
Policy Conflict Analysis for Quality of Service Management

Marinos Charalambides
1
, Paris Flegkas

1
, George Pavlou

1
, Arosha K Bandara

2
, Emil C Lupu

2
,

Alessandra Russo
2
, Naranker Dulay

2
, Morris Sloman

2
, Javier Rubio-Loyola

 3

1
University of Surrey,

2
Imperial College London,

3
Universitat Politècnica de Catalunya

1
{M.Charalambides, P.Flegkas, G.Pavlou}@eim.surrey.ac.uk,

2
{a.k.bandara, e.c.lupu, a.russo,

n.dulay, m.sloman}@imperial.ac.uk,
3
jrloyola@tsc.upc.edu

Abstract

Policy-based management provides the ability to

(re-)configure differentiated services networks so that

desired Quality of Service (QoS) goals are achieved.
Relevant configuration involves implementing network

provisioning decisions, performing admission control,

and adapting bandwidth allocation dynamically

according to emerging traffic demands. A policy-based

approach facilitates flexibility and adaptability in that
the policies can be changed without changing the

implementation. However, as with any other complex

system, conflicts and inconsistencies may arise in the

policy specification. In this work, we concentrate on

the policy conflicts that may occur for static resource

management aspects of QoS provisioning, known as
Network Dimensioning. The paper shows how conflict

detection can be achieved using Event Calculus in

conjunction with abductive reasoning techniques to

detect the existence of potential conflicts in partial

specification and generate explanations for the

conditions under which the conflicts arise. We finally
present some conflict detection examples from our

initial implementation of a policy conflict analysis tool.

Although we focus on network dimensioning, many of

the types of conflicts we illustrate could arise in other

applications.

1. Introduction
In recent years, fully-automated, policy-based

management has been proposed as a suitable means for

managing Quality of Service (QoS) in IP networks.

Yet despite research projects, standardisation efforts,

and substantial interest from industry, policy-based

management is still not a reality. There are some

vendor tools, mostly part of virtual private network

provisioning toolsets, but policy-based management is

still far from being widely adopted despite its potential

benefits of flexibility and “constrained

programmability”. One of the reasons behind the

reticence to adopt this technology is that it is difficult

to analyse policies in order to guarantee network

configuration stability given that policies may have

conflicts leading to unpredictable effects. There are no

policy analysis tools that can detect policy conflicts

beyond simple cases or identify the circumstances in

which a conflict may arise.

Initial work on policy analysis focused on

identifying modality conflicts addressing simple

analysis between positive and negative authorisation

security policies and the specification of policy

precedence rules in order to resolve conflicts [1]. In

addition, Jajodia in [2] has proposed a logic-based

specification of security policies with relatively simple

well-understood semantics amenable to analysis, using

techniques based on deductive reasoning; these are in

general not suitable for reasoning over incomplete

specifications or for identifying causes of conflicts.

The work in this paper is based on the work presented

in [3] where the use of Event Calculus (EC) was

proposed as a specialised first-order logic for

formalising policy specification based on solid

theoretical foundations [4] and the mapping to and

from the Ponder policy language [5]. EC allows

specification of the system behaviour using familiar

notations, such as state charts, which can then be

automatically translated into the logic program

representation. Abductive reasoning proof procedures

for EC [6] can be used to detect the existence of

potential conflicts in partial specifications and generate

explanations for the conditions under which such

conflicts may arise.

The initial work mentioned above showed how the

EC formalism can be used in conjunction with

abductive reasoning techniques to perform a priori

analysis of policy specifications for the generic conflict

types presented in the literature. While this work

proposes a promising methodology to tackle the

problem of conflict analysis in a generic fashion, it is

not sufficient to provide a complete solution to the

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

problem without addressing the needs of an

application-specific domain. In this paper, we extend

and refine the aforementioned approach of using EC

for conflict analysis by applying it to the domain of

QoS Management of IP Differentiated Services

(DiffServ) Networks. In order to identify the policies

and conflicts involved in DiffServ QoS management,

we use the framework developed in the context of the

EU IST TEQUILA project [7]. TEQUILA uses

DiffServ together with Multi-Protocol Labelled

Switching (MPLS) to support a network that can

dynamically adapt to varying network traffic demands.

More specifically, we focus on conflicts that may arise

from policies driving the Network Dimensioning (ND)

component of the TEQUILA framework. ND is part of

the resource management sub-system and is

responsible for mapping traffic forecast requirements

onto the physical network resources by providing

configuration directives in order to accommodate the

predicted traffic demand. Relevant policies and

associated enforcement examples have been presented

in previous work [8].

We identify and provide a taxonomy of the different

conflicts that can emerge from policy specifications

that drive the behaviour of ND and show how the EC

formalism can be used to support the specification of

rules for detecting different conflict types. Using

abductive reasoning, we are able to analyse the policy

specifications to identify existing conflicts and provide

explanations on how they might arise. The latter is

demonstrated by conflict detection examples taken

from our initial implementation of a conflict analysis

tool. The work builds upon the initial approach

described in [3]. The paper focuses on analysing

application-specific conflicts which has hardly been

addressed in the literature for management policies.

However many of the types of conflicts we discuss,

such as mutual exclusion or resource allocation also

arise in other application areas and so the concepts

described could be easily adapted to any application.

