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Abstract 

Policy-based management provides the ability to 

(re-)configure differentiated services networks so that 

desired Quality of Service (QoS) goals are achieved. 
Relevant configuration involves implementing network 

provisioning decisions, performing admission control, 

and adapting bandwidth allocation dynamically 

according to emerging traffic demands. A policy-based 

approach facilitates flexibility and adaptability in that 
the policies can be changed without changing the 

implementation. However, as with any other complex 

system, conflicts and inconsistencies may arise in the 

policy specification.  In this work, we concentrate on 

the policy conflicts that may occur for static resource 

management aspects of QoS provisioning, known as 
Network Dimensioning. The paper shows how conflict 

detection can be achieved using Event Calculus in 

conjunction with abductive reasoning techniques to 

detect the existence of potential conflicts in partial 

specification and generate explanations for the 

conditions under which the conflicts arise. We finally 
present some conflict detection examples from our 

initial implementation of a policy conflict analysis tool. 

Although we focus on network dimensioning, many of 

the types of conflicts we illustrate could arise in other 

applications. 

1. Introduction 
In recent years, fully-automated, policy-based 

management has been proposed as a suitable means for 

managing Quality of Service (QoS) in IP networks. 

Yet despite research projects, standardisation efforts, 

and substantial interest from industry, policy-based 

management is still not a reality. There are some 

vendor tools, mostly part of virtual private network 

provisioning toolsets, but policy-based management is 

still far from being widely adopted despite its potential 

benefits of flexibility and “constrained 

programmability”. One of the reasons behind the 

reticence to adopt this technology is that it is difficult 

to analyse policies in order to guarantee network 

configuration stability given that policies may have 

conflicts leading to unpredictable effects. There are no 

policy analysis tools that can detect policy conflicts 

beyond simple cases or identify the circumstances in 

which a conflict may arise. 

Initial work on policy analysis focused on 

identifying modality conflicts addressing simple 

analysis between positive and negative authorisation 

security policies and the specification of policy 

precedence rules in order to resolve conflicts [1]. In 

addition, Jajodia in [2] has proposed a logic-based 

specification of security policies with relatively simple 

well-understood semantics amenable to analysis, using 

techniques based on deductive reasoning; these are in 

general not suitable for reasoning over incomplete 

specifications or for identifying causes of conflicts. 

The work in this paper is based on the work presented 

in [3] where the use of Event Calculus (EC) was 

proposed as a specialised first-order logic for 

formalising policy specification based on solid 

theoretical foundations [4] and the mapping to and 

from the Ponder policy language [5]. EC allows 

specification of the system behaviour using familiar 

notations, such as state charts, which can then be 

automatically translated into the logic program 

representation. Abductive reasoning proof procedures 

for EC [6] can be used to detect the existence of 

potential conflicts in partial specifications and generate 

explanations for the conditions under which such 

conflicts may arise. 

The initial work mentioned above showed how the 

EC formalism can be used in conjunction with 

abductive reasoning techniques to perform a priori 

analysis of policy specifications for the generic conflict 

types presented in the literature. While this work 

proposes a promising methodology to tackle the 

problem of conflict analysis in a generic fashion, it is 

not sufficient to provide a complete solution to the 
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problem without addressing the needs of an 

application-specific domain. In this paper, we extend 

and refine the aforementioned approach of using EC 

for conflict analysis by applying it to the domain of 

QoS Management of IP Differentiated Services 

(DiffServ) Networks. In order to identify the policies 

and conflicts involved in DiffServ QoS management, 

we use the framework developed in the context of the 

EU IST TEQUILA project [7]. TEQUILA uses 

DiffServ together with Multi-Protocol Labelled 

Switching (MPLS) to support a network that can 

dynamically adapt to varying network traffic demands. 

More specifically, we focus on conflicts that may arise 

from policies driving the Network Dimensioning (ND) 

component of the TEQUILA framework. ND is part of 

the resource management sub-system and is 

responsible for mapping traffic forecast requirements 

onto the physical network resources by providing 

configuration directives in order to accommodate the 

predicted traffic demand. Relevant policies and 

associated enforcement examples have been presented 

in previous work [8].

We identify and provide a taxonomy of the different 

conflicts that can emerge from policy specifications 

that drive the behaviour of ND and show how the EC 

formalism can be used to support the specification of 

rules for detecting different conflict types. Using 

abductive reasoning, we are able to analyse the policy 

specifications to identify existing conflicts and provide 

explanations on how they might arise. The latter is 

demonstrated by conflict detection examples taken 

from our initial implementation of a conflict analysis 

tool. The work builds upon the initial approach 

described in [3]. The paper focuses on analysing 

application-specific conflicts which has hardly been 

addressed in the literature for management policies.  

However many of the types of conflicts we discuss, 

such as mutual exclusion or resource allocation also 

arise in other application areas and so the concepts 

described could be easily adapted to any application.   

In the next section we present some background 

information about EC and policy analysis, as well as a 

short description of the TEQUILA framework focusing 

on the behaviour of the ND component.  Section 3 

details the identified policies for Network 

Dimensioning along with their representation in the 

Ponder specification language. In section 4 we present 

the classification of the identified conflict types as well 

as the conditions under which these conflicts may 

arise. Section 5 presents the rules for detecting the 

conflicts along with specific conflict detection 

examples. Finally section 6 presents some related work 

in this field; and section 7 discusses our conclusions 

and future work. 

