
1

Conflict Analysis for Management Policies

E. Lupu, M. Sloman
Imperial College, Department of Computing,
180 Queen’s Gate, London SW7 2BZ, U.K.
E-mail: e.c.lupu@doc.ic.ac.uk, m.sloman@doc.ic.ac.uk

Abstract
Policies are a means of influencing management behaviour within a distributed system,
without coding the behaviour into the managers. Authorisation policies specify what
activities a manager is permitted or forbidden to do to a set of target objects and
obligation policies specify what activities a manager must or must not do to a set of target
objects. Conflicts can arise in the set of policies. For example an obligation policy may
define an activity which is forbidden by a negative authorisation policy; there may be two
authorisation policies which permit and forbid an activity or two policies permitting the
same manager to sign cheques and approve payments may conflict with an external
principle of separation of duties. This paper reviews the policy conflicts which may arise
in a large-scale distributed system and describes a conflict analysis tool which forms part
of a Role Based Management framework. Management policies are specified with regard
to domains of objects and conflicts potentially arise when there are overlaps between
domains. It is not desirable or possible to prevent overlaps and they do not always result in
conflicts. We discuss the various techniques which can be used to determine which
conflicts are important and so should be indicated to the user and which potential conflicts
should be ignored because of precedence relationships between the policies. This reduces
the set of potential conflicts that a user would have to resolve and avoids undesired
changes of the policy specification or domain membership.

Keywords
Distributed systems management, management roles, management policies, conflict
detection, conflict resolution, policy precedence.

1 INTRODUCTION

There has been considerable interest recently in policy based management for distributed
systems (Sloman, 1994; DSOM, 1994; Magee, 1996; Koch, 1996). Separating policies
from the managers which interpret them permits the modification of the policies to change
the behaviour and strategy of the management system without recoding the managers.
The management system can adapt to changing requirements by disabling policies or
replacing old policies with new ones without shutting down the system. We are concerned
with two types of policies: authorisation policies which specify what activities a subject
is permitted or forbidden to do to a set of target objects and obligation policies which
specify what activities a subject must or must not do to a set of target objects. The subject
or target of a policy is usually expressed as a domain of objects and applies to all objects
in the domain so a single policy can be specified for a group of objects. This helps to cater
for large scale systems in that it is not necessary to define separate policies for individual

To appear in: Proceedings of the Vth International Symposium on Integrated Network
Management IM’97 (formerly knonw as ISINM), San-Diego (U.S.A.), Chapman&Hall,
May 1997.

2

objects in the system, but rather for groups of objects. We permit the specification of both
positive and negative authorisation policies and require explicit authorisations i.e. non
authorised invocations are forbidden.

In a large distributed system there will be multiple human managers specifying policies
which are stored on distributed policy servers. Policy inconsistencies can arise due to
omissions, errors or conflicting requirements of the managers specifying the policies. For
example an obligation policy may define an activity a manager must perform but there is
no authorisation policy to permit the manager to perform the activity. Conflicts can also
arise between positive and negative policies applying to the same objects. In general,
whenever multiple policies apply to an object there is a potential for some form of conflict
but it is essential that multiple policies should apply in order to cover the diversity of
management functions and of management domains. For example there may be different
policies relating to security, monitoring, or configuration which apply to a set of objects
reflecting different management functions which may be performed on the objects.
Similarly the policies specified for the network, sub-network and workstation domains
will all propagate to the network objects inside the workstation.

In this paper we describe the tools we have developed for analysing policy
specifications to determine inconsistencies and conflicts. We use roles as the means of
grouping policies related to a particular manager position and then managers can be
assigned or removed from the position without changing the policies (Lupu, 1997). We
also define the relationships between roles with regard to the use of shared resources or
with regard to the organisational structure e.g. the manager assigned to role A has the right
to assign a task to the manager assigned to role B. A large scale distributed system will
have very large numbers of objects and policies distributed around the system, so the
conflict detection cannot be centralised but also has to be distributed. Our use of roles and
inter-role relationships provides a scope for the conflict detection and helps to limit the
number of policies which have to be examined in order to determine conflicts. We assume
more specific policies take precedence over less specific ones in order to automatically
resolve some conflicts and so reduce the number that human administrators have to
resolve. This paper focuses on techniques and tool support for off-line conflict detection
and resolution, although some conflicts can be detected only at run time.

