
V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 1 – 6, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Self-managed Cells for Ubiquitous Systems

Naranker Dulay1, Emil Lupu1, Morris Sloman1,
Joe Sventek2, Nagwa Badr2, and Stephen Heeps2

1 Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2AZ, United Kingdom

{n.dulay, e.c.lupu, m.sloman}@imperial.ac.uk
2 Department of Computing Science, University of Glasgow,
17 Lilybank Gardens, Glasgow G12 8RZ, United Kingdom

{joe, nagwa, heeps}@dcs.gla.ac.uk

Abstract. Amongst the challenges of ubiquitous computing is the need to pro-
vide management support for personal wireless devices and sensors. In this ex-
tended abstract we introduce a policy-based architecture that supports manage-
ment at varying levels based on the concept of a self-managed cell. Cells in-
clude policy-driven agents that support context-based and trust-based access
control and system adaptation. Cells can also organize themselves through fed-
eration and nesting.

1 Introduction

Advances in ubiquitous computing infrastructures have the potential to dramatically
broaden the role of computing in the everyday lives of people with a greater prolifera-
tion of personal wireless devices, and more significantly with wireless computing
devices starting to be embedded in the environment: in buildings, in roads, in vehi-
cles, in the landscape, in home appliances, in clothing, on packaging of consumer
goods in shops; even as implants in plants, animals and humans. The challenges of
ubiquitous computing will not only be about building such ubiquitous environments,
they will also be about managing the resources and omnipresent information which
ubiquitous systems will need to discover, capture, process and publish behind the
scenes. This information will be ephemeral, mobile, fragmented and voluminous with
no predictable flows between producers or users of the information.

1.1 Ubiquitous Systems Management

Existing architectures for network and systems management are aimed at large-scale
corporate environments, telecommunications networks and Internet service providers
and do not cater for ubiquitous environments, although specific techniques for moni-
toring, event correlation, service discovery, quality of service and policy-based man-
agement can be used to some degree. For ubiquitous systems, architectures are needed
that can scale down to small devices with local decision-making. The limitations of
small devices, e.g. memory size, CPU speed, battery life, screen size, network range
and changing connectivity; require new techniques for optimizing resource usage and
tailoring information within tight deadlines. Management will also need to be per-

2 N. Dulay et al.

formed according to measures of context and trust and tailored to the individual pref-
erences and circumstances of users. Flexible techniques will be needed to filter infor-
mation and perform access control, as well as defining and enforcing privacy. Users
will expect management functions to be invisible and carried out automatically.

We are developing a policy-based architecture that supports management at vary-
ing levels of granularity, using the concept of a self-managed cell (or simply a cell).
A cell consists of a set of hardware and software components that represent an admin-
istrative domain. Cells are able to function autonomously and thus capable of self-
management. A cell could represent the resources available in a PDA, a body area
network of physiological sensors and controllers. At the enterprise level, a cell could
represent the resources and application components relating to a set of collaborating
partners forming a virtual organisation spanning multiple countries. In each case, cells
include and evolve the required management services, appropriate to the scale and
environment of the cell. These management services interact with each other through
asynchronous events exchanged over an event bus. In essence, a cell is a “closed-
loop” system where changes of state in the managed objects and resources trigger
adaptation that in turn affects the state of the system. In ubiquitous environments, the
cells would also typically include management components that provide service dis-
covery and contextual management.

A cell includes a policy-driven agent that supports context-based and trust-based
access control and system adaptation for one or more ubiquitous devices. Cells can
load additional management functions and organise themselves into larger manage-
ment cells through federation and nesting. Potentially, each ubiquitous device that a
user carries, and each device situated in the environment, is capable of being a self-
managed cell and running a management agent that carries out management functions
and policies. In practice, we envisage that some devices (e.g. sensors) will be too
primitive to run their own management agent, but will be capable of being managed
by an external cell, such as a mobile phone, over a wireless link, such as bluetooth.
This extended abstract introduces the architecture of self-managed cells.