2. Background 
2.1. Formal representation and Event Calculus 

Event Calculus is a formal language for 

representing and reasoning about dynamic systems.  

Because it supports a time representation that is 

independent of any events that may occur, it provides a 

particularly useful way to specify a variety of event-

driven systems.  Since its initial presentation [4], a 

number of variations have been presented in the 

literature.  In this work we use the form presented in 

[9], consisting of (i) a set of time points (that can be 

mapped to the non-negative integers); (ii) a set of 

properties that can vary over the lifetime of the system, 

called fluents; and (iii) a set of event types.  In addition 

the language includes a number of base predicates: 

initiates, terminates, holdsAt, happens, as 

summarised below: 

 Base predicates:

 initiates(A,B,T)  event A initiates fluent B for all time > T. 
 terminates(A,B,T)  event A terminates fluent B for all time > T. 
 happens(A,T)  event A happens at time point T. 
 holdsAt(B,T)  fluent B holds at time point T. 
 initiallyTrue(B) fluent B is initially true. 
 initiallyFalse(B) fluent B is initially false. 

This is the classical form of the Event Calculus 

where theories are written using Horn clauses. The 

frame problem is solved by circumscription, which 

allows the completion of the predicates initiates,

terminates and happens, leaving open the predicates 

holdsAt, initiallyTrue and initiallyFalse. This 

approach allows the representation of partial domain 

knowledge (e.g. the initial state of the system). 

Formulae derived from Event Calculus are in effect 

derived from the circumscription of the EC 

representation. 

Event Calculus supports deductive, inductive and 

abductive reasoning.  The technique that is of 

particular interest to our work is abduction. Given the 

descriptions of the behaviour of the system, abduction 

can be used to determine the sequence of events that 

need to occur so that a given set of fluents will hold at 

a specified point in time. 

Table 1: Function symbols.

The work described in [9] outlines how abduction 

can be used in conjunction with Event Calculus to 

analyse requirements specifications and presents a 
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specialised set of EC axioms that reduce the 

computational complexity of the abductive proof 

procedure. The formal language being used is based on 

that described in [2], where in addition to the base 

predicates and axioms of Event Calculus we make use 

of the function symbols shown in Table 1. 

2.2. Policy analysis 
In an environment where a number of policies need 

to coexist, there is always the likelihood that several 

policies will be in conflict, either because of a 

specification error or because of application-specific 

constraints. It is therefore important to provide a means 

of detecting conflicts in the policy specification. 

The different types of conflicts that can occur are 

identified in [1]. Modality conflicts arise when two 

policies are specified using the same subjects, targets 

and actions but are of opposite modality (e.g. 

obligation and refrain).  This type of conflict is 

domain-independent since conflicts could occur 

irrespective of the application domain for which the 

policies are being specified.  Other conflict types 

identified in the literature fall into the category of 

application-specific conflicts.  As described in [10], 

these include conflicts of duty, conflicts of interest, 

multiple manager conflicts, conflicts of priorities for 

resources and self-management conflicts. 

Considering the types of conflicts described above, 

it is possible to define rules that can be used to 

recognise conflicting situations in the policy 

specification. Modality conflicts involving obligation 

and refrain policies occur when the two policies are 

defined for the same subject, target and action.  The 

obligConflict predicate defined below holds if a 

modality conflict is detected. 

 holdsAt(oobligConflict(Subj, Op), T) 

 holdsAt(oblig(Subj, Op), T) ∧
 holdsAt(refrain(Subj, Op),T). 

In the above rule, the Op variable will be instantiated 

with an operation term as defined in Table 1. 

In the case of application-specific conflicts, rules 

must be defined using constraints that include 

application-specific data in addition to policy 

information. In order to capture the additional 

information, we extend the system specification 

language to include rules that define each application-

specific conflict that may arise in the system.  The 

rules can include ground literals, specifying the 

action/target object combinations that will potentially 

conflict.   

Rules for the detection of application-specific 

conflicts, such as conflicts of interest, conflicts of 

duties and self-management conflicts can be found in 

[3].

2.3. QoS management 
Management plane functionality [11] is needed to 

support end-to-end quality of service based on Service 

Level Subscriptions (SLSs), using DiffServ Per Hop 

Behaviour (PHB) together with Multi-Protocol 

Labelled Switching (MPLS). A policy-based functional 

architecture for supporting quality of service in IP 

DiffServ Networks has been designed in the context of 

the European collaborative research project TEQUILA 

(Traffic Engineering for QUality of service in the 

Internet at LArge scale). This architecture can be seen 

as a detailed decomposition of the concept of a 

Bandwidth Broker realized as a hierarchical, logically 

and physically distributed system and has been 

presented in [7]. It is decomposed into three major sub-

systems: SLS management, Traffic Engineering and 

Monitoring. SLS management is responsible for 

agreeing the customers’ QoS requirements in terms of 

SLSs, while Traffic Engineering is responsible for 

fulfilling the contracted SLSs by deriving the 

parameters for configuring the network devices. The 

Monitoring sub-system provides the above systems 

with the appropriate network measurements and 

assures that the contracted SLSs are indeed delivered at 

their specified QoS. We describe below the 

functionality of the Network Dimensioning component 

which is part of the Traffic Engineering sub-system 

since the rest of the paper focuses on the analysis of the 

policies driving its behaviour. 