In section 2 of the paper we give more details of the domains, policies and roles which
form our management framework. Section 3 discusses the types of policy conflicts we
need to detect. In section 4 we explain our approach to conflict detection, policy
precedence relationship and describe the tools we have implemented.

2 MANAGEMENT FRAMEWORK

The main components of our management framework are domains for grouping objects, a
policy service to support the specification and storage of policies and roles to reflect the
organisational structure, responsibilities and relationships between management positions.

2.1 Domains

Domains provide a flexible means of partitioning the objects in a large system according
to geographical boundaries, object type, management functionality, responsibility, and
authority or for the convenience of human managers (Sloman, 1994a & b). A domain
groups the management interfaces of objects and may include other domains (which are
called subdomains of the parent domain). An object or subdomain may be a member of
multiple parent domains.

The Domain Browser is a tool for navigation in the domain structure. In Figure 1 the
current domain /Example/Org1/Policies contains two policy objects, has one subdomain
(SharedPolicies) and is a member of two parent domains (AllPolicies and Org1).

3

Parent Domain Current Domain Sub-domains

Figure 1 The domain browser.

2.2 Policy Service

In this section we give some examples of obligation and authorisation policies and an
overview of the notation used.

Authorisation policies define what activities a subject (manager or agent) can perform
on a set of target objects or what monitored information can be received e.g.

A+ *Sregion_agents {“lu1”, “lu2”: enable(); disable(); reset(); off()} *Sregion
when (time > 08:00) && (time < 18:00)

Subjects in the Sregion_agents domain are permitted to perform enable, disable,
reset or off operations on objects of type lu1 and lu2 (line units) in the Sregion
domain, between hours 08:00 and 18:00.

Obligation policies define what activities a manager or agent must or must not perform
on a set of target objects. Positive obligation policies are triggered by events. Constraints
can be specified to limit the applicability of the policy based on time or attributes of the
objects to which the policy refers.

O+ on overload_event *Sregion_agent {“lu1”: disable(), “lu2”: enable()} *Sregion
when (08:00 < time) && (time < 18:00)

This positive obligation policy is triggered by an overload event and results in the
agent disabling line units of type lu1 and enabling line units of type lu2.

O– x:*Sregion_agent {“lineunit”: enable(); disable(); reset(); off()} *Sregion
when x.state == standby

This negative obligation policy specifies that standby agents must not perform
control operations on line unit objects even though they may be authorised to do so.

The general format of a policy is given below with optional attributes within brackets
(the braces and semicolon are the main syntactic separators). Some attributes of a policy
such as trigger, subject, action, target or constraint may be comments (e.g. /* this is a
comment */), in which case the policy is considered high-level and not able to be directly
interpreted.

identifier mode [trigger] subject ‘{’ action ‘}’ target [constraint] [exception] [parent] [child] [xref] ‘;’

4

The mode of the policy distinguishes between positive obligations (O+), negative
obligations (O-), positive authorisations (A+) and negative authorisations (A-). Negative
obligations should be read as “obliged not to” and can be considered as ‘filters’ (Moffett,
1993) to prevent the actions specified in positive obligation policies being performed
under certain circumstances, which is why they cannot be triggered.

The subject of a policy specifies the human or automated managers and agents to
which the policies apply and which interpret obligation policies. The target of a policy
specifies the objects on which actions are to be performed. Security agents at a target’s
node interpret authorisation policies and manager agents in the subject domain interpret
obligation policies. Both subject and target can be defined using a domain scope
expression which identifies a set of objects in terms of union, difference, intersection and
membership operators over sets of domains and objects. By default, policies propagate to
subdomains within a domain and hence to indirect members of the parent domain, but the
scope expression can limit this propagation to direct members. An advantage of specifying
policy scope in terms of domains is that objects can be added and removed from domains
to which policies apply without having to change the policies. The domain scope
expressions are evaluated when detecting potential conflicts to determine the subject and
target sets to which the policy applies. The actions specify what must be performed for
obligations and what is permitted for authorisations. It consists of method invocations or a
comment and may list different methods for different object types. Multiple actions can
also be specified. The constraint limits the applicability of a policy, e.g. to a particular
time period, or making it valid after a particular date. An exception mechanism is
provided for positive obligations to permit the specification of alternative actions to cater
for failures which may arise in any distributed system.