In the next section we present some background

information about EC and policy analysis, as well as a

short description of the TEQUILA framework focusing

on the behaviour of the ND component. Section 3

details the identified policies for Network

Dimensioning along with their representation in the

Ponder specification language. In section 4 we present

the classification of the identified conflict types as well

as the conditions under which these conflicts may

arise. Section 5 presents the rules for detecting the

conflicts along with specific conflict detection

examples. Finally section 6 presents some related work

in this field; and section 7 discusses our conclusions

and future work.

2. Background
2.1. Formal representation and Event Calculus

Event Calculus is a formal language for

representing and reasoning about dynamic systems.

Because it supports a time representation that is

independent of any events that may occur, it provides a

particularly useful way to specify a variety of event-

driven systems. Since its initial presentation [4], a

number of variations have been presented in the

literature. In this work we use the form presented in

[9], consisting of (i) a set of time points (that can be

mapped to the non-negative integers); (ii) a set of

properties that can vary over the lifetime of the system,

called fluents; and (iii) a set of event types. In addition

the language includes a number of base predicates:

initiates, terminates, holdsAt, happens, as

summarised below:

 Base predicates:

 initiates(A,B,T) event A initiates fluent B for all time > T.
 terminates(A,B,T) event A terminates fluent B for all time > T.
 happens(A,T) event A happens at time point T.
 holdsAt(B,T) fluent B holds at time point T.
 initiallyTrue(B) fluent B is initially true.
 initiallyFalse(B) fluent B is initially false.

This is the classical form of the Event Calculus

where theories are written using Horn clauses. The

frame problem is solved by circumscription, which

allows the completion of the predicates initiates,

terminates and happens, leaving open the predicates

holdsAt, initiallyTrue and initiallyFalse. This

approach allows the representation of partial domain

knowledge (e.g. the initial state of the system).

Formulae derived from Event Calculus are in effect

derived from the circumscription of the EC

representation.

Event Calculus supports deductive, inductive and

abductive reasoning. The technique that is of

particular interest to our work is abduction. Given the

descriptions of the behaviour of the system, abduction

can be used to determine the sequence of events that

need to occur so that a given set of fluents will hold at

a specified point in time.

Table 1: Function symbols.

The work described in [9] outlines how abduction

can be used in conjunction with Event Calculus to

analyse requirements specifications and presents a

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

specialised set of EC axioms that reduce the

computational complexity of the abductive proof

procedure. The formal language being used is based on

that described in [2], where in addition to the base

predicates and axioms of Event Calculus we make use

of the function symbols shown in Table 1.

2.2. Policy analysis
In an environment where a number of policies need

to coexist, there is always the likelihood that several

policies will be in conflict, either because of a

specification error or because of application-specific

constraints. It is therefore important to provide a means

of detecting conflicts in the policy specification.

The different types of conflicts that can occur are

identified in [1]. Modality conflicts arise when two

policies are specified using the same subjects, targets

and actions but are of opposite modality (e.g.

obligation and refrain). This type of conflict is

domain-independent since conflicts could occur

irrespective of the application domain for which the

policies are being specified. Other conflict types

identified in the literature fall into the category of

application-specific conflicts. As described in [10],

these include conflicts of duty, conflicts of interest,

multiple manager conflicts, conflicts of priorities for

resources and self-management conflicts.

Considering the types of conflicts described above,

it is possible to define rules that can be used to

recognise conflicting situations in the policy

specification. Modality conflicts involving obligation

and refrain policies occur when the two policies are

defined for the same subject, target and action. The

obligConflict predicate defined below holds if a

modality conflict is detected.

 holdsAt(oobligConflict(Subj, Op), T)

 holdsAt(oblig(Subj, Op), T) ∧
 holdsAt(refrain(Subj, Op),T).

In the above rule, the Op variable will be instantiated

with an operation term as defined in Table 1.

In the case of application-specific conflicts, rules

must be defined using constraints that include

application-specific data in addition to policy

information. In order to capture the additional

information, we extend the system specification

language to include rules that define each application-

specific conflict that may arise in the system. The

rules can include ground literals, specifying the

action/target object combinations that will potentially

conflict.

Rules for the detection of application-specific

conflicts, such as conflicts of interest, conflicts of

duties and self-management conflicts can be found in

[3].

2.3. QoS management
Management plane functionality [11] is needed to

support end-to-end quality of service based on Service

Level Subscriptions (SLSs), using DiffServ Per Hop

Behaviour (PHB) together with Multi-Protocol

Labelled Switching (MPLS). A policy-based functional

architecture for supporting quality of service in IP

DiffServ Networks has been designed in the context of

the European collaborative research project TEQUILA

(Traffic Engineering for QUality of service in the

Internet at LArge scale). This architecture can be seen

as a detailed decomposition of the concept of a

Bandwidth Broker realized as a hierarchical, logically

and physically distributed system and has been

presented in [7]. It is decomposed into three major sub-

systems: SLS management, Traffic Engineering and

Monitoring. SLS management is responsible for

agreeing the customers’ QoS requirements in terms of

SLSs, while Traffic Engineering is responsible for

fulfilling the contracted SLSs by deriving the

parameters for configuring the network devices. The

Monitoring sub-system provides the above systems

with the appropriate network measurements and

assures that the contracted SLSs are indeed delivered at

their specified QoS. We describe below the

functionality of the Network Dimensioning component

which is part of the Traffic Engineering sub-system

since the rest of the paper focuses on the analysis of the

policies driving its behaviour.

