
Development Framework for Firewall Processors

T.K. Lee, S. Yusuf, W. Luk, M. Sloman, E. Lupu and N. Dulay
Department of Computing,

Imperial College,
180 Queen’s Gate,

London SW7 2BZ, England
{tk197, sy99, w.luk, m.sloman, e.c.lupu, n.dulay}@doc.ic.ac.uk

Abstract

High-perfor,,~rr,ice firewalls caii benefit from the in-
ci-easing size, speed aitdjle.ribiliry of advanced reconfrg-
irrnble hardware. Howevez direcr rranslation of convem
tionalfirewall rides in a rotaer-based rule set ofen leads to
iireflciem liardware iiiipleiiie,itario,i. Moreovez such low-
level desci-iprioii of firewall rides teiids to be difficult f o
,nariage mid to exrerid. We describe a frariiework, based
on rhr high-level policy speclfcation language Pondec for
crii~tiii-iitSfirei,,nll rides as aurkorizatioii policies with user-
defiiloble coiistraiias. Oiir framework supports opriinisa-
rioits to achieve efficient u~ilisation ofhardware resources.
A pipeliiied firewall impleineittarion developed using this
approach riritiiiiig af IOMHz is capable ofprocessing 2.5
niillioii packers per secoiid, which provides similar perfor-
iiiniice ro a versioii withotit optimisarion and is about 50
rimes fuster than n mufmure implemerzmrion running on a

7OOMHz PI11 processor:

1 Introduction

Internet Protocol (IP) packet filtering is considered an
effective firewall architecture, and is often used for net-
work security [2, 121. Packet filters control data flow be-
tween a protected network and the outside space. Each
packet contains a header which gives information about
the type of transport layer used, source and destination ad-
dresses, a header checksum, and some optional administra-
tive bits. A packet filter works by checking the content of
the IP packet header and then decides whether communi-
cation is allowed based on a set of rules.

Currently, most packet filters rely on processors run-
ning entirely in software. However, with the recent ad-
vance’ in field-programmable gate m a y @’PGA) technol-
ogy. custom-developed hardware packet filters that out-
perform their software counter parts become possible [6,7,
8, lo]. Software based packet filters suffer from increased

0-7803-7574-2/0211617.00 CO2002 IEEE 352

look-up times as the number of filter rules grow. They
therefore have difficulty in keeping up with the current net-
work throughput, and may reduce network performance.
Hardware, on the other hand, also has limitations; for in-
stance, the amount of available reconfigurable resources on
an FPGA can limit the number of concurrent matches in a
packet filter. While some studies [6, 7, IO] focus on opti-
misation of the usage of hardware resources, they do not
take into account the redundancy among the firewall rules
in a rule set, and they did not utilize information other than
those offered by the IP packet headers.

We describe how Ponder [4, 51, a policy specification
language, can be used to capture an authorization policy.
User-definable constraints, which are not normally found
in the syntax of conventional firewall rules, is supported
for conditional checking of information other than those
offered by IP headers. We define policy types, which uses
domain hierarchies, that map to an intermediate firewall
representation. In addition, knowledge of network topol-
ogy and available services within organization can assist
‘don’t care’ discovery and rule elimination. Finally, we
describe a parallel matching process by using filters to sep-
arate acceptance and rejection actions. and pipelining to
achieve higher throughput.

The rest of the paper is organised as follows. Section 2
gives an overview of our development framework. Sec-
tion 3 illustrates the platform-specific hardware implemen-
tation, while Section 4 provides a summary of our work.

2 Design framework

Organizational security policies restrict the acceptable
behaviour on the network by controlling access to re-
sources or services [2, 121. Firewalls use packet filtering to
implement authorization policy, whereby packets are per-
mitted or denied according to their source or destination
IP and/or port addresses. Rules are applied at the network
edge for both incoming and outgoing traffic. The order-

mailto:n.dulay}@doc.ic.ac.uk

access-list 1 0 4 p e r m i t t cp host 1 9 5 . 1 7 2 . 1 2 1 . 5 6 host 1 9 5 . 1 7 2 . 3 3 . 1 1 0 range 23 27

Figure 1
195.172.121.56 destined for IP address 195.172.33.1 IO with destination port address in the range 23 to 27 are permitted.

An example of a Cisco firewall rule. This rule says that any TCP protocol packet coming from IP address

ing of the firewall rules within a rule set is significant. A
packet is sequentially checked against each rule, starting
from the beginning of a rule set, until a match for the con-
ditions specified in a rule i s found or the end of the rule set
is reached.

The syntax of the rules is firewall specific [3, 91, al-
though a typical rule contains data fields for packet type,
source and destination addresses, and action to be per-
formed when the rule is matched - usually PERMIT and
the DENY actions. Some fields may not be relevant in all
rules; and they can be considered as 'don't care' during
hardware implementation. An example of a Cisco firewall
rule [3] is shown in Figure I .

There are three basic design objectives of our approach,
as follows.