High level abstract policies can be refined into implementable policies. In order to
record this hierarchy, policies automatically contain references to their parent and
children policies. In addition, a manual cross reference list of policies may be kept e.g. to
refer to the authorisation policy granting permission for an obligation policy’s activity.

The policy service provides tool support for defining policies and disseminating polices
to the relevant agents which will interpret them. It also permits policies to be enabled,
disabled or removed from the agents (Marriott, 1996a & b). Policies are implemented as
objects which can be members of domains (see Figure 1) so that authorisation policies can
be used to control access to the policies stored in a policy server, e.g. to permit only
authorised managers to define and modify policies.

2.3 Roles

Specifying organisational policies for human managers in terms of a manager position
rather than the person permits the assignment of a new person to the manager position
without respecifying the policies referring to the duties and authorisations of that position.
The tasks and responsibilities corresponding to the position are grouped into a role
associated with the position (which is essentially a static concept in the organisation).
These definitions correspond to the concepts of classic Role Theory which postulates that
individuals occupy positions inside an organisation and associated with the position are a
set of activities (including the required interactions) that constitute the role of that position
(Biddle, 1979).

Manager positions can be represented as domains and we can consider a role to be a set
of management policies relating to a particular subject i.e. the Manager Position Domain
(Sloman 1994a). A manager may be assigned to a role by including his User
Representation Domain (URD) in the manager position domain, and the policies of the
role will propagate to the URD and objects contained in it. The URD is a persistent
representation of the manager in the system. The problem with this approach is that when
a manager is assigned to multiple roles all the policies propagate to the URD, so the roles
cannot be distinguished and the manager could perform a task in one role with the rights
from another. An alternative way of assigning a manager to a role is by specifying a
policy authorising him to create an agent in the manager position domain. The manager

5

assigned to more than one role interacts with an adapter object in his URD which forwards
the invocations to the relevant agent in the position domains. The adapter would provide a
separate context for each role and thus permit the manager to keep activities pertaining to
each role distinct. In this respect the adapter is similar to an X server maintaining different
windows with different active shells Figure 2. Note that although logically placed in the
position domains the agents may be implemented as threads of the adapter object to
improve performance.

Manager Position
Domain for Role A

Connection

User Representation
Domain

Manager Position
Domain for Role B

Authorisation
Policy

Adapter
Object

Connection

Target
Managers

Target Managed
Objects

Role obligation
& authorisation
policies

Role A

Figure 2 Management Roles.

There is a need for interactions between roles (e.g. delegating a task from one role to
another or coordinating access to shared objects). Our management framework therefore
caters for specification of role relationships using policies, interaction protocols and
concurrency constraints. Figure 3 represents the extended role model as presented in
(Lupu, 1997). The policies within a role or between related roles provide a scope within
which to search for conflicts.

Interaction
Protocol
Specification

Intra-role
Concurrency
Specification

Obligation &
Authorisation
Policies

Concurrency
Specification

For Each Relationship

Obligation &
Authorisation
Policies

For Target Managed Objects

Manager
Position
Domain

Figure 3 The extended role model.

6

3 CONFLICT CLASSIFICATION

Modality conflicts are inconsistencies in the policy specification which may arise when
two or more policies with modalities of opposite sign refer to the same subjects, actions
and targets. This occurs when there is a triple overlap between the sets of subjects, targets
and actions as shown in Figure 4, and so can be determined by syntactic analysis of
polices. There are three types of modality conflicts:

• O+/O- the subjects are both required and required not to perform the same actions
on the target objects.

• A+/A- the subjects are both authorised and forbidden to perform the actions on the
target objects.

• O+/A- the subjects are required but forbidden to perform the actions on the target
objects (obligation does not imply authorisation in our case).

