
A Policy Deployment Model for the Ponder
Language

N. Dulay, E. Lupu, M. Sloman, N. Damianou
Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ, UK
{nd, e.c.lupu, mss, ncd}@doc.ic.ac.uk

Abstract
Policies are rules that govern the choices in behaviour of a system. Security policies
define what actions are permitted or not permitted, for what or for whom, and under
what conditions. Management policies define what actions need to be carried out
when specific events occur within a system or what resources must be allocated
under specific conditions. There is considerable interest in the use of policies for the
security and management of large-scale networks and distributed services. Existing
policy work has focussed on specification, information models and application-
specific policy enforcement. We address the important goal of providing a general-
purpose deployment model for policies that is independent of the underlying policy
enforcement mechanisms and can be employed in mixed policy environments. In this
paper, we present a deployment model that is object-oriented and addresses the
instantiation, distribution and enabling of policies as well as the disabling, unloading
and deletion of policies. The model defines objects for policies, for domains, and for
policy enforcement agent and outlines the interactions needed between them. The
model also caters for changes in the memberships of domains since such changes
also effect policy enforcement. The model forms part of the run-time support for
Ponder; a new policy language that combines structuring ideas from object-oriented
languages with a common set of policy basic types.

Keywords
Policy Based Management, Security Policy, Policy Specification Language, Policy
Deployment, Policy Lifecycle, Management Domain, Policy Interpreter..

1 Introduction

There is considerable interest in policy based management of large enterprise data
storage systems [20] and quality of service within network components in the
Internet [11]. Policy based management may also provide a means of specifying the
adaptive behaviour in networks to support future ubiquitous and mobile computing
systems [17]. We define policy as a rule governing the choices in behaviour of a
managed system. For such systems, policies provide the flexibility needed for
dynamically modifying the behaviour of a system by changing policies without

0-7803-6719-7/01/$10.00 (c) 2001 IEEE

recoding the management components. In addition to policy based management,
there has been work within different communities for specifying security policy for
controlling access to resources, defining roles related to positions in organisations
and for specifying trust policies related to Web access or for electronic commerce
[8], [10].

Most of the current work on policy based management is focussed on support for
policy specification, information models for the entities to which policies apply and
policy implementation for specific application areas [7], [15]. However there has
been very little work on how to disseminate policies to the entities that will interpret
them and how to deal with dynamic large-scale environments where the set of objects
to which policies apply change, and where the policies themselves need to be updated
to cater for changing requirements. The model also serves as a reference model for
building policy enforcement systems.

In this paper, we present a deployment model that supports the instantiation,
distribution and enabling of policies as well as the disabling, unloading and deletion
of policies. It forms part of the run-time support for Ponder [5] – a new language for
specifying both management and security policies that has evolved over a number of
years from the policy based management work at Imperial College [18]. We assume
an object-oriented view of the underlying distributed system where interaction occurs
through remote object invocations and asynchronous event notifications. Policies
apply to domains of objects, and a policy applying to a domain will propagate to all
objects of that domain including objects of nested subdomains. In our model, both
domains and policies are mapped to objects. This allows policies to be written for the
domain and policy objects in the policy management system leading to model that is
capable of policy self-enforcement.

This paper outlines the deployment model that is needed to implement the Ponder
concepts. We first provide an overview of the types of policies which can be
specified using Ponder (section 2). Following this we present the runtime model that
describes how a policy is implemented by an object that is used to distribute, enable
and otherwise coordinate management actions on the policy in a system (section 3).
Section 4 outlines the runtime agents needed to enforce policy specifications while
section 5 deals with how the model handles the inclusion and removal of managed
objects in the system.

2 Ponder Overview

Ponder is a declarative, object-oriented language [5],[6] for specifying security
policies with role-based access control, as well as general-purpose management
policies for specifying what actions are carried out when specific events occur within
the system or what resources to allocate under specific conditions. Unlike many other
policy specification notations, Ponder supports typed policy specifications. Policies
can be written as parameterised types, and the types instantiated multiple times with
different parameters in order to create new policies. Furthermore, new policy types
can be derived from existing policy types, supporting policy extension through
inheritance.

