
An Event Service Supporting Autonomic
Management of Ubiquitous Systems for e-Health

Stephen Strowes∗, Nagwa Badr∗, Naranker Dulay†, Steven Heeps∗, Emil Lupu†, Morris Sloman† and Joe Sventek∗
∗Department of Computing Science, University of Glasgow

{sds,nagwa,heeps,joe}@dcs.gla.ac.uk
†Department of Computing, Imperial College London

{n.dulay,e.c.lupu,m.sloman}@doc.ic.ac.uk
http://www.dcs.gla.ac.uk/amuse/

Abstract— Healthcare and economic drivers have increased the
desire to deploy systems for continuous monitoring of patients,
both in hospital and outpatient settings. Such systems must
operate autonomically, and must meet a number of operational
constraints. Event systems used in traditional monitoring systems
have not been designed with these constraints in mind. We
describe the design, implementation, and performance charac-
teristics of an event system targeted at this application domain.

I. INTRODUCTION

Monitoring chronically ill patients as they go about their
normal activity enables early release from hospitals and im-
proves the patients’ quality of life. Analysis and data mining
of the monitored information can be used to predict potential
problems (such as a possible heart attack for a specific patient
being monitored) and to generate a warning to the patient or
medical staff; the information can also be used by medical
researchers to understand body changes that take place prior
to a specific problem. On-body and environmental sensors
may also be used in the home for monitoring elderly patients
to determine problem situations or deterioration of well-
being over time [10]. However, configuration of the multiple
sensors and software components that form an adaptive body-
area network or a home monitoring network is not currently
feasible for non-technical patients or medical staff.

Existing network and systems management frameworks do
not cater for ubiquitous environments, although specific tech-
niques for monitoring and event correlation, service discovery,
quality of service and policy-based management can be used
to some degree. Current frameworks are aimed at large-
scale corporate environments, telecommunications networks
and internet service providers. Their architecture is based
on functional decomposition where the various functions are
integrated in centralised network operations centres by human
administrators. For self-management in ubiquitous systems to
become a reality, it is necessary to define and implement
architectures which can scale down to small lightweight struc-
tures with local decision making capabilities. The management
functionality must be automatically integrated and adapted to
the specific application requirements without human interven-
tion. Autonomous, self-managed cells must be composable to

form larger cells but also need to collaborate and integrate
with each other in peer-to-peer relationships as well as across
multiple levels of abstraction relating to hierarchical service
relationships.

We are developing autonomic management techniques for
self-configuring and self-managing such systems [1]. The
systems must be able to add or remove components, cater
for failed components and error-prone sensors, automatically
detect and adapt to a user’s current activity and communication
capability as well as catering for interaction with health visi-
tors or other medical staff who attend patients or visit elderly
people. Such an autonomic monitoring system is termed a self-
managed cell (SMC).

At the heart of an SMC is an event bus, over which
all management communication between devices or services
is carried. In this paper, we present relevant background
and related work (Section II), outline the requirements and
architecture of the event bus for an SMC (Section III), describe
a prototype implementation and initial performance results
(Sections IV and V), and discuss intended future work (Section
VI).

II. BACKGROUND AND RELATED WORK

As with most management systems, an SMC must concern
itself with the five traditional forms of system management
(fault, configuration, accounting, performance, and security) to
varying degrees [2]. Figure 2 shows that an SMC constructed
as a body-area network consists of a collection of wireless
sensors, which can both send and receive data; each sensor can
also receive control commands from management components,
such as the Policy Service. Most management systems utilise
an event bus/service to convey control traffic between the
components of the system, primarily due to the need for run-
time extensibility of the component topology [2]. Application-
specific traffic between components is expected to be carried
using other communication paradigms; the event bus can be
used to convey application data between components, but only
if the reliability and delay semantics of the bus match the data
delivery semantics required by the components.

Given the wireless nature of the networks to be constructed
and the potentially sensitive nature of the data to be dealt

Fig. 1. High level view of an SMC.

with, mechanisms must be employed to guarantee delivery of
management messages between components.

