
Reconciling Role Based Management and Role Based Access Control

Emil Lupu and Morris Sloman

Imperial College, Department of Computing,
180 Queen’s Gate, London SW7 2BZ, U.K.
E-mail: {e.c.lupu, m.sloman}@doc.ic.ac.uk

Abstract

Role Based Access Control is only a subset of the security
management and distributed systems management. Yet, the
characteristics and use of the role objects in RBAC or Role
Based Management (RBM) may differ significantly. In this
paper we outline a Role Management Framework based on
the specification of policies and examine its differences and
similarities with the RBAC concepts. In particular, two
aspects of roles required in RBM are emphasised: the need
for obligation policies which changes the way roles are
used within the system and the Object Oriented role model
which uses inheritance for re-use of the specification rather
than implementing set-subset relationships on access rights.

Keywords

Distributed systems management, RBAC, role object
model, role engineering.

1. Introduction

Role Based Access Control (RBAC) as presented in
(RBAC 1995; Sandhu 1996) enriches the access control
architecture with role objects which group a set of
permissions. Users acquire these permission by being
assigned to roles. The main objective of RBAC and its
object model are to simplify the specification and
management of authorisation policy – what actions
subjects are permitted to perform on target objects. Access
control is however only a subset of the security
management functionality needed by a distributed system.
There is also a need to specify and implement duties

(obligation policies) which define actions to be performed
by administrators or security components when events such
as security violations are detected, e.g. the security
administrator must investigate all sequences of 5 login
failures from the same source or users must change
passwords every 3 months. In this paper, we consider roles
in the more general context of distributed systems
management and show how these concepts can be used to
extend the RBAC approach to cater for both specification
and management of security.

Roles are originally an organisational concept which stem
from the study of the behaviour of individuals. Each
individual is assigned to a particular position in the
organisation e.g. technical director, marketing manager for
SW region, research assistant in the DSE section. A role
represents the specification of the behaviour associated
with a particular position in the organisational context
(Biddle 1979). The main benefit of Role Based
Management (RBM) is the ability to specify behaviour in
terms of duties (obligations) and permissions
(authorisations) by a consistent group of management
policies – see section 2. A person or automated agent can
then be separately assigned or removed from a role/position
(Sloman 1994; Lupu 1997b) without having to re-specify
policies. While not strictly part of RBAC, obligation
policies are essential to security management since they
specify the proactive and coercive actions needed for the
management of security i.e. the need to do aspects. Both
RBAC and RBM permit multiple users to be assigned to a
role to indicate that they have the same permissions, but the
duties related to an RBM role must be shared according to
a predefined protocol. For example, only one of the users
(whoever is free at the time) must perform an action related
to an obligation.

The RBAC object oriented model (Sandhu 1996) organises
roles in a set/subset hierarchy where a senior role inherits
access permissions from more junior roles. While this
approach of inheritance from instances optimises the use
and definition of access rights at system level, it sacrifices
the capability of parameterizing role instances upon
creation from a pre-defined role class. We will show in
(Section 3) why the ability to parameterise instances is

Second Role Based Access Control Workshop, George Mason University, Virginia USA, November 6-7, 1997

useful for security management and how such an object
model can be built.

Only the very basic aspects of the role and policy
framework, necessary for the understanding of the
discussion, are presented here. For a more complete
discussion refer to (Sloman 1994; Lupu 1995; Marriott
1996 a&b) and implementation of authorisation is
described in (Lupu 1995; Yialelis 1996a; Yialelis 1996b).

2. Role based management

Roles are an important aspect of distributed systems
management. As systems grow larger in size it is necessary
to decentralise the management activities amongst multiple
administrators and automated agents. In addition it must be
possible to dynamically load and retract policies from
agents to change the behaviour and strategy of the
management system without re-coding or interrupting their
activities (DSOM 1994; Sloman 1994; Koch 1996; Magee
1996). In this section we outline some aspects of the
management policy notation and show how roles can be
conceived as groups of policies.