Session Fourteen Policy-Based Management530 530

Ponder has four basic policy types: authorisations,
obligations, refrains and delegations and three
composite policy types: roles, relationships and
management structures that are used to compose
policies. The dependencies between the various types
are shown in figure 1. Ponder also has a number of
supporting abstractions that are used to define policies:
domains for hierarchically grouping managed objects,
events for triggering obligation policies, and
constraints for controlling the enforcement of policies
at runtime.

2.1 Basic Policies

Basic policies are defined over sets of objects formed by applying set operations,
such as union, intersection and difference to the objects held within domains. Set
operations can be restricted to apply only to the top-level members of a domain, or
applied recursively to sub-domains, including all nested levels of a domain. In policy
specifications, two sets have special significance, the subject set and the target set.
These sets are used to represent the managed objects that the policy operates over.
We use the terms subject and target to mean a single member of the subject set and
target set respectively, and the terms subjects and targets to mean all members of the
subject set and target set respectively.

Authorisations and Delegations

Authorisation policies are designed to protect target objects and are conceptually
enforced by the target objects. In practice, authorisation policy enforcement is
delegated to one or more enforcement agents that intercept actions and perform
checks on whether the access is permitted. In our model, the enforcement agents for
authorisation policies are termed access controllers and typically interface to lower-
level access control mechanisms that really carry out the access control, for example
a firewall protecting the services on its network, an operating system protecting its
resources, or a database manager protecting its databases. An access controller will
normally protect all the targets at its location and enforce all authorisation policies
relating to them.

Ponder supports both positive authorisations that permit an action, and negative
authorisations that forbid an action. Authorisations can be constrained by boolean
expression and essentially handle the common functionality found in existing access
control mechanisms. The treatment of policy conflicts is elaborated in [13]. The
following example gives a flavour of the language. The policy states that all members
of the secretaries domain are permitted to send documents for printing to spoolers in
the colour printers domain, but only between 0900 and 1700 and only if the
document to print is no longer than 10 pages.

Management Structures

Roles Relationships

Basic Policies
Authorisations, Obligations,

Refrains, Delegations

Figure 1: Policy Types

Policy Deployment Model for the Ponder Language531 531

type auth+ printing (subject S, target T, int validfrom, int validto, int maxPages) {
action T.print (document);
when time.between (validfrom, validto) && document.size () <= maxPages;

}

inst auth+ printingpolicy = printing (/secretaries, /printers/colour, 0900, 1700, 10);

Positive authorisations can also specify an authorisation filter that allows the input
and/or result parameters of an authorisation action to be modified. Filters are useful
for where we wish to restrict what information an action is allowed to see or return,
based on the values of the parameters and/or attributes of the subject and target of the
policy, e.g. we can filter the results of a database query to ensure that no sensitive
information is returned.

For delegation, Ponder takes a simple approach whereby a delegation policy can
be written to permit the subjects of an authorisation policy (grantors) to delegate
some or all of their access rights to a new set of subjects (grantees). Effectively,
when a grantor performs a delegation action, a new authorisation policy is created.
Since this new authorisation policy is identical to the original authorisation policy
except for a new subject set, the implementation and enforcement of delegated
policies is the same as that for authorisation policies and is not considered further in
this paper. Note that delegation does not transfer access rights from a grantor to the
grantee set; grantors retain their access rights after a delegation is performed. Ponder
also supports constraints on delegation policies, negative delegation policies and
cascaded delegation.

Refrains and Obligations

While the subjects of an authorisation policy can be any objects that initiate
invocations, the subjects of refrain and obligation policies are instances of special
enforcement agents called policy management agents (PMAs) whose behaviour is
defined by the refrain and obligation policies that apply to them (or the real-world
entity that they represent). Policy management agents thus enforce all the refrain and
obligation policies for a subject directly. Such agents will normally be generic;
although multiple implementations are allowed since, any object that implements a
PMA interface can be the subject of refrain and obligation policies.

Refrains define what actions a subject is not permitted to invoke. Refrains are
similar to negative authorisations but are enforced at the subject by the policy
management agent and apply to the actions that the subject invokes. Refrains are
used where we do not trust the targets to enforce a policy.