The core of an SMC consists of three components largely
independent of each other, each fulfilling part of the function-
ality required. These, the event bus, the discovery service and
the policy service, are discussed in this section.

A. Policy-based Management

Policies provide the means of specifying the adaptation
strategy for autonomic management [3]. Authorisation policies
specify what resources the components assigned to a role
can access, and obligation policies (event-condition-action
rules) specify how components/services react to events and
interact with other components/services. When a device is
granted membership of an SMC, the appropriate polices are
deployed to it. Policies can be added, removed, enabled and
disabled to change the behaviour of cell components without
reprogramming them. Policies also govern the behaviour of
the discovery service and the policy service itself, enabling
these to be tailored to specific situations.

B. Device Discovery

An SMC includes a discovery service, which implements
a protocol to search for new devices to integrate into the
cell, and maintain connectivity to those devices while they
are within range. The discovery service is responsible for
managing group membership. It handles the detection and
admission of new services to the SMC when they enter
communication range (employing authentication specific to the
application) and the removal of services which have left the
SMC (through being physically removed or battery failure).
The protocol is designed to mask transient disconnections
between components.

The discovery protocol does not use the event bus for
monitoring group membership. Instead, the discovery protocol
works outwith the event service to separate the concern of
group membership from the concern of passing events between
services. However, the discovery service informs the SMC of
the arrival or departure of services via “New Member” and
“Purge Member” events, respectively.

C. Event Bus Behaviour and Semantics

The event bus is required to forward event notifications from
services in an SMC onto any interested parties within the
SMC, with other critical functions, such as device discovery,

fulfilled by different services; these services may either use
the event bus to communicate with each other, or another
communication paradigm if more appropriate.

It is essential that the communication of management events
satisfy at most once semantics - i.e. all events are delivered
to each interested component exactly once as long as that
component is still a member of the SMC. Since there may
be causal relationships between pairs of events from the same
sending component, the event bus must also guarantee that
all events from a particular sender are delivered to each
interested receiver in the order sent. Note that this does
not say anything about delivery order between events from
DIFFERENT sending components, as this would require a
model of causality for the entire SMC.

It is not expected that the event bus will have to deal with
high volumes of events since it is devoted to management
traffic; indeed, if the target platform type for the event bus
is to be a PDA, we have to constrain the memory footprint
and computational load required for the event bus. Thus, the
event bus must be lightweight, but not so lightweight that this
conflicts with required functionality.

D. Related Work

Within the constrained environment of a PDA, care needs
to be taken when choosing an existing publish/subscribe tech-
nology to use. Many such systems were designed for highly
scalable, high performance applications, and are neither suited
to our application type nor available processing power.

A number of content-based publish/subscribe services for
the routing functionality of our event bus were considered.
Many existing publish/subscribe projects are designed to allow
the service to scale to many more subscribers than we need
within an SMC, often employing some sort of method of
distributing servers to spread the expected workload (for
example, Elvin [4], Siena [5], JMS [6]). Of these, some have
running requirements too high for the intended platform of a
PDA (JMS, which requires J2EE), and some carry potential
licensing issues in the future (Elvin is being marketed as
a saleable product by Mantara Software). Another system,
iBus//Mobile [7], aims to target delivery of events to mobile
agents, but does not offer the event forwarding service on
mobile devices.

In light of these restrictions, Siena has been chosen as the
publish/subscribe technology used within our event bus, at
least for the purposes of prototyping. Testing has confirmed
that the Siena codebase is capable of being compiled to run
under both a restricted J2ME CDC Personal Profile virtual
machine, and also Blackdown’s JVM version 1.3.1, which has
been ported to run on various iPAQ models under Familiar
Linux.

III. EVENT BUS ARCHITECTURE

The event bus relies on a number of distinct software
components to offer the functionality we require: an interface
to the Siena codebase; proxy objects to services; a bootstrap
mechanism to build proxies for the event bus to use; and a

Fig. 2. High level view of objects within an SMC.

generic transport layer to carry packets. In our design we also
retain flexibility across different types of network transports
while testing. In this section we provide an overview of these
components. The relationships between these components is
shown in Figure 2.