To'use high-level programming languages for writing
firewall rules, especially for managing authorization
policies for a complex large-scale organizational net-
work. Moreover, methods and mechanism in express-
ing and optimizing firewall rules for reconfigurable
hardware are provided. We use Ponder, an existing
high-level palicy specification language, for produc-
ing reconfigurable hardware rather than creating an
entirely new language.

To use hardware resources efficiently to overcome
physical limitation on the size of reconfigurable hard-
ware. Our emphasis is on sharing of hardware func-
tional units and parameterised library blocks; such as
IP and port address comparators. In addition, there is
scope for future extension for hardware reuse by run-
time reconfiguration (RIR), and also hardware soft-
ware co-operation.

To allow multiple levels of optimization to be carried
out. In particular, to allow choice of various low-level
hardware specific implementation techniques.

Ponder is a declarative, object-oriented language for
specifying security and management policy for distributed
object systems [4, 51. Firewall rules do not usually have
constraints; however, the ability to incorporate consmints
in Ponder enables conditional checking of information
other than those offered by IP headers. For example, a
constraint may limit the applicability of a rule to specific
days or times. Ponder allows policies to be specified for a
large number of objects, as well as providing absh-actions
for scalability.

stage 1

Stage 2

Stage 3

Ponder specification of aulhoriration policy

network topology and available services
+

1
Ponder compilation with NIO reducrion

' Code translation 1 Prepaing for optimization

I

Sequencing and panitianing

I Shared resource^

v
Optimized intermediate representation

with parameterised functional "nil
library specifications

1
+

hardware optimization

Figure 2 An overview of the development steps

An overview of the development steps of our framework
for a reconfigurable hardware packet-filtering firewall is
shown in Figure 2. There are three main stages in the de-
sign flow: policy capture, rule optimization, and hardware
implementation.

In the first stage, an authorization policy is captured in
a Ponder specification together with the information on the
organization's network topology and services. In the sec-
ond stage, this specification is translated into a platform
independent intermediate representation. A series of oper-
ations, including construction of IP address trees, sequenc-
ing, rule elimination, and shared resources, are then per-
formed to optimise the representation before it is taken
for hardware implementation. In the third stage, this op-
timized representation is used to target a particular recon-
figurable hardware platform. Designs of the packet fil-
ter in hardware is captured using a hardware description
language. Hardware optimizations can be applied at this
stage.

The advantages of this three-stage approach are
twofold. First, it allows multiple levels of optimization to

353

be performed, based on different sets of criteria and infor-
mation available. In particular. it permits using platform-
specific optimisations as well as software techniques. Sec-
ond, it enables testing of different hardware implementa-
tion techniques on size and speed optimizations.

3 Implementation

Before the implementation of a packet filter can be car-
ried out, the optimized intermediate firewall representation
generated from the Ponder specification is transformed to a
format suitable for compiling into hardware. Each firewall
rule is transformed to a corresponding hardware filter rule,
usually stored in a database.

Our development framework currently involves the
HandelLC language [l] and the RCIOOO-PP [I l l reconfig-
urable hardware development platform to produce hard-
ware packet filters. There are several reasons for using
HandelLC. First, it enables rapid and incremental devel-
opment, starting from n software C description to highly-
optimised pipeline implementations. 4ls0, it is well-
integrated with the RC1000-PP, a reconfigurable hardware
development board containing a Xilinx Vinex XCVlOOO
FPGA and four memory banks; this platform has been used
as an experimental vehicle for various applications [I l l .

A pipelined packet filter has been developed using our
development framework to achieve high throughput [SI.
Pipelining is a technique that can result in major pefor-
mance gains, panicularly for regular architectures. Instead
of dealing with one packet at a time, a pipelined packet
tilter processes multiple packets concurrently.

An additional optimisation is to perform acceptance
matching and rejection matching in parallel, as shown in
Figure 3. This can be achieved after the conflicts among
the rules in a rule set is resolved in the sequencing and par-
titioning step. The filter rules for the acceptance and rejec-
tion matching are formed as the acceptance and rejection
database respectively; they are respectively stored in two of
the four available RAM banks. During initialization, rules
stored in the RAM banks are loaded into the correspond-
ing registers on the FPGA. Thereafter, parallel matching
of filter rules can be performed on hardware. This optimi-
sation is particularly effective when the number of accep-
tance rules is similar to that of rejection rules, so that the
two matching processes would take similar time.

In one of our implementations, each filter rule is imple-
mented as a pipeline stage. Packets stream through the cas-
cade of comparators for acceptance and rejection match-
ing. Parallel matching is performed on all stages when the
pipeline is filled. The comparison results also flow through
the pipeline in synchrony with the packets. When a match

Packet 5 7

I I

F 5 Rcrulr

Figure 3 Parallel packet filtering

is found, the remaining pipeline stages will not perform
further comparison on that packet but deliver the result
from the previous stage to the next stage.

Since our main concem is about the raw processing
power of the packet filter in a firewall system, network traf-
fic is not considered in our current work. Each pipeline
stage in the above implementation takes 4 cycles to com-
plete a comparison. When clocked at 10 MHz, the hard-
ware packet filter has a peak throughput of 2.5 million
packets per second on a Xilinx Virtex XCVlOOO device,
which is approximately 50 times faster than a software im-
plementation running on a 700 MHz PI11 processor. This
estimate has not taken into account of latency, which varies
with the number of pipeline stages and can affect the net-
work throughput.

