
First International Working Conference on Active Networks, Berlin, Germany, June-July 1999,
Springer-Verlag, LNCS.

Policy Specification for Programmable Networks

Morris Sloman, Emil Lupu

Department of Computing, Imperial College, London SW7 2BZ, U.K.
{m.sloman, e.c.lupu}@doc.ic.ac.uk

Abstract. There is a need to be able to program network components to adapt to
application requirements for quality of service, specialised application dependent
routing, to increase efficiency, to support mobility and sophisticated management
functionality. There are a number of different approaches to providing
programmability all of which are extremely powerful and can potentially damage
the network, so there is a need for clear specification of authorisation policies i.e.,
who is permitted to access programmable network resources or services. Obligation
policies are event triggered rules which can perform actions on network components
and so provide a high-level means of ‘programming’ these components. Both
authorisation and obligation policies are interpreted so can be enabled, disabled or
modified dynamically without shutting down components. This paper describes a
notation and framework for specifying policies related to programmable networks
and grouping them into roles. We show how abstract, high-level policies can be
refined into a set of implementable ones and discuss the types of conflicts which can
occur between policies.

1 Introduction

Networks have to become more adaptable to cater for the wide range of user devices
ranging from powerful multi-media workstations to hand-held portable devices. A
convergence is taking place between telecommunications and computing so networks
are increasingly being used to transport voice, video, fax as well as data traffic. Future
personal digital assistants will include mobile phones and Web-enabled mobile
phones are beginning to appear.

There is a need to reconcile the perspectives of the telecommunication and
computing communities in new dynamically programmable network architectures that
support fast service creation and resource management through a combination of
network aware applications and application aware networks. It is necessary to be able
to dynamically program the resources within a network to permit adaptive quality of
service management, flexible multicast routing from multiple sources for applications
such as video conferencing, intelligent caching and load distribution for Web servers
or to perform compression and filtering when traversing low bandwidth wireless
links. These types of application specific functions need to be dynamically
programmed within the network components in order to support flexible and adaptive
networks. The main objective is to speed up the slow evolution of network services by
building programmability into the network infrastructure itself [1].

There are a number of approaches to supporting Programmable Networks:

Active Networks – the packets traversing the network contain normal data plus
programs which may invoke switch and router operations [2]. Example uses include
setting up multicast routing groups or fusion of data from many different sensors into
larger messages to traverse the network to the data sink. This is essentially
programming at the IP level and is often limited to routing or filtering. It has inherent
security risks which can be alleviated by the use of ‘safe’ languages or executing the
programs in a controlled environment such as an associated processor rather than the
main processor within a network component.

Mobile Agents – agents containing code and state information traverse multiple
nodes within a network in order to perform functions on behalf of users e.g., an email
to voice converter which follows a mobile phone user [3]. This type of programming
is generally associated with hosts or servers connected to the network rather than
switches or routers but could also be used to set up specific routing tunnels [4].

Management Interface – network components provide a management interface
which facilitates a limited form of programming of components by invoking
operations to change their behaviour [5]. This is really provided for the use of
network managers but some operations may be made available to managers of value-
added, third-party service providers or even user applications. For example, there
could be service creation and service operation interfaces to support various virtual
network, multicast or multimedia services. IEEE are standardising an Applications
Programming Interface for Networks [http://www.ieee-pin.org/].

Management by Delegation – is a means of downloading management code to be
executed within network components to perform functions such as complex
diagnostic tests on specific nodes [6]. This is an extension to the Management
Interface approach as it supports remote execution of code rather than just remote
operation invocation. Code delegation is usually performed by network managers but
could be used to load specific filtering or compression code onto an access gateway
on behalf of an application or user. The advent of Java has made it easier to
implement portable ‘elastic agents’ into which code can be loaded dynamically.

Interpreted Policy – there has been recent interest in bandwidth management
policies which specify who can use network resources and services based on time of
day, network utilisation or application specific constraints [7]. Most of the previous
work on policy has been related to management of distributed systems and networks
[8],[9]. Authorisation policies specify what actions a subject is permitted or forbidden
to perform on a set of target objects. Obligation policies specify what actions must be
performed by a subject on a target. Policies can be used to modify the behaviour of
network components so can be considered a ‘constrained’ form of programming [8].