In contrast to the other basic policy types, which are essentially access control
policies, obligations are event-triggered policies that carry out management tasks on
a set of target objects or on the subject itself. Obligation policies allow us to
automate systems, for example, when security violations occur; when resources need
to be reconfigured in response to quality-of-service degradation, etc. In the following
example, when a print error event occurs, the printManager policy management agent
will notify all operators of the error and log the event internally.

Session Fourteen Policy-Based Management532 532

type oblig+ printManagement (subject S, target T) {
on printError (printer, error);
do T.notify (printer, error) -> S.log (printer, error);

}

inst oblig p2 = printManagement (/printManager, /operators);

2.2 Composite Policies

Composite policy types are used to group and inter-relate polices together in order to
support policy-specification-in-the-large and to model the organisational structures
within a system. Three types of composite policies are provided: roles, relationships
and management structures.

Roles allow us to group basic policies that have the same subject [12]. Since the
policies within a role have the same subject, it is possible to dynamically assign or
remove a subject to a role without changing the policies of that role. We formulate
policies between roles with relationships, which are collections of basic policies that
operate over the subject sets of the related roles or with respect to resources shared
by the roles in the relationship. Roles and relationships can be further composed into
management structures, and these can be grouped within other management
structures, allowing a policy hierarchy to be formed that mirrors the organisational
structures of a system. Figure 2 shows an example of a management structure with
three roles and one relationship between the three roles with arrows representing
policies.

This section has outlined the basic policy types in Ponder, authorisations,
delegations, refrains and obligations, and the use of domains to define the subjects
and targets of policies. Further details on the language and examples of composite
policies can be found in [5].

Role Role

Relationship

Management Structure

Figure 2: A management structure with 3 roles and 1 relationship

T

S
T

R R R

T

S
T

T

S
T

Role

Policy Deployment Model for the Ponder Language533 533

3 Deployment Model

In our model, each policy type is compiled into a policy class by the Ponder compiler
and represented by a policy object at runtime. Policy management operations are
carried out by invoking methods on the policy object. The policy object maintains the
state of the policy and co-ordinates all policy operations acting as single point for
managing concurrent and possibly conflicting requests from multiple policy
administrators and from domain objects to which the policy applies (see section 5).
For most operations, the policy object will invoke corresponding operations on its
underlying enforcement agents, access controllers for authorisation policies, policy
management agents for refrain and
obligation policies (see figure 3). If
semantic constraints allow, policy objects
can perform requests concurrently. The
declarative nature of Ponder helps by
allowing a policy to be enforced in parallel
at many enforcement agents. Although in
our initial implementation, policy objects
are held in a central Policy Server, in
large-scale systems, they can be distributed
closer to the objects that they manage.

Instantiation of a basic policy creates
and initialises a policy object; either an
authorisation policy object (APO) or an
obligation policy object (OPO) or a
refrain policy object (RPO). Instantiation
can be achieved in various ways:�

•= By running a policy administrator tool, which accesses the compiled policy
classes from a policy server and instantiates them. The policy administrator tool
has a graphical interface for interactive usage as well a textual command line
interface for scripting.

•= By executing a compiled Ponder specification. When such a specification is
executed, all policy instantiation declarations within it are elaborated.

•= By writing or generating a program, that calls the constructor for the policy class
directly.

Policy objects are placed into one or more policy object domains. This allows them
to be grouped and more importantly to have policies applied to them; for example,
authorisation policies can be specified to control who has access to the actions on the
policy objects.

Policy objects entrust the enforcement of policies to one or more enforcement
agents: for authorisation policies to each target’s access controller (AC), and for
refrain and obligation policies to each subject’s policy management agent (PMA).
This devolution of enforcement allows for better scaling and performance. For
authorisation policies, each target object has an access controller that enforces the

membership

changes

Figure 3: Policy operations

operations: e.g. load, enable,
disable, unload

Policy Administrators

Policy
Object

Enforcement Agent(s)

...

operations

Domain
Objects

Session Fourteen Policy-Based Management534 534

policy while for refrain and obligation policies; each subject is an instance of a policy
management agent:

Policy Object Enforcement Agent Number
Authorisation Access Controller (AC) 1 AC for each target host

Obligation & Refrain Policy Management Agent (PMA) 1 PMA for each subject object

Policy Administrator

Obligation & Refrain
Policies

AC’s

Policy Service

Domain Service

Event Service

PMA’s

OPO’s
RPO’s

APO’s

load,
enable,
disable
etc..

