
A Flexible Access Control Service for Java Mobile Code

Antonio Corradi*, Rebecca Montanaris, Emil Lupd, Moms Sloman4, Cesare Stefanelli'

Viale Risorgimento 2, 401 36 Bologna, Italy
(acorradi, rmontanari)@deis. unibo. it

4 Department of Computing, Imperial College
180 Queen's Gate, London, SW7 2BZ, UK

(e.c.lupu, m.sloman)@doc. ic.ac.uk

* Dipartimento di Ingegneria, Universit& di Ferrara
Via Saragat I , 441 00 Ferrara, Italy

cstefanelli@ing. unif . it

* Dip. di Elettronica, Informatica e Sistemistica, Universitii di Bologna

Abstract

Mobile Code (MC) technologies provide appealing
solutions for the development of Internet applications. For
instance, Java technology facilitates dynamic loading of
application code Pom remote servers into heterogeneous
clients distributed all over the Internet. However, executing
foreign code that has been 1oadedfi.om the network raises
signixcant security concerns which limit the diffusion of
these technologies. Substantial work has already been done
to provide security solutions for protecting both hosting
nodes and mobile code. For example, the Java security
architecture evolvedfiom a rigid sandbox model to a more
flexible solution where downloaded code can perform any
kind of operations, depending on its source location and
signature. However, the most widespread security solutions
for MCplatforms today do not support the sophisticated
security policies required in modern inter-organisational
environments. This requires expressive languages to
specifi the policy and flexible mechanisms for policy
implementation which cater for code mobility. This paper
shows how access control policies for MC based
applications can be specified in a concise and declarative
language called Ponder and how these policies can be
implemented within the Java security architecture.

1. Introduction
The development of configurable, scalable and
customisable applications and services in open, distributed,
and heterogeneous systems, such as the Internet, has
motivated the exploration of flexible execution models

based on mobile entities. Remote Evaluation, Code On
Demand and Mobile Agents (MA) propose the migration of
code and data over the network, to overcome some of the
limitations of the traditional client/server model [l] [2] [3].
In particular, programming paradigms based on code
mobility permit the dynamic relocation of application code
between network nodes to achieve flexibility, performance
optimisation, load balancing, and to improve bandwidth
utilisation. These Mobile Code (MC) techniques have
already demonstrated their potential in several application
areas, such as distributed information retrieval, network
management [4], and mobile computing.

Any application scenario requires adequate answers to
the security issues raised by the adoption of the MC
technology in the global and untrusted Intemet. One of the
main security concem is the protection of hosting nodes
against illegal accesses and leakage of information caused
by the dynamic injection of potentially malicious mobile
code by untrusted users. Only the design and development
of comprehensive access control frameworks can ensure
that incoming code does not access information without
permission, does not cause a denial of service to other
authorised entities, and does not deliberately interfere with
code from other users. However, comprehensive access
control solutions for MC based applications are not readily
available due to the complexity of the access control
decision task.

The complexity derives from both static and dynamic
considerations. On the one hand, it is mandatory to consider
static attributes, such as the identity of the source code
implementor, the host from where the code was loaded, or
the identityhole of the principal on behalf of whom the

1063-9527/00 $10.00 0 2000 IEEE

L

356

http://ic.ac.uk

mobile code is executing. On the other hand, it is also
necessary to take into account the dynamic attributes
relating to the current context in which the mobile code
operates. The MC may be granted different permissions
depending on the current time, the current application state,
or the state of the resources that the code is accessing.

There are already several practical techniques to control
and confine the interactions between mobile code and
hosting nodes. Type-safe languages can be exploited to
determine whether the incoming code respects safety
properties, such as address space confinement 151.
Sandboxing techniques can be used to rigidly limit the
scope of the code while executing [6] and have evolved to
propose flexible solutions [7]. However, many of the
current techniques have no clear separation between
policies and implementation details. In addition, these
techniques provide control decision on the basis of
individual or group identity alone, and do not consider
dynamic attributes related to time or to the state of mobile
agents and of resources.

Several researchers have recently focused on the
development of languages to specify authorisations and to
overcome the lack of expressiveness of the most widely
deployed access control mechanisms [SI, [9] , [lo]. A
language-based approach can offer a clear separation
between policy specification and enforcement and can
flexibly accommodate complex MC control requirements.

This paper proposes an access control service for Java
based MC applications [111 that integrates an expressive
authorisation language, called Ponder [101, with flexible
mechanisms for the enforcement of policy specifications.
The Ponder language is exploited for its suitability and
simplicity to model the variety of MC access control
requirements that depend on both code and application-
dependent attributes. Our access control service permits to
decouple the applications from authorisation controls, thus,
improving application development and reconfiguration
and facilitates the update of authorisation policy to
accommodate evolving access control requirements. In
particular, the paper describes the mapping of a subset of
the Ponder language for expressing authorisation policy
into Java components. The paper also presents several
security components that we implemented to augment the
Java security architecture in order to enforce both static and
dynamic access controls. In addition, the paper outlines
how the key features of the current Java security model can
facilitate the mapping of Ponder statement into enforceable
Java policies.