Network Dimensioning performs the provisioning

activities of the management system. It is responsible

for the long to medium term configuration of the

network. By configuration we mean the setup of Label

Switched Paths (LSPs) as well as the parameters (e.g.

priority, weight, bandwidth) required for the operation

of PHBs on every link. The values provided by ND are

not absolute but come in the form of a range,

constituting directives for the function of the PHBs,

while for label switched paths they come in the form of

multiple paths in order to enable multi-path load

balancing. The exact configuration values and the

chosen path among the multiple paths to be used are

determined by dynamic TE functions based on the

actual state of the network at any point in time.

ND runs periodically by first requesting the

predictions for the expected traffic per traffic class or

Ordered Aggregate (OA), i.e. EF, AF1x, AF2x, AF3x

or BE for DiffServ, in order to be able to compute the

provisioning directives. The dimensioning period is

typically in the time scale of a week and the goals are

to optimally distribute the projected traffic over the

network resources by minimizing the overall cost and

at the same time avoid overloading parts of the

network while others are under-loaded.

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

Figure 1: Network Dimensioning module behaviour.

As it can be seen from the behavioural state chart in

Figure 1, ND goes through 3 main states in order to

produce a network configuration, namely the pre-

processing, processing and post-processing state. The

details of the actions supported by the Managed

Objects (MOs) of ND in every state shown in the

figure are explained in detail in the following section.

3. Policies for ND
The Network Dimensioning module, besides

providing long-term guidelines for sharing the network

resources, can also be policy based so that its

behaviour can be modified dynamically at runtime,

reflecting high-level business objectives.

ND is triggered by time rather than network state

events from within the network. Two categories of

policies are identified for this static off-line resource

management component: (i) policies that result in

providing initial values to variables, which are

essential for the functionality of ND and do not depend

on any state but just reflect decisions of the policy

administrator (initialisation policies); (ii) policies that

depend on the input from the traffic forecast module

concerning the predicted volume of traffic the

produced configuration should satisfy (resource

provisioning policies). Such policies are those whose

execution is based on the type of traffic and on the

resulting configuration of the network.

This section describes the methods supported by the

key components of the module, as well as the

representation of these methods as policies, which can

influence its functionality.

3.1. Explicit route setup and BW allocation
This component offers methods that can explicitly

define Label Switched Paths that Traffic Trunks (TTs)

should follow and also explicitly define the way the

BW should be allocated to different OAs. The

following methods are supported by this component’s

MOs:

 setBWMin(OA, BW) (M1.1)
 setBWMax(OA, BW) (M1.2)
 setupLSP(OA, [TT], [PATH], BW) (M2)

The first two methods (M1.1 and M1.2) allow the

administrator to define the amount of network

resources (giving a minimum, maximum or a range) to

be allocated to each OA. The BW value is expressed as

a percentage of the overall network capacity. Method

M2 provides the ability to explicitly define an LSP for

traffic that belongs to a particular OA and passes

through the set of nodes defined by PATH with logically

assigned bandwidth, BW.

3.2. Hop count derivation
Another important function of ND is to handle the

QoS requirements of the expected traffic in terms of

delay and packet loss. In our implementation of ND

functionality, we simplify our optimisation problem by

transforming the delay and loss requirements into

constraints for the maximum hop count for each traffic

trunk. This transformation is made possible by keeping

statistics for the delay and loss rate of the PHBs per

link. The methods below provide different options to

derive the hop count constraint for every OA. We

envisage that by using the maximum we are too

conservative (appropriate for EF traffic), while by

using an average we possibly underestimate the QoS

requirements.

 calcHopCountMin(OA) (M3.1)
 calcHopCountMax(OA) (M3.2)
 calcHopCountAvg(OA) (M3.3)

3.3. Optimisation algorithm
This is the core component of ND. Its objective is to

find a set of paths for which the BW requirements of

TTs are met, the delay and loss requirements are met

by using the hop count constraint as an upper bound

and the overall cost function is minimised [8]. The

methods defined below are offered by this

component’s MOs for setting parameters that influence

the way the algorithm calculates the output

configuration:

 setMaxAltPaths(OA, [TT], PathNum) (M4)
 setMaxHops(OA, HopNum) (M5)

The first method sets an upper bound on the number

of hops the calculated paths are permitted to have. This

number may vary depending on the class (OA) the

traffic belongs to. The second method defines the

number of alternative paths the optimisation algorithm

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

should define for every traffic trunk that belongs to the

defined OA or even for a specific trunk, for the

purpose of load balancing.

3.4. Spare/Over-provisioned BW treatment
After the dimensioning algorithm finishes, ND

enters a post-processing stage where it will try to

assign the residual physical capacity to the various

traffic classes or reduce the allocated capacity because

the link capacity is not enough to satisfy the predicted

traffic requirements. The following methods are

offered by this component’s MOs:

 allocSpareBWEqual() (M6.1)
 allocSpareBWProp() (M6.2)
 allocSpareBWExlp(OA, BW) (M6.3)
 redOverBWEqual() (M7.1)
 redOverBWProp() (M7.2)
 redOverBWExpl(OA, BW) (M7.3)

Method M6 defines the distribution of spare capacity

for every OA. The distribution can be done equally

between the OAs, proportionally to the current

allocation or explicitly, where the amount of BW is

specified as a percentage. Method M7 is similar to the

previous one, defining the amount of bandwidth to be

reduced with regard to an OA, in order to fit the

physical link capacity.

3.5. Policy representation
Extended research on policy-based systems

identified several types of policies that are useful for

managing distributed systems [5]. Obligation policies

fall in the category of management policies and are of

particular interest to our work. They can be used to

specify management operations that must be performed

when a particular event occurs given some

supplementary conditions being true. They are

specified in terms of a subject that should perform a

particular action on a target when a specified condition

is true.