There is no single universal solution to programmability of networks and the
various approaches can be used to perform complementary functions, although there
is some overlap between them as a particular functionality could be implemented
using more than one approach. In addition, these are all very powerful facilities which
can easily destroy the normal working of the network so it is necessary to specify
authorisation policies to define who can program specific components and what
programming operations they can access. The obligation policies are event triggered
rules which result in actions being performed. This can be considered a ‘constrained’
form of programming in that policies can be dynamically modified but can only call
predefined actions. Policies can be used to define the event conditions and constraints

for invocations on a management interface, or loading or executing code in an elastic
agent. Thus, policies are complementary to the other approaches described above.

This paper focuses on the specification of policies for the adaptability and security
needed in programmable networks. Section 2 outlines how objects can be grouped in
domains in order to apply a common policy. Sections 3 and 4 discuss the policy
notation and implementation, followed by some of the conflict detection and
resolution issues. Section 6 introduces roles as a means of grouping policies which
specify the rights and duties of managers. Policies for the configuration and
management of network devices are not specified in isolation but derived from
business objectives and requirements, so section 7 addresses the refinement of
policies from an abstract description to implementable rules. Related work and
conclusions are presented in sections 8 and 9.

2 Domains & Directories

In large-scale systems it is not practical to specify policies for individual objects and
so there is a need to be able to group objects to which a policy applies. For example, a
bandwidth management policy may apply to all routers within a particular region or
of a particular type. An authorisation policy may specify that all members of a
department have access to a particular service. Domains provide a means of grouping
objects to which policies apply and can be used to partition the objects in a large
system according to geographical boundaries, object type, responsibility and authority
or for the convenience of human managers [8], [10]. A domain does not encapsulate
the objects it contains but merely holds references to object interfaces. It is thus very
similar in concept to a file system directory but may hold references to any type of
object, including a person. A domain, which is a member of another domain, is called
a sub-domain of the parent domain. Object and sub-domains may be a member of
multiple parent domains and may have different local names in each one of them. For
example, in Fig. 1, the 2 ‘bean people’ and sub-domain E are members of both B and
C domains, which therefore overlap. Details of domains are described in [8], [10].

D

C

A
B

E

A

B C

D E

Sub-Domains and Overlapping Domains
Domain Hierarchy

(without member objects)

Fig. 1 Domains

Path names are used to identify domains, e.g., domain E can be referred to as
/A/B/E or /A/C/E, where ‘/’ is used as a delimiter for domain path names. Policies
normally propagate to members of sub-domains, so a policy applying to domain B
will also apply to members of domains D and E. Domain scope expressions can be

used to combine domains to form a set of objects for applying a policy, using union,
intersection and difference operators, e.g., a scope expression @/A/B + @/A/C -
@/A/B/E would apply to members of B plus C but not E, and @/A/B ^ @/A/C applies
only to the direct and indirect members of the overlap between B and C. The ‘@’
symbol selects all non-domain objects in nested domains.

An advantage of specifying policy scope in terms of domains is that objects can be
added and removed from the domains to which policies apply without having to
change the policies. However, objects have to be explicitly included in domains. It is
not practical to specify domain membership in terms of a predicate based on object
attributes but a policy can select a subset of members of a domain, to which it applies,
by means of a constraint in terms of object attributes (see section 3).

We have implemented our own domain service but we are redoing this for an
LDAP (Lightweight Directory Access Protocol) directory service [11]. However,
although LDAP supports the concept of an alias as a reference to an object in another
domain, it does not permit objects to be members of multiple directories.

3 Policy Notation

A precise notation is needed for system administrators and (technical) users to specify
the network policies related to the applications or services for which they are
responsible. This notation is the means of ‘programming’ the automated agents in
network components which interpret policy but can also be used to specify higher
level abstract policies or goals which are interpreted by humans or are refined into
implementable policies [12], [13], [14]. Another reason to have a precise notation is
that policies may be specified by multiple distributed administrators so conflicts
between policies can arise. Our notation can be analysed by tools to detect and, in
some cases, resolve conflicts. Implementable policies are directly interpreted by
automated manager and access control agents, which are (potentially) distributed, so
we do not use logical deduction in order to analyse the state of the system.