2. How to Control Mobile Code
This section reviews some of the research proposals to
control MC behaviour and examines solutions aimed at
ensuring the production of safe MC during the code
development phase, as well as mechanisms for enforcing
access controls during code execution. Furthermore, we
present some of the languages for MC authorisation and
filtering, emphasising that only the integration of language-
based approaches with flexible mechanisms can provide a
comprehensive answer to the control requirements typical
of complex MC applications.

“Safe” programming languages can be used for mobile
code development to enhance safety by enforcing strong
typing, restricted memory-reference manipulations, and
runtime-supported memory allocation and deallocation [5].
Another technique to develop safe MCs is the Proof
Carrying Code which associates mobile code with a proof
of its correct behaviour that the hosting node can validate at
code reception [121. However, solutions that depend only
on development-time controls cannot address the security
requirements relating to dynamic state information needed
in MC applications.

Run-time access control mechanisms are also needed to
strengthen the control of MC behaviour and limit access to
particular resources. The early sandboxing technique is a
typical example [6]. However, the rigidity of the sandbox
model along with its lack of separation between security
policies and mechanisms makes it inadequate to build
complex MC-based applications. Thus, enhancements to
this technique have been implemented in the JDK 1.2
security architecture which introduces fine-grained,
extensible access control structures for a wide range of
applications and separates the enforcement mechanism
from the security policy statement [7]. However, JDK 1.2
provides support only for traditional access control lists, so
more sophisticated access controls require further
extensions to this architecture. Another proposal for
controlling the execution of mobile code written in the Tcl
scripting language is the Safe-Tcl security framework
which uses at least two interpreters - one regular for trusted
code and a safe interpreter for untrusted code [5]. When
untrusted code executing in the safe interpreter executes a
command requiring access to a system resource, the trusted
interpreter evaluates whether access should be granted or
denied. The access control architecture proposed in [13],
flexibly controls downloaded executable contents by
allowing application developers to enforce application
access control policies without the need for ad-hoc security
mechanisms. However, this proposal is applicable only to

357

mobile code running within the Lava operating system
environment.

Simple access control lists (ACLs) are generally used to
implement access control in MC applications. However,
ACLs exhibit limitations in enforcing all the types of access
controls necessary in composite MC applications. Complex
access control constraints must be often directly hard-coded
into the applications, thus necessitating reconfiguration,
rebuilding, or even rewriting of application at any policy
change. In addition, application-dependent attributes have
been neglected by most security mechanisms and require
ad-hoc enforcement mechanisms.
There are several research approaches that have proposed
language-based solutions to separate policy from access
control implementation [8], [9], [lo], [14], [15]. Policies
can be dynamically loaded or unloaded from the access
control system to change access control decisions without
affecting its functioning or modifying its implementation.
Logic-based declarative languages have been proposed to
support the specification of complex access control policies
that take into account temporal and application-dependent
dynamic aspects [8], [9], [lo]. The use of logic-based
languages makes policy analysis easier but their
implementation can often encounter decidability problems
and has prohibitive performance costs. Entirely procedural
languages have been developed to restrict MC operations
depending on MC historical behaviour and identity in
addition to common discriminators like the MC source
location or the identitylrole of its user [15]. Other
languages combining procedural and declarative rules can
be exploited to describe both the minimal set of capabilities
the hosting node must grant to enable the incoming MC to
perform its task, as well as the trust conditions to be
evaluated to determine the trustworthiness of an incoming
MC [14].

3. Flexible Access Control
Requirements for Mobile Code

We consider some examples of healthcare applications to
emphasise both the benefits deriving from the exploitation
of MC technologies in this domain as well as the need for
advanced access control. In this paper we will focus on a
particular type of code mobility - mobile agents (MA)
which migrate both code and state information. In medical
applications, mobile agents could be exploited for
automating several tasks, such as the retrieval and
processing of patient records matching some specified
criteria for diagnostic or statistical purposes. The retrieval
can be time consuming and complex as patient records may

be dispersed among different heterogeneous information
sources thus requiring the use of automated intelligent
information gathering systems. MA technology exhibits
several features that can be exploited to develop automated
gathering tools. MAS are autonomous thus reducing the
effort required to gather patient information, by allowing
users which launched them to proceed with other tasks until
the required information is brought back. MAS could, for
instance, dynamically determine during the retrieval
process the information sources to be visited and could be
programmed to correlate and filter all the information
retrieved in the visited nodes on the behalf of their
responsible user. In addition, the exploitation of code
mobility significantly improves efficiency by executing the
code close to the information sources to be analysed.