2.1 Management Policies

Policies express a relationship between a domain of
subjects (managers) and a domain of target managed
objects. Domains are used to group objects in a hierarchical
way similar to a file system (Sloman 1994b). They are
more powerful than the grouping construct used in security
systems in that they can contain nested domains and can be
used to group both subjects and targets. A User
Representation Domain (URD) is a persistent
representation of a person within the computer system. It
groups the adapter objects allowing the user to interact with
the system (cf. login shell). Policies which apply to a user’s
personal activities within the system, independent of any
roles, are specified in terms of the URD. Both positive and
negative policies can be specified. Negative obligation
policies can be seen as constraints or subject based filters
which detect invocations outside the normal behaviour of
the managers.

Authorisation policies define what activities a subject
(manager or agent) can perform on a set of target objects
e.g.

A+ *domain_administrators { “user_profile”: modify();
remove(); reset() } *dse_domain
when (time< 08:00) && (time > 20:00)

Domain administrators are permitted to modify, remove or
reset objects of type user profile in the dse domain outside
office hours.

A- * students {workstation: reboot()} nt-pc

Members of the student domain are forbidden form
rebooting the workstations in the nt-pc domain

Obligation policies define what activities a manager or
agent must or must not perform on a set of target objects.
Positive obligation policies are triggered by events and
constraints can be specified to limit the applicability of the
policy based on time or attributes of the objects to which
the policy refers.

O+ on rlogin_event AC_agent { enable_encryption()}
*/applications/transfer_protocols

This positive obligation policy is triggered by remote login
event and results in the Access Control (AC) agent
enabling encryption on all transfer protocol objects.

O– x:*admin_agents { disable(); retract()} *policies
when x.state == standby

This negative obligation policy specifies that administrator
agents must not disable or retract policies when they are in
standby state even though they may be authorised to do so.

The subject of a policy specifies the human or automated
managers and agents to which the policies apply and which
interpret obligation policies. The target of a policy
specifies the objects on which actions are to be performed.
Security agents at a target’s node interpret authorisation
policies and manager agents in the subject domain interpret
obligation policies. Both subject and target can be defined
using a domain scope expression which identifies a set of
objects in terms of union, difference, intersection and
membership operators over sets of domains and objects e.g.
*users - *administrators denotes all members of the users
domain which are not members of the administrators
domain. An advantage of specifying policy scope in terms
of domains, is that objects can be added and removed from
domains to which policies apply without having to change
the policies. Assigning a permission to a user is therefore
equivalent to including the user in the policy’s subject
domain. Similarly, extending the users’ permissions to a
new object can be done by extending the target scope of a
policy to a new object. The actions e.g. enable(), retract()
specify what must be performed for obligations and what is
permitted for authorisations. Authorisation policies may
optionally indicate object type for target domains
containing objects of more than one type. Note that both

actions and targets have to be explicitly defined in a policy.
We can therefore consider the case where two roles contain
policies which authorise the same actions (access methods)
on different target objects e.g. network administrator for the
North, South and East sub-networks. These policies may be
instantiated from a policy template (Section 3.1) which
specifies the authorised actions and the constraints. This is
not possible in RBAC where a permission has to define
both the method and the target on which it is invoked. The
constraint limits the applicability of a policy, e.g. to a
particular time period, or making it valid after a particular
date.

Policies are a general specification of authorisations and
obligations of agents in the system. Although policies may
be grouped in roles (as detailed in the following section),
some policies have nothing to do with roles for example the
policies applying to all members of an organisation or
rights of an individual to their private files. RBAC often
has to define complex pseudo roles relating to individuals
to permit private ownership of files, also the fact that
groups are sometimes used as a mechanism for
implementing roles, has sometimes led to the merging of
these two independent concepts.