Authorisation policies define what activities a subject can perform on a set of
target objects and are essentially access control policies to protect resources from
unauthorised access. Constraints can be specified to limit the applicability of both
authorisation and obligation policies based on time or values of the attributes of the
objects to which the policy refers.

x1 A+ @/NetworkAdmin {PolicyObjType: load(); remove(); enable (); disable ()}
@/Nregion/switches

Members of the NetworkAdmin domain are authorised to load, remove, enable or
disable policies in Nregion/switches. The ‘;’ separates permitted actions.

x2 A- n: @/test-engineers {performance_test()} @/routers when n.status = trainee

Trainee test engineers are forbidden to perform performance tests on routers. Note
the use of a constraint based on subject state information

x3 A+ @/Agroup + @/Bgroup {VideoConf (BW=2, Priority=3)} USAStaff – NYgroup
when (16:00 < time < 18:00)

Members of Agroup plus Bgroup can set up a video conference (bandwidth = 2
Mb/s, priority = 3) with USA staff except the New York group, between 16:00 and
18:00. Note the use of a time-based constraint.

Obligation policies define what activities a manager or agent must or must not
perform on a set of target objects. Positive obligation policies are triggered by events.

x4 O+ on video_request(bw, source) @/USGateway { router:bwreserve (bw);
log(bw, source)} @/routers/US

This positive obligation is triggered by an external event signalling that a video
channel has been requested. The object in the USGateway domain first does a
bwreserve operation on all objects of type router in the /routers/US domain and
then logs the request (assume to an internal log file) i.e., operations specified in a
policy can be on external objects or internal operations in the agent. The ‘;’ is used
to separate a sequence of actions in a positive obligation policy.

x5 O- n:@/test-engineers { DiscloseTestResults() } @/analysts + @/developers
when n.testing_sequence == in-progress

This negative obligation policy specifies that test engineers must not disclose test
results to analysts or developers when the testing sequence being performed by that
subject is still in progress, i.e., a constraint based on the state of subjects.

The general format of a policy is given below with optional attributes within brackets.
Some attributes of a policy such as trigger, subject, action, target or constraint may be
comments (e.g. /* this is a comment */), in which case the policy is considered high-
level and not able to be directly interpreted.

identifier mode [trigger] subject ‘{’ action ‘}’ target [constraint] [exception] [parent] [child] [xref] ‘;’

The identifier is a label used to refer to the policy. The mode of the policy
distinguishes between positive obligations (O+), negative obligations (O-), positive
authorisations (A+) and negative authorisations (A-).

The trigger only applies to positive obligation policies. It can specify an internal
timer event using an at clause, as in x5 above, or an every clause for repetitive events.
An external event is defined using an on clause, as in x4 above, where the
video_request event passes parameters bw and source to the agent. These events are
detected by a monitoring service. The policy notation only specifies simple events as
a generalised monitoring service can be used to combine complex event sequences to
generate simple events [16].

The subject of a policy, defined in terms of a domain scope expression, specifies
the human or automated managers to which the policies apply. The target of a policy,
also defined in terms of a domain scope expression, specifies the objects on which
actions are to be performed. Security agents at a target’s node interpret authorisation
policies and manager agents in the subject domain interpret obligation policies.

The actions specify what must be performed for obligations and what is permitted
for authorisations. It consists of method invocations or a comment and may list
different methods for different object types. An authorisation policy indicates the set
of operations which are permitted or forbidden while the multiple actions in a positive
obligation policy are performed sequentially after the policy is triggered.

The constraint, defined by the when clause, limits the applicability of a policy, e.g.
to a particular time period as in policy x3 above, or making it valid after a particular
date (when time > 1/June/1999). In addition, the constraint could be based on attribute
values of the subject (such as in policy x2 above) or target objects. In x2, the label n,
prepended to the subject, is referenced in the constraint to indicate a subject attribute.

An action within an obligation policy may result in an operation on a remote target
object. This could fail due to remote system or network failure so an exception
mechanism is provided for positive obligations to permit the specification of
alternative actions to cater for failures which may arise in any distributed system.

High-level abstract policies can be refined into implementable policies. In order to
record this hierarchy, policies automatically contain references to their parent and
children policies. In addition, a cross-reference (xref) from one policy to another can
be inserted manually, e.g., so that an obligation policy can indicate the authorisation
policies granting permission for its activities (see Section 7).