Network Dimensioning performs the provisioning 

activities of the management system. It is responsible 

for the long to medium term configuration of the 

network. By configuration we mean the setup of Label 

Switched Paths (LSPs) as well as the parameters (e.g. 

priority, weight, bandwidth) required for the operation 

of PHBs on every link. The values provided by ND are 

not absolute but come in the form of a range, 

constituting directives for the function of the PHBs, 

while for label switched paths they come in the form of 

multiple paths in order to enable multi-path load 

balancing. The exact configuration values and the 

chosen path among the multiple paths to be used are 

determined by dynamic TE functions based on the 

actual state of the network at any point in time. 

ND runs periodically by first requesting the 

predictions for the expected traffic per traffic class or 

Ordered Aggregate (OA), i.e. EF, AF1x, AF2x, AF3x 

or BE for DiffServ, in order to be able to compute the 

provisioning directives. The dimensioning period is 

typically in the time scale of a week and the goals are 

to optimally distribute the projected traffic over the 

network resources by minimizing the overall cost and 

at the same time avoid overloading parts of the 

network while others are under-loaded.  
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Figure 1: Network Dimensioning module behaviour.

As it can be seen from the behavioural state chart in 

Figure 1, ND goes through 3 main states in order to 

produce a network configuration, namely the pre-

processing, processing and post-processing state. The 

details of the actions supported by the Managed 

Objects (MOs) of ND in every state shown in the 

figure are explained in detail in the following section. 

3. Policies for ND 
The Network Dimensioning module, besides 

providing long-term guidelines for sharing the network 

resources, can also be policy based so that its 

behaviour can be modified dynamically at runtime, 

reflecting high-level business objectives. 

ND is triggered by time rather than network state 

events from within the network. Two categories of 

policies are identified for this static off-line resource 

management component: (i) policies that result in 

providing initial values to variables, which are 

essential for the functionality of ND and do not depend 

on any state but just reflect decisions of the policy 

administrator (initialisation policies); (ii) policies that 

depend on the input from the traffic forecast module 

concerning the predicted volume of traffic the 

produced configuration should satisfy (resource 

provisioning policies). Such policies are those whose 

execution is based on the type of traffic and on the 

resulting configuration of the network. 

This section describes the methods supported by the 

key components of the module, as well as the 

representation of these methods as policies, which can 

influence its functionality. 

3.1. Explicit route setup and BW allocation 
This component offers methods that can explicitly 

define Label Switched Paths that Traffic Trunks (TTs) 

should follow and also explicitly define the way the 

BW should be allocated to different OAs. The 

following methods are supported by this component’s 

MOs: 

 setBWMin(OA, BW) (M1.1) 
 setBWMax(OA, BW) (M1.2) 
 setupLSP(OA, [TT], [PATH], BW) (M2)

The first two methods (M1.1 and M1.2) allow the 

administrator to define the amount of network 

resources (giving a minimum, maximum or a range) to 

be allocated to each OA. The BW value is expressed as 

a percentage of the overall network capacity. Method

M2 provides the ability to explicitly define an LSP for 

traffic that belongs to a particular OA and passes 

through the set of nodes defined by PATH with logically 

assigned bandwidth, BW.

3.2. Hop count derivation 
Another important function of ND is to handle the 

QoS requirements of the expected traffic in terms of 

delay and packet loss. In our implementation of ND 

functionality, we simplify our optimisation problem by 

transforming the delay and loss requirements into 

constraints for the maximum hop count for each traffic 

trunk. This transformation is made possible by keeping 

statistics for the delay and loss rate of the PHBs per 

link. The methods below provide different options to 

derive the hop count constraint for every OA. We 

envisage that by using the maximum we are too 

conservative (appropriate for EF traffic), while by 

using an average we possibly underestimate the QoS 

requirements.

 calcHopCountMin(OA) (M3.1) 
 calcHopCountMax(OA) (M3.2) 
 calcHopCountAvg(OA) (M3.3) 

3.3. Optimisation algorithm 
This is the core component of ND. Its objective is to 

find a set of paths for which the BW requirements of 

TTs are met, the delay and loss requirements are met 

by using the hop count constraint as an upper bound 

and the overall cost function is minimised [8]. The 

methods defined below are offered by this 

component’s MOs for setting parameters that influence 

the way the algorithm calculates the output 

configuration: 

 setMaxAltPaths(OA, [TT], PathNum) (M4) 
 setMaxHops(OA, HopNum) (M5) 

The first method sets an upper bound on the number 

of hops the calculated paths are permitted to have. This 

number may vary depending on the class (OA) the 

traffic belongs to. The second method defines the 

number of alternative paths the optimisation algorithm 
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should define for every traffic trunk that belongs to the 

defined OA or even for a specific trunk, for the 

purpose of load balancing. 