In some healthcare applications there is also a need for
patient records retrieval initiated from mobile systems, such
as ambulances. MAS could be launched by ambulance-
based paramedics attending patients at an accident to
retrieve medical records relating to drug allergies or
relevant medical history from hospital or clinic database.
The asynchronous interaction model of MAS can simplify
patient record retrieval through the potentially unreliable,
intermittent and low-bandwidth connections between the
ambulance and the information databases and thus improve
the fault tolerance of retrieval tasks.

All medical applications require strict controls on the
interactions between MAS and medical databases due to the
sensitivity of the information. For instance, consider the
case of MAS sent by hospital personnel to retrieve
information related to patients affected by sensitive
diseases. In this context, access to patient records cannot be
given to everyone uniformly, but requires differential
policies with information filtering. Access control decisions
must take into account the relationships between the
patients and their physicians, the application context,
timing constraints and mobility attributes, e.g., MA source
location, the current location of MA’s principal, and the
MA’s itinerary. The following requirements could be
specified:

a patient’s primary physician is allowed to read and
modify the patient’s records;
a physician collaborating with the patient primary
physician can read (but not modify) the records only if
the patient has explicitly authorised him;
a hospital nurse can view only the records of patients
currently in the ward where she is on duty, and only
during duty hours.

The high sensitivity of patient records could also call
for policies limiting MAS access on the basis of their
mobility attributes. For instance, a hospital policy could

358

authorise one MA acting on the behalf of the primary
physician to have full visibility to patient records if its
itinerary only contains nodes intemal to the hospital, while
it could restrict access when the MA will also visit external
nodes. This policy could be required to avoid the leakage of
critical information in domains where the hospital has no
control on how patient information is processed, stored and
possibly duplicated. Similar considerations apply to MAS
running on the behalf of hospital nurses.

This example emphasises the need for a comprehensive
access control architecture that caters for both the
specification of complex MC access control policies and an
adequate run-time enforcement. The language support is
essential for modelling a wide range of MC access control
requirements and for abstracting policy definition from a
particular MC application. In the following, we present an
access control service that derives its effectiveness by
exploiting the Ponder language for access control policy
specification in a wide range of MC applications. The
service comprises a set of flexible and extensible policy
enforcement mechanisms targeted at supporting an
automatic mapping of high level access control policy
specifications into implementable policies.

4. The Ponder Language for Flexible
Access Control Policies

Our access control service exploits the Ponder language for
policy specification as it provides: expressiveness to model
the sophisticated authorisation policies for MC applications
requiring role-based access control, simpliciv to ease the
policy definition tasks to administrators with different
degrees of expertise and to ensure a mapping of Ponder into
implementable policies for various security aware platforms
and anaZysabili?y to allow the detection of possible
conflicts of policy specifications [16]. We limit our
description of Ponder only to those concepts which are
necessary for the understanding of the paper. For more in-
depth presentations please refer to [lo].

The main motivation for this language is to specify
policies that are interpreted by components in the system.
The policies can then be easily modified in order to change
the behaviour of the system without re-implementation of
the components. Ponder is a declarative, object-oriented
language for specifying different types of policies, for
grouping policies into roles and relationships, and then
defining configurations of roles and relationships as
management structures. A policy is defined as a rule
governing the choices in behaviour of the system. Ponder
can be used to specify security policies with role-based

access control, as well as general-purpose management
policies. The fundamental policy types in Ponder are
obligations and authorisations. This paper focuses on the
implementation of authorisation policies although
obligations are also needed in a security environment to
specify pro-active actions to be taken in response to failures
or security violations. Although it is a typed language,
Ponder offers a high degree of flexibility by supporting
parameterisation of any parts of a specification.

4.1. Authorisations
In Ponder, a policy expresses a relationship between a
domain of subjects and a domain of (target) managed
resources. The subject of a policy determines the entities
which are granted permissions to perform actions on the
target resources. For example, the following policy
specifies that primary physicians are permitted to read and
modify their patients’ records:
auth+ RecordAccess 1

subject s = primaryjhysicians;
target r = patient-records;
action view, modify;
when member (s , r. caringghysicians 0) ;
I

Both subject and target refer to domains of objects i.e.,
groups of objects such as those which exist in directory
structures e.g., LDAP, X500. Actions refer to method
invocations on the target objects for which permissions are
granted. The constraint restricts access only to the caring
physicians of a given patient.
Ponder permits the specification of policy types which can
then be instantiated with context-specific parameters. For
example, the policy type corresponding to the policy above
could be written as follows and instantiated for different
physicians and patient records in different hospitals. Note,
however that Ponder permits any component of a policy
declaration to be specified as parameter of the type,
including the constraints. This provides greater flexibility
and expressiveness as instances created from policy types
can be customised in terms of the conditions in which they
apply as well as in terms of the objects they apply to.