Authorisation Policies

eval Seval T

eval S eval T

add

eventsregister

actions

Figure 4: Overview of policy deployment model

Managed Objects
(Subjects & Targets)

Enforcement
Agents

Policy Objects

Domain Objects

load,
enable,
disable
etc..

actions

create create

actions

events

APO = Authorisation policy object PMA = Policy management agent
OPO = Obligation policy object AC = Access controller
RPO = Refrain policy object

An overview of the policy deployment model is shown in figure 4. It includes 3
supporting services: a domain service, a policy service, and an event service. The
Policy Service acts as the interface to policy management, it stores compiled policy
classes, creates and distributes new policy objects and otherwise supports policy
management actions not provided elsewhere in the model. The Domain Service
manages a distributed hierarchy of domain objects and supports the efficient
evaluation of subject and target sets at run-time. Each domain object holds references
to its managed objects but also references to the policy objects that currently apply to
the domain [19],[22]. The Domain Service, is implemented using an LDAP server
which generates events for changes to the membership of a directory and allows
object to be members of more than one domain. The Event Service collects and
composes events from the underlying systems and from the managed objects in the
system, and forwards them to registered policy management agents triggering

Policy Deployment Model for the Ponder Language535 535

obligation policies. After a policy object is
instantiated, it can be loaded into its
enforcement agents, and once loaded, it can be
enabled causing its enforcement agents to
actively implement it. An enabled policy can be
disabled and later re-enabled, or disabled and
then unloaded, removing it from its
enforcement agents. Unloaded (i.e. dormant)
policies can either be re-loaded or deleted.
Figure 5 shows all the states for a policy object.

For obligation policies, PMAs register with
an event service to receive relevant events
generated from the managed objects of the
system. On receiving an event, the PMA
queries the domain service to determine the
target objects used in the obligation method and performs the policy actions,
provided no constraint or refrain policy prevents the action.

For simplicity the detailed treatment of composite policies and delegation polices
is omitted in this paper. Briefly, composite policies map to objects that elaborate the
instances within them while delegation policies map to authorisation policy objects
that allow grantors to invoke the delegate operation on the policy service, with
respect to a specific authorisation policy.

3.1 Policy Distribution

In addition to the policy class, the Ponder compiler also generates for each policy, an
enforcement class that the policy object distributes to its enforcements agents. The
enforcement class provides the specific implementation behaviour needed to enforce
the policy at the enforcement agent. If needed, the Ponder compiler can generate
multiple implementations of the enforcement classes for a single policy. This is
useful where a single policy will be implemented by different enforcement agents,
e.g. by an enforcement agent for Windows access control and another for Unix
access control.

Authorisation Policy Objects (APOs)

For authorisation policies, each target object has a single access controller (AC),
which enforces all the authorisation policies for the target object. Each AC (e.g.
firewall, operating system) normally enforces many authorisation policies and
protects many different target objects. We assume that the AC for a specific target
object can be determined by some means, e.g. directly from the target object or from
the Policy Service. The key to distributing policies is to determine what the
enforcement agents are for a policy. For an authorisation policy, the policy object
evaluates the target set and determines the AC for each target object in the target set.
It then passes to each AC, the subset of target objects that the AC must protect (see
example on the right, where t (α) means target t at access controller α), as well as a

Figure 5: Policy object states

Dormant

Loaded

Enabled

Deleted

Instantiate

Load

Enable

Unload

Disable

Delete

Policy Class

Session Fourteen Policy-Based Management536 536

copy of the enforcement object for the
policy. On completion, the policy object
retains references to each access controller.

Note that the full target set for an
authorisation policy does not need to be
saved by the policy object, only references
to the underlying access controllers. Since
policies apply to the objects in domains and
objects can be dynamically added to, or
removed from domains after the policy has
been distributed, each domain needs to
maintain references to the policies applying
to it. When a domain membership changes occurs, the domain object can notify the
change to its referenced policy objects (see section 5 for further details).