3.4. Spare/Over-provisioned BW treatment 
After the dimensioning algorithm finishes, ND 

enters a post-processing stage where it will try to 

assign the residual physical capacity to the various 

traffic classes or reduce the allocated capacity because 

the link capacity is not enough to satisfy the predicted 

traffic requirements. The following methods are 

offered by this component’s MOs:

 allocSpareBWEqual( ) (M6.1) 
 allocSpareBWProp( ) (M6.2) 
 allocSpareBWExlp(OA, BW) (M6.3) 
 redOverBWEqual( ) (M7.1) 
 redOverBWProp( ) (M7.2) 
 redOverBWExpl(OA, BW) (M7.3) 

Method M6 defines the distribution of spare capacity 

for every OA. The distribution can be done equally 

between the OAs, proportionally to the current 

allocation or explicitly, where the amount of BW is 

specified as a percentage. Method M7 is similar to the 

previous one, defining the amount of bandwidth to be 

reduced with regard to an OA, in order to fit the 

physical link capacity. 

3.5. Policy representation 
Extended research on policy-based systems 

identified several types of policies that are useful for 

managing distributed systems [5]. Obligation policies 

fall in the category of management policies and are of 

particular interest to our work. They can be used to 

specify management operations that must be performed 

when a particular event occurs given some 

supplementary conditions being true. They are 

specified in terms of a subject that should perform a 

particular action on a target when a specified condition 

is true. 

The methods supported by the different ND 

components described in the previous sections can be 

used to encode the action part of an obligation policy 

that follows the format provided by the Ponder 

specification language [5]. In the context of this work 

the subject for all ND related policies is a management 

entity known as the ND PMA (Policy Management 

Agent). The example that follows encodes method 

M1.1 in the policy specification: 

 inst oblig /policies/nd/PPolA { 
on    doNDProc; 
subj  s = ndPMA; 
targ  t = nd/baMO/network; 
do    t.setBWMin(OA, BW); 
when  constraints; 

 } 

We define three types of events, namely the pre-

processing, processing and post-processing event. 

Each of the events is responsible for triggering the 

appropriate policies related to the different stages of 

the dimensioning process, as in the example, where 

PolA is triggered by the system event processing. The 

policy targets are the specific MOs provided by the 

different ND components supporting the relevant 

methods. In the example representation, the target is 

defined as a sub-domain of the BW allocation MO, 

which provides a logical representation of the 

underlying network. Additional constraints can be 

specified to define any further conditions that have to 

be met, like the time period for which the policy is 

valid. This constraint can be useful when the 

administrator needs to specify a different network 

configuration for busy or non-busy hours of the day. 

4. ND policy conflicts classification 
The fact that policies are downloaded to the ND 

module on the fly while the system is operating may 

cause inconsistencies, since policies have not been 

tested to coexist with one another or with the rest of the 

system functionality without conflicts. We have 

identified a number of potential conflicts related to 

obligation policies that guide the ND functionality, and 

classified them as shown in Figure 2. 

Conflict

Redundancy

MutualExclusion

RAConflict

RoutingConflict

BARConflict

BAConflict

HopsExceed

AltPathsExceed

BWExceedConflict

DivergingActions

SpareBW

ExcessBW

MinMaxBW

Figure 2: ND conflict classification.

The first two categories – redundancy and mutual 

exclusion – involve conflicts that are domain-

independent and apply to any policy driven system. 

The rest are application-specific conflicts, related to 

QoS resource management policies that are responsible 

for BW allocation to different OAs or QoS classes, and 

route (LSP) calculation as well as setup. We term these 

conflicts as resource allocation conflicts (RAConflicts), 

which can be subdivided to BW allocation conflicts 

(BAConflicts), routing conflicts (RoutingConflicts) and 

a combination of the last two, BW allocation and 

routing conflicts (BARConflicts). This section 

describes the conditions under which the specified 

types of conflicts would arise. 

4.1. Redundancy conflicts 
Redundancy conflicts may arise because of 

duplicate policies or policies with inconsistent action 
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parameters in relation to others. If two policies are 

characterized by the same subjects, targets, actions and 

action parameters, they are said to be duplicate and 

should not be allowed to coexist. Furthermore, it is not 

necessary for all the action parameters to be exactly the 

same to indicate an anomaly. The matching of some 

key parameters in the actions will suffice to argue that 

the two policies are inconsistent with each other. 

Consider the actions of two policy instances of PolA
where the first action specifies that at least 30% of the 

resources should be allocated for EF traffic and the 

second 40% for the same traffic type.  

 do    t.setBWMin(ef, 30%) 
 do    t.setBWMin(ef, 40%) 

In this case the OA parameter is the key parameter 

matched, signifying that the two actions will lead to a 

redundancy conflict irrespective of the associated BW 

value. 

4.2. Mutual Exclusion (ME) conflicts 
The functionality of the ND components allows for 

a choice of methods related to a specific process, i.e. 

different strategies for realising a goal. Such process is, 

for example, the allocation of spare resources, where 

the remaining network capacity after the processing

stage is assigned equally, proportionally or explicitly 

between the various OAs. The different actions are said 

to be mutually exclusive since there should not be 

more than one directive specifying how spare resources 

are to be allocated. Therefore, two policies will result 

in a conflict if their actions are mutually exclusive. 