4 Policy Implementation Issues

The policy service provides tool support for defining and disseminating polices to the
agents that will interpret them. Policies are implemented as objects which can be
members of domains so that authorisation policies can be used to control which
administrators are permitted to specify or modify policies stored in the policy service.

Monitoring Service

Register

Policy
Editor

Enable
policy Policy Service

Notify (event)

Manager
Agent

O+/ O- policies

Target Objects
Domain

Perform actions

A+/A- policies

Domain Service

Query
subjects &

targets

Query
targets

Fig. 2 Policy Enforcement

An overview of the approach to policy enforcement is given in Fig. 2. An
administrator creates and modifies policies using a policy editor. He checks for
conflicts, and if necessary modifies policies to remove the conflicts (see Section 5).
Authorisation policies are then disseminated to target security agents as specified by
the target domains and obligation policies to manager agents as specified by the
subject domains. Policies may be subsequently enabled, disabled or removed from the
agents. Manager agents register with the monitoring service to receive relevant events
generated from the managed objects. On receiving an event which triggers one or
more obligation policies, the agent queries the domain service to determine target
objects and performs the policy actions, provided no negative obligations restrain it.

Fig. 3 shows a policy agent which interprets obligation policies. It is application
specific in that there can be agents for quality of service management which are
different from those used for security management, for example. Each class of agent
has predefined management functions which are accessible from the policies. These
functions may result in operations on remote target objects or can be internal to the
agent. The functionality of an agent could be dynamically modified using
Management by Delegation techniques to load new code, but this has not been

implemented in our prototype. More details on the syntax, and implementation issues
of the policy service can be found in [12], [13], [14].

Java Interpreter
CORBA interaction service

Load,
Remove,
Enable,
Disable,
policies

Policies

Application specific,
predefined management functions

Events

Operations
on target
objects

Generic
Interface

Application
Specific
Interface

Fig. 3 Obligation Policy Agent

5 Policy Conflicts

In any large inter-organisational distributed network, policies are specified by
multiple managers, possibly within different organisations. Objects can be members
of multiple domains so multiple policies will typically apply to an object. It is quite
possible that conflicts will arise between multiple policies. There are two types of
conflicts which we will consider – modality and semantic conflicts [15].

Modality Conflicts − are inconsistencies which may arise when several policies
with modalities of opposite sign refer to the same subjects, actions and targets.
Therefore, these conflicts can be determined by syntactic analysis of polices. There
are three types of modality conflicts:

� O+/O- subjects are both required and required not to perform the same actions
on the target objects.

� A+/A- subjects are both authorised and forbidden to perform the actions on the
target objects.

� O+/A- subjects are required but forbidden to perform the actions on the target
objects.

Note that O-/A+ is not a conflict, but may occur when subjects must refrain from
performing certain actions as specified by a negative obligation, even though they are
permitted to perform the actions, as in policy X5 in Section 3.

It is possible to resolve these conflicts automatically by assigning a priority to
individual policies, but meaningful priorities are notoriously difficult for users to
assign and may result in arbitrary priorities which do not really relate to the
importance of the policies. Inconsistent priorities could easily arise in a distributed
system with several people responsible for specifying policies and assigning
priorities. Our approach has been to permit more specific policies to have precedence
– a policy applying to a sub-domain overrides more general policies applying to an
ancestor domain. Our tools analyse the policies within a domain to indicate conflicts
for an administrator to resolve and allow precedence to be enabled or disabled. We
are investigating techniques for specifying other forms of precedence – in some
situations negative authorisation policies should have precedence over positive ones,

more recent policies over older ones or perhaps policies applying to short time-scales
over longer (background) ones.

Semantic Conflicts and Metapolicies − while modality conflicts can be detected
purely by syntactic analysis, application-specific conflicts arise from the semantics of
the policies. For example, a conflict may arise if there are two policies which increase
and decrease bandwidth allocation when the same event occurs. Similarly, policies
related to differentiated services which define to which queues specific types of
packets should be allocated, must not result in 2 different queues to which the packet
should be allocated. These conflicts for resources or conflicts of action are application
specific and cannot be detected automatically without a specification of what is a
conflict i.e., the conflicts are specified in terms of constraints on attribute values of
permitted policies. We call these constraints metapolicies as they are policies about
which policies can coexist in the system or what are permitted attribute values for a
valid policy.