Obligation and Refrain Policy Objects (OPOs and RPOs)

Obligation and refrain
policies are handled in a
similar way to authorisation
policies but the distribution
is based on the subject set.
The policy object evaluates
the subject set and passes to
each subject, a copy of the
enforcement object for the policy (see example in tables). Recall that for obligation
and refrain policies, that the members of the subject set are policy management
agents that enforce the policies. The policy object also notifies all domains used in
the subject set expression to add the policy to their current policy list, so that the
domains can notify changes in their domain membership back to the policy object.

3.2 Enabling and Disabling a Policy

Enabling a loaded policy activates the enforcement object for the policy within each
of the policy's underlying enforcement agents. Once enabled, a policy is enforced
until it is subsequently disabled. Disabling a policy deactivates the enforcement
object within each underlying enforcement agent – however the enforcement object
remains loaded in each enforcement agent and can be subsequently re-enabled. This
is an overhead with loaded but not enabled policies; they take up memory and cause
methods to be called when domain membership changes occur. If a policy is unlikely
to be re-enabled quickly, then it may be better to unload it after disabling it. If
domain membership changes are infrequent and memory abundant, or if a policy
applies to many distributed objects then keeping a policy loaded but not enabled may
be more efficient than unloading it and subsequently having to distribute it.

Policy
Object

Target Set

A1 t1 (α), t2 (β), t3 (α), t4 (β)

A2 t1 (α), t2 (β), t5 (χ)

AC Policies Enforced

α A1 (t1, t3), A2 (t1)

β A2 (t2, t4), A2 (t2)

χ A2 (t5)

Policy
Object

Subject Set PMA Policies
Enforced

O1 s1, s2, s3 s1 O1, O2, R1

O2 s1, s2, s4 s2 O1, O2, R1

R1 s1, s2, s3, s4 s3 O1, R1

s4 O2, R1

Policy Deployment Model for the Ponder Language537 537

3.3 Unloading and Deleting a Policy

Unloading a policy removes the policy's enforcement object from each of the policy's
enforcement agents and causes all references to the policy to be removed from the
domains that it applies to. An unloaded policy object remains dormant until
subsequently deleted or re-loaded. Deleting a dormant policy object removes the
policy object from the Policy Service and from all domains that it is a member of.

4 Enforcement Agents

Enforcement agents are objects that implement a policy enforcement interface. This
interface supports the loading, enabling and disabling of enforcement objects
disseminated from policy objects. In our model enforcement objects are created by
policy objects and moved to enforcement agents when the policy loading is
requested. Enforcement agents store the passed enforcement objects in a local policy
table and forward most policy operations to corresponding methods implemented by
the enforcement object. Compiled enforcement classes provide the implementation
code for enforcing policies and can be target-dependent and subject-dependent. Thus
a policy may have different implementations of the policy enforcement class. In
order to handle dynamic changes in domain object membership, the policy
enforcement interface also has methods for the addition and removal of objects. In
the next subsections we look at some of the aspects of enforcement agent
implementation.

4.1 Policy Management Agents (for Obligation and Refrain Policies)

OPO’s
RPO’s

Figure 6: Overview of a Policy Management Agent

Managed Objects

Policy Management Agent

Policy
Objects actions

events

load, enable,
disable, unload

checkRefrains

OEO: load,
enable,disable

eventHandler

obligMethod

register,
unregister

eventEngine

AC’s

checkRefrain

Event ServiceEnforcement Objects

REO: load,
enable,disable actions

1 2

3

45

6 7

8

1

Policy management agents enforce all the enabled refrain and obligation methods for
a subject. An overview of the operation of a policy management agent (PMA) is

Session Fourteen Policy-Based Management538 538

shown in figure 6. The enforcement objects for obligation policies and refrain
policies (OEOs & REOs) are loaded from corresponding policy objects (OPOs &
RPOs) and stored locally (1). When an obligation policy is enabled its obligation
enforcement object registers the obligation event specification along with a reference
to an event handler with the event service (2). The event service processes events (3)
and disseminates them to handlers based on their event specifications (4). On
receiving an event, handlers check both the constraints of the obligation policy and
all enabled refrain enforcement objects (REOs) within the agent to check if any REO
disallows actions within the obligation method (5 & 6). If constraints and refrains
allow, the event handler then calls the obligation method, which performs actions on
managed objects (7,8).

Two interactions are omitted from figure 6. Firstly, the event handler in the PMA
queries the domain service in order to evaluate the target set on which actions are to
be invoked i.e., the event handler effectively coordinates the execution of the
obligation policy. Secondly, obligation policies are allowed to invoke actions internal
to the PMA.