tme
auth+ RecordAccess (subject s , target t) {

action view, modify ;
when
I

member (s,r. caringjhysicians 0) ;

i n s t
auth+ rl = RecordAccess(hospitall/physicians,

hospi tall/records) ;
r2 =
RecordAccess(hospitalZ/paediatricians,

hospi tal2/child-records) ;

359

In the case of mobile code, the advantage of specifying and
enforcing such constraints is that access control decisions
are made not only according to subject identity or role but
also according to context information or attributes of the
target objects. Authorisation policy instances are
interpreted and enforced, at the target system, by the Java-
based components described in section 5. Although, Ponder
permits the specification of negative authorisation policies
(prohibitions) their implementation in Java remains to be
investigated.

4.2. Filtering
Defining permissions in terms of the actions that subjects
are authorised to perform is not sufficient in some cases. As
patient record confidentiality is paramount it is necessary to
restrict disclosure of information when the information
might end up in untrusted environments. For example, the
hospital policy described in section 3 authorises one MA
acting on the behalf of the primary physician to have full
visibility of patient records if its itinerary contains only
nodes intemal to the hospital, while it restricts access when
the MA visits extemal nodes. In both cases the same action
is performed in order to access the patient's records.
Therefore, if the MA itinerary also contains extemal nodes,
it is necessary to filter-out any identifying or sensitive
information from the result parameters. For example, the
records might be anonymised by removing the patient's
name and current address as shown below.

tme

I
auth+ Fil teredRecordAccess (subject s , target t)

action view ()
if containsExternalNodes (s . itinerary) I
resu l t = reject (("PatientName", "Address"),

result) :
I

I

Queries from MAS which do not contain extemal nodes
in their itinerary are left unmodified while queries from the
others are filtered by applying the reject function to the
result. In Ponder, filters specify optional transformation of
input and output parameters, and result of an action. They
may transfodselect the information that the policy subject
can access or the result of the invocation. Filters are used
only for positive authorisation policies as no transformation
needs take place if the action is forbidden.

4.3. Policy Groups and Roles
Policy groups are introduced in Ponder in order to structure
the specifications, group those policies that need to be
instantiated together and provide a means to share

declarations and constraint specifications between the
policies of the group. Meta-Policies, i.e., constraints on the
set of permissible policies can also be applied to the
policies of a group.

Ponder can also be used to specify role-based access
control (RBAC). In RBAC models, the access control
decision depends on the roles that users take on as part of
an organisation rather than on the individual users. In the
model presented in [17] roles are created according to the
functions performed in a company, permissions are granted
to the specified roles and users are assigned to roles on the
basis of their specific job responsibilities. The main
objectives of M A C models are to facilitate the
manageability of access control policy and to simplify the
dynamic handling of users and privileges: users can be
assigned to or removed from roles dynamically without
changing the permissions contained in the role. This is
essential in an environment such as a hospital where
different persons may be assigned to the nurse role in a
ward at different times. It is also useful to define the set of
rights as a role within a host, to which a mobile agent is
assigned.

Although Ponder permits the specification of role-based
access control it differs in some respects from the model
presented in [171: Ponder roles are defined in terms of both
obligations as well as authorisations. In Ponder, a role is, in
essence, a set of obligation and authorisation policies which
have the same subject. It defines the rights and duties
associated with positions inside an organisation where
rights are specified as authorisation policies and duties are
specified as obligation policies. In particular, [181 discusses
in more detail the differences and similarities between the
two models.

Ponder role types can be defined, specialised and
instantiated. For example, the role of a surgery nurse can be
written as below. Note that since all the policies in a role
share the same subject, the subject is not specified as part
of each individual policy.

type
role surgery-nurse (ward) extends nurse (ward) (
constraint

workHours = time.between (0800, 1700) :
attendedgatient (p) = member (p, ward) ;

ins t
auth+ nurse-access (

action view (p) ;
target patient-records;

when workHours and attendedjatient (p);
I

. . .
I

360

The surgery-nurse role type extends the nurse role type
and therefore inherits all its permissions when instantiated.
Furthermore, the surgery-nurse role type may add
additional rights and duties specific to this function. The
role declares two constraints for the working hours and to
determine whether a patient is currently in the ward for
which the nurse is responsible. These constraints are used
in the policy granting the nurse the permission to view
patient records but may also be used in any of the other
policies of the role.

In addition to roles, Ponder also caters for the
specification of relationships which group the rights and
duties of roles towards each other and with regards to
shared resources. Relationships may also be used to define
interaction protocols governing the exchanges of messages
between the entities assigned to the roles. While this has
been investigated in the past [19], it has not yet been
included in the current version of Ponder. Management
structures define configurations of roles and relationships
within a particular domain. They can be used to define
groups of users or MCs that collaborate with each other
such as organisational units, teams or departments.