6 Roles

Organisational structure is often specified in terms of organisational positions such as
regional, site or departmental network manager, service administrator, service
operator, company vice-president. Specifying organisational policies for people in
terms of role-positions rather than persons, permits the assignment of a new person to
the position without re-specifying the policies. The tasks and responsibilities
corresponding to the position are grouped into a role associated with the position
(which is essentially a static concept in the organisation). The position could
correspond to a manager or a user of a network or services. A role is thus the position,
and the set of authorisation and obligation policies defining the rights and duties for
that position. Organisational positions can be represented as domains and we consider
a role to be the set of policies (the arrows in Fig. 4) with the Position Domain as
subject. A person or automated agent can then be assigned to or removed from the
position domain without changing the policies as explained in [17].

 Position Domain
(Subject)

Target Domains &
Managed Objects Role Authorisation &

Obligation Policies

Role

Fig. 4 Management Roles

Although the concept of role was originally defined to apply to people, it can also
be used to group the authorisation and obligation policies that apply to a particular
type of network component as a subject e.g., an edge-router that interconnects the
local network to the service provider or a core-router providing a backbone service. It
is possible that similar hardware and software is used for both core and edge routers
and so assigning a particular router to a role will define the set of policies which are

loaded onto that router. Another example is a mobile agent which is assigned to a
visiting agent role when it is received at a network node. This could specify what
resources it can access and what actions it must perform on arrival and departure.

There are additional extensions to the concepts of roles described in [18], [19].
These define inter-role relationships in terms of interaction protocols and concurrency
constraints on the ordering of obligation actions. Furthermore, an object model for the
specification of policy templates and role classes which uses inheritance to implement
specialisation has also been defined. However, these issues will not be discussed
further in this paper.

7 Policy Refinement

High-level abstract policies are often specified as part of the business process and
express requirements from the communication network. These requirements are
specified as management goals which cannot be directly interpreted by automated
components and hence, must be refined into functional policy specifications or be
implemented manually by human managers. We express abstract policies in the same
notation as implementable policies, however the policy attributes (subjects, actions,
etc.) may be written in natural language. For example, a high-level policy may be
written as:

T1 O+ @/NetworkManagers {/* provide adequate video conference set up */}
@/users/groupA when 14:00 < time < 15:00

Network managers must provide an adequate video conference set up for groupA
users between 14:00 and 15:00.

In order to achieve this goal it is necessary to refine policy T1 into bandwidth
management policies, authorisation policies and further administrative policies to
enable or disable special policies which might apply during these hours. For example:

Administrative policies

T2 O+ at 13:55 @/NetworkManagers { enable() }
@/policies/BandwidthControl + @/policies/QoSmonitoring

T3 O+ at 15:00 @/NetworkManagers { disable() }
@/policies/BandwidthControl + @/policies/QoSmonitoring

Network managers must enable at 13:55 (T2) and disable at 15:00 (T3) special
bandwidth control and QoS monitoring policies.

Authorisation policies

T4 A+ @/Agroup {VideoConf (BW=2, Priority=3)} @/USAStaff
when (14:00 < time < 15:00)

Group A users must be able to set up the video connections (similar to policy x3).

T5 A+ @/NetworkManagers { enable(); disable() }
@/policies/BandwidthControl + @/policies/QoSmonitoring

Network managers are authorised to enable and disable bandwidth control and QoS
monitoring policies.

Bandwidth Control

T6 O+ on req(bw,chanId) edgeRouter {reduceReservation(bw)} channels/chanId
when bw < getReservation(chanId)

Edge routers should decrease the bandwidth reservation on a channel when the
request is for less than the amount currently reserved.

T7 O+ on req(bw, chanId) edgeRouter {increaseReservation(min(bw, x))}
channels/chanId when bw > getReservation(chanId)

Edge routers should increase bandwidth when the request is for more than the
amount currently reserved. However, the amount reserved should not exceed x.

The refinement of abstract policies into implementable ones must be done by
human managers. A positive obligation policy requires related authorisation policies
giving subjects the necessary access rights to perform their tasks. Similarly, the
refinement of an authorisation policy may include obligation policies defining the
measures and counter-measures to be taken in case of security violations. Thus the
refinement of a policy does not preserve the policy modality or necessarily apply to
the same subjects or targets. For example, while network managers are responsible for
ensuring that the adequate quality of service is provided (policy T1), the edge routers
are responsible for performing the bandwidth reservations (T7, T8).