A second type of conflict refers to the consistency between what is contained in the
policies i.e. which subjects, targets and actions are involved and external criteria such as
limited resources or the overall policies of the organisation. An example of this type of
conflicts arises from the principle of separation of duties (Clark, 1987) e.g. the same
manager cannot authorise payments and sign the payment cheques. These conflicts are
application specific and cannot be determined directly from the policy specifications –
additional information is needed to specify the conditions which result in conflict. These
can be specified as a meta-policy i.e. a policy about permitted policies. Several types of
application specific conflicts such as: conflict of priorities for resources, conflict of duties,
conflict of interests, multiple managers conflict and self-management conflict have been
identified in (Moffett, 1994) and classified according to the overlaps between the subject,
action and target sets.

Modality conflicts arise from overlapping domains but it is impractical to prevent these
overlaps (see 4.1 a) as there is a need for multiple policies to apply to a domain to reflect
partitioned responsibility and the various different management functions that can be
performed on target objects e.g. different managers may be responsible for maintenance
and security relating to a domain of workstations. In the following, we discuss the
precedence relationships which can help to resolve modality conflicts then describe our
approach to specifying meta-policies to detect application specific conflicts.

4 CONFLICT DETECTION

Conflict detection between management policies can be performed statically for a set of
policies in a policy server or at run time. A run-time mechanism acts as a filter preventing
activities that must not be performed (O-) or are not permitted (A-) (Moffett, 1993). The
advantage is that all the constraints of the policies can be evaluated at run time and so all
conflicts can be detected, but some conflicts may really be specification errors and should
rather be detected by static analysis c.f. compile time vs. run-time error detection for
programming languages. The disadvantages of static analysis are that policy constraints
cannot be evaluated, as they depend on run-time state, and domain membership may
change, so only potential rather than actual conflicts can be detected. Both static and run-
time conflict detection are needed, but this paper concentrates on a static conflict detection
tool which assists the users specifying policies, roles and relationships. In the following
we discuss some principles for the detection of the modality conflicts and present an
implementation of the conflict detection tool.

4.1 Policy Precedence Relationships

As previously mentioned, modality conflicts result from a triple overlap between the
subjects, actions and targets of the policies. In a typical organisation there will be some

7

general policies pertaining to all staff in the organisation as well as more specific policies
relating to staff in a department or section. Staff may also be members of many different
domains. Detecting the triple overlaps between policies with modalities of opposite signs
would therefore detect many potential conflicts which do not result in actual conflicts.
Using a policy precedence relationship can substantially reduce the number of conflicts
indicated to the user and permit apparently inconsistent specifications. There are several
principles, outlined below, for establishing this precedence. The choice between them has
to be guided by which conflicts should be ignored and how easy it is for the human user to
understand the decisions and selection of the conflict detection tool using this principle i.e.
how intuitive the principle is.

a) Negative policies always have priority
It is quite common for negative authorisation policies to always override positive ones so
that a forbidden action will never be permitted. Consider the following policies:

/* All users are forbidden to access the system files */
P1 A- @/users { reboot() } @/workstations

/* The system administrators are authorised to reboot the workstations */
P2 A+ @/users/sys_admin { reboot() } @/workstations

Policy P1, being negative has priority over P2 so the system administrators are denied
access to the system files, but then they cannot perform their function. To resolve this
conflict it is necessary either to rewrite policy P1 or to exclude the system administrators
from the /users domain. Although our access control system assumes a negative default
authorisation policy and so we would not specify P1 but only P2. Database security
systems often implement negative authorisation so we permit it at the specification level.

b) Assigning explicit priorities
A user can assign explicit priority values to policies to define a precedence ordering, but
meaningful priorities are notoriously difficult for users to assign and may result in
arbitrary priorities which do not really relate to the importance of the policies. Inconsistent
priorities could easily arise in a distributed system with several people responsible for
specifying policies and assigning priorities.

c) Distance between a policy and the managed objects
The concept of calculating the distance between a rule (policy) and the objects it refers to
has been introduced in (Larrondo-Petrie, 1990) for authorisation policies in an object
oriented database. Priority is given to the policy applying to the closer class in the
inheritance hierarchy when evaluating access to an object referenced in a query. For
example the access policy applying to a foreign student is the one applying to a student
and overrides the general access policy applying to a person if foreign student is a
subclass of student which is a subclass of person. The distance between the policy and the
objects to which it applies indicates the relevance of the policy and can be precisely
evaluated from the number of levels of refinement of the organisational policies. In the
general there is a compromise between the complexity and the intuitiveness of the
distance to be evaluated. A distance which is intuitive may not correctly evaluate the
importance of a policy in all the cases and a complex calculated distance may not be
intuitive enough for the human user to understand the selection and priorities assigned to a
policy during the conflict detection process e.g. the priority could be based on the product
(refinement level) * (last modification date).