4.2 Access Controllers (for Authorisation Policies)

Access controllers enforce all the authorisation policies for one or more target
objects. Access controllers are normally co-located with the targets that they protect.
Unlike policy management agents, which can be generic, access controllers require
close interaction with the underlying access control mechanism, for example, with
the host operating system, or a firewall, or the method dispatch mechanism of a
programming language. The means used to interact with each mechanism will vary.
Access controllers follow the general approach for all enforcement agents. They
implement the policy enforcement interface and provide methods to load, enable,
disable and unload authorisation enforcement objects (AEOs) similarly to PMAs and
OEOs, except that AEOs are not event-driven. Authorisation enforcement objects
also provide methods for evaluating constraints and handling authorisation filters.

When an action is “intercepted” by an access controller, it calls a checkAccess
method to check whether the access should be permitted. This method will check, for
example, that the subject of the action is in the subject set of the policy, that the
target of the action is in the target set of the policy and that the action is a valid action
for the target. The method will also evaluate all policy constraints and enforce any
global rules for the systems, for example that access to the target object must only
allowed if there is a positive authorisation that allows the subject to perform the
action on the target object, and no negative authorisation that forbids the subject from
performing the action.

5 Domain Membership Changes

Policies in Ponder operate over domains of objects. When a policy is loaded, the set
of objects that the policy applies to, is evaluated by the policy object – the subject-set
for refrain and obligation policies, the target-set for authorisation policies. Domains

Policy Deployment Model for the Ponder Language539 539

however, are not static, and any policies that are in a loaded or enabled state need to
be informed of changes to the memberships of domains to which the policy refers. In
our model, domain objects that hold references to the managed objects in the domain
implement domains. When a policy is loaded, its policy object passes a reference to
itself to all domain objects to which the policy applies. Domain objects can thus
inform the policy objects of domain membership changes.

A policy that applies to a domain will also apply to subdomains (unless policy
propagation is explicitly limited in the policy specification). Thus a change in the
membership of a subdomain can also result in a change in the membership of parent
domains. When an object is added to a domain or removed from a domain, the
domain object for the domain notifies each policy object in its policy list of the
change, but also requests that each parent domain do the same, with notifications
passing upwards until either the root domain or a domain with no currently active
policies is reached.

Note that domains can overlap and both objects and subdomains can be members
of multiple domains, so changes in the membership of a domain do not always result
in a change to the set of objects to which a policy applies, e.g. a domain may be used
in both a set union operation and a set difference operation. The treatment of domain
membership changes offers scope for optimisations. As an example, if a change
results in a bigger set, then we forward references to the new objects to the
appropriate enforcement agents. Conversely, if a change results in a smaller set, then
we remove references to the old objects from the appropriate enforcement agents.
More complex domain operations such as subdomain inclusion and removal in the
presence of concurrent updates are detailed in [22].

6 Related Work

Policy-based systems have recently been the subject of increasing research effort.
The standardisation work within the IETF Policy Group [11] concentrates on quality
of service management and configuration within networks. They assume policies are
objects stored in a directory service. A policy consumer (policy decision point –
PDP) retrieves policies from the policy repository (e.g. LDAP server). A policy
execution point (PEP) such as a router requests policy decisions using the Common
Open Policy Service Protocol (COPS). The PEP enforces the policy for example by
permitting/forbidding requests or allocating packets from a connection to a particular

Figure 7: Domain updates

Policy Object

unload

4

load

domainChange

Domain Object

removePolicy

addPolicy

addObject

removeObject

Access Controller

removeObject

addObject

Session Fourteen Policy-Based Management540 540

queue. A PEP and PDP could be combined into a single component. The IETF are
defining a policy framework that can be used for classifying packet flows as well as
specifying authorisations for network resources and services [14]. They do not have a
language for specifying policies but are using the X500 Directory schema [15]. IETF
policies are of the form if (a set of conditions) then do (a set of actions). Directories
are used for storing policies but not for grouping subjects and targets. They do not
have concepts of subject and target that can be used to determine to which
components a policy applies, so the mapping of policies to components has to be
done by other means. There has been some discussion on the use of roles as a means
of selecting policies applying to a set of components and the possibility of
introducing subjects and targets into their model, but none of this has been clearly
specified yet.