A. The Publish/Subscribe Server

For the purpose of prototyping the event bus we chose to
speed up development by embedding Siena code within our
codebase, as discussed in Section II-D. Additional code sur-
rounding the publish/subscribe mechanism is then responsible
for providing both the semantics we require of the event bus
as described in Section II-C and also to provide an appropriate
interface to the functionality it will offer.

Beyond prototyping, we intend to replace the Siena code-
base with custom code built for purpose, in a bid to minimise
the resources required to run the event bus, and to reduce
dependencies on other codebases given the unique nature of
our target application.

B. Proxies

To ease the development of the architecture to varying types
of services or devices, and to assist in embedding Siena code,
the core components of the SMC (including the event bus)
communicate to services via that service’s own proxy.

All entities granted membership of the SMC are represented
by a proxy object, which provides a standard interface to that
entity. This proxy is responsible for dealing with data exchange
between SMC members, and also for providing the guaranteed
delivery semantics we require for data transfer.

A proxy is modelled as an abstract class containing generic
code applicable to all SMC services, completed by a concrete
class containing implementation details specific to the de-
vice/service type being communicated with. With this design,
we can build complex proxies for simple sensors (capable
of performing translation between the device protocol and
higher level event types) or simple proxies for complex
sensors (resembling a mere forwarding mechanism between
the services). Note that while Figure 2 indicates the use of
one transport layer, a proxy would be able to generate its
own transport layer to facilitate communication over a different
network transport; for example, a proxy might be in place to

Fig. 3. High-level block diagram of basic interactions between components
outwith the event bus, and the event bus itself; solid-lined arrows here indicate
synchronous procedure-call semantics, and the direction of the ‘jump’ of that
call; dashed-line arrows indicate asynchronous calls.

facilitate communication with a diagnostic device, connected
to the SMC via an ethernet connection.

On receiving a notification of a new member from the
discovery service, the event bus creates a proxy for that new
member (this mechanism is covered in Section III-C). The
proxy immediately subscribes to incoming “Purge Member”
events generated by the discovery service, such that it can
destroy itself when required (ie: when the service is removed
from the SMC).

Proxies deal with outbound data queues, hence providing
the guarantee of data delivery we require; thus, we do not
expect this functionality of the publish/subscribe mechanism
itself. Clearly if data is queued at a proxy, that proxy can
destroy itself and remove any waiting data on receipt of a
“Purge Member” event. Incoming data from services into the
SMC are also sent to the proxy, to perform pre-processing of
that data into fully fledged objects before forwarding to other
internal services (for example, constructing an event to be sent
to the event bus from a series of bytes representing the output
from a temperature sensor).

All calls between services in this model are synchronous;
event notifications are always acknowledged when passing
from publisher to router, and from router to each subscriber,
so that events are not lost in transit. This model is shown in
Fig. 3.

The publisher of an event notifies its proxy of a new event
without any knowledge of the number of subscribers listening
for that event. The proxy deals with internal communication of
the event to the event bus, acknowledging to the service events
which have been accepted. While calls are synchronous, sim-
pler devices might transmit data to proxy without requiring any
return information of the proxy (for example, a temperature
monitor which regularly generates events).

Subscribers register to receive notifications of the types in
which they are interested (Fig. 3, Arrow 1). In the case of more
simple devices, the proxy itself might carry enough knowledge
to register for appropriate events on behalf of the device upon
its creation when the device is granted SMC membership;
otherwise the device/service might register by itself via its
proxy.

On subscribing, a filter is placed in the publish/subscribe
server, representing this subscription, and the ID of the proxy
registered. This information is used first to determine whether

Fig. 4. Transport layer packet format.

a notification is applicable to a given subscriber, and to
subsequently push matching notifications to a subscriber (Fig.
3, Arrow 2).

C. Proxy Bootstrap Mechanism

By specifying that all communication between the event bus
and the SMC services takes place via a proxy, there must be
a mechanism for creating a proxy when a new service joins
the SMC.