d) Specificity related to domain nesting
The principle here is that a more specific policy i.e. a policy applying to a subdomain
refers to fewer objects so overrides more general policies applying to an ancestor domain.
This concept has been introduced in Miró (Heydon 90) and is a particular case of the
previous concept of distance. Considering the specificity of a policy with regards to the

8

objects it applies to is an intuitive concept in a domain based system. A subdomain of
objects is created for a specific management purpose – to specify a policy that differs from
those applying to the objects in the parent domain. For example the system administrators
are a particular group of users which have access to the system files despite the general
policy denying access to all users of the system. The other policies applying to all the
users apply then to the system administrators in the same way. Precedence based on
domain nesting can thus be used to allow conflicting specifications by automatically
resolving some conflicts.

In section 4.2 we describe how domain nesting can be used within conflict detection to
reduce the number of potential conflicts. We recognise that this principle does not apply
successfully to all the situations i.e. there are cases in which it is desirable that a global
policy overrides more specific ones. For this purpose the conflict detection can be
performed with precedence relationships optionally disabled. The following two sections
examine the importance of the overlaps between domains while applying the domain
nesting principle and indicates the cases where inconsistencies still remain.

4.2 The importance of overlaps in modality conflicts

The analysis for conflicts of a set of policies enumerates all the subject, action target
tuples which have a different set of policies applying to them. This makes it easier to
determine where a conflict occurs and where precedence resolves a potential conflict.

P1 +

P2 -

s1

s2

sc a1

a2

t1

t2

ac tc

Figure 4 Overlapping Subjects, Targets and Actions.

Consider the policies P1 and P2 represented in Figure 4 with P1 being positive and P2
being negative. Let us call the overlapping areas sc, ac and tc for common subjects,
actions and targets. The triple overlap between the policies P1 and P2 creates three tuples
to which different sets of policies apply:

• P1 applies to <s1-sc, a1-ac, t1-tc>

• P2 applies to <s2-sc, a2-ac, t2-tc>

• P1 and P2 apply to <sc, ac, tc>

Neither P1 nor P2 is more specific so a conflict is indicated to the user as their modalities
are of opposite sign. Now consider a policy P3 (shown in Figure 5) defined by the tuple
<s3, a3, t3> such that s3=sc, a3=ac and tc is a subset of t3 which is a subdomain of t2.

P3 +

P1 +

P2 -

s1

s2

sc
a1

a2

t1

t2

ac tc t3

Figure 5 Adding a policy.

9

We now have the following tuples and policies:

• P1 applies to <s1-sc, a1-ac, t1-tc>

• P2 applies to <s2-sc, a2-ac, t2-t3>

• P1, P2 and P3 apply to <sc, ac, tc>

• P2 and P3 apply to <sc, ac, t3-tc>

P3 is positive and is more specific than P2 so it overrides P2 in the areas where they
overlap i.e. for the tuple <sc, ac, t3-tc> and <sc, ac, tc>. Since P1 and P3 have the same
modality, no conflicts would be indicated.

Note that when displaying the result of a conflict detection check it is important to
provide the user with the information regarding which policies conflict, where precedence
overrides conflicts and to which tuples <subjects, actions, targets> these policies apply.

4.3 Limitations of domain nesting based precedence

The domain nesting precedence determines all policies which apply to a tuple of subjects
actions and targets and gives precedence to policies which apply to a more specific set of
subjects, targets or both. There are cases in which precedence cannot be established
because the sets are equal, the subject sets are more specific but the target sets are less

P1

P2

P1

P2

P1

P2

P2 overrides P1 for the areas in which
they overlap

P1

P2

P1

P2

P1

P2

P1

P2

P1

P2

No Precedence between P1 or P2
can be determined

Figure 6 Precedence between policies.

