
AMUSE: Autonomic Management of
Ubiquitous e-Health Systems

N. Dulay1, S. Heeps2, E. Lupu1, R. Mathur1, O. Sharma2, M. Sloman1, J. Sventek2

1Department of Computing, Imperial College London

2Department of Computing Science, University of Glasgow
http://www.dcs.gla.ac.uk/amuse/

Abstract
Future e-Health systems will consist of low-power on-body wireless sensors attached to
mobile users that interact with a ubiquitous computing environment. This kind of system
needs to be able to configure itself with little or no user input, but more importantly, it is
required to adapt autonomously to changes such as user movement, device failure, and the
addition or loss of services. We propose the Self-Managed Cell architecture for such systems,
and outline how the architecture supports an e-Health application in which on-body sensors
are used to monitor a patient living in their home.

1 Introduction

Monitoring chronically ill patients as they go
about their normal activity enables early release
from hospitals and improves the patients’
quality of life. Analysis and data mining of the
monitored information can be used to predict
potential problems such as a possible heart
attack for a specific patient being monitored and
to generate a warning to the patient or medical
staff, but can also be used by medical
researchers to understand the body changes that
take place prior to a specific problem. The
technology to enable ‘healthcare everywhere’,
such as programmable body sensor nodes which
use wireless communication to PDA/phones
that interact with remote medical centres for
logging and patient feedback, is now available.
The UbiMon project is developing techniques
for determining the conditions that indicate a
medical problem for a patient and taking
appropriate action to warn a patient or, if
necessary, involve a medic in the monitoring
loop. In addition, logging the data to servers
allows data mining for medical research to
determine typical patterns indicating medical
problems – see [1] for further information.

On-body and environmental sensors may
also be used in the home for monitoring elderly
people to determine problem situations or
deterioration of well-being over time [2].
However, configuration of the multiple sensors
and software components that will form an

adaptive body-area network or a home
monitoring network is not currently feasible for
non-technical patients or medics.

The Amuse project is developing autonomic
management techniques for self-configuring and
self-managing such systems. The systems must
be able to add or remove components, cater for
failed components and error prone sensors,
automatically detect and adapt to a user’s
current activity and communication capability,
as well as catering for interaction with health
visitors or medics who attend patients or visit
elderly people. User activity determination is
critical, for example to distinguish between
vigorous brushing of teeth and possibly a heart
attack. Although we are using e-Health as a
scenario, our aim is to develop generic
techniques applicable to e-Science and other
applications.

2 Self-Managed Cell

We advocate the concept of the Self-Managed
Cell (SMC) as an approach for implementing
autonomic ubiquitous systems. An SMC
manages a set of components such as those in a
body-area network, a room or even a large-scale
distributed application. The components could
be on-body sensor nodes, or in the future,
“intelligent” implantable sensors and actuators
(c.f. pacemakers and defibrillators) as well as
smart phones and PDAs.

The main objective of an SMC is to support
autonomic functions such as self-configuration,
self-healing, self-optimisation. self-protection
and context aware adaptation as appropriate. In
the e-Health scenario described in section 3,
patients or medics would not have the technical
knowledge to configure the sensors for a
patient. Instead the SMC should discover
appropriate sensors and configure them to
perform the appropriate monitoring.

There are several core services required for
an SMC, which we currently assume are
implemented on a PDA for a body-area
network:
Event Bus: adaptive ubiquitous systems are
essentially event driven as changes of state in
resources need to be notified asynchronously to
several, potentially unknown, recipients. An
event may indicate discovery of a new
component, component failure, change in
context or medical condition e.g. ECG anomaly
detected. We are implementing a simple
publish-subscribe event system supporting at-
most-once persistent event delivery in which the
service attempts to deliver the event until it
knows that the subscriber is no longer a member
of the SMC.
Discovery service: it is essential to discover
nearby components which are capable of being
members of the SMC e.g. intelligent sensors,
and other cells when they come into
communication range. The discovery service
interrogates the new devices to establish a
profile describing the services they offer and
then generates an event for other SMC
components to use as appropriate. We have to
cater for mobile wireless components which
may drift in and out of communications range
and distinguish this from permanent departure
from the cell.
Role Service: roles provide a means of
grouping components, and generally correspond
to the role they play within the cell e.g.
temperature sensors, heart sensors, context
sensors, the patient, or a healthcare worker.
Roles can be considered active components
which receive discovery events and decide
whether to assign components to a role which