We currently maintain pointers from an abstract policy to the policies, derived
from it, (omitted from the above examples for clarity) but we do not have tools to
support the refinement process. We are investigating the use of requirements
engineering tools and techniques for refinement and analysis of policies.

8 Related Work

There are a number of groups working on policies for network and distributed
systems management [9],[20],[21]. Some of this has been based on our early
proposals for policy notation. Another approach is to define policies using the full
power of a general purpose scripting or interpreted language (e.g., TCL) and load this
into network components. Bos [22] takes this approach to specify application policies
for resource management for netlets, which are small virtual networks within a larger
virtual network. There is considerable interest in the internet community in using
policies for bandwidth management. They assume policies are objects stored in a
directory service [7]. A policy client (e.g. a router) makes policy requests on a server
which retrieves the policy objects, interprets them and responds with policy decisions
to the client. The client enforces the policy by, for example, permitting/forbidding
requests or allocating packets from a connection to a particular queue.

The IETF are defining a policy framework that can be used for classifying packet
flows as well as specifying authorisations for network resources and services [23],
[24], [25]. They do not explicitly differentiate authorisation and obligation policies. A
simple policy rule defines a set of policy actions which are performed when a set of
conditions becomes true. These conditions correspond to a combination of our events
and constraints for obligation policies. Their policy may be an aggregation of policy
rules. They have realised policy conflicts can occur, but have not distinguished
between modality and semantic conflicts nor do they say how conflicts will be
detected. Directories are used for storing policies but not for grouping subjects and

targets. They use dynamic groups which can be specified by enumeration or by
characterisation i.e., a predicate on object attributes. We can achieve this by means of
a constraint on policies within the scope of a domain expression which is a defined
set. Defining a group in terms of an arbitrary predicate can be impractical. For
example, the group of all Pentium II workstations with memory > 128 Mbytes would
require checking millions of workstations on the internet to determine if they are
members of the group, which would not be feasible. They have the concept of a role
which is defined as a label indicating a function that an network device serves. Roles
enable administrators to group the interfaces of multiple devices for applying a
common policy. This is similar to our domains although it is not clear how it will be
implemented. There is a restriction that their role can be associated with a single
policy (which can be as complex as necessary). We think this is very restrictive and
unnecessary. In the IETF approach a policy enforcement point queries a decision
point to find out which policies apply. Our notation, with explicit subjects and targets
permits us to propagate policies to where they are required so we combine decision
and enforcement at subjects for obligation policies and targets for authorisation
policies. Our policy service disseminates policies to the relevant distributed agents.

9 Conclusions

We have shown that our management policy and role approach, is also very useful
for programmable networks. A clear specification of authorisation policy is essential,
whatever implementation techniques are being used. The obligation policies can be
used to ‘program’ the network components or combined with other programming
approaches to define the events and constraints for performing actions.

In any large-scale system, conflicts between policies will occur. We distinguish
between modality and semantic conflicts and indicate an approach for specifying what
is a semantic conflict as a metapolicy. Where possible, conflicts should be detected at
specification or load-time (c.f. type conflicts detected by a compiler), although some
conflicts can only be detected at run-time.

We have also shown the use of roles for specifying policies for network managers,
service users and network components. We have a prototype toolkit which can be
used to specify roles and policies. It also performs static analysis for conflicts. We are
currently working on extending this to run-time analysis and are investigating the
applicability of requirements engineering approaches for refining high level goals into
detailed specifications to policy refinement. They also have more sophisticated
consistency analysis tools which may be applicable.

Acknowledgements

We gratefully acknowledge financial support from the Fujitsu Laboratories and
British Telecom and acknowledge the contribution of our colleagues to the concepts
described in this paper – in particular Nicholas Yialelis and Damian Marriott.

References

1. Wetherall D., Legedza U., Guttag J.: Introducing New Internet Services: Why and How.
IEEE Network, Special Issue on Active and Programmable Networks, July 1998.

2. Tennenhouse D, Smith J, Sincoskie D, Wetherall D, Minden G.: A survey of Active
Network Research. IEEE Communications Magazine, 35(1):80-86, 1997.