10

specific or vice versa. The various situations where precedence can or cannot be
established between two policies are shown in Figure 6. Note that that precedence may
based on a policy’s subject or target set so it is not an ordering relation because it is not
transitive. There is no precedence relationships between obligations and authorisations
since an obligation overriding an authorisation would convey the implicit assumption that
the obligation implies authorisation and this is not true for our policies.

4.4 A conflict detection tool

Implementation issues
The conflict detection tool detects overlaps between policies and applies domain nesting
based precedence. The domains and policies are distributed among several servers so
Corba invocations are used for retrieving the policies and querying domains to evaluate
their sets of subjects, actions, and targets. In theory, all policies in the system need to be
checked for overlaps but this is impractical. Instead, we permit the user to specify the
scope of policies to be checked, for example the policies applying to particular roles or the
policies of a relationship between roles. Policies or domains of policies can be dragged
from the domain browser window (Figure 1) into the conflict detection window to
establish the set of policies over which the conflicts are to be detected. The meta policies
discussed in section 4.5 can also explicitly define the scope to which they apply.
Since there are cases in which a more specific policy should not take precedence, domain
nesting precedence can be optionally disabled so all the overlaps are indicated. Finally an
analysis option also permits all the tuples of subjects, actions and targets and the policies
applying to them to be displayed even if there are no conflicts as it is useful to examine
which policies apply to which tuples. When enabled, the precedence relationship between
policies is indicated by arrows between the policy icons as shown in Figure 7.

Example
Policies are implemented as objects in the system. This example shows the use of the
conflict detection tool while specifying policies for managing other policy objects.
Consider the case of three organisation domains Org1, Org2, Org3 sharing the same
computer system. Each organisation has two managers Oi_m1 and Oi_m2 {i ∈ 1..3} and a set
of policies which includes a domain of shared policies about the general use of the
computer system (see Figure 1). Each of the organisations wants to retain control of all its
policies including the shared policies. In particular each organisation has two policies
stating that its managers can perform various operations on all its policies and that the
managers from the other organisations are prohibited from performing the operations
retract(), disable() or delete() on any of the objects contained in the organisation’s policy
domain. These policies have the following format (only shown for Org1):

Org1_authorisation1 A+ @/Org1/Managers {create(); delete(); distribute(); enable();
disable(); retract()} @/Org1/Policies

Org1_authorisation2 A- @/Org2/Managers + @/Org3/Managers {delete(); disable();
retract()} @/Org1/Policies

Note the ‘@’ symbol selects all non domain objects in nested domains. (With a default
negative authorisation, the second policy could actually be revised to only permit create
and enable to give the same effect but we will ignore that for the purposes of this
example.) The managers of one organisation are subjects of three policies: one authorising
all the operations on the objects of the Policies domain in their organisation and two others
prohibiting some operations on the policy objects in the policy domain of the other two
organisations. A potential conflict arises from the presence of the shared Policies
subdomain in each organisation. Since the positive authorisation policy is more specific
than the two others (it relates to the managers of Org i while the others relate to the

11

managers of Org x + Org y) no conflicts are detected because the positive authorisation
policies override the negative ones, as shown in the conflict detection window of Figure 7.

Figure 7 The conflict detection window. Shows positive authorisation (keys)
overriding negative authorisation (crossed out keys).

If the check for conflicts is performed without the domain nesting based precedence,
conflicts such as the one shown in Figure 8a are detected. The subjects, actions, targets
tuple is shown in the upper part and the conflicting policies to which no precedence
applies are shown in the lower part of the screen. Similarly remaining conflicts can be
displayed after applying domain nesting precedence, although there are none in this
example. Policy icons can be dragged from this window onto a policy editor window for
viewing and revising if required.

(a) (b)

Figure 8 Examples of detected conflicts.

Consider a policy refined from a more abstract obligation policy specifying that the
managers from Org2 must (modality O+) disable the policies on the failure of the policy
server.

12

Org2_obligation1 O+ on maps_failure @/Org2/Managers { disable() } @/Org2/Policies

If domain nesting precedence is used, the access should be granted since the positive
authorisation takes precedence over the negative ones. With precedence disabled, the
O+/A- conflict is also detected as shown in Figure 8b.