will govern what cell resources can be accessed
and how the component interacts with other cell
components. Roles are organised hierarchically
and are written using pathnames (e.g. like file
pathnames).
Policy service: policies provide the means of
specifying the adaptation strategy for autonomic
management. Based on the lessons learnt from
our previous policy specification work [3] [4]
[5] we are developing a new light-weight policy
service appropriate for limited-resource devices.
Authorisation policies specify what resources
the components assigned to a role can access
and obligation policies (event-condition-action
rules) specify how roles react to events and
interact with other roles. When a device is
assigned to a role, the appropriate policies will
be deployed to it. Policies can be added,
removed, enabled and disabled to change the
behaviour of cell components without
reprogramming them. Policies also govern the
behaviour of the discovery service, the role
service and the policy service itself, allowing
these to be tailored to specific applications.

More complex SMCs may support other
services such as context services that provide
information from the surrounding environment
such as location, or from fixed infrastructure
such as weather, pollen counts etc; security
services that perform violation or attack
detection, and support authentication and
confidentiality; optimisation services which try
to optimise performance according to a utility
function etc.

3 e-Health Body Sensor Network
Scenario

In this scenario, we are focusing on a body
sensor network SMC monitoring a cardiac
patient and how it interacts with a nurse who
comes to visit the patient. The self-
configuration function must first discover
appropriate components and then configure
them according to the role they perform in the
cell. This would be triggered by assigning the
discovered component to one or more roles, and
could entail loading policies into an ‘intelligent’

1. verify medic (c) → c.role=”Nurse” and c.issuer=”NursingCouncil”
 oblig SMCdetect (n) → n.type=”nurseSMC” and medic (n.credentials) ? /medics/nurses.assign (n.name, n)
2. oblig DeviceDetect (t) → t.type=”tempsensor” ? /sensors/temperature.assign (t.name, t)
 ……….

3. oblig every (mins(1)) → /services/discovery.findNewMembers()
4. oblig every (mins(2)) → /services/discovery.pollMembers()

Figure 1 Example Policies

device or setting parameters on a simpler
device. Each SMC’s discovery service will
periodically broadcast a request to discover new
components. Any ‘discoverable’ component
which is not a member of the cell responds with
a message giving its identifier, address and
device type. The device can then be queried to
obtain its profile, which describes the services it
implements, any credentials it offers etc.
Components will have policies specifying how
to respond to discovery requests. For example, a
sensor component will only respond if it is not
already a member of a cell, whereas a nurse
might only respond to a patient whose identifier
is in a preloaded patient list. Some example
policies are shown in Figure 1.

This set of policies relate to device
discovery, and specifies that a nurse (SMC)
certified by the nursing council should be
assigned to the medic role while temperature
sensor devices should be assigned to the
temperature role. Policy 3 indicates the
frequency of polling for new devices and policy
4 specifies that devices in both roles should be
polled to confirm that they are still reachable.
Pollmembers is a role-specific action which
maintains records of device presence and
removes those devices that have been
unreachable for some period of time, e.g.10
minutes.

When a device is assigned to a role, any
policies applicable to that role will be loaded
onto the device and enabled. Thus a
temperature sensor would receive policies
telling it to read the temperature every <n>
minutes but only notify the PDA when the
temperature exceeds a threshold. The cardiac
sensors may send a 10 second ECG sample
every minute to the PDA for anomaly detection,
however under some circumstances, it may
switch to continuous monitoring with remote
transmission via the PDA to a medical centre.
We assume that most devices capable of

wireless communication are also capable of
interpreting simple policies.