The methods supported by the different ND

components described in the previous sections can be

used to encode the action part of an obligation policy

that follows the format provided by the Ponder

specification language [5]. In the context of this work

the subject for all ND related policies is a management

entity known as the ND PMA (Policy Management

Agent). The example that follows encodes method

M1.1 in the policy specification:

 inst oblig /policies/nd/PPolA {
on doNDProc;
subj s = ndPMA;
targ t = nd/baMO/network;
do t.setBWMin(OA, BW);
when constraints;

 }

We define three types of events, namely the pre-

processing, processing and post-processing event.

Each of the events is responsible for triggering the

appropriate policies related to the different stages of

the dimensioning process, as in the example, where

PolA is triggered by the system event processing. The

policy targets are the specific MOs provided by the

different ND components supporting the relevant

methods. In the example representation, the target is

defined as a sub-domain of the BW allocation MO,

which provides a logical representation of the

underlying network. Additional constraints can be

specified to define any further conditions that have to

be met, like the time period for which the policy is

valid. This constraint can be useful when the

administrator needs to specify a different network

configuration for busy or non-busy hours of the day.

4. ND policy conflicts classification
The fact that policies are downloaded to the ND

module on the fly while the system is operating may

cause inconsistencies, since policies have not been

tested to coexist with one another or with the rest of the

system functionality without conflicts. We have

identified a number of potential conflicts related to

obligation policies that guide the ND functionality, and

classified them as shown in Figure 2.

Conflict

Redundancy

MutualExclusion

RAConflict

RoutingConflict

BARConflict

BAConflict

HopsExceed

AltPathsExceed

BWExceedConflict

DivergingActions

SpareBW

ExcessBW

MinMaxBW

Figure 2: ND conflict classification.

The first two categories – redundancy and mutual

exclusion – involve conflicts that are domain-

independent and apply to any policy driven system.

The rest are application-specific conflicts, related to

QoS resource management policies that are responsible

for BW allocation to different OAs or QoS classes, and

route (LSP) calculation as well as setup. We term these

conflicts as resource allocation conflicts (RAConflicts),

which can be subdivided to BW allocation conflicts

(BAConflicts), routing conflicts (RoutingConflicts) and

a combination of the last two, BW allocation and

routing conflicts (BARConflicts). This section

describes the conditions under which the specified

types of conflicts would arise.

4.1. Redundancy conflicts
Redundancy conflicts may arise because of

duplicate policies or policies with inconsistent action

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

parameters in relation to others. If two policies are

characterized by the same subjects, targets, actions and

action parameters, they are said to be duplicate and

should not be allowed to coexist. Furthermore, it is not

necessary for all the action parameters to be exactly the

same to indicate an anomaly. The matching of some

key parameters in the actions will suffice to argue that

the two policies are inconsistent with each other.

Consider the actions of two policy instances of PolA
where the first action specifies that at least 30% of the

resources should be allocated for EF traffic and the

second 40% for the same traffic type.

 do t.setBWMin(ef, 30%)
 do t.setBWMin(ef, 40%)

In this case the OA parameter is the key parameter

matched, signifying that the two actions will lead to a

redundancy conflict irrespective of the associated BW

value.

4.2. Mutual Exclusion (ME) conflicts
The functionality of the ND components allows for

a choice of methods related to a specific process, i.e.

different strategies for realising a goal. Such process is,

for example, the allocation of spare resources, where

the remaining network capacity after the processing

stage is assigned equally, proportionally or explicitly

between the various OAs. The different actions are said

to be mutually exclusive since there should not be

more than one directive specifying how spare resources

are to be allocated. Therefore, two policies will result

in a conflict if their actions are mutually exclusive.

Table 2 summarises the identified ME actions.

Table 2: Sets of mutually exclusive actions.

4.3. BW allocation conflicts
BW allocation conflicts relate to the way the ND

module assigns link capacity to the different OAs. This

conflict type is subdivided into DivergingActions and

BWExceed conflicts, which arise due to the existence

of specific actions with inconsistent parameter values

with respect to one another.

With a combination of setBWMin and setBWMax

actions, the administrator can specify a range of

network resources to be allocated to the various OAs.

The following two actions aim to provide such a range

for EF traffic between BW1 and BW2:

 do t.setBWMin(ef, BW1)
 do t.setBWMax(ef, BW2)

If the above actions are encoded into two separate

policies with the same subjects and targets, there is a

possibility that the BW values specified in the actions

will not converge to provide the intended BW range.

Instead, the values are said to be diverging if BW1>BW2,

in which case a DivergingActions conflict should be

signalled.

In addition to specifying how the network resources

are assigned as a whole, the above actions can be used

to allocate the BW of specific links (members of the

network domain). The administrator may decide that

for a critical link, the allocation between the various

OAs passing through that link should be explicitly

specified, where a critical link can be defined as one of

high importance either because of its location or its

heavy loading with certain types of traffic. The same

principle for a conflict applies when the target of both

actions is a specific link or when one of the actions

targets a specific link and the other the network as a

whole. As a general rule, a DivergingActions conflict

will arise between two policies if they have the same or

overlapping targets and diverging actions with

matching OA parameters but inconsistent BW values.