Table 2 summarises the identified ME actions. 

Table 2: Sets of mutually exclusive actions.

4.3. BW allocation conflicts 
BW allocation conflicts relate to the way the ND 

module assigns link capacity to the different OAs. This 

conflict type is subdivided into DivergingActions and 

BWExceed conflicts, which arise due to the existence 

of specific actions with inconsistent parameter values 

with respect to one another. 

With a combination of setBWMin and setBWMax

actions, the administrator can specify a range of 

network resources to be allocated to the various OAs. 

The following two actions aim to provide such a range 

for EF traffic between BW1 and BW2:

 do    t.setBWMin(ef, BW1) 
 do    t.setBWMax(ef, BW2) 

If the above actions are encoded into two separate 

policies with the same subjects and targets, there is a 

possibility that the BW values specified in the actions 

will not converge to provide the intended BW range. 

Instead, the values are said to be diverging if BW1>BW2,

in which case a DivergingActions conflict should be 

signalled. 

In addition to specifying how the network resources 

are assigned as a whole, the above actions can be used 

to allocate the BW of specific links (members of the 

network domain). The administrator may decide that 

for a critical link, the allocation between the various 

OAs passing through that link should be explicitly 

specified, where a critical link can be defined as one of 

high importance either because of its location or its 

heavy loading with certain types of traffic. The same 

principle for a conflict applies when the target of both 

actions is a specific link or when one of the actions 

targets a specific link and the other the network as a 

whole. As a general rule, a DivergingActions conflict 

will arise between two policies if they have the same or 

overlapping targets and diverging actions with 

matching OA parameters but inconsistent BW values.  

During the post-processing stage the administrator 

can define how any spare BW will be shared among 

the OAs, or how over-provisioned BW is to be 

reduced. If this process is carried out using explicit 

actions, there is a potential that the sum of the specified 

BWs for the various OAs may exceed the allowed 

value of 100% due to human error. 

 do    t.allocSpareBWExlp(ef, BW1) 
 do    t.allocSpareBWExlp(af, BW2) 
 do    t.allocSpareBWExlp(be, BW3) 

For the above example actions a BWExceed conflict 

will occur if BW1+BW2+BW3>100%. The same rule applies 

to explicit actions responsible for the reduction of 

excess BW, as well as to setBWMin and setBWMax

actions in the ND processing stage. 

4.4. Routing conflicts  
Routing conflicts relate to the way the ND module 

assigns routes that TTs should follow and the 

specification of the maximum number of hops or 

alternative paths an OA should have in order to meet 

the QoS characteristics. This conflict type is 

subdivided into HopsExceed and AltPathsExceed

conflicts, which arise due to the existence of specific 

actions with inconsistent parameter values. There is a 

potential HopsExceed conflict between two policies 

with the following actions: 

 do    t.setMaxHops(OA, HopNum) 
 do    t.setupLSP(OA, [TT], [PATH], BW) 

The conflict will occur if the hop-count of the PATH

parameter in the setupLSP action exceeds the 

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05) 

0-7695-2265-3/05 $20.00 © 2005 IEEE



maximum number of allowed hops specified in the first 

action, for the same OA. 

The second conflict related to routing policies will 

arise between the two actions below, if the number of 

instantiated policy actions of type setupLSP exceeds 

the maximum number of allowed alternative paths 

specified in the first action, for the same OA and TT. 

 do    t.setMaxAltPaths(OA, [TT], PathNum) 
 do    t.setupLSP(OA, [TT], [PATH], BW) 

4.5. BAR conflicts  
The resource allocation conflicts identified are 

specific to either BW allocation or routing. BAR

conflicts are related to both the previous two and will 

occur between two policies with actions as stated 

below, if the BW parameter of the setupLSP action is 

greater than the maximum allowed BW by the first 

policy action, i.e. BW2>BW1, for the same OA.  

 do    t.setBWMax(OA, BW1) 
 do    t.setupLSP(OA, [TT], [PATH], BW2) 

Furthermore, the conditions for a BAR conflict will 

be satisfied if there is an overlap between any of the 

nodes defined in the PATH parameter and the target of 

the first action. 

5. Conflict analysis 
According to the description of the conditions under 

which a conflict in the policy specifications may arise, 

specific rules can be defined to detect such an event. 

For the process of conflict detection we follow the 

approach presented in [3], where both the rules and the 

policies are expressed in EC notation. For example, the 

representation of the obligation policy PolA in EC 

would be as follows: 

 initiates(sysEvent(doNDProc), oblig(polA, ndPMA, 
 operation(network, setBWMin(OA, BW))), T) 
           constraints. 

The rules are expressed in the form of logic 

predicates that encapsulate the conditions that have to 

be met to signal a conflict. These predicates are used as 

conflict fluents in EC notation and can be considered 

as goal states that, when they are achieved, signify the 

detection of a conflict. The advantage of using such a 

methodology is that, in addition to detecting possible 

conflicts, an explanation as to why a conflict occurred 

will always be provided. 