Figure 2 shows the interactions between 2
SMCs relating to a home visit from a nurse.
The Nurse SMC is discovered and assigned to
the Medic Role in the Patient SMC and
similarly the Patient SMC will be discovered
and assigned to the Patient Role in the Nurse
SMC. Each of the SMC PDAs will receive
policies relating to its relevant role. The Patient
SMC will have authorisation policies permitting
members of the medic role to interact directly
with its devices. The patient’s SMC could also
be made a member of the Medic SMC. The
nurse could then replace, enable or disable
policies in the patient’s SMC to modify the
medical regime. This type of peer-to-peer
relationship is one way of supporting SMC to
SMC interactions.

In the following sections we discuss some of
the SMC functions in more detail.

4 SMC Architecture Details

4.1 Policy Service

We have had considerable experience of the use
of policies as a means of specifying adaptive
behaviour in network management and other
applications. The use of separate, interpreted
policies means they can be easily changed
without shutting down or recoding components.
Authorisation policies should be enforced on the
target components they are protecting as these
must make the decision whether to permit or
deny access. Requesting a decision from a
remote policy interpreter via wireless
communication would not be practical in most
cases. For example a policy of the form:
 auth+ /sensors/temperature → /pda.reportTemp

would be needed to permit temperature sensors
to perform the reportTemp operation on the pda.

PDA

Context
Sensors

Heart
Sensors

Temperature Blood
sugar

Medic
PDA

Context
Sensors

New
Sensor

Patient Patient
records

Patient SMC Medic SMC

PDA

Context
Sensors

Heart
Sensors

Temperature Blood
sugar

Medic
PDA

Context
Sensors

New
Sensor

Patient Patient
records

Patient SMC Medic SMC

Figure 2 Peer to Peer Interactions Between SMCs

Obligation policies are event-condition-
access rules and would be associated with a
role. For example the following policies would
be loaded into a temperature sensor when it is
discovered and assigned to the temperature role:

// Policies loaded into a Temperature Sensor
5. oblig every (mins (2)) →
 raise local tempEvent (read_temperature())

6. oblig tempEvent (temperature) →
 temperature > MAX_TEMPERATURE ?
 /pda.reportTemp (temperature)

Policy 5 tells the sensor to read the
temperature and raise an event every 2 minutes
and is triggered by a local time event. Policy 6
will report the temperature to the pda when the
temperature value is greater than a maximum
value. Wireless communication is only used if
there is a problem with the temperature and, as a
result, this minimises power consumption.

The above policy notation is loosely based
on the Ponder toolkit [3][4] developed at
Imperial College London. Ponder is being
redesigned to be suitable for smaller devices
such as PDAs and body sensor nodes (BSNs)
developed in the UbiMon project. The latter
have very low power 16-bit processors 64KB
RAM and 256KB Flash memory, 6 analog
channels for sensors and Zigbee radio [1].

Obligation policies can also be used to
manage other policies in terms of selecting,
enabling and disabling policies [5] to adapt
overall behaviour of a SMC to current context
e.g. a set of policies for when the patient is
sleeping and a different set related to situations
when the patient is doing normal activities.
Policy 7 is triggered by the sleeping event from
the context sensing service, and enables the
policies for sleeping and disables those for the
awake state, while Policy 8, triggered by the
awake event, does the opposite.
7. oblig sleepingEvent () →
 /pda/policies/sleeping.enable(),
 /pda/policies/awake.disable()

8. oblig awakeEvent ()→
 /pda/policies/awake.enable(),
 /pda/policies/sleeping.disable()

This obviously depends on the ability to detect
current activity, which requires fusion of
information from multiple sensors and we can
make use of other work in the UbiMon project
for this.

4.2 Event Bus

We have chosen to implement the event bus as
an at-most-once, persistent publish/subscribe
delivery service, using a router to distribute
events to subscribers. The router is content-
based – i.e., a subscriber specifies a filter when
it registers, and all published events that match
the filter are forwarded to that subscriber. The
structure of the event bus is shown in Figure 3.