During the post-processing stage the administrator

can define how any spare BW will be shared among

the OAs, or how over-provisioned BW is to be

reduced. If this process is carried out using explicit

actions, there is a potential that the sum of the specified

BWs for the various OAs may exceed the allowed

value of 100% due to human error.

 do t.allocSpareBWExlp(ef, BW1)
 do t.allocSpareBWExlp(af, BW2)
 do t.allocSpareBWExlp(be, BW3)

For the above example actions a BWExceed conflict

will occur if BW1+BW2+BW3>100%. The same rule applies

to explicit actions responsible for the reduction of

excess BW, as well as to setBWMin and setBWMax

actions in the ND processing stage.

4.4. Routing conflicts
Routing conflicts relate to the way the ND module

assigns routes that TTs should follow and the

specification of the maximum number of hops or

alternative paths an OA should have in order to meet

the QoS characteristics. This conflict type is

subdivided into HopsExceed and AltPathsExceed

conflicts, which arise due to the existence of specific

actions with inconsistent parameter values. There is a

potential HopsExceed conflict between two policies

with the following actions:

 do t.setMaxHops(OA, HopNum)
 do t.setupLSP(OA, [TT], [PATH], BW)

The conflict will occur if the hop-count of the PATH

parameter in the setupLSP action exceeds the

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

maximum number of allowed hops specified in the first

action, for the same OA.

The second conflict related to routing policies will

arise between the two actions below, if the number of

instantiated policy actions of type setupLSP exceeds

the maximum number of allowed alternative paths

specified in the first action, for the same OA and TT.

 do t.setMaxAltPaths(OA, [TT], PathNum)
 do t.setupLSP(OA, [TT], [PATH], BW)

4.5. BAR conflicts
The resource allocation conflicts identified are

specific to either BW allocation or routing. BAR

conflicts are related to both the previous two and will

occur between two policies with actions as stated

below, if the BW parameter of the setupLSP action is

greater than the maximum allowed BW by the first

policy action, i.e. BW2>BW1, for the same OA.

 do t.setBWMax(OA, BW1)
 do t.setupLSP(OA, [TT], [PATH], BW2)

Furthermore, the conditions for a BAR conflict will

be satisfied if there is an overlap between any of the

nodes defined in the PATH parameter and the target of

the first action.

5. Conflict analysis
According to the description of the conditions under

which a conflict in the policy specifications may arise,

specific rules can be defined to detect such an event.

For the process of conflict detection we follow the

approach presented in [3], where both the rules and the

policies are expressed in EC notation. For example, the

representation of the obligation policy PolA in EC

would be as follows:

 initiates(sysEvent(doNDProc), oblig(polA, ndPMA,
 operation(network, setBWMin(OA, BW))), T)
 constraints.

The rules are expressed in the form of logic

predicates that encapsulate the conditions that have to

be met to signal a conflict. These predicates are used as

conflict fluents in EC notation and can be considered

as goal states that, when they are achieved, signify the

detection of a conflict. The advantage of using such a

methodology is that, in addition to detecting possible

conflicts, an explanation as to why a conflict occurred

will always be provided.

5.1. System architecture
The system architecture is presented in Figure 3 and

can be considered as a decomposition of a policy

management tool. Our approach towards conflict

detection is based on the output of the refinement

process, where high-level policy specifications

introduced in the policy creation environment are

decomposed into low-level implementable ones and

mapped to their respective EC representation. This

process makes use of the domain hierarchy for the

managed objects, as well as information about the

system behaviour in the form of state charts.

Figure 3: System architecture.

According to our work on policy refinement [12], in

some cases the process of goal elaboration yields a

disjunction of goals from which the user can select the

sub-goal that best satisfies the requirement. The actions

that achieve the different goals are said to be mutually

exclusive, and can be classified into appropriate

domains. This information together with the managed

objects domain hierarchy are fed as input to the

detection process, where the necessary logic is applied

to a pool of low-level policies to determine if there are

any domain-independent or application-specific

conflicts between them. Conflict-free policies are

stored in the repository. Note that the communication

between detection logic and the repository is bi-

directional signifying that we not only aim to detect

conflicts that may exist between new policies from the

output of the refinement process, but also between new

policies and ones already stored in the repository.

5.2. Domain-independent conflicts
The detection process regarding domain-

independent conflicts requires mainly information

provided by the policy specification. This information

can be used to express the conditions under which

specific predicates should signal a conflict.

The ME actions defined in section 4.2 are identified

by the refinement process in [12] and classified into

three ME action domains: allocSpareBW, redOverBW

and calcHopCount. The detection process for an ME

conflict between two actions involves identifying their

membership in an ME actions domain – if they belong

to the same domain there is a potential conflict. Any

actions with domain allocSpareBW or redOverBW

membership are conflicting by default, but for domain

calcHopCount membership a conflict will arise if there

is also a match between the OA action parameters of

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

the two policies. The meConflict predicate, as defined

below, is responsible for detecting an ME conflict:

 holdsAt(mmeConflict(PolID1, PolID2, Action1, Action2),T)
 holdsAt(oblig(PolID1, Subj,
 operation(Targ, Action1(Params1))), T) ∧
 holdsAt(oblig(PolID2, Subj,
 operation(Targ, Action2(Params2))), T) ∧
 (isMember(Action1, domAllocSpareBW) ∧
 isMember(Action2, domAllocSpareBW)) ∨
 (isMember(Action1, domRedOverBW) ∧
 isMember(Action2, domRedOverBW)) ∨
 (isMember(Action1, domCalcHopCount) ∧
 isMember(Action2, domCalcHopCount) ∧
 Params1 == Params2).

Due to space constraints the predicate definition for

the detection of redundancy conflicts is not presented

here. In the conflict detection tool developed, this

predicate aims to match certain key parameters as well

as actions to signal the occurrence of a conflict as

described in section 4.1.