3. Bieszczad A, Pagurek B, White T.: Mobile Agents for Network Management. IEEE
Communications Surveys, 1(1), 1998. www.comsoc.org/pubs/surveys.

4. de Meer, et al.: Agents for Enhanced Internet QoS. IEEE Concurrency 6(2):30-39, 1998.
5. Lazar, A.: Programming Telecommunication Networks. IEEE Network, Sep/Oct 1997, 8-18
6. Goldszmidt, G., Yemini Y.: Evaluating Management Decisions via Delegation. In Hegering

H, Yemini Y (eds.) Integrated Network Management III, Elsevier Science Publisher (1993),
247-257.

7. 3COM: Directory Enabled Networking and 3COM’s Framework for Policy Powered
Networking. from http://www.3com.com/,1998.

8. Sloman, M.: Policy Driven Management for Distributed Systems. Journal of Network and
Systems Management, 2(4):333–360, Plenum Press, 1994.

9. Magee J., Moffett J. (eds.): Special Issue of IEE/BCS/IOP Distributed Systems Engineering
Journal on Services for Managing Distributed Systems, 3(2), 1996.

10. Sloman, M., Twidle, K.: Domains: A Framework for Structuring Management Policy. In
Sloman M. (ed.): Network & Distributed Systems Management. Addison-Wesley (1994),
433–453.

11. Whal, M., Howes, T.,Kille S.: Lightweight Directory Access Protocol (v3), IETF RFC
2251, Dec. 1997. Available from http://www.ietf.org

12. Marriott, D., Sloman, M.: Management Policy Service for Distributed Systems. 3rd IEEE
Int. Workshop on Services in Distributed and Networked Environments, Macau, 2–9, 1996.

13. Marriott, D., Sloman, M.: Implementation of a Management Agent for Interpreting
Obligation Policy. IEEE/IFIP Distributed Systems Operations and Management Workshop
(DSOM’ 96), L’Aquila (Italy), Oct. 1996.

14. Marriott, D.: Management Policy for Distributed Systems. Ph.D. Dissertation, Imperial
College, Department of Computing, London, UK, July 1997.

15. Lupu, E., Sloman, M.: Conflicts in Policy-Based Distributed Systems Management. To
appear in IEEE Trans. on Soft. Eng., Special Issue on Inconsistency Management, 1999.

16. Mansouri-Samani M., Sloman, M.: GEM: A Generalised Event Monitoring Language for
Distributed Systems. IEE/BCS/IOP Distributed Systems Engineering, 4(2):96-108, 1997.

17. Lupu, E., Sloman, M.: Towards a Role-based Framework for Distributed Systems
Management. Journal of Network and Systems Management, 5(1):5-30,Plenum-Press, 1997

18. Lupu E., Sloman, M.: A Policy-based Role Object Model. 1st IEEE Enterprise Distributed
Object Computing Workshop (EDOC’97), Gold Coast, Australia, Oct.97, pp. 36-47.

19. Lupu, E.: A Role-Based Framework for Distributed Systems Management. Ph.D.
Dissertation, Imperial College, Dept. of Computing, London, U.K, July 1998.

20. Koch, T. et al.: Policy Definition Language for Automated Management of Distributed
System. 2nd IEEE Int. Workshop on Systems Management, Toronto, June 1996, 55-64.

21. Wies R.: Policies in Integrated Network and Systems Management: Methodologies for the
Definition, Transformation and Application of Management Policies. Ph.D. Dissertation,
Fakultat fur Mathematik der Ludwig-Maximilians-Universitat, Munchen, Germany, 1995.

22. Bos H.: Application Specific Policies: Beyond the Domain Boundaries. IFIP/IEEE
Integrated Management Symposium (IM’99), Boston, May 1999.

23. Strassner J. Elleson, E.: Terminology for Describing Network Policy and Services, IETF
draft work in progress, Feb. 1999. Available from http://www.ietf.org

24. Strassner J. Elleson, E., Moore, B.: Policy Framework Core Information Model, IETF draft
work in progress, Feb. 1999, Available from http://www.ietf.org

25. Strassner J., Schleimer, S.: Policy Framework Definition Language, IETF draft work in
progress, Nov. 1998, Available from http://www.ietf.org