2 Self-managed Cells

Each self-managed cell consists of a number of core management components: the
cell watchdog, the event service, the discovery service, the policy service, and the
domain service. Cells can also load components for context and trust management as
well as monitoring and intrusion detection. Proxies are required to interact with the
various communication interfaces of devices and managed components, for example
to enable cell policies to perform actions on device-specific management interfaces,
and to convert low-level signals to cell events. The following outlines the core ser-
vices of each self-managed cell.

2.1 Cell Watchdog

When a cell is first instantiated, it starts up the cell watchdog. This is a special ser-
vice that is responsible for loading and instantiating the core components of the cell,
typically from local storage (e.g. a memory card), or from a remote cell. The cell

 Self-managed Cells for Ubiquitous Systems 3

watchdog is also responsible for cleanly removing and restarting core components
when a core component fails, or if a core component needs to be updated. Essentially
the cell watchdog has the responsibility to ensure the survivability of the core man-
agement components, and ideally should be in firmware and always alive.

2.2 Event Service

Management systems are essentially event-driven, as changes of states need to be
notified to several, potentially unknown management services. Examples of events
include: the discovery of a new device, a change in context (e.g. battery level low), an
intrusion alert. The event service provides at-most-once, persistent publish/subscribe
delivery and is used for both intra-cell and inter-cell management. The event service
supports event correlation for flexibility.

2.3 Discovery Service

The discovery service is responsible for detecting the presence of devices that come
into wireless range. These may be primitive devices that are managed by the cell,
devices that are managed by others cells, or devices that are not currently managed by
any cell. Once a device is discovered, the discovery service communicates with the
device to get further attributes (e.g. type, profile, services provided) and generates a
“new-device” event for other management components. The discovery service needs
to distinguish between transient failures, which are common in wireless communica-
tions, and when some device is really no longer available (e.g. out of range or
switched off).

2.4 Policy Service

The policy service is responsible for the execution of policies. Policies are rules that
govern the choices in behaviour of the cell. Two kinds of policy are currently sup-
ported. Obligation policies (event-condition-action rules), which define what actions
to carry out when specific events occur, and authorisation policies which define what
actions are permitted or not permitted, for what or for whom, and under what condi-
tions. Policies can be added, removed, enabled or disabled to change the behaviour of
a cell. See cell policy language (section 3).

2.5 Domain Service

The domain service provides a means of hierarchically grouping references to objects
(c.f a filesystem). Objects include devices, services (including core services), poli-
cies, neighbouring cells. For example, when a new device is discovered, a reference
to it, is normally added to the domain /dev as well as to application-specific do-
mains, for example, /music/headset/bluetooth. Domains are also used to
define authorisation policies in the cell policy language, e.g. objects within the subject
domain /players/mp3 are permitted to perform the action play on objects in the
target domain /headsets.

4 N. Dulay et al.

2.6 Context Service and Trust Service

In addition to the core components, cells can also load a context service and a trust
service. These allow context and trust information to be defined, gathered and com-
bined, and used in evaluating policy constraints. Changes in context and trust can
raise events that trigger obligation policies that cause adaptation.

3 Cell Policy Language

Central to the management of cells is the Cell policy language and interpreter. The
language is loosely based on the Ponder policy language developed at Imperial Col-
lege London. All primitive policies are encapsulated into one composite type called
the relationship. There are no roles, groups, or management structures. There are no
domain scope expressions. Subjects can be based on credential verification as well as
domain membership. The language includes explicit support for domain crea-
tion/removal as well as enabling/disabling of policies. Composite event can be de-
fined. There are explicit rules for authorisation conflict resolution based on explicit
relationship ordering rules. The syntax is also cleaner and less cluttered than Ponder
and is suitable for interactive execution.