5.3. Application-specific conflicts
The detection process for application-specific

conflicts requires not only information provided by the

policy specification, but also application-specific

information. In the context of our work, the conditions

under which a conflict will arise are represented by

constraints that depend on the conflict type. The rules

for detecting such conflicts are based on the fact that

two or more policies violate these constraints.

The dvrgActionsConflict predicate as defined

below, indicates a conflict between policies related to

BW allocation during the processing stage of ND.

Here, the constraints conveyed to the conditional part

of the predicate include the specific policy actions with

matching OA parameters and inconsistent BW values,

as well as matching or overlapping targets. The final

domain membership relation caters for the condition

where one policy targets the network as a whole, and

the other a specific link.

 holdsAt(ddvrgActionsConflict(PolID1, PolID2, BW1, BW2), T)
 holdsAt(oblig(PolID1, Subj,
 operation(Targ1, setBWMin(OA1, BW1))), T) ∧
 holdsAt(oblig(PolID2, Subj,
 operation(Targ2, setBWMax(OA2, BW2))), T) ∧
 (OA1 == OA2) ∧ (BW1 > BW2) ∧ (Targ1 == Targ2 ∨
 isMember(Targ1, Targ2) ∨ isMember(Targ2, Targ1)).

The bwExcdSpareConflict predicate below

assumes that there are three types of OAs available:

Expedited Forwarding, Assured Forwarding and Best

Effort. This rule will signal a conflict related to

policies that explicitly define how spare BW is split

among the three OA types, during the post-processing

stage of ND. The inconsistency detected here is when

the sum of the specified BW parameters exceeds the

value of 100%. The same principle applies to policies

responsible for explicit reduction of excess BW and to

policies for explicit BW allocation.

 holdsAt(bbwExcdSpareConflict(PolID1, PolID2, PolID3,
BW1, BW2, BW3), T)

 holdsAt(oblig(PolID1, Subj,
 operation(Targ, allocSpareBWExlp(ef, BW1))), T) ∧
 holdsAt(oblig(PolID2, Subj,
 operation(Targ, allocSpareBWExlp(af, BW2))), T) ∧
 holdsAt(oblig(PolID3, Subj,
 operation(Targ, allocSpareBWExlp(be, BW3))), T) ∧
 sumOf(BW1, BW2, BW3) > 100.

The rest of the identified conflicts are detected in a

similar manner, encoding the conditional fields of

predicates with application-specific constraints. The

two examples presented below follow the guidelines

provided in section 4.

 holdsAt(hhopsExcdConflict(PolID1, PolID2, PATH, HopNum), T)
 holdsAt(oblig(PolID1, Subj,
 operation(Targ, setMaxHops(OA1, HopNum))), T) ∧
 holdsAt(oblig(PolID2, Subj,
 operation(Targ, setupLSP(OA2, TT, PATH, BW))), T) ∧
 (OA1 == OA2) ∧ (hopCount(PATH) > HopNum).

 holdsAt(bbarConflict(PolID1, PolID2, BW1, BW2), T)
 holdsAt(oblig(PolID1, Subj,
 operation(Targ1, setBWMax(OA1, BW1))), T) ∧
 holdsAt(oblig(PolID2, Subj, operation(Targ2,
 setupLSP(OA2, TT, PATH, BW2))), T) ∧
 (OA1 == OA2) ∧ (BW2 > BW1) ∧
 (isMember(Targ1, PATH) ∨ isMember(PATH, Targ1)).

5.4. Conflict detection examples
By using one of the conflict fluents (e.g.

meConflict) as a goal state of an abductive query, it is

possible to determine any conflicts in the policy

specification. If there are no solutions for a particular

conflict fluent, it can be considered that the policy

specification is free of this particular conflict type.

We have developed a tool that uses the A-System

abductive proof engine together with SICStus Prolog

[13] for detecting the identified conflict types. The tool

takes as input the policy specifications, applies the

appropriate detection logic and provides the user with a

command line interface to query the system for any

domain-independent or application-specific conflicts

that may exist. Consider the following pool of policies

in their EC representation:

 initiates(sysEvent(doNDPreProc), oblig(pp1, ndPMA,
 operation(hopCountMO, calcHopCountMin(af))), T) :-
 between(9,0,0,10,0,0, T), time(T).

initiates(sysEvent(doNDPreProc), oblig(pp2, ndPMA,
 operation(hopCountMO, calcHopCountAvg(af))), T) :-
 between(9,30,0,10,30,0, T), time(T).

 initiates(sysEvent(doNDProc), oblig(pp3, ndPMA,
 operation(network, setBWMin(ef, 50))), T) :-
 between(16,0,0,20,0,0, T), time(T).

 initiates(sysEvent(doNDProc), oblig(pp4, ndPMA,
 operation(network, setBWMax(ef, 40))), T) :-
 between(18,0,0,22,0,0, T), time(T).

 initiates(sysEvent(doNDPreProc), oblig(pp5, ndPMA,
 operation(optMO, setMaxHops(ef, 4))), T) :-
 between(13,0,0,19,0,0, T), time(T).

 initiates(sysEvent(doNDPreProc), oblig(pp6, ndPMA,
 operation(lspMO, setupLSP(ef, [r2,r15],
 [r2,r4,r6,r8,r9,r11,r15], 45))), T) :-
 between(9,30,0,18,30,0, T), time(T).

 initiates(sysEvent(doNDProc), oblig(pp7, ndPMA,
 operation(network, setBWMin, parms(af, 60))), T) :-
 between(16,0,0,20,0,0, T), time(T).

 initiates(sysEvent(doNDProc), oblig(pp8, ndPMA,
 operation(network, setBWMax, parms(af, 50))), T) :-
 between(20,00,0,22,0,0, T), time(T).

