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General context

My research fits within the mathematical study
of the ideas of computation and program. In
particular, my work is situated at the interface
between logic and computer science provided
by the proofs-as-programs correspondence, also
known as Curry-Howard isomorphism [How80).
Such correspondence is the realization that the
many variants of Church’s A-calculus overlap
with a great variety of deductive systems issued
from proof theory, the branch of mathematical
logic giving a prominent role to the dynamics of
rewriting of proofs [GLT89, SU06].

The untyped A-calculus. Despite not being
my only interest, most of my focus so far
has been on the study of the wuntyped -
calculus [Bar84], introduced by Alonzo Church
in the early 30’s within an attempt to give math-
ematics a logical foundation [Chu32]. It is given
by the terms M, N ::=z | A\x.M | M N (where x
ranges over countable variables) and the rewrit-
ing rule (Ax.M)N —3 M{N/z}. The system
provides a model of computation, as it can rep-
resent all Turing-computable functions through
the notion of A-definability (Church’s thesis).
Also, this system is the common core of all func-
tional programming languages. Over the last
five decades A-calculi have played a prominent
role in the conception, implementation and anal-
ysis of such languages, but also in a number of
impressive theoretical insights into the concepts
of computation, program and proof.

Equivalences of programs. The study of the
untyped A-calculus is not restricted to the sole
B-rule.  One is more often interested in A-
theories, which are congruences on A-terms ex-
tending [-conversion. All A-theories form a
complete lattice of cardinality 2%°, mostly still
unexplored. From the point of view of com-
puter science, observational equivalences have
a certain relevance among A-theories. Indeed,
they provide an answer to a nontrivial question:
when two programs are equivalent? The answer
is behavioural: they are equivalent if they look
to behave in the same way in every possible case
of execution. Formally, two A-terms M and N
are observationally equivalent with respect to
some fixed set O of observable terms when, for
every possible context of evaluation C[—], the
A-term C[M] p-reduces to an observable in O if
and only if C[N] S-reduces to an observable in
O. The choice of O is not unique. The most

studied instance is the one where the observ-
ables are \-terms in head normal form. This -
theory is denoted by H*. An alternative choice
is to take as O the set of A-terms in B-normal
form. This last is called Morris’s observational
equivalence, and denoted by H ™' hereafter.

Denotational semantics Mostly, my research
concerns the denotational semantics of the A-
calculus. Dana Scott discovered the first deno-
tational model [Sco72] in the late 60’s. Since
then, a large number of such models, lying
in many different categories, have been stud-
ied. In most of them A-terms are interpreted
as structure-preserving functions between some
order-theoretic, algebraic or topological struc-
tures. A limitation of these traditional models is
to abstract away from the execution process and
overlook quantitative aspects such as the time,
space, or energy consumed by a computation.
My work fits in a wider research program aim-
ing to overcome these limitations. Such a quan-
titative approach has its inspiration and tech-
nical roots in the semantics of Girard’s Linear
Logic [Gir87]. More specifically, most of the re-
sults that I achieved so far concern relational
semantics, which interprets A-terms as relations
where their inputs are grouped together in mul-
tisets. As a result of this usage of multisets,
relational models are resource-sensitive, in that
they represent explicitly the consumption of in-
put resources during the execution of programs.
The first concrete examples of relational models
of A-calculus were built in [BEMO07, HNPROG6].

Relational graph models

In my thesis [Ruol6] and related publica-
tions [MR14, BMPR16, BMR17] I studied a
proper subclass of relational models, called rela-
tional graph models (rgm’s). On the one hand,
the definition of an rgm is the relational ana-
logue of the definition of a graph models a la
Plotkin-Scott-Engeler [P1o93, Eng81, Lon83|, a
well-known kind of continuous model. In par-
ticular, rgm’s can be built by free completion
and by forcing like the continuous ones. On the
other hand, rgm’s can be seen as a resource-
sensitive reformulation of filter models [BDS13].
The classical Stone duality between filter mod-
els and intersection type systems shows that
some interesting classes of domain-based mod-
els can be described in logical form. The in-
tuition is that a functional intersection type



ay N -+ ANa, — B can be seen as a continu-
ous step function sending the set {aq,...,an}
to the element B. Our idea, already present
in [dC09, PPRDR15], is that in the absence of
idempotency and partial orders the functional
type a1 A --- A a, — [ can be seen as a re-
lation associating the multiset [, ..., a,] with
the element 5. As a consequence, even rgm’s can
be presented in logical form. Precisely, as non-
idempotent intersection type systems. This log-
ical representation comes in handy when study-
ing the quantitative features of these models.