2.2 A role as a group of policies

A role groups the policies specifying the duties and rights
of a particular position inside the organisation. These
policies reference a common subject domain called the
Manager Position Domain (MPD). A user is assigned to a
role by authorising the user to connect to a proxy object in
the MPD which inherits all the rights pertaining to the role
and acts as the user’s representative in that role (Figure 1).
The user interacts with the system via an adapter object in
the URD which is similar to an X server in that it provides
a separate window for each role. This permits a clear
separation of activity context for each role to which a user
is assigned, and makes sure a user does not use the rights
pertaining to one role to perform operations within another
role. By analysing the policies referencing the URD it is
possible to determine to which roles the user has been
assigned. The main advantage of specifying policies in
terms of roles rather than individuals is that organisational
changes, when individuals are assigned to new roles, does
not require any changes to the policy specification relating
to the roles.

The sessions (connections in Figure 1) of the user are
independent and the actions related to each session require
specific authorisation policies. This enforces the principle
of assigning permissions on a need to do basis and can be
checked at specification level by a tool which may also

detect other inconsistencies (Lupu 1997a). The complete
separation of sessions is different from the RBAC
framework presented in (Sandhu 1996) where users are
allowed to combine the access permissions of several roles
into one session. Conceptual consistency is therefore
emphasised over flexibility and reuse.

Connection

User
Representation

Domain

Authorization
PolicyAdapter

Object

Connection

Target Managed
Objects

Role obligation
& authorization
policies

Role A

Manager Position
Domain for Role B

Manager Position
Domain for Role A

Figure 1 Management Roles

By analysing the policies of a role it is possible to make a
per-subject “before the fact” review of the access rights
(Gligor 1995). Moreover, the authorisation policies of the
role indicate the permitted actions and can be used to
customise the menus or choice of commands presented to
the user in the window.

The use of obligation policies in a role differentiates the
role from a group of users but also constrains the way roles
are used within the system when multiple managers are
assigned to a role. Consider the role of a nurse in a
particular ward of a hospital. It may define the following
policies in which the subject is a manager position domain
(MPD):

/* the nurse is authorised to administer analgesics to
patients */

A+ MPD { administer(analgesics) } @/patients

/* the nurse must administer analgesics to the patient
whose temperature exceeds 38°C */

O+ on (x.temperature > 38) MPD { administer(analgesics) }
x:patient

If several users are assigned to the nurse role, the meaning
of the authorisation policy is that all the users have
permission to administer analgesics. However the
obligation policies may have two different semantics: (1)
all the subjects have to perform the activity e.g. all nurses
must log their handling of drugs or (2) the activity must be
performed by only one of the subjects. For example the
obligation policy above expresses a responsibility or duty
which is shared among the users assigned to that role so
that only one of them administers the analgesics. In
general, obligation policies which are part of a role are
assumed to have a semantics of type (2) while an obligation
policy applying to a group of users specifies that all
subjects must perform the activity (semantics of type 1).
The need to interpret the role as ‘shared’ between the users
who are assigned to it does not arise in the RBAC
framework (Sandhu 1996) since RBAC considers only
authorisations and not obligations. This has implication on
assigning multiple users to a role. For example, all
engineers of a given project may be assigned to a single
RBAC role since they have the same access rights,
provided they can still be held individually accountable for
their actions. Different roles are needed in RBM in order to
reflect the different duties of developers or testing
engineers, etc.

In the RBAC model (Sandhu 1996) special administrative
roles, forming a separate hierarchy are needed to manage
the roles and permissions. In our RBM framework, roles
and policies are ordinary objects which can be included in
domains so they can be the targets of other policies. Any
role can thus be defined to manage other roles or policies.
We also specify interaction protocols between roles (Lupu
1997b), but this is outside the scope of this paper.

In the following we examine some issues relating to the
role object model and in particular the use of classes and
their consequences in terms of access control.

