

=×=iA and
2
33

2
1

=×=jA

So

Fij =

4
r
!

"
#
$

%
&

6
r
!

"
#
$

%
&

3
2

π r2 =
36
π r4 =

36
4624π

≈ 0.0025 and Fji =
12

4624π
≈ 0.0025

DOC Interactive Computer Graphics Tutorial 8 page 3

2. The hemicube:

Consider one face, say x = -1 . The unit normal vector is
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

0
0
1

n . The vector from a point on the

face to the origin is
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−

z
y
1

 . Making this into a unit vector p gives

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
++

=

z
y

r
z
y

zy

1
1

1

1
1

22
p and

ri
1cos =⋅= pnφ

At the origin the unit normal vector is
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1
0
0

.

The unit vector from the origin towards the point is p− so
r
z

j =φcos . Therefore the form factor

is

42

coscos

r
zA

r
A ji

ππ

φφ Δ
=

Δ

The form factors for the other side faces are all the same by symmetry.

3. The hemisphere:

The situation is simpler than for the hemicube because r = 1, 1cos =iφ , and zj =φcos .

Thus the delta form factor is just

π
zAΔ

Now we need to estimate A Δ . Each ray passes through a patch
bounded by four small arcs that can be viewed as approximating a
square. The radius equals 1 so the length of each arc subtended by a

small angle of 1 degree is
180
π (see right).

Assuming that each arc is a side of the approximated square patch

gives an area estimate of
2

180
⎟
⎠

⎞
⎜
⎝

⎛ π

Thus the form factor for each patch is 2

2

180

180
zz π

π
π

=⎟
⎠

⎞
⎜
⎝

⎛ .

DOC Interactive Computer Graphics Tutorial 8 page 4

4. r-refinement:

The direction of movement can be normalised to the maximum radiosity. One scheme could be to
divide the direction vector by the sum of the total radiosity change

∑
=

−=−+−+−+−
4

1
4321

i
i BBBBBBBBBB

A problem with this would be the case where all the radiosity change was to one neighbour. This
would move the point all the way to that neighbour. This suggests that it would be better to relax
the change by at least a further half.

For the numeric example:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛−

×=−−

0
80
200

0
4
10

20)(11 PPBB

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛−

×=−−

0
240
100

0
24
10

10)(22 PPBB

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−

×=−−

0
0
0

0
4
5

0)(33 PPBB
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−

×=−−

0
120
200

0
6

10
20)(44 PPBB

These values give the direction
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛−

0
200
500

. Normalising by the sum of the radiosity changes gives a

direction of:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛−

0
4
10

0
200
500

50
1

Relaxing by a factor of 2 gives

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛−

0
2
5

So P moves from (20, 6, 0) to (15, 8, 0) . This is perhaps rather too large a change for an iterative
process. A better scheme might involve using the distances between the points.