5. A Flexible Access Control Service
for Java Mobile Code

We have realised a flexible access control service for MC
applications that exploits Ponder policy specifications and
provides their enforcement in a Java-based framework. Java
was chosen because it provides an extensible security
architecture and is widely used in MC platforms as it
provides code mobility, platform independence and
integration with the Web and the Internet [7]. Our access
control service consists of the following components:

Policy Specification Component (PSC): provides
administrators the necessary support for specifying
Ponder policies and comprises a wide range of
specialised tools for policy editing, browsing and
analysis as the following sections will detail.
Policy Retrieval Component (PRC): is responsible
for collecting policies relating to a MA and installing
them in the execution environment of the policy
targets. Some of the specified policies may be part of
the state information brought with the MA when it
arrives e.g., in the form of certificates defining its
rights. Others may be distributed at policy specification
or update time to the host as a role to which the mobile
agent will be assigned on arrival.
Permission Checking Component (PCC): receives
the access requests to protected resources from the MA

and evaluates the policies applying to the MA,
retrieved by the PRC, to see if access can be granted
depending on both code and application-dependent
attributes. In the example given in section 3, a MA can
read patient records only if it is assigned to the nurse
role, if its access request is within working hours and if
the patient is currently in the nurse’s ward. In
particular, the PCC needs to collect all data required
for the permission checking from relevant objects in
charge of maintaining all information related to the
current application state. If the verification succeeds,
the PCC delegates the Filtering Executor Component
for applying the filters possibly specified in the access
control policy. Otherwise, it denies access to the MA.
Filtering Executor Component (FEC): filters or
transforms the parameters in the method invocation
requested by the incoming MA. In the scenario
previously mentioned, the FEC is responsible for
eliminating patient identity and address details in the
information returned if the MA contains external nodes
in its itinerary.

The implementation of the access control service has
required several extensions to the Java security model to
permit an adequate enforcement of Ponder policy
specifications. All the extensions are aimed at enabling:
0 Ponder policy interpretation in the Java run-time

0

environment;
permission, constraint and filters evaluation.

5.1. The Java Access Control Architecture
This section introduces the Java security framework by
briefly describing its main characteristics and components.
It presents significant features that can be exploited to
facilitate the refinement of Ponder policy specification into
implementable security policies [7], [20]. The Java security
model offers an extensible access control structure which
provides typed access-control permissions and automatic
permission handling mechanisms. In addition, the security
architecture in the JDK 1.2 together with the Java
Authentication and Authorisation model (JAAS) can
provide code-centric access control decisions depending on
code characteristics such as its source, as well as user-
centric access control decisions which take into account the
principal on behalf of which the code is running and the
role to which it is assigned.

The Java security architecture relies on the following
building components for access control enforcement:
0 a Policy object that maintains the internal

representation of specified security policies. Only, one
Policy object can be in effect at any time and all

361

security mechanisms refer to it for enforcing access
controls;
the class loader that provides loaded classes with
separate namespaces to prevent accidental or deliberate
name clashes and associates classes with protection
domains;
the access controller that implements a default access
control algorithm to grant or deny resource access;
the security manager that encodes and evaluates
application specific security policies which extend the
basic ones supported by JAAS.

In more detail, the class loader determines the class
code source identityladdress and ascertains, via the JAAS,
the principal on behalf of which the class is running. At this
stage, the Policy object is consulted and the set of
permissions to be granted to the class is determined via the
getpermissions method of the JAAS package. Once the
class loader has retrieved the permissions granted to the
class it is loading, it creates a protection domain to hold the
permissions set and associates it with the class. In the
default JDK 1.2 implementation permissions are generally
assigned before the class is defined in the Java runtime.

When a security check is invoked, either the access
controller component or the security manager can be in
charge of deciding whether to allow or deny the access. If
the access controller performs this task, it applies its
specific access control algorithm implemented by its
checkpermission method, i.e., all the protection domains
in the current thread execution stack are examined to see if
the requested access is allowed by the permission set. The
final step of the access control checking involves a
comparison between the requested access and the granted
permission set obtained by exploiting the implies method
that each Java permission class must implement. If the
request is granted, the execution continues, otherwise a
security exception is thrown. The advantage of using the
access controller is that it provides a complete access
control algorithm that developers can directly utilise.

On the other hand, if the checkpermission method of
the SecurityManager class is called, there are no guarantees
of a particular access control algorithm. The security
manager normally implements application-specific,
customised access controls. The security manager is
maintained together with the access controller in the JDK
1.2 for both handling security checks according to
particular access control needs and for ensuring backwards
compatibility with earlier versions of Java.