3. Role Object Model

An organisation may contain large numbers of roles with
few differences between them. It is thus desirable to
facilitate reuse of both role specifications and permissions.
It should be possible specify a role class which can be used
to create multiple instances of that class. In addition, it can
be useful to define a new role instance by specialisation
(inheritance) of an existing role instance. However these
two aspects of object-orientation do not combine well. The
RBAC approach allows direct inheritance between
instances e.g. in (Sandhu 1996) a role may inherit
permissions directly from another, but the RBAC
permissions include both the access method (i.e. read(),

update(), enable()) and the target objects. Therefore, two
roles which have the same authorised access methods but
applying to different target objects are entirely distinct. In
RBM however, it is possible to specify an authorisation
policy template containing the access methods and the
constraints and instantiate this template for different target
objects. In order to achieve this it is necessary to introduce
the definition of a role class from which instances can be
created. For example a nurse-class role can be specified and
used to create the nurse-instance roles for wards 3, 4 and
10. Specialisation inheritance is then used to define
subclasses of role classes e.g. a surgical nurse role-class
can be defined from a nurse-role class. In this section we
explain the role object model and examine its uses. The
definition of role classes is based upon policy templates
(which are specifications of duties and rights independent
of subject, target or both).

3.1 Policy Templates

Policy templates are used in order to provide the reuse of
the policy specifications. A policy template may represent
subjects and/or targets by symbolic variables. The template
specifies the policy actions and constraints which can be
reused for different subjects and targets. For example in a
hospital a policy template such as the one below may be
specified (S and T represent variables).

/* subjects are authorised to administer analgesics when
the temperature of the target is between 37 and 38.5 */

A+ S { administer(analgesics) } x:T when (x.temp > 37) &&
(x.temp < 38.5)

The following policy authorising a nurse to administer
analgesics to lung-disease patients may then be created
from the above template by specifying the subject domain
S and the target domain T.

A+ @/personnel/nurses { administer(analgesics) }
x:@/patients/lung-diseases
when (x.temperature > 37) && (x.temperature < 38.5)

A policy template may not inherit from another policy
template since its components (actions, condition, trigger,
etc.) are closely related and cannot be combined by
inheritance. Note, that only the target of a policy template,
which is part of a role class, has to be specified in the
instantiation process since the subject is determined by the
MPD. Policy templates are essentially a specification tool.
Authorisation templates do not map onto access
permissions, only the instances created from them do.

3.2 Role Classes

A role class groups specifications of the policy templates
specifying the duties and rights of a generic role in the
organisation e.g. nurse, engineer, marketing manager.
When a role instance is created, a MPD for the role is then
created so a manager cannot be assigned to a role class,
only to a role instance. The role class contains only policy
templates, not instances. Consider the example of the role
class of a nurse, containing a set of policy templates which
may have some undefined targets. The nurse class may
contain the following templates:

/* the nurse is authorised to access the drugs database */

pt_1 A+ D { read(), search(), update() }
@/software/databases/drugs_db

/* nurses must monitor their patients */

pt_2 O+ D { monitor() } P

When the role is instantiated the MPD can be assigned to
the variable D of template pt_1 which is then fully
specified as the same target domain is used for all nurse
instances. However pt_2 also needs a target domain
representing the specific patients for which the nurse
instance is responsible, to be assigned to variable P. Note,
that instead of specifying the pt_1 policy template, a global
policy instance can be defined which is not part of the role.
This policy has a subject domain into which all nurses must
be included which can be difficult to implement and to
check.

In many organisations, there are roles which are essentially
a variation of other roles with some additional rights and
duties or some removed. We are experimenting with
modelling this using both single and multiple inheritance.
Figure 2, which uses the OMT style notation (Rumbaugh,
1991), shows a hospital scenario in which a surgical nurse
role class inherits from a specialised nurse class, which in
turn inherits from the nurse class. The specialised nurse
redefines the policy pt_2 which it inherits. The paediatric
nurse inherits from both the nurse and generic childcare
classes. Multiple inheritance may result in more than one
policy with the same name derived from the super classes.
This can be resolved either by textual precedence in which
policies from the first named superclass over-ride those
from later classes or the programmer can explicitly indicate
precedence.

A role class maintains a table of policy templates defined
locally. Each entry has a name (the string representation of
the name in the source code) and an object reference which

is used by the support system to locate the object
implementing the policy template. Note that policy
templates and role classes are implemented as objects in
our RBM framework and may be distributed on multiple
servers in the system. The name of a policy template entry
must be unique within the class scope and must not overlap
with the name of an entry defined in the super-class(es).
Adding an entry with the same name as in a super-class
causes the policy template to be overridden.