5.1. System architecture 
The system architecture is presented in Figure 3 and 

can be considered as a decomposition of a policy 

management tool. Our approach towards conflict 

detection is based on the output of the refinement 

process, where high-level policy specifications 

introduced in the policy creation environment are 

decomposed into low-level implementable ones and 

mapped to their respective EC representation. This 

process makes use of the domain hierarchy for the 

managed objects, as well as information about the 

system behaviour in the form of state charts. 

Figure 3: System architecture.

According to our work on policy refinement [12], in 

some cases the process of goal elaboration yields a 

disjunction of goals from which the user can select the 

sub-goal that best satisfies the requirement. The actions 

that achieve the different goals are said to be mutually 

exclusive, and can be classified into appropriate 

domains. This information together with the managed 

objects domain hierarchy are fed as input to the 

detection process, where the necessary logic is applied 

to a pool of low-level policies to determine if there are 

any domain-independent or application-specific 

conflicts between them. Conflict-free policies are 

stored in the repository. Note that the communication 

between detection logic and the repository is bi-

directional signifying that we not only aim to detect 

conflicts that may exist between new policies from the 

output of the refinement process, but also between new 

policies and ones already stored in the repository. 

5.2. Domain-independent conflicts 
The detection process regarding domain-

independent conflicts requires mainly information 

provided by the policy specification. This information 

can be used to express the conditions under which 

specific predicates should signal a conflict.   

The ME actions defined in section 4.2 are identified 

by the refinement process in [12] and classified into 

three ME action domains:  allocSpareBW, redOverBW

and calcHopCount. The detection process for an ME 

conflict between two actions involves identifying their 

membership in an ME actions domain – if they belong 

to the same domain there is a potential conflict. Any 

actions with domain allocSpareBW or redOverBW

membership are conflicting by default, but for domain 

calcHopCount membership a conflict will arise if there 

is also a match between the OA action parameters of 
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the two policies. The meConflict predicate, as defined 

below, is responsible for detecting an ME conflict: 

 holdsAt(mmeConflict(PolID1, PolID2, Action1, Action2),T) 
 holdsAt(oblig(PolID1, Subj, 
 operation(Targ, Action1(Params1))), T) ∧
 holdsAt(oblig(PolID2, Subj, 
 operation(Targ, Action2(Params2))), T) ∧
 (isMember(Action1, domAllocSpareBW) ∧
  isMember(Action2, domAllocSpareBW)) ∨
 (isMember(Action1, domRedOverBW) ∧
  isMember(Action2, domRedOverBW)) ∨
 (isMember(Action1, domCalcHopCount) ∧
  isMember(Action2, domCalcHopCount) ∧
  Params1 == Params2).  

Due to space constraints the predicate definition for 

the detection of redundancy conflicts is not presented 

here. In the conflict detection tool developed, this 

predicate aims to match certain key parameters as well 

as actions to signal the occurrence of a conflict as 

described in section 4.1.

5.3. Application-specific conflicts 
The detection process for application-specific 

conflicts requires not only information provided by the 

policy specification, but also application-specific 

information. In the context of our work, the conditions 

under which a conflict will arise are represented by 

constraints that depend on the conflict type. The rules 

for detecting such conflicts are based on the fact that 

two or more policies violate these constraints. 

The dvrgActionsConflict predicate as defined 

below, indicates a conflict between policies related to 

BW allocation during the processing stage of ND. 

Here, the constraints conveyed to the conditional part 

of the predicate include the specific policy actions with 

matching OA parameters and inconsistent BW values, 

as well as matching or overlapping targets. The final 

domain membership relation caters for the condition 

where one policy targets the network as a whole, and 

the other a specific link. 

 holdsAt(ddvrgActionsConflict(PolID1, PolID2, BW1, BW2), T)
 holdsAt(oblig(PolID1, Subj, 
 operation(Targ1, setBWMin(OA1, BW1))), T) ∧
 holdsAt(oblig(PolID2, Subj, 
 operation(Targ2, setBWMax(OA2, BW2))), T) ∧
 (OA1 == OA2) ∧ (BW1 > BW2) ∧ (Targ1 == Targ2 ∨
      isMember(Targ1, Targ2) ∨ isMember(Targ2, Targ1)). 

The bwExcdSpareConflict predicate below 

assumes that there are three types of OAs available: 

Expedited Forwarding, Assured Forwarding and Best 

Effort. This rule will signal a conflict related to 

policies that explicitly define how spare BW is split 

among the three OA types, during the post-processing 

stage of ND. The inconsistency detected here is when 

the sum of the specified BW parameters exceeds the 

value of 100%. The same principle applies to policies 

responsible for explicit reduction of excess BW and to 

policies for explicit BW allocation. 

 holdsAt(bbwExcdSpareConflict(PolID1, PolID2, PolID3, 
BW1, BW2, BW3), T) 

 holdsAt(oblig(PolID1, Subj,  
 operation(Targ, allocSpareBWExlp(ef, BW1))), T) ∧
 holdsAt(oblig(PolID2, Subj,  
 operation(Targ, allocSpareBWExlp(af, BW2))), T) ∧
 holdsAt(oblig(PolID3, Subj,  
 operation(Targ, allocSpareBWExlp(be, BW3))), T) ∧
 sumOf(BW1, BW2, BW3) > 100.   