The most straightforward method of achieving this is to
register a service responsible for the creation of proxies
with the publish/subscribe server which will react to “New
Member” events generated by the discovery service; these
events must carry enough information for the proxy-creation
process to be able to generate the appropriate proxy type for
the new service. The bootstrap mechanism must therefore be
initialised on the creation of the event bus.

D. Transport Layer

Components within the SMC use a generic transport layer to
communicate with each other, which de-couples higher level
components from the actual network layer beneath. This is
modelled as an abstract class (forming the generic interface
required), extended by concrete classes carrying the details of
the actual network transport to be used.

This transport layer presents two calls to objects which
make use of it: recv() and send(). Respectively, the layer
returns and accepts bytes arrays, which can be bundled into
further packet structures if required for transmission across the
underlying transport mechanism. Much of the complexity of
the underlying transport can be hidden within the constructor
of a concrete transport class.

The choice of using byte arrays as input and output of
the transport layer not only simplifies the functionality of the
layer, but avoids unnecessary class hierarchies in other parts
of the codebase. Further, handling data transfer in this manner
removes the reliance on Java’s serialisation process, allowing
for coding SMC services external to the core of the SMC (e.g.,
sensors), in languages other than Java. Thus, we do not enforce
the use of Java as part of the SMC, and do not preclude the
possibility of the core SMC services being rewritten in C or
C++ in the future.

IV. PROTOTYPE IMPLEMENTATION

Initial development has taken place largely on desktop
systems sharing the same local area network, passing datagram
packets between machines. This allows for packets to be sent
from host to host without the need to set up TCP connections
and without guarantee of delivery, and so can be seen to mimic
the wireless environment over which our SMC will run.

The current prototype uses a Transport layer which makes
use of datagram sockets to mimic connectionless transmis-
sion over a wireless medium. Sockets are opened within the
Transport constructor, and subsequent send and recv calls are
wrappers around send and receive calls over these sockets.

Packets tend to be of the format outlined in Figure 4,
and packets of this form are defined which carry events or
subscription requests. Event and subscription objects can be
reduced to byte arrays for inclusion into these packets.

In this prototype, the 48 bit ID for each service is generated
from the transport layer’s unicast socket and the port number
that socket is attached to – by simply opening a socket and
not binding to a specific port, the operating system is free
to choose the port number for the socket request, and so the
prototype is not hardwired to use a specific port for unicast
traffic. Broadcast traffic, generated by the discovery service,
is delivered on an arbitrarily chosen port number known by
services, to allow new services to listen for nearby discovery
services.

This development environment has been migrated to an
iPAQ hx4700 PDA running Familiar Linux with Blackdown
Java 1.3.1, communicating with a laptop (1.2GHz Pentium
3 with 256MB RAM) via an IP connection over a USB
cable; this allows for UDP packets to be transmitted between
machines, for testing of the suitability of the software for a
more restricted environment.

Support for 802.11b under Linux on this PDA is not
yet available, so development is progressing on a wireless
implementation using the built-in Bluetooth [8] capabilities
of the device; bluetooth dongles will allow the use of other
devices, and allow testing of devices moving in and out of
range of the SMC. The testing of these environments should
allow for an easy migration to Zigbee [9] hardware in the
future.

Currently, prototype versions of the event bus, discovery
service, and policy service have all been trialled largely
independently of each other. Work is underway to integrate
the various core components of the SMC to enable further
development, testing, and experimentation.

V. INITIAL PERFORMANCE RESULTS

The performance of the event bus is key to the success of
the SMC architecture, given the constrained environment in
which it is intended to run. Using the testing environment of
the PDA and the laptop as described in Section IV, we tested
the elapsed response time of the event bus against message
size (Figure 5(a)) and the throughput of the event bus against
message size (Figure 5(b)).