A number of vendors are marketing policy toolkits for defining policies, related
mostly to Quality of Service for network elements [4], [9], [16]. Most of these are
similar to the IETF ideas but some also support specification of a security policy.
None of them support a language but they do have graphical editors that allow
administrators to define individual policies and then explicitly identify the
enforcement components to which the policies must be loaded. None of these tools
appear to have considered the automation of the policy lifecycle.

Researchers at Bell Labs have developed a Policy Definition Language (PDL)
which can be used to define policies of the form event causes action if condition
[1],[21]. Events can be compound event expressions and the actions can be simple
local or remote method calls, complex workflows or trigger other events. One policy
can trigger other policies to form a hierarchical policy chain. These policies are
compiled into Java classes and stored in a Directory Server. Policy service nodes
(policy enforcers) load their policies from the directory and policies can be
dynamically loaded or unloaded from service nodes. An administrator uses a
graphical interface to display current policies and drop and load policies at run time.
An administrator thus manually disseminates policies although a policy service node
can automatically retrieve the policies allocated to it from the directory server on
restart. These policies have been used to program the SARAS distributed softswitch
and other aspects of network operations and management, but the deployment of
policies is somewhat ad-hoc. PDL does not support authorisation policies and has no
support for composite policies.

The Trust Management work at AT&T is building a general-purpose system to
process queries of the form “does request r, supported by credential set C, comply
with policy P?” [8], [2]. This has been used for applications such as web based
labeling, signed email and active networks. The credentials could be public key
certificates with anonymous identity. Both policies and credentials are predicates
specified as simple C-like expression and regular expressions. Credentials could be
passed in messages over an untrusted network. It is assumed that an administrator
loads specific policies into application servers. The IBM Trust Establishment
framework provides similar functionality aimed at e-commerce applications [10].
They use XML for specifying trust policies and permit negative authorization as
well as positive. The credentials result in a client being assigned to a role which

Policy Deployment Model for the Ponder Language541 541

specifies what the client is permitted to do. Both the AT&T and IBM work only
cover specification and implementation of authorization policy. They do not appear
to address the policy lifecycle management.

7 Conclusions and Future work

In this paper we have presented a runtime model for deploying and managing Ponder
policies in a distributed system. The model is object-based and supports the
enforcement of authorisation and obligation policies using multiple and
heterogeneous access control mechanisms. It cleanly separates the dissemination and
management of policies from their enforcement and acts a reference model for other
implementations. The model is strongly influenced by the Ponder policy specification
language, which advocates the use of domains to group objects and the application of
policies to domains, in order to handle system changes and policy changes. However,
we believe that other policy-based systems can benefit from adopting a deployment
model that is similar to ours.

The model needs to be developed further. The most interesting requirement is to
cater for consistent updates in the presence of concurrent operations on the domains
and policies in the system. Although many operations can be performed in parallel,
the detection of possible conflicts is difficult and potentially very slow. An
interesting aspect that may help here, is that the policy system, is itself, subject to
policy control and policies may be written and enforced to prevent undesirable
actions on the domains that hold enabled policy objects and on the policy objects
themselves. This paper does not cover issues relating to refinement of high level
enterprise goals or service level agreements which can be considered a requirements
engineering aspect to the policy lifecycle and is being addressed in a related project
at Imperial College. Others are also addressing refinement [3].

The Ponder compiler and deployment model are written in Java and we have
implemented access controllers for Windows 2000, Linux, firewalls and the Java
security model.

8 Acknowledgements

We gratefully acknowledge the support of EPSRC for research grants GR/L96103
(SecPol), GR/M86109 (Ponds) and GR/L76709 (Slurp) and British Telecom as part
of the Alpine Project. We also acknowledge the contribution of our colleague Silvana
Zappacosta.

9 References

Note: Papers and Web links are available via www-dse.doc.ic.ac.uk/policies

[1] Bhatia R., M. Kohli, J. Lobo, and A. Virmani. “A policy-based network management
system”. Proc. of the International Conference on Parallel and Distributed Techniques
and Applications/International Conference on Artificial Intelligence, June 1999.