Several feature enhancements are under investigation to
overcome the limitations of the current JDK1.2. There is
the need to provide instant revocation of a granted privilege
immediately after a change in the access control policy. In

the current JDK1.2, the new policy becomes effective only
after its content is refreshed and it applies only to newly
started MAS.

5.2. How to Map Ponder Policies into Java
The Policy Specification Component is designed to provide
the required support to map Ponder policies into Java
policies. To achieve this goal, the PSC is composed of
several modules (see Figure 1). At the upper layer a
graphical policy editor embeds several administrative tools
to facilitate the specification, the browsing and the
structuring of policies. It also includes a policy analysis
tool for the detection of syntactic policy conflicts arising
due the clashes of system administrators requirements. At
the lower level, the Ponder compiler provides the parsing of
policy specifications, the analysis to detect policy semantic
inconsistency and the automatic generation of access
control policies that can be interpreted in the Java
environment.

I I I

Figure 1: The internal layered structure of a PSC.

The Code Generator is the module in charge of
translating Ponder policy types into corresponding Java
classes and Ponder authorisation and role policy instances
into JAAS policy entries.

In particular, the hierarchy of Java role classes is
maintained to support the specialisation of role
specifications: when a new specialised role is defined, its
corresponding Java class is built by extending the Java role
class from which the new role derives. In addition, Ponder
assumes that all policies relating to a role instance are
derived at instantiation time from inherited role
specifications and there is thus no need for instance based
inheritance as in the RBAC model presented in [17].

With regard to Ponder policy instances, Figure 2 depicts
three examples of the mapping from Ponder role instances
into JAAS permissions where permissions can include
filters and constraints.

The first entry grants a MA loaded from locations
internal to the hospital, and with the Primary Physician
role, the permissions to read and modify the
“PatientNameRecord” stored in the c:\patients. directory.
These permissions are granted if the MA responsible user is

362

the patient attending physician. The second entry grants a
MA loaded from any location external to the hospital and
with the Primary Physician role filtered permissions: the
ViewFilter is applied when the MA performs the read
action to delete the “PatientName” and “Address” from the
action result. The third entry grants a MA with the
Surgery-Nurse role a constrained permission: it can read
patient records between OR00 and 17:OO if the records are
related to patients hospitalised in the ward where the MA
responsible nurse is currently on duty.

MA with the Primary-Physician role instance launched
within the hospital:

grant CodeBase ‘‘http://hospital.com”
Principal Ponder.hospital.Role “Primary-Physician” (
permission Ponder.permissions.PonderFilePerm1ssion
“c:\\patients\VatientNameRecord” ‘‘read, modify”

constraint Ponder.constraints.attended-patient(PatientName))

MA with the Primary Physician role instance launched
from outside the hospital:

grant CodeBase “http://extemal-hospital.com”
Principal Ponder.hospital.Ro1e “Primary Physician” {
permission Ponder.permissions.PonderFilePermission
“c:\\patients\VatientNameRecord ‘‘read, modify”

constraint Ponder.constraints.attended-patient(PatientName)
filters Ponder.filters.ViewF1ter “PatientName” “Address”)

MA with the surgery-nurse role instance launched
within the hospital:

grant CodeBase “http:// hospitalsom”
Principal hospital.Role “Surgery-NurseWard3” (

“c:\\patients\VatientNameRecord” “read ”
permission Ponder.permissions.PonderFi1ePermission

constraint Ponder.constraints.workHours “08:OO” “17:OO”
construint Ponder.constraints.attended-patient(PatientName))

Figure 2: Ponder policies mapped into JAAS policy

Figure 2 shows the specification of constraint and filter
clauses followed by the constraint and filter class names
with optional parameters. The constraint class name in the
grant entry specifies the type of constraint, such as timing
constraints, to be checked in order to grant permissions. All
typed constraint classes inherit from a root C o n s t r a i n t
class that has the following constructor and method:

entries

p u b l i c C o n s t r a i n t (S t r i n g name)
p u b l i c a b s t r a c t boolean c h e c k 0

Each Constraint instance is typically generated by
passing one or more string parameters to the constructor
and applies constraint checking according to its

implemented check method. Similar considerations apply to
filter classes.

The intemal representation of Ponder policies in the
Java environment is achieved by an appropriate parsing of
the policy syntax shown in Figure 2. This is based on two
guidelines. Firstly, the default PolicyFile class has been
replaced by an application dependent Policy class that
provides an appropriate getpermissions method for policy
interpretation and correspondent permission assignment.
When the getpermissions method is called, the JAAS
policy file is consulted and the permissions for a particular
grant entry are extracted and instantiated with the target,
action, constraints and filters set to the values specified in
the policy entry. Secondly, an application dependent
hierarchy of permission classes has been defined. As an
example, the PonderFilePermission class replaces the Java
default Filepermission class. Each Ponder permission class
in the hierarchy extends the abstract
java.security.Permission class and maintains constraint and
filter parameters in addition to the typical information on
permission, targets and actions. Furthermore, a Ponder
permission class holds the reference to the default Java
permission it substitutes in order to maintain full
compliance with the permission hierarchy provided in the
default JDKl.2. This ensures the possibility of specifying
and enforcing constrained and filtered policies for existing
applications that use permissions included in the Java
default permission hierarchy. Section 5.4 details how we
ensure constraint checking and filtering for Java default
permissions.