The rest of the identified conflicts are detected in a 

similar manner, encoding the conditional fields of 

predicates with application-specific constraints. The 

two examples presented below follow the guidelines 

provided in section 4. 

 holdsAt(hhopsExcdConflict(PolID1, PolID2, PATH, HopNum), T)
 holdsAt(oblig(PolID1, Subj, 
 operation(Targ, setMaxHops(OA1, HopNum))), T) ∧
 holdsAt(oblig(PolID2, Subj, 
 operation(Targ, setupLSP(OA2, TT, PATH, BW))), T) ∧
 (OA1 == OA2) ∧ (hopCount(PATH) > HopNum). 

 holdsAt(bbarConflict(PolID1, PolID2, BW1, BW2), T) 
      holdsAt(oblig(PolID1, Subj, 
 operation(Targ1, setBWMax(OA1, BW1))), T) ∧
      holdsAt(oblig(PolID2, Subj, operation(Targ2, 
 setupLSP(OA2, TT, PATH, BW2))), T) ∧
 (OA1 == OA2) ∧ (BW2 > BW1) ∧
 (isMember(Targ1, PATH) ∨ isMember(PATH, Targ1)). 

5.4. Conflict detection examples 
By using one of the conflict fluents (e.g.

meConflict) as a goal state of an abductive query, it is 

possible to determine any conflicts in the policy 

specification. If there are no solutions for a particular 

conflict fluent, it can be considered that the policy 

specification is free of this particular conflict type. 

We have developed a tool that uses the A-System 

abductive proof engine together with SICStus Prolog 

[13] for detecting the identified conflict types. The tool 

takes as input the policy specifications, applies the 

appropriate detection logic and provides the user with a 

command line interface to query the system for any 

domain-independent or application-specific conflicts 

that may exist. Consider the following pool of policies 

in their EC representation: 

 initiates(sysEvent(doNDPreProc), oblig(pp1, ndPMA, 
 operation(hopCountMO, calcHopCountMin(af))), T) :-
           between(9,0,0,10,0,0, T), time(T). 

initiates(sysEvent(doNDPreProc), oblig(pp2, ndPMA,
 operation(hopCountMO, calcHopCountAvg(af))), T) :-
           between(9,30,0,10,30,0, T), time(T). 

 initiates(sysEvent(doNDProc), oblig(pp3, ndPMA,
 operation(network, setBWMin(ef, 50))), T) :-  
           between(16,0,0,20,0,0, T), time(T). 

 initiates(sysEvent(doNDProc), oblig(pp4, ndPMA,
 operation(network, setBWMax(ef, 40))), T) :-  
           between(18,0,0,22,0,0, T), time(T). 

 initiates(sysEvent(doNDPreProc), oblig(pp5, ndPMA, 
 operation(optMO, setMaxHops(ef, 4))), T) :-  
           between(13,0,0,19,0,0, T), time(T). 

 initiates(sysEvent(doNDPreProc), oblig(pp6, ndPMA, 
 operation(lspMO, setupLSP(ef, [r2,r15],  
           [r2,r4,r6,r8,r9,r11,r15], 45))), T) :-  
           between(9,30,0,18,30,0, T), time(T). 

 initiates(sysEvent(doNDProc), oblig(pp7, ndPMA,
 operation(network, setBWMin, parms(af, 60))), T) :-
           between(16,0,0,20,0,0, T), time(T). 

 initiates(sysEvent(doNDProc), oblig(pp8, ndPMA,
  operation(network, setBWMax, parms(af, 50))), T) :-
           between(20,00,0,22,0,0, T), time(T). 
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In each policy rule, we have added some time 

constraints that control the applicability of the policy.  

For example, the first rule states that the ndPMA is 

obliged to perform the action calcHopCountMin(af)

when the time is between 9am and 10am. In this 

respect, besides the conditions for the identified 

conflict types that have to be met, a conflict will be 

signalled if there is also an overlap in the time 

constraints.   

When performing queries concerning the different 

conflict types, the tool can indicate if there is a conflict 

of a particular type and also provide an explanation as 

to why that specific conflict occurred. To demonstrate 

the above we provide the output of several queries to 

the tool: 

?- solve(conflict(Type, ConflictData, T)). 
 Solution found
abduced atoms: 
        0-happens(clocktick(9,0,0), 0) 
        1-happens(clocktick(9,30,0), 1) 
        2-happens(sysEvent(doNDPreProc), 2) 
        3-happens(clocktick(10,0,0), 3) 
        4-happens(clocktick(10,30,0), 4) 
Solved query: 

  conflict(meConflict, conflictData(p2, p1, 
      calcHopCountAvg, calcHopCountMin), 3) 

Solution found
abduced atoms: 
        0-happens(clocktick(16,0,0), 0) 
        1-happens(clocktick(18,0,0), 1) 
        2-happens(sysEvent(doNDProc), 2) 
        3-happens(clocktick(20,0,0), 3) 
        4-happens(clocktick(22,0,0), 4) 
Solved query: 

  conflict(dvrgActionsConflict,  
      conflictData(p3, p4, 50, 40), 3) 