Session Fourteen Policy-Based Management542 542

[2] M.Blaze, , J. Ioannidis, and A.D. Keromytis. “Trust Management and Network Layer
Security Protocols”, Cambridge Protocols Workshop, Springer-Verlag LNCS 1796 1999.
http://www.crypto.com/papers/networksec.pdf.

[3] M. Casassa Mont, A. Baldwin, C. Goh, “POWER Prototype: Towards Integrated Policy-
Based Management”, IEEE/IFIP Network Operations and Management Symposium,
(NOMS2000), ed. J. Hong, R., Weihmayer, Hawaii, May 2000, pp. 789-802.

[4] Cisco Assure QoS Policy Manager
http://www.cisco.com/warp/public/cc/pd/nemnsw/cap/index.shtml

[5] N. Damianou, N. Dulay, E. Lupu, M.Sloman, “Ponder: A Language for specifying
Security and Management Policies for Distributed Systems, V 2.3”, Imperial College
Research Report DoC 2000/1 Oct. 2000.

[6] N. Damiano, Dulay N, Lupu, E, Sloman M, “The Ponder Policy Specification Language”,
Proc. Policy 2001: Workshop on Policies for Distributed Systems and Networks, Bristol,
UK, Jan. 2001, Springer-Verlag LNCS 1995

[7] Distributed Management Task Force, Inc. (DMTF), “Common Information Model (CIM)
Specification”, version 2.2, June 14, 1999, http://www.dmtf.org/spec/cims.html.

[8] J. Feigenbaum, “Overview of the AT&T Labs Trust Management Project: Position
Paper”, Proceedings of the 1998 Cambridge University Workshop on Trust and
Delegation, Springer-Verlag LNCS.

[9] HP PolicyXpert http://www.openview.hp.com:80/products/policy/
[10] IBM. “Access Control Meets Public Key Infrastructure, or: Assigning Roles to

Strangers”. in IEEE Symposium on Security and Privacy. 2000.
http://www.hrl.il.ibm.com/TrustEstablishment/paper.asp.

[11] IETF Policy Framework workgroup http://www.ietf.org/html.charters/policy-charter.html
[12] E. Lupu, M. Sloman, “A Policy Based Role Object Model”, Proc. 1st. Enterprise

Distributed Object Computing Conf. (EDOC’97), Australia, IEEE Press, 1997, pp36-47.
[13] E. Lupu, , M. Sloman. “Conflicts in Policy-Based Distributed Systems Management”,

IEEE Trans. on Software Engineering, 25(6): 852-869 Nov.1999.
[14] H. Mahon, Y.Bernet, S. Herzog, “Requirements for a Policy Management System”, Oct.

1999, Available from http://www.ietf.org/draft-ietf-policy-req-01.txt
[15] B. Moore, J. Strassner, E. Elleson, “Policy Core Information Model”, Oct 2000,

Available from http://www.ietf.org/draft-ietf-policy-core-info-model-08.txt
[16] Orchestream Distributed Policy Engine http://www.orchestream.com
[17] M. Sloman, E. Lupu “Policy Specification for Programmable Networks”, Proceedings of

First International Working Conference on Active Networks (IWAN’99), Berlin, June
1999, Springer-Verlag LNCS No. 1653, pp73-84.

[18] M. Sloman, “Policy Driven Management for Distributed Systems”, Journal of Network
and Systems Management, 2(4):333-360, Plenum Press, 1994.

[19] M. Sloman, K. Twidle, “Domains: A Framework for Structuring Management Policy”.
Chap. 16 in Network and Distributed Systems Management, M. Sloman ed., Addison-
Wesley, 1994, pp. 433-453.

[20] Storage Network Industry Association (SNIA) Policy Work Group
http://www.snia.org/groups/policy/index.html

[21] A. Virmani, J. Lobo, M. Kohli, “Netmon: Network Management for the SARAS
Softswitch”, IEEE/IFIP Network Operations and Management Symposium,
(NOMS2000), ed. J. Hong, R., Weihmayer, Hawaii, May 2000, pp803-816.

[22] N. Yialelis, “Domain-based Security for Distributed Operating Systems”, Ph.D. Thesis,
Dept of Computing, Imperial College, London, August 1996.

Policy Deployment Model for the Ponder Language543 543