5.3
The enforcement of Ponder policies in the Java
environment comprises the permission assignment when
the mobile agent is loaded and the run-time permission
evaluation when the MA attempts to access a resource.

When an incoming agent is loaded, the class loader of
the current agent execution environment coordinates with
the PRC to retrieve the policies specified for the agent.
Then, all the retrieved policies are inserted into the
appropriate protection domain.

With regards to run-time permission evaluation, a
proxy-based mechanism is exploited for performing all the
required access controls. Incoming agents are not provided
with direct references to resources, but can instead access
proxies that encapsulate resources and offer the same
resource interface. When an agent attempts to access a
resource, the relevant resource proxy intercepts the requests
and determines whether to allow the access depending on
the current access control policies. In particular, the proxy

The Enforcement of Ponder Policies

363

http://hospital.com
http://extemal-hospital.com

coordinates with the PCC and the FEC for the access
control decision. Their functionalities are encapsulated
within the MCAccessController class that provides the
following two methods:

the MCcheckPermission method to perform both

When the proxy is invoked, it calls the
MCcheckPermission method that implements an extended
version of the default Java access control algorithm to
include constraint checking.

The MCcheckPermission method retrieves all the
permissions currently present in the code execution context
and not only compares the permissions granted by the
security policy with the permissions requested by the
incoming agent, but also verifies if the constraints specified
in the policy are satisfied. If the MCcheckPermission
method returns successfully, resource filtering is applied by
calling the MCfil ter method that performs the required
result transformation according to the filtering policies.

permission and constraint checking;
the MCfil ter method for resource filtering.

5.4 Implementation Issues
This section details the extensions to the Java security
architecture required to enable the constraint checking
during the access control decision process.

The MCcheckPermission method is implemented to
invoke the checkPermission method of the
AccessController class that verifies if the code execution
context contains permissions which imply the requested
permission. The implies method of each PonderPermission
is implemented not only to compare permissions, but also
to verify constraints. In essence, “permission p l implies
permission p2” means that if a principal is granted
permission p l , he is automatically granted permission p2 if
the constraints specified for p l are satisfied.

In addition, we have implemented our access control
service to enable constraint checking not only with our
defined Ponder permission hierarchy, but also with the set
of default Java permissions. This allows all pre-existing
applications that use the default Java permission hierarchy
to still benefit from our access control architecture.
Consider an example in which an application MA calls
new(FileInputStream(Fi1eName)). The FileInputStream
constructor provided by the JDK1.2 package is
implemented to verify if the caller has been granted the
permission to read the FileName, i.e., the
FilePermission(“Filename”, read) permission. Note that the
FileInputStream constructor does not call a
checkPermission method with a PonderFilePermission.
This makes it impossible to implement the constraints in a

policy for access to FileName based on the state of the
application or time as the implies method of
Filepermission does not include constraint verification.

A solution to support constraints with default Java
permissions and to enable appropriate constraint checking
is to exploit the customisability property of the Java
SecurityManager class. We have implemented a security
manager that extends the default SecurityManager class to
intercept any call to the checkPermission method with pre-
defined Java permissions as input arguments. The
customised security manager replaces the intercepted call
with a checkpermission call that takes the corresponding
Ponder permission as input. In the example, the
checkPermission(FilePermission(“Filename”, read)) call is
replaced by checkPermission(PonderFi1ePermission
(“Filename”, read)). This ensures constraint checking for
the FilePermission(“Filename”, read).

The use of Java presents several advantages that ensures
the flexibility and effectiveness of our access control
service. The clean separation in the Java model between the
enforcement mechanisms and the security policy statement
allows us to exploit and integrate the Ponder language for
specifying flexible and expressive access controls. In
addition, the Java security model allows for permission
classes with enhanced semantics to cater for constraints,
filters and implied permissions. Furthermore, the separation
between the access control algorithm and authorisation
semantics allows the reuse of the Java access control
algorithm for an enlarged range of application contexts.

Our access control service is not without drawbacks and
still requires further enhancements. The proxy-based
approach introduces the design overhead deriving from the
need of an ad-hoc proxy for any node resource. In addition,
we currently do not provide a dynamic policy update due to
the absence of instant permission revocation in the current
Java security architecture.