3.1 Relationships

Relationships encapsulate one or more policies. Currently obligation (event-
condition-action) policies and authorisation policies are supported. Relationships can
also encapsulate other relationships. Relationships are created, enabled, disabled,
removing as a whole, e.g. policies cannot be added to a running relationship, other
than by disabling and removing the relationship, and replacing it with a new relation-
ship with the additional policy. The policies act as an atomic unit, for example, dis-
abling an individual authorisation may lead to unexpected results. The policy service
includes a multi-threaded interpreter for concurrently executing obligation policies.
The following examples illustrate the Cell policy language.

Example 1. Authorisation policy. Members of the family domain are allowed to play games
on the pda but only at home or in the car.

 context home_car: location=home or location=car

 auth+ /family -> home_car ? /pda/games.play

Example 2. Authorisation policy. Doctors who can present a credential issued by the British
Medical Association (BMA) can issue commands to the cell’s medical devices in an emergency
in the UK.

 credential medic:role=Doctor and issuer=BMA and issueyear>2005
 context UK_emergency: location=UK and condition=wounded

 auth+ -> medic and UK_emergency ? /medical/devices.commands

 Self-managed Cells for Ubiquitous Systems 5

Example 3. Obligation policy. On discovering a new bluetooth headset add it to the
sound/output/bluetooth domain.

on HeadsetDetect (X) -> X.type=bluetooth ?
 /sound/output/bluetooth.add(X)

Example 4. Obligation policy. After 20 failures to enter a PIN, disable the Mobile Phone pol-
icy and enable the Stolen mobile phone policy

event Stolen: count (PIN_failure, 20)

on Stolen () -> /policy/mobile/normal.disable (),
 /policy/mobile/stolen.enable ()

4 Inter-cell Interactions and Self-organisation

Although self-managed cells provide the management capability for supporting con-
figuration and adaptation within a device, there is a need to support management
across multiple cells. The cell architecture supports two forms of inter-cell organisa-
tion:

• Federated to support peer-to-peer interactions between cells in order to
collaborate and share resources, for example police, ambulance and fire workers
collaborating and sharing resources at car-accident. Management relationships
between federated cells are often transient, but can be longer-lived.

• Nested, where several cell nest within an enclosing cell and nested cells are not
visible to cells external to the enclosing cell i.e. any management interaction is
via the enclosing cell. Cells can move and out of enclosing cells, for example,
the cell of a patient returning home, may nest in the home cell, and be governed
by the policies of the home cell.

We model cell-cell interactions through relationships. Each cell defines its own re-
lationships with respect to other cells. When a new cell is discovered it is subject to a
similar procedure as devices. However for cells, additional actions and protocols are
supported including exchange of policies, event registrations, and domain member-
ship details. These protocols allow cells to share management information and re-
sources and self-organise through federation and nesting.

5 Current Status and Future Work

We are currently developing Java-based implementations of the cell architecture to
run on Series 60 Nokia phones, HP iPaq PDAs and laptops over bluetooth, wi-fi, and
GPRS. We are also experimenting with body sensor nodes with Zigbee wireless
capability that communicate by low-power radio with the iPaq. A simulator to test
larger cells and more easily simulate repetitive events or devices coming into and out
of range is being developed.

There are many issues still to be resolved, such as making sure the protocols opti-
mise the use of battery power; how to make sure a device is ‘owned’ by the appropri-
ate cell and not taken over; how to present management information and policies to

6 N. Dulay et al.

end-users and elicit policy settings; investigating the best design patterns for inter-cell
management; how to specify and implement privacy policies that allow users to con-
trol access to personal information, and what mechanisms to use to anonymise per-
sonal information and prevent tracking.

Acknowledgments

The authors wish to thank the UK Engineering and Physical Sciences Research Coun-
cil for their support of this research through grants GR/S68040/01 and
GR/S68033/01.

	Introduction
	Ubiquitous Systems Management

	Self-managed Cells
	Cell Watchdog
	Event Service
	Discovery Service
	Policy Service
	Domain Service
	Context Service and Trust Service

	Cell Policy Language
	Relationships

	Inter-cell Interactions and Self-organisation
	Current Status and Future Work
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