There is an on-going debate within the object-oriented
community as to whether a subclass should be a strict
superset of the super-class. This results in a proliferation of
intermediate classes holding common subsets of policies.
For example, to accommodate specialised nurse and nurse
having different versions of pt_2, it would be necessary to
define a new class called generic nurse to hold all the
policies common to these two classes, and then nurse and
specialised nurse classes can each extend the inherited
generic nurse class by defining an additional policy pt_2.
This is the approach taken in the RBAC object mode, but
we consider it inflexible and complicated.

specialised
nurse

nurse
generic childcare

surgical
nurse

paediatric
nurse

pt_2: policy
template ref.

pt_2: /* */

Figure 2 Role class inheritance graph

A class based approach to role engineering simplifies the
effort of specifying the organisational structure by
parameterising the creation of instances with the target
objects to which the access rights are considered. For
example two nurse for wards 3 and 4 may have permissions
relating to the same operations on different target objects.
The activities and rights of a nurse may be specified in a
class and instances may then be created and customised
from the common class specification.

3.3 Combining class inheritance and
instance inheritance

Another issue that we are investigating is whether to permit
specialisation of existing role instances, as in the RBAC
object model. This can be very useful to model the situation
where a new role has similar duties and rights over the
same target objects as the one it is derived from. For
example, in figure 3, the paediatric nurse and the paediatric
surgery nurse have responsibility for the same patients in
ward 3. It would be less work to specialise the ward 3
paediatric nurse instance than to derive a new paediatric
surgery nurse role class from the paediatric nurse role class,
create an instance from it and set all the target domains of
the policies to ward 3. However it is not clear that
supporting too many different forms of inheritance is a
good thing as it makes the model more difficult to
understand, and the support tools more complicated.
Another problem, is that the surgical nurse may inherit
redundant obligations from the paediatric nurse in ward 3
e.g. they may both end up with obligations to administer
analgesics (see section 3). This may be an erroneous
specification in that responsibility has been given to two
people to perform the same task in the same circumstances.
A solution would be to have a subdomain in ward 3 for
patients who have recently undergone surgery for whom
the surgical nurse has responsibility.

Specialised
nurse

surgical nurse

nurse

paediatirc nurse

Paediatric
surgical nurse

instantiation

Ward 3
paediatric nurse

Ward 3 paediatric
surgical nurse

Role Instances
Ward 3

Figure 3 Instance and Class Inheritance

Our conclusion is that there is a definite requirement for
class inheritance but we are not convinced of the need for
instance inheritance. Further evaluation of the requirement
for different roles with shared responsibility for the same
targets is required.

4. Conclusions

Although RBAC is a subset of RBM, their role models are
different. RBAC roles are an extension of existing access
control mechanisms while RBM roles are derived from
organisational roles and include duties as well as access
rights. RBM roles are created from role classes rather than
from other instances, to cater for the many similar roles in
an organisation.

Obligation policies are essential for specifying security
management actions to be performed periodically or
triggered by events as well as the general duties related to
the “need to do” aspects of roles. However there is a need
to define a protocol for co-operation between multiple users
assigned to a RBM role e.g. whether only one performs the
obligation actions or all must perform the action. Our
current approach is to assume only one object in the role
performs actions but we may need a means of specifying
other application specific cooperation protocols.

The definition of role classes in RBM and the
parameterisation of instances with specific target objects is
possible because our policies distinguish between the
access method that is authorised and the target object on
which the method is authorised. This does not seem to be
feasible in RBAC since permissions include the target
objects. The class based inheritance in the RBM framework
provides reuse and specialisation of role specifications. The
RBAC object inheritance model specifies a set/subset
relationship between role instances and optimises the use of
access rights. It is not clear whether both approaches are
needed. We need to identify application requirements for
multiple derived roles pertaining to the same target objects
and to what extent duties differ between these roles.