4.5 Meta-Policies

Meta-policies specify application specific consistency constraints pertaining to the
contents of policies. Meta-policies constrain the set of acceptable policies in terms of their
attributes. They can be expressed as logical predicates applying to the sets of policy
objects determined by a domain scope expression (dse). For example a conflict for
resources may arise when the number of objects in the target domain of any two policies is
greater than 11.

∀ ∈< >
← + >

P P dse

fail P t ets P t ets

1 2

1 2 11

,

. arg . arg

The solution of the following Prolog code gives all the conflicting policies.

checkResourcesNumber(P, Q, Res) :-
numberOfTargets(P, N1), numberOfTargets(Q, N2), Res = N1 + N2.

checkRes(P, T) :- checkResourcesNumber(P, T, Res), P \= T, Res > 11.
check1(Bag) :- findall([P, T], checkRes(P, T), Bag).

We have been experimenting with meta-policies by implementing the predicate
specification in Prolog for the cases presented in (Moffett, 1994). The policies contained
in the Conflict Detection window are automatically translated into Prolog assertions. A
Prolog process can then be started from the conflict detection tool loading the file
containing the translated policies. The predicate specifying the conflict is then a query on
the assertions database which gives the policies in conflict.

5 RELATED WORK

Our concept of domain nesting precedence is based on that of Miró (Heydon, 1990), but
they only deal with authorisation policy for file system security. Sandhu (1996) presents
constraints which are similar to our meta-policies, but the notation used is not described.
The work presented in (Michael, 1993) relates to general policies, expressed in natural
language and modelled in an Entity Relationship representation. A theorem prover is used
to detect the inconsistencies. The “law governed systems” of (Minsky, 1996) implements
a common global set of constraints by means of filters in every node which check that all
interactions are consistent with the global law.

Another approach, used to detect feature interaction in telecommunication systems
(Griffeth, 1993), considers policies as goals and applies planning techniques to resolve
situations with incompatible goals. Planning techniques for conflict management are also
used in Distributed Artificial Intelligence (Lander, 1994). In the case of our management
policies such techniques could be used only in conjunction with the refinement of the
policies. Koch (1996) uses a policy notation based on ours and establishes a semantic
graph model to detect ill-behaved policy sets with unsatisfiable pre-conditions. This can
also be used to perform “what-if” analysis on chains of policies prior to execution.

Deontic Logic provides the closest approximation of our management policies in the
context of a logic system. A model of policies as deontic logic statements for office
automation can be found in (Ong, 1993). However Standard Deontic Logic also relies on
the axiom of inter-definability which defines a permission as P = ¬ O¬ P. No such
assumption is made between our authorisation and obligation policies. However a number

13

of new logical systems with slightly different axioms are emerging and this may be of
interest for our policies.

6 CONCLUSIONS

This paper has presented the integration of a conflict detection tool in a more general role
and policy based framework for distributed systems management. We perform off-line,
static analysis of a set to policies to determine two types of conflicts: (i) modality conflicts
which can be checked by analysing the syntax of the policies and (ii) application specific
conflicts with external constraints which we express as meta policies. Modality conflicts
arise from a triple overlap between the subjects, actions and targets of the policies, but it is
not practical nor desirable to prevent these overlaps. We make use of a precedence
relationship based on the specificity of the policies with respect to domain nesting to
reduce the number of potential overlaps indicated to a user, as we consider this to be an
effective and intuitive precedence relationship. Roles are an important management
concept but also provide a scope to limit the set of policies to be analysed.

Another aspect of policy analysis relates to determining the policies applying to a
particular subject or target. Our policies explicitly identify both subject and target and the
domain service maintains the list of policies applying to a domain so this is comparatively
easy to do, but has not yet been implemented.

We have implemented a prototype role framework which supports distributed policy
and domain servers and analysis of a set of policies, indicating conflicts as well as
precedence relationships. This will enable us to experiment in realistic situations and
evaluate the use of the precedence relationship. Our approach is to detect as many
conflicts as possible at specification time, rather than leaving them to be detected at
runtime. The user can then modify the policies to remove conflicts. This has been
implemented using a Corba based distributed programming environment.