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

In each policy rule, we have added some time

constraints that control the applicability of the policy.

For example, the first rule states that the ndPMA is

obliged to perform the action calcHopCountMin(af)

when the time is between 9am and 10am. In this

respect, besides the conditions for the identified

conflict types that have to be met, a conflict will be

signalled if there is also an overlap in the time

constraints.

When performing queries concerning the different

conflict types, the tool can indicate if there is a conflict

of a particular type and also provide an explanation as

to why that specific conflict occurred. To demonstrate

the above we provide the output of several queries to

the tool:

?- solve(conflict(Type, ConflictData, T)).
 Solution found
abduced atoms:
 0-happens(clocktick(9,0,0), 0)
 1-happens(clocktick(9,30,0), 1)
 2-happens(sysEvent(doNDPreProc), 2)
 3-happens(clocktick(10,0,0), 3)
 4-happens(clocktick(10,30,0), 4)
Solved query:

 conflict(meConflict, conflictData(p2, p1,
 calcHopCountAvg, calcHopCountMin), 3)

Solution found
abduced atoms:
 0-happens(clocktick(16,0,0), 0)
 1-happens(clocktick(18,0,0), 1)
 2-happens(sysEvent(doNDProc), 2)
 3-happens(clocktick(20,0,0), 3)
 4-happens(clocktick(22,0,0), 4)
Solved query:

 conflict(dvrgActionsConflict,
 conflictData(p3, p4, 50, 40), 3)

Solution found
abduced atoms:
 0-happens(clocktick(9,30,0), 0)
 1-happens(clocktick(13,0,0), 1)
 2-happens(sysEvent(doNDPreProc), 2)
 3-happens(clocktick(13,30,0), 3)
 4-happens(clocktick(18,0,0), 4)
Solved query:

conflict(hopsExcdConflict, conflictData(p5, p6,
 [r2,r4,r6,r8,r9,r11,r15], 4), 3)

Solution found
abduced atoms:
 0-happens(clocktick(9,30,0), 0)
 1-happens(clocktick(18,0,0), 1)
 2-happens(sysEvent(doNDProc), 2)
 3-happens(sysEvent(doNDPreProc), 2)
 4-happens(clocktick(18,30,0), 3)
 5-happens(clocktick(22,0,0), 4)
Solved query:

conflict(barConflict, conflictData(p4, p6, 40, 45), 3)

The results suggest that there is an ME conflict

between P1 and P2 because of ME actions, a BA

conflict between P3 and P4 because of inconsistent BW

values, a routing conflict between P5 and P6 because

the hop-count of the specified path exceeds the

maximum number of hops allowed, and a BAR

conflict between P4 and P6 because the BW allocated

is more than the maximum allowed for EF traffic.

Additionally the results describe the sequence of events

that need to take place for the conflict to occur. Notice

that there is no conflict detected between P7 and P8.

This is because the time constraints for these two

policies do not overlap, and therefore there is not a

situation in which a conflict may arise.

6. Related work
Research in conflict analysis has been actively

growing over the years, but most of the work in this

area addresses general management policies. The

authors in [14] classify conflicts as domain-

independent and application-specific, and in [10] the

authors identify application-specific conflicts like

conflicts of duty, conflicts of priorities for resources

and self-management conflicts.

Among the many alternative approaches to policy

specification, there are a number of proposals for

formal, logic-based notations. In particular, logic-based

languages have proved attractive for the specification

of security policy, as they support a well-understood

formalism, amenable to analysis. However, they can be

difficult to use and are not always directly translatable

into efficient implementation. One such example is the

Policy Description Language (PDL) [15], which is

used for the specification of obligation policies. The

language can be described as a real-time specialized

production rule system to define policies. The syntax

of PDL is simple and policies are described by a

collection of two types of expressions: policy rules and

policy defined event propositions. Later work by

Chomicki [16], extends PDL to include the concept of

action constrains, which are policies that prevent a

specified action from being performed in a given

situation. This work introduces the idea of using a

policy monitor to detect conflict situations and resolve

them by either suppressing the events that could lead to

a conflict or overriding the conflicting action.

Additionally, work by Son and Lobo, presents an

approach for reasoning about policies with the

objective of mapping a desired action history back to a

possible event history [17]. This work is interesting

because it illustrates how formal techniques together

with logic programming can be used to derive

information about the policy program – in this case the

event history that causes a particular set of actions.

One of the few conflict analysis examples that

targets a specific application domain is presented in

[18], where all possible firewall rule relations have

been formally defined and were used to classify

firewall policy anomalies. The tool developed in the

context of this work, called the Firewall Policy

Advisor, can detect the presence of anomalies in the

policy specification and prompt the administrator to

make the necessary changes.

7. Conclusions and future work
In this paper we indicated the types of application-

specific potential conflicts that may arise during policy

specification using off-line Network Dimensioning for

QoS management as a case study. We classified these

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

conflicts into domain-independent and application-

specific, and specified the conditions under which

these conflicts may arise. The formal language of

Event Calculus was used to analyse the policy

specification by defining the rules for conflict

detection, and abduction provided the means to not

only identify a conflict but to also provide an

explanation as to how that conflict occurred. Finally,

we showed conflict detection examples from our initial

implementation of a conflict analysis tool. The case

study provides an example of the application-specific

analysis needed to determine potential conflicts and

how to formalise them to automate the conflict

detection.