Solution found
abduced atoms: 
        0-happens(clocktick(9,30,0), 0) 
        1-happens(clocktick(13,0,0), 1) 
        2-happens(sysEvent(doNDPreProc), 2) 
        3-happens(clocktick(13,30,0), 3) 
        4-happens(clocktick(18,0,0), 4) 
Solved query:  

conflict(hopsExcdConflict, conflictData(p5, p6, 
             [r2,r4,r6,r8,r9,r11,r15], 4), 3) 

Solution found
abduced atoms: 
        0-happens(clocktick(9,30,0), 0) 
        1-happens(clocktick(18,0,0), 1) 
        2-happens(sysEvent(doNDProc), 2) 
        3-happens(sysEvent(doNDPreProc), 2) 
        4-happens(clocktick(18,30,0), 3) 
        5-happens(clocktick(22,0,0), 4) 
Solved query:  

conflict(barConflict, conflictData(p4, p6, 40, 45), 3) 

The results suggest that there is an ME conflict 

between P1 and P2 because of ME actions, a BA 

conflict between P3 and P4 because of inconsistent BW 

values, a routing conflict between P5 and P6 because 

the hop-count of the specified path exceeds the 

maximum number of hops allowed, and a BAR 

conflict between P4 and P6 because the BW allocated 

is more than the maximum allowed for EF traffic. 

Additionally the results describe the sequence of events 

that need to take place for the conflict to occur.  Notice 

that there is no conflict detected between P7 and P8.

This is because the time constraints for these two 

policies do not overlap, and therefore there is not a 

situation in which a conflict may arise. 

6. Related work 
Research in conflict analysis has been actively 

growing over the years, but most of the work in this 

area addresses general management policies. The 

authors in [14] classify conflicts as domain-

independent and application-specific, and in [10] the 

authors identify application-specific conflicts like 

conflicts of duty, conflicts of priorities for resources 

and self-management conflicts. 

Among the many alternative approaches to policy 

specification, there are a number of proposals for 

formal, logic-based notations. In particular, logic-based 

languages have proved attractive for the specification 

of security policy, as they support a well-understood 

formalism, amenable to analysis. However, they can be 

difficult to use and are not always directly translatable 

into efficient implementation. One such example is the 

Policy Description Language (PDL) [15], which is 

used for the specification of obligation policies. The 

language can be described as a real-time specialized 

production rule system to define policies. The syntax 

of PDL is simple and policies are described by a 

collection of two types of expressions: policy rules and 

policy defined event propositions. Later work by 

Chomicki [16], extends PDL to include the concept of 

action constrains, which are policies that prevent a 

specified action from being performed in a given 

situation. This work introduces the idea of using a 

policy monitor to detect conflict situations and resolve 

them by either suppressing the events that could lead to 

a conflict or overriding the conflicting action. 

Additionally, work by Son and Lobo, presents an 

approach for reasoning about policies with the 

objective of mapping a desired action history back to a 

possible event history [17]. This work is interesting 

because it illustrates how formal techniques together 

with logic programming can be used to derive 

information about the policy program – in this case the 

event history that causes a particular set of actions. 

One of the few conflict analysis examples that 

targets a specific application domain is presented in 

[18], where all possible firewall rule relations have 

been formally defined and were used to classify 

firewall policy anomalies. The tool developed in the 

context of this work, called the Firewall Policy 

Advisor, can detect the presence of anomalies in the 

policy specification and prompt the administrator to 

make the necessary changes. 

7. Conclusions and future work 
In this paper we indicated the types of application-

specific potential conflicts that may arise during policy 

specification using off-line Network Dimensioning for 

QoS management as a case study. We classified these 
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conflicts into domain-independent and application-

specific, and specified the conditions under which 

these conflicts may arise. The formal language of 

Event Calculus was used to analyse the policy 

specification by defining the rules for conflict 

detection, and abduction provided the means to not 

only identify a conflict but to also provide an 

explanation as to how that conflict occurred. Finally, 

we showed conflict detection examples from our initial 

implementation of a conflict analysis tool. The case 

study provides an example of the application-specific 

analysis needed to determine potential conflicts and 

how to formalise them to automate the conflict 

detection.  

We term the identified conflicts as intra-component 

conflicts since they are specific to policies applied to a 

single module of the TEQUILA architecture. Part of 

our future work will involve the classification and 

detection of possible intra-component conflicts related 

to the rest of the TEQUILA modules, such as the SLS 

Subscription, and Dynamic Resource Management. 

Also, due to the hierarchical relationship between 

policies defined for the different modules, there is a 

need to detect possible inconsistencies that may arise 

between policies specified for different layers. We 

term this inter-component conflict detection. 

It is highly possible that certain conflicts may 

depend on the runtime state of the system. Thus, 

besides the detection of static intra and inter-

component conflicts we plan to extend our work to 

dynamic or run-time conflict detection. Finally, we aim 

to provide a mechanism for automated conflict 

resolution through the use of meta-policies, where 

specific rules will be defined to specify which of the 

conflicting policies will prevail. 
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