Publishers do not need to register with the
Router. When a publisher sends an event to the
Router, it does so synchronously and reliably;
this reliable delivery is shown by the
request/response arrow. Successful delivery of
the event to the Router transfers responsibility
for subsequent delivery to the Router. The
Router attempts to deliver such an event to each
subscriber whose filter matches the event. If it is
unable to deliver the event to a particular
subscriber due to transient communication
failure, it queues the event for redelivery to that
subscriber. The router attempts to deliver
queued events until it knows that the subscriber
is no longer a member of the SMC. Each
subscriber is guaranteed to receive all events
from a particular publisher in the same order as
received by the Router. This is required in case
there is a causal relationship between events
from a particular publisher. If the Router
receives a component-left event, it removes that
subscriber’s filters (if it had registered for any
events), and purges any queued up events for
that subscriber.

We do not assume that all communication
within the SMC takes place via the event bus.
Events are used to trigger policy actions. For
example the policy service may use simple
broadcast messages and unicast messages for
polling individual components. Other
components may use remote procedure calls or
object invocations depending on what they

Publisher Subscriber Router

S
S

S: filter

component-detected

Figure 3 Publish-Subscribe Event Service

component-left

support.
A device such as an intelligent sensor may

also be considered a very simple SMC as it is
capable of interpreting policies. It may support
a simplified event service containing only a
single subscriber with localised events e.g. from
a timer in order to trigger policies at regular
intervals.

4.3 Discovery Service

The discovery service is responsible for
detecting new devices or other SMCs when they
come into communication range. It is
responsible for vetting a device for membership
by obtaining the device’s profile. If a new
device passes the vetting procedure, the
discovery service generates a component-
detected event as indicated in Figure 3. By
making the discovery service policy driven, it
can easily be adapted to different applications.

This service is also responsible for
determining when a device permanently leaves
the cell and for generating a corresponding
component-left event. Although in a patient
SMC, most sensors will not be independently
mobile, the nurse SMC in the medic role might
go out of the room and hence be out of wireless
range for a short time. The discovery service
has to distinguish between permanent
departures from the cell and temporary loss of
communication. Thus the number of failed
polls to detect a departure from the cell and the
frequency of polling a component is dependent
on the SMC application so must be configurable
via policies. We have implemented a very
simple discovery service which runs on the
PDA and broadcasts its identity message (id;
type[; extra]) at frequency ωR. A new device
responds to the router identity message with a
unicast device identity message. The discovery
service can then query the device to obtain a
device profile describing the services; it
performs some basic vetting of devices, informs
the device whether it has been accepted for
membership, and if so generates a component-
detected event which results in the device being
assigned to specific roles depending on its
profile and possibly on the credentials it
possesses as indicated in Figure 1.

Each member device unicasts its identity
message to the discovery service at the
frequency ωD. If the discovery service misses
nD successive messages from a particular
device, it concludes that the device has left the
SMC permanently, and generates a
corresponding component-left event. If the
device misses nR successive discovery service

identity broadcasts, it declares that is no longer
a member of that cell.

When a device joins an SMC, it will not
respond to a discovery service broadcast from
another SMC. In the healthcare scenario, a
sensor should not decide that it has left the SMC
because there is a problem with the discovery
service and then join the SMC of the person
sitting next to the patient on the bus. One
approach is to use pairing buttons on the PDA
and device which have to be pressed
simultaneously, while the devices are in radio
contact, in order to set up an association with a
new SMC, as with simple Bluetooth devices.
We will investigate other more secure
techniques in the Caregrid project [6].

We may also provide access to other
discovery services such as UPnP [7] although
this does not support any form of adaptation of
the discovery service itself.