Further work remains to be done on the use of dynamic run-time conflict detection
within policy interpreters and what to do about conflicts which have been detected. Our
meta policy specification language also need further refinement, as translating all policy
specifications into Prolog assertions is a rather “heavy handed” approach.

7 ACKNOWLEDGEMENTS

We gratefully acknowledge financial support for the EPSRC RoleMan project (GR/K
37512) and British Telecom for the Management of Multimedia Networks project. We are
grateful to Jonathan Moffett for many invaluable comments which have improved this
article. We acknowledge the contribution of our colleagues to the concepts described in
this paper – in particular Nicholas Yialelis and Damian Marriott.

8 REFERENCES

Biddle, B. and Thomas, E. Eds. (1979) Role Theory: Concepts and Research. New York,
Robert E. Krieger Publishing Company.

Clark, D. and Wilson, D. (1987) A comparison of Commercial and Military computer
security Policies. IEEE Symposium on Security and Privacy.

DSOM (1994) Proceedings of the IEEE/IFIP Distributed Systems Operations and
Management Workshop, Toulouse (France).

Griffeth, N. and Velthuijsen, H. (1993) Reasoning about goals to resolve conflicts. Int.
Conf. on Intelligent Cooperative Information Systems, Los Alamitos (Calif.), IEEE
Computer Society Press, 197–204

14

Heydon, A. et al. (1990) Miró: Visual Specification of Security. IEEE Transactions on
Software Engineering, 16(10), 1185-1197.

Koch, T. et al. (1996). Policy Definition Language for Automated Management of
Distributed System. IEEE 2nd. Int. Workshop on Systems Management, Toronto
(Canada).

Lander, S. E. (1994). Distributed Search and Conflict Management Among Reusable
Heterogeneous Agents. Ph.D. Dissertation, University of Massachusetts, Amherst,
(USA).

Larrondo-Petrie, M. et al. (1990) Security Policies in Object-Oriented Databases. IFIP
Database Security, III: Status and Prospects, Elsevier Science Publishers B.V.
(North-Holland).

Lupu, E. and Sloman, M. (1997) Towards a Role Based Framework for Distributed
Systems Management. Journal of Network and Systems Management, 5(1) Plenum
Press.

Magee J. and Moffett J. eds. (1996) Special Issue of IEE/BCS/IOP Distributed Systems
Engineering Journal on Services for Managing Distributed Systems, 3(2).

Marriott, D. and Sloman M. (1996a). Management Policy Service for Distributed Systems.
Proc. IEEE Third International Workshop on Services in Distributed and Networked
Environments (SDNE 96), Macau, 2–9.

Marriott, D. and Sloman M. (1996b) Implementation of a Management Agent for
Interpreting Obligation Policy. IEEE/IFIP Distributed Systems Operations and
Management (DSOM 96), L’Aquila (Italy).

Michael, J. (1993) A Formal Process for Testing Consistency of Composed Security
Policies. Ph.D. Dissertation, George Mason University, Fairfax, Virginia.

Minsky, N. H. et al. (1996) Building Reconfiguration Primitives into the Law of a System.
IEEE Third International Conference on Configurable Distributed Systems
(ICCDS 96), Annapolis (Maryland), 89–97.

Moffett, J. et al. (1993) The Policy Obstacle Course: A Framework for Policies Embedded
within Distributed Computer Systems. Technical Report, Schema/York/93/1,
Department of Computer Science, University of York (UK).

Moffett, J. and Sloman M. (1994) Policy Conflict Analysis in Distributed System
Management. Ablex Publishing Journal of Organisational Computing, 4(1), 1–22.

Ong, K. L. and Lee, R. M. (1993). A Logic Model for Maintaining Consistency of
Bureaucratic Policies. 26th Annual Hawaii International Conference on System
Sciences, Hawaii, IEEE Computer Society Press. Vol. III, 503–512

Sandhu, R. S. et al. (1996) Role-Based Access Control Models. IEEE Computer, 29(2),
38–47.

Sloman, M. (1994a). Policy Driven Management for Distributed Systems. Plenum Press
Journal of Network and Systems Management, 2(4), 333–360.

Sloman, M. and Twidle, K. (1994b). Domains: A Framework for Structuring Management
Policy. In Network and Distributed Systems Management. Sloman M. ed., Addison
Wesley, 433–453.