Our current RBM framework consists of an editor for
defining policy templates and instances plus tools for
disseminating polices to access control or manager agents
which interpret them. We have a prototype tool for
specifying role classes and instances offering a graphical
interface which hides the underlying entry/reference
structure. In addition the tool caters for the definition of
relationships between roles. We have also developed tools
for detection of positive/negative conflicts between policies
and detection of obligation policies specifying actions for
which there is no explicit authorisation (Lupu1997a). We
are currently experimenting with tools for checking the
consistency of roles based on structural constraints e.g.
separation of duties and concurrency constraints. These
tools have been implemented using a CORBA based
distributed programming environment.

5. Acknowledgements

We gratefully acknowledge financial support for the
EPSRC RoleMan project (GR/K 37512), from British
Telecom for the Management of Multimedia Networks
Project and Fujitsu for the Policy based
Telecommunication Management Project. We also
acknowledge the contribution of our colleagues to the
concepts described in this paper.

6. References

Biddle, B. J. (1979). "Role Theory, Expectations Identities
and Behaviour", Academic Press Inc.

DSOM (1994). Proceedings of the IEEE/IFIP Distributed
Systems operations and Management, Toulouse
(France).

Gligor, V. (1995). "Characteristics of Role-Based Access
Control". First ACM/NIST Workshop on Role
Based Access Control, Gaithersburg, ACM Press.

Koch, T. and et al. (1996). "Policy Definition Language for
Automated Management of Distributed Systems",
IEEE 2nd. Int. Workshop on Systems Management,
Toronto (Canada).

Lupu, E. C., et al. (1995). "A Policy Based Role
Framework for Access Control", First ACM/NIST
Role Based Access Control Workshop,
Gaithersburg, ACM Press.

Lupu, E. C. and M. S. Sloman (1997a). "Conflict Analysis
for Management Policies". IFIP International
Symposium on Integrated Network Management
(IM formerly known under the acronym ISINM),
San Diego, Chapman & Hall publishing.

Lupu, E. C. and M. S. Sloman (1997b). "Towards a Role
Based Framework for Distributed Systems
Management", Journal of Network and Systems
Management, 5(1).

Magee, J. N., et al. (1996). Special Issue of IEE/BCS/IOP
Distributed Systems Engineering Journal on
Services for Managing Distributed Systems, 3(2).

Marriott, D. and M. S. Sloman (1996a). "Implementation of
a Management Agent for Interpreting Obligation
Policy", IEEE/IFIP International Workshop on
Distributed Systems Operations and Management,
L’Aquila, Italy.

Marriott, D. and M. S. Sloman (1996b). "Management
Policy Service for Distributed Systems", IEEE
International Workshop on Services in Distributed
and Networked Environments (SDNE 96), Macau.

Parker, T. and C. Sundt (1995). "Role Based Access
Control In Real Systems", First ACM/NIST
Workshop on Role Based Access Control,
Gaithersburg, ACM Press.

RBAC (1995). Proceedings of the First ACM/NIST
Workshop on Role Based Access Control,
Gaithersburg, ACM Press.

Rumbaugh, J. et al. (1991) "Object Oriented Modelling and
Design", Prentice-Hall International.

Sandhu, R. S., et al. (1996). "Role-Based Access Control
Models", IEEE Computer 29(2): 38-47.

Sloman, M. S. (1994). "Policy Driven Management for
Distributed Systems", Journal of Network and
Systems Management , 2(4): 333-360.

Sloman, M. S. and K. P. Twidle (1994b) "Domains: A
Framework for Structuring Management Policy" in
Network and Distributed Systems Management, ed.
Morris Sloman, Addison-Wesley, pp.433-453.

Yialelis, N., et al. (1996a). “Role-Based Security for
Distributed Object Systems”, IEEE Workshops on
Enabling Technologies: Infrastructure for
Collaborative Enterprises (IEEE WET-ICE 96),
Stanford, California.

Yialelis, N. (1996b). “Domain Based Security for
Distributed Object Systems”, Ph.D. Dissertation,
Department of Computing, Imperial College,
London.