4.4 Trust, Security and Privacy

A pervasive healthcare system involves
complex interactions between many services in
many organisations. If an emergency is
detected the monitoring service calls an
ambulance. The monitoring service needs
access to patient cardiac history from the
patient’s GP and from the hospital where the
patient had treatment and so liaises with the
emergency services and the hospital to which he
will be taken for emergency treatment. The
monitoring service also provides anonymised
monitoring records for medical research. Trust
is a key issue as we want trust-based decisions
relating to the interactions between entities –
which entity to interact with, what resources
should the entity have access to, what
information should be released to the entity,
how to configure the mechanisms needed to
make the interaction secure and how trust levels
change over time, based on experience and
reputation. Large-scale applications cannot rely
on the traditional person in the trust decision
loop, but must make use of automated trust
decisions.

There are many different aspects of trust in
all the above interactions. Will the monitoring
service detect actual problems without false
alarms? Can the wireless infrastructure used be
trusted with respect to confidentiality? If not,
can this lack of trust ensure that data is
communicated over a secure channel? Can the
monitoring service be trusted to pass on
monitored information for research while still
maintaining patient privacy and can they
guarantee that the information will be used only
for medical research? Can the patient (if he so

wishes) agree to information being sold to
insurance companies in exchange for a lower
monitoring service charge or insurance
premium? In cases of emergency, can we
ensure that privacy issues may be over-ruled
and the patient’s doctor should have access to
detailed monitored information? Trust with
respect to interactions between organisations
(e.g. a hospital using a blood analysis service)
will change over time based on experience,
recommendations, or reputations [8]. There is a
need to collect this evidence for use in making
decisions based on trust, for example in health
workflow systems to aid medical procedures or
patient care, where the entities participating in
the workflow, change dynamically because of
workload, availability etc and may have varying
levels of trust between them. Trust may also
depend on current context, particularly for
mobile applications. Privacy – an individual’s
right to control the collection and use of
personal information plays a crucial role in
building trust, particularly in healthcare
applications.

Most trust-based systems rely on the ability
to validate credentials, which implies access to
certification authorities and credential
revocation lists, but internet access cannot be
guaranteed from and SMC. Other techniques
are needed for using recommendations or
assertions of the trustworthiness from other
entities within an SMC as described in [9].

Trust and security were explicitly excluded
from the Amuse project, but will be addressed
in the EPSRC funded Caregrid project [6].

5 SMC Simulator

To explore SMCs, we are implementing several
prototype systems. The logistics of building
such prototypes dictates that while they will be
functional, we will not be able to significantly
explore the scalability aspects of such systems,
nor will we be able to study peering interactions
between large numbers of SMCs. In order to
explore these scale issues, we have
implemented a discrete event simulator for
SMCs [14]. The simulator will provide insight
into the operation of individual SMCs and the
interaction between internal components,
allowing an enhanced generic SMC architecture
to be designed.

The simulator will enable the accurate
simulation of management traffic of an SMC in
an attempt to optimise component functionality
and component interaction. Measurements such
as the average delay from the time an event is

signaled until interested components receive it
will becomes apparent as will the time it takes
the event service to propagate events.

We will further be able to test different
discovery mechanisms, inferencing engines and
event buses, accurately visualising the effect
these have on the overall functionality of an
SMC. It will also be possible to model the
federation, layering and composition of SMCs
into larger structures.

An initial version of the simulator has been
completed, and is documented in [14].
Additional required simulator functionality will
be added throughout the project.

6 Related Work

IBM has been the prime mover towards
autonomic computing [10] and HP is also
addressing similar issues in on-demand Utility
Data Centres [11]. However most of the
industrial work focuses on large clusters and
web servers whereas we are concentrating on
pervasive computing which is potentially more
dynamic due to the mobility of components.

The Universal Plug and Play (UPnP)
Architecture supports resource discovery and
configuration of consumer devices (TV, video
recorder, air conditioning etc.) which
communicate via wireless within a home or
office [7]. Although they concentrate on device
configuration rather than configuration of
software within nodes, some of the protocols
and XML service specifications can be adapted
for our purposes. UPnP currently focuses
primarily on self-configuration and does not
support the adaptability required for healing,
optimising or protecting.