It is assumed that sufficient hardware resources are
available to accommodate a complete set of filtering rules.
Otherwise, performance will be degraded due to the fact
that a filter rule set will need to be divided into multi-
ple smaller groups. Additional time would be required for
swapping in different groups from one or both of the accep-
tance and rejection filter-rule databases at run time. In con-
trast to implementations where the filter rules are embed-
ded into the hardware [6, 7, IO], loading different groups
of rules in our design does not require reconfiguring the
P G A , because our implementation uses RAM banks to
store the filter-rule tables for the acceptance and rejection
databases.

A hardware packet filter is limited to the number of rules
that can be implemented in the hardware used. On the other
hand, a software version is only limited by the amount of
physical storage available for storing the rule sets. This

354

flexibility results in increased search time: it illustrates the
trade-off between a fast hardware implementation, and a
slower but more flexible software implementation.

The optimized intermediate representation produced by
the rule reduction mechanism can reduce the usage of hard-
ware resources. Hence, it is possible to incorporate a larger
rule set. This approach requires hardware implementation
to be able to incorporate irregular structures for the filter-
rule matching, while most existing pipeline structures are
regular.

4 Summary

We have presented a design flow for developing hard-
ware packet filters, adopting high-level policy specification
language using domain hierarchies. It suppons user defin-
able constraints, and enables conditional checking of in-
formation other than those offered by IP headers. We have
tested this method on authorization policies for both in-
coming and outgoing traffic. The results achieved ranging
from reduction of one-third to two-thirds on rule counts.

Our pipelined packet filter implementation, running at
10 M E , is capable of processing 2.5 million packets per
second. It is approximately 50 times faster than a software
implementation running on a 700 MHz PIII processor.

Current and future work includes using Ponder con-
straints to incorporate mn-time reconfiguration and hard-
ware software co-operation into the framework. Explo-
ration of various hardware-level optimization techniques,
such as methods based on binary decision diagram [IO]
and content addressable memory [6], are under investiga-
tion. The former is capable of producing a more compact
representation of filter rules, while the latter is capable of
fast database search on irregular structures.

Acknowledgements

The support of LK Engineering and Physical Sciences
Research Council (Grant number GFUR 31409, GFUR
55931 and GRIN 66599), Celoxica Limited and Xilinx,
Inc. is gratefully acknowledged.

References

[I] Celoxica Limited, Handel-C v3.1 Language Refer-
ence Manual, http://www.celoxica.cod.

[31 Cisco Systems Inc., Cisco PIX Firewall Carnnland
Reference, http://www.cisco.cod.

[4] N. Damianou, N. Dulay, E. Lupu and M. Slo-
man, “The Ponder Policy Specification Language”, in
Proc. Workshop on Policies for Distributed Systems
and Nefworks, LNCS 1995, Springer, 2001, pp. 18-
39.

[51 N. Damianou, A Policy Framework for Manageinenr
of Distributed Systems, PhD Thesis, Imperial Col-
lege, 2002.

[6] .I. Ditmar, K. Torkelsson and A. Jantsch, ”A dynam-
ically reconfigurable .FFGA-hased content address-
able memory for Internet Protocol characterization”.
Field Programmable Logic and Applicarioi~s, LNCS
1896, Springer, 2000.

[71 P.B. James-Roxhy and D.J. Downs, “An Efficient
content-addressable memory implementation using
dynamic routing”, in Proc. Syinposiunr 011 Field-
Programniable Custom Conlputirig Machines, IEEE
Computer Society Press, 2001.

[8] W. Luk, S. Yusuf and R. Nagarajan. “Incremental De-
velopment of Hardware Packet Filters”. in Proc. l , ~ -
rernational Conference on Engineering of Recon-
figurable Systems and Algorirhms (ERSA), CSREA
Press, 2001, pp. 115-118.

[91 R. Russel, Linw IPCHAINS-HOWTO,
http://www.linuxdoc.orglHOWTO/
1PCHAINSHOWTO.html.

[IO] R. Sinnappan and S. Hazelhurst, “A Reconfigurahle
Approach to Packet Filtering”, Field Programmable
Logic and Applications, LNCS 2147, Springer, 2001.

[I l l H. Styles and W. Luk, “Customising graphics ap-
plications: techniques and programming interface”,
Proc. IEEE Symp. on Field-Programtmble Custonr
Computing Machines, IEEE Computer Society Press,
pp. 77-87.2000.

[I21 E.D. Zwicky, S. Cooper and D.B. Chapman, Building
Internet Firewalls, Second Edition, O’Reilly & Asso-
ciates, 2000.

[2] W.R. Cheswick and S.M. Bellovin, Firewalls and In-
rernet Security: Repelling the Wily Hacker, Addison-
Wesley, 1994.

355

http://www.celoxica.cod
http://www.cisco.cod
http://www.linuxdoc.orglHOWTO