We term the identified conflicts as intra-component

conflicts since they are specific to policies applied to a

single module of the TEQUILA architecture. Part of

our future work will involve the classification and

detection of possible intra-component conflicts related

to the rest of the TEQUILA modules, such as the SLS

Subscription, and Dynamic Resource Management.

Also, due to the hierarchical relationship between

policies defined for the different modules, there is a

need to detect possible inconsistencies that may arise

between policies specified for different layers. We

term this inter-component conflict detection.

It is highly possible that certain conflicts may

depend on the runtime state of the system. Thus,

besides the detection of static intra and inter-

component conflicts we plan to extend our work to

dynamic or run-time conflict detection. Finally, we aim

to provide a mechanism for automated conflict

resolution through the use of meta-policies, where

specific rules will be defined to specify which of the

conflicting policies will prevail.

Acknowledgements
The work presented in this paper was carried out in the

context of the EPSRC PAQMAN project (Policy

Analysis for Quality of service MANagement) - grant

numbers GR/R31409/01 and GR/S79985/01.

References
[1] E.C. Lupu and M.S. Sloman, “Conflicts in Policy-Based

Distributed Systems Management, ” In IEEE Transactions

on Software Engineering - Special Issue on Inconsistency

Management, vol. 25, pp. 852-869, 1999.

[2] S. Jajodia, P. Samarati, and V.S. Subrahmanian, “A

Logical Language for Expressing Authorisations, ” presented

at IEEE Symposium on Security and Privacy, Oakland, USA,

1997a.

[3] A.K. Bandara, E.C. Lupu, and A. Russo, “Using Event

Calculus to Formalise Policy Specification and Analysis,”

presented at 4th IEEE Workshop on Policies for Networks

and Distributed Systems (Policy 2003), Lake Como, Italy,

2003.

[4] R.A. Kowalski and M.J. Sergot, “A logc-based calculus

of events,” New Generation Computing, vol. 4, pp. 67-95,

1986.

[5] N. Damianou, N. Dulay, E.C. Lupu, and M.S. Sloman,

“The Ponder Policy Specification Language,” presented at

4th IEEE Workshop on Policies for Networks and

Distributed Systems (Policy 2001), Bristol, UK, 2001.

[6] A.C. Kakas, R.A. Kowalski, and F. Toni, “The Role of

Abduction in Logic Programming,” Handbook of Logic in

Artificial Intelligence and Logic Programming, vol. 5, pp.

235-324, 1998.

[7] P. Flegkas, P. Trimintzios, and G. Pavlou, “A Policy-

based Quality of Service Management Architecture for IP

DiffServ Networks,” IEEE Network Magazine Special Issue

on Policy Based Networking, vol. 16 No. 2, pp. 50-56, 2002.

[8] P. Flegkas, P. Trimintzios, G. Pavlou, and A. Liotta,

“Design and Implementation of a Policy-Based Resource

Management Architecture” presented at IEEE/IFIP

Integrated Management Symposium (IM 2003), Colorado

Springs, Colorado, USA, Kluwer, pp. 215-229, 2003.

[9] A. Russo, R. Miller, B. Nuseibeh, and J. Kramer, “An

Abductive Approach for Analysing Event-Based

Requirements Specifications, ” presented at 18th Int. Conf.

on Logic Programming (ICLP), Copenhagen, Denmark,

2002.

[10] J.D. Moffett and M.S. Sloman, “Policy Conflict

Analysis in Distributed System Management, ” Journal of

Organisational Computing, vol. 4, pp. 1-22, 1994.

[11] K. Nichols, V. Jacobson and L. Zhang, “A Two Bit

Differentiated Services Architecture for the Internet,” in

Network Working Group – RFC2638,

http://www.ietf.org/rfc/rfc2638.txt, 1999.

[12] A.K. Bandara et al., “Policy Refinement for

DiffServ Quality of Service Management,” accepted

for the proceedings of IEEE/IFIP Integrated Management

Symposium (IM 2005), Nice, France, 2005.

[13] B. van Nuffelen and A. Kakas, “A-System:

Programming with abduction,” presented at Logic

Programming and Nonmonotonic Reasoning (LPNMR

2001), 2001.

[14] E.C. Lupu and M.S. Sloman, “Conflicts in Policy-Based

Distributed Systems Management,” In IEEE Transactions on

Software Engineering - Special Issue on Inconsistency

Management, vol. 25, pp. 852-869, 1999.

[15] J. Lobo, R. Bhatia, and S. Naqvi, “A Policy Description

Language,” presented at 16th National Conf. on Artificial

Intelligence, Orlando, Florida, USA, 1999.

[16] J. Chomicki, J. Lobo, and S. Naqvi, “A Logic

Programming Approach to Conflict Resolution in Policy

Management,” presented at 7th Int. Conf. on Principles of

Knowledge Representation and Reasoning (KR2000),

Breckenridge, Colorado, USA, 2000.

[17] T.C. Son and J. Lobo, “Reasoning about Policies Using

Logic Programs,” presented at AAAI Spring Symposium on

Answer Set Programming, Stanford University, CA, 2001.

[18] E. Al-Shaer and H. Hamed, “Modeling and Management

of Firewall Policies,” in IEEE Transactions on Network and

Service Management (eTNSM 2004), Volume 1-1, April

2004.

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