There are many publish-subscribe event
services such as Elvin [11], XML-blaster [12],
and Sienna [13], which we have used in test
systems; unfortunately, none of these routers are
designed to run on small devices such as body
sensor nodes (BSNs) and PDAs.

7 Status and Future Work

We are currently building an implementation
of the SMC architecture. The prototype consists
of a set of body sensor nodes with Zigbee
wireless capability developed in the UbiMon
project that communicate by low-power radio
with a PDA that hosts the management
components and has wireless LAN or GPRS
communications. There are a number of issues
still to be resolved, such as making sure the

protocols we develop optimise the use of battery
power; how to make sure a device is ‘owned’ by
a particular SMC and cannot be taken over by
another SMC; how SMCs can interact at a level
of abstraction higher than implementable
policies etc. Three related projects are starting
which will investigate the privacy trust and
security issues; the applicability of the concepts
to SMCs consisting of groups of unmanned
vehicles which need to cooperate to achieve an
overall goal; the applicability to micro-
miniaturised and implantable sensors; how to
define, gather, combine context information for
triggering and constraining policies.

Acknowledgements

The authors wish to thank the UK Engineering
and Physical Sciences Research Council for
their support of this research through grants
GR/S68040/01 and GR/S68033/01.

References

[1] DTI funded UbiMon Project
http://www.ubimon.org

[2] DTI funded Care in the Community Project
http://www.dticareinthecommunity.com

[3] Damianou N., N. Dulay, E. Lupu, M
Sloman, The Ponder Specification
Language Proc. Policy 2001: Workshop
on Policies for Distributed Systems and
Networks, Bristol, UK, 29-31 Jan. 2001,
Springer-Verlag LNCS 1995, pp. 18-39

[4] Damianou N., N. Dulay, E. Lupu, M.
Sloman, T. Tonouchi, Tools for Domain-
based Policy Management of Distributed
Systems, IEEE/IFIP Network Operations
and Management Symposium
(NOMS2002), Florence, Italy, 15-19 April,
2002

[5] Lymberopoulos L., E. Lupu and M.
Sloman. An Adaptive Policy Based
Framework for Network Services
Management, Plenum Press Journal of
Network and Systems Management, Special
Issue on Policy Based Management, 11: 3
Sep. 2003, pp277-303

[6] EPSRC CareGrid Project
http://www.doc.ic.ac.uk/%7End/projects/C
areGrid.html

[7] Universal Plug and Play Device
Architecture. http://www.upnp.org/
resources/documents.asp

[8] Abdul-Rahman A. and Hailes S.:
Supporting Trust in Virtual Communities,
Proc. of 33rd Annual Hawaii Intl. Conf. on
System Sciences, Hawaii, Jan. 2000, Vol
1, 9pp

[9] S.L Keoh, E. Lupu, M. Sloman, PEACE :
A Policy-based Establishment of Ad-hoc
Communities, IEEE Annual Computer
Security Applications Conference (ACSAC
2004), Tucson, Arizona, USA, Dec. 2004,
pp 386-395

[10] Autonomic Computing Special Issue, IBM
Systems Journal, Vol. 42, No 1, 2003.

[11] HP Utility Data Center: Enabling
Enhanced Datacenter Agility,
http://www.hp.com/large/globalsolutions/a
e/pdfs/udc_enabling.pdf, May 2003

[12] Elvin http://www.mantara.com/
[13] xmlBlaster http://www.xmlblaster.org/
[14] Siena Wide Area Event Notification

Content Based Routing
http://serl.cs.colorado.edu/~serl/
dot/siena.html

[15] Heeps, S. and O. Sharma, “Self-Managed
Cell Simulator”, University of Glasgow
Technical Report, February 2005.

	Abstract
	Introduction
	Self-Managed Cell
	e-Health Body Sensor Network Scenario
	SMC Architecture Details
	SMC Simulator
	Related Work
	Status and Future Work
	Acknowledgements
	References