6. Conclusions
MC technologies seem to provide promising solutions for
the development of applications in the Internet open,
distributed and heterogeneous scenario. However, many
real application areas, such as healthcare or e-commerce,
require comprehensive and flexible access control solutions
capable of satisfying the security issues raised by code
mobility. We have developed an access control service for
MC-based applications that inherits flexibility and
completeness from the expressiveness of the Ponder
language. This policy specification language has
demonstrated its effectiveness in modelling a wide range of
access control requirements. The exploitation of the Ponder

364

language avoids embedding policy definitions in the
application logic and relieves administrators from the effort
of elaborating ad-hoc access control mechanisms.

The access control service maps Ponder authorisations,
which are high level policies, into low-level access control
policies interpreted by the Java run-time support. The
mapping of Ponder policies into Java exploits the Java
security modules without introducing low-level
modifications to the Java Virtual Machine.

We plan to extend the use of Ponder to model the
authorisations an incoming MC can acquire at arrival, as
well as its duties during execution using Ponder event
triggered obligation policies. In addition, we intend to
implement the corresponding control and enforcement in
Java.

Acknowledgements
This research was supported by the Italian “Consiglio
Nationally delle Ricerche” in the framework of the Project
“Global Applications in the Internet Area: Models and
Programming Environments” and by the University of
Bologna Funds for Selected Research Topics: “An
Integrated Infi-astructure io Support Secure Services“. The
Imperial College work was supported by EPSRC grants
GIUL96103 (SecPol) and GM86109 (Ponds).

References

A. Fuggetta, et al., “Understanding Code Mobility”, IEEE
Transactions on Software Engineering, Vol. 24, No. 5,
1998.
J.W. Stamos, and D.K. Gifford, “Remote Evaluation”, ACM
Transaction on Programming Languages and Systems, Vol.
12, No. 4, 1990.
K. Rothemel, and F. Hohl (ed.), 2nd Intemational
Workshop on Mobile Agents, Springer-Verlag, Lecture
Notes in Computer Science, Vol. 1477, Sep. 1998.
G. Goldszmidt, and Y. Yemini, “Distributed Management
by Delegation”, IEEE 15th International Conference on
Distributed Computing Systems, IEEE Computer Society,
Vancouver, 1995.
G. Vigna, (ed.), “Mobile Agents and Security”, LNCS
1419, Springer-Verlag, 1998.
L. Gong, “Java Security: Present and Near Future”, IEEE
Micro, Vo1.17, N.3., 1997.
L. Gong, “Inside Java 2 Platform Security”, Addison
Wesley, 1999.
S. Jajodia, et. al., “A Logical Language for Expressing
Authorisations”, IEEE Symposium on Security and Privacy,
Oakland, 1997.
V. Varadharajan, et al., “Authorisation in Enterprise-wide
Distributed System A parctical Design and Application”,

14‘h Annual Computer Security Applications Conference,
Scottsdale, 1998.

[lo] N. Damianou, et al., “Ponder: A Language for specifying
Security and Management Policies for Distributed Systems,
V 2.2”, Imperial College Research Report DOC 2000/1,
http://www-dse.doc.ic.ac.uk/policies/ponder. html

[l l] J. Gosling, et al., “The Java Language Specification”,
Addison-Wesley, Manlo Park, 1996.

[I21 G. Necula, “Proof Carrying Code”, 24th ACM SIGPLAN-
SIGACT Symposium on Principle of Programming
Languages, ACM, Paris, 1997.

[13] T. Jaeger, et al., “Flexible control of downloaded executable
content”, ACM Transactions on Information and System
Security, Vol. 2, No. 2, 1999.

[14] M. Blaze, et al., ‘The Role of Trust Management in
Distributed Systems Security”, Secure Intemet
Programming: Issues in Distributed and Mobile Object
Systems, LNCS, 1999.

[I51 G. Edjlali, et al., “History-based Access Control for Mobile
Code”, 5‘h ACM Conference on Computer and
Communications Security, San Francisco, 1998.

[16] E. Lupu, and M. Sloman., “Conflicts in Policy-Based
Distributed Systems Management” IEEE Transactions on
Software Engineering, Vol. 25, No. 6, 1999.

[I71 R. Sandhu, et al., “Role-Based Access Control Models”,
IEEE Computer, Vol. 29, No. 2, 1996.

[18] E. Lupu, and M. Sloman, “Reconciling Role Based
Management and Role Based Access Control”, 2nd ACM
Role Based Access Control Workshop, Fairfax, 1997.

[I91 E. Lupu, “A Role-Based Framework for Distributed
Systems Management”, Ph.D. Dissertation, Imperial
College, Dept. of Computing, London, 1998.

[20] C. Lai, et al., “User Authentication and Authorization in the
Java Platform”, 15th Annual Computer Security
Applications Conference, Phoenix, 1999.

365

http://www-dse.doc.ic.ac.uk/policies/ponder