Full abstractions. Every denotational model
induces a A-theory through the kernel of its in-
terpretation function. In particular, a model is
fully abstract when the induced A-theory is an
observational equivalence. In exploring the A-
theories induced by rgm’s my coauthors and I
paid a particular attention to the full abstrac-
tion problem. Until recently, researchers were
only able to prove full abstractions for individ-
ual models [Hyl76, Wad78, CDZ87], or at best
to provide sufficient conditions for models living
in some class to be fully abstract [Man09]. A
substantial advance was made in [Brel4], where
Breuvart was able to provide a characterization
of all the models fully abstract for H* living in
a certain class. My coauthors and I achieved
equally general full abstraction theorems for the
class of rgm’s. We proved that an rgm is fully
abstract for H* iff it is extensional (it models
n-conversion) and A-Kénig [BMPR16, BMR17].
Intuitively, a model is A-Konig when every re-
cursive tree has an infinite path that is witnessed
by some element of the model, in a certain type-
theoretical sense. By dualizing the notion of
A-Ko6nig rgm we also proved a characterization
for the other main observational equivalence: an
rgm is fully abstract for H* iff it is extensional
and hyperimmune [BMR17].

Other results on Morris’s \-theory

The observational equivalence HT is maybe less
ubiquitously studied in the literature than H*,
but nevertheless important. For instance, its
notion of observables is central in Bohm’s Theo-
rem [B6h68] and similar separabilities [CDR78].
This is why I focused on H* during my PhD,
and, together with my coauthors, proved some
other notable results concerning it.

Extensional Taylor expansion. FEhrhard-
Regnier’'s Taylor expansion is a translation

developing every A-term as an infinite series
of terms living in a resource-sensitive ver-
sion of the A-calculus, known as differential
A-caleulus [ER03, ER08]. In [MR14] we defined
the extensional Taylor expansion, a version of
this notion taking n-reduction into account, and
proved that it provides another model of H¥.

The w-rule. The w-rule is a strong form of
extensionality defined as follows: for all M, N
(MP = NP for all closed P) = M = N.
In [BMPR16] we proved that H* satisfies the
w-rule. This solved a long-standing open ques-
tion [Bar84, §17.4].

Ongoing investigations

A number of more or less precise open questions
concerning rgm’s remain to investigate.

e Are all A-theories in the interval [HT, H*]
relational graph theories? If it is not the
case, is it possible to provide a character-
ization of the representable ones?

e Do all extensional rgm’s satisfy the w-rule?

e What is the extensional collapse [Ehrl2)
of the class of rgm’s?

e Is there a game semantics reading of
rgm’s?

Finally, in a much more abstract perspective, a
2-categorical version of the relational semantics
was contemplated in [FGHWO08, Hyl10], where
the categorical notion of profunctors takes the
role of relations. An ambitious longterm aim is
to explore the possibility of studying a profunc-
torial version of rgm’s.

Operads of control

A completely different ongoing investigation, in
collaboration with Paul-André Mellies, is rooted
in the higher-algebraic counterpart of denota-
tional semantics: categorical logic, a branch of
category theory interested in the interpretation
of proofs [LS86, Mel09].

The context. Starting from [Gri90], researches
have extended the proofs-as-programs corre-
spondence beyond the limits of purely functional
programming on one side, and of purely con-
structive proof systems on the other. In this per-
spective, the Au-calculus introduced in [Par92]



is still a major reference. Its untyped version
adds to the syntax of the A-calculus a GOTO-
like mechanism of control, by means of exception
raising terms [a|M and exception handler ab-
stractions pa. M. From a logical point of view,
a simply typed fragment of the Ap-calculus is a
deduction system for classical logic, that is the
logic underlying ordinary mathematics.

The continuation-passing-style translations
(CPS for short), traditionally providing imple-
mentation procedures for A-calculi, extend also
to the Ap-calculus. The idea behind CPS’s is
to provide to (the translation of) a program M
a parameter (itself a program, according to the
functional paradigm) containing all the informa-
tion about the environment of execution of M
(the rest of the code surrounding M). CPS’s
also have a logical meaning, which stresses the
Curry-Howard isomorphism to the level of im-
plementation mechanisms: they correspond to
certain versions of double negation embeddings
of classical logic into intuitionistic logic, whose
pioneers in the 20’s were Glivenko, Gddel, Kol-
mogorov. Generalizing to a categorical setting a
CPS appeared in [LRS93], Selinger axiomatized

the algebraic nature of denotational models of
the Ap-calculus in [Sel01]. The corresponding
structure is named control category. In [MTO08]
and [Tab08] Mellies and Tabareau investigated
what happens when one performs Selinger’s ax-
iomatization in a linear context. Their analysis
relies on dialogue categories, which can be con-
sidered as the basic categorical notion suitable
to study from a resource-sensitive perspective
the idea of response, and therefore the seman-
tics of programs and environments interacting
by mutual responses. The offspring of their work
is a notion of linear control operads.

Ongoing work. [ am focusing on the recon-
struction of the mnon-linear setting from the
aforementioned work of Mellies and Tabareau.
Intuitively, the question is: can we find a se-
mantic model for the Au-calculus, or even more
generally for any non-linear higher-order calcu-
lus with control, by adding some structure on
top of a linear control operad? The emerging
picture is one in which operads playing the role
of linear multi-inputs programs interact with op-
erads representing non-linear programs.
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