The response time of the event bus is dependent on the
latency of the link, scheduling decisions made by the linux
kernel at both ends of the link, the time taken to transfer data
on a socket to the JVM, and the behaviour of the JVM itself.
The latency on the link is 1.5ms (on average, 0.6ms minimum,
2.3ms maximum taken over the link for 1 minute), so most
of the latency observed in Figure 5(a) is dependent on the
behaviour of the operating system at each host, and also of the

JVM at each host. The average rise in response time over the
course of the experiment is generated by unnecessary copying
of packet data, which we will eliminate in future versions of
the software.

The spike in the results at packet sizes around 1500 bytes in
this graph deserves explanation, as it was evident in all tests:
it appears that the garbage collector on the PDA’s JVM runs
at this point during all tests, and attempts to influence the
behaviour of the collector by using System.gc() at key
points in the code failed to force the JVM scheduler to run
the collector sooner. No events were lost, there was simply an
additional latency on those packets. Running the test against
just those packet sizes confirms that, under normal conditions,
they achieve a latency similar to surrounding packet sizes.

As indicated earlier, the event bus is targeted solely at
the needs for management control traffic; we do not expect
the throughput requirements for such traffic to be onerous,
but if applications decide to use the event bus for commu-
nicating data traffic, throughput considerations will become
more important. The throughput results in Figure 5(b) are
small, and the figures shown relate only to the volume of data
encapsulated within an event (the payload). Thus, the actual
throughput of data we observe does not take into account
application headers, datagram packet headers, the overhead of
dealing with each packet through the OS to the JVM and back,
copying data, and translating event types to and from a form
which the Siena code can handle. The raw throughput observed
on the link when simply transferring data from one host to
another is approximately 575KB/s. There is clearly significant
scope for improving the performance and throughput this
software can provide as development continues.

During these tests, the JVM consumed approximately 10%
of the CPU load on the PDA for smaller payloads, and upward
of 30% of the CPU load for larger payloads.

VI. FUTURE WORK

The wireless nature of the devices we expect an SMC
to use in an e-Health environment are driving development
toward wireless technologies. Currently, we are developing
a prototype using Bluetooth. Soon, we will test the SMC
architecture using devices which communicate via the ZigBee
wireless protocol, using a number of scenarios to test various
aspects of the system (such as maximum timeouts for the
discovery service to allow silence from a device until a “Purge
Member” event is launched). In a similar vein, we will explore
the mechanism for queueing and repeating attempts to deliver
events to services which are unavailable, but have not yet
been declared to have left the SMC. Further investigation into
event bus performance (variation in delays incurred depending
on message size or number of recipients, for example), and
possible improvements will also be investigated.

Further, it is possible that we would see power-saving ben-
efits from quenching techniques such as those demonstrated
in the Elvin publish/subscribe system. We also intend to
replace the content-based publish/subscribe mechanism with a

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000 3500 4000

R
es

po
ns

e
T

im
e

(m
s)

Packet Size (bytes)

End-to-end Delay
Average delay

(a) Variation in end-to-end delay against varying packet sizes.

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000 2500 3000

T
hr

ou
gh

pu
t (

K
ilo

by
te

s
pe

r
se

co
nd

)

Payload Size (bytes)

Throughput

(b) Variation in throughput against packet sizes.

Fig. 5. Observed behaviour of the event bus running on the PDA at varying
packet sizes.

type-based publish/subscribe [10] mechanism, to remove the
reliance on arbitrary tags as event identifiers.

Development of the existing event bus/discovery ser-
vice/policy service architecture will continue, while also ex-
panding our array of useful test scenarios to help verify the
validity of the system.

We also intend to look into using JamVM virtual machine
with the output of the GNU Classpath project to minimise
the footprint of the Java virtual machine. We will consider
the performance of this JVM against the Blackdown JVM. To
improve performance, we are considering a reimplementation
of the project in C or C++ beneficial, though a hybrid approach
using C/C++ components interfacing with the existing Java
code via JNI [11] might prove enough to enhance performance.

ACKNOWLEDGEMENT

The authors wish to thank the UK Engineering and Physical
Sciences Research Council for their support of this research
through grants GR/S68040/01 and GR/S68033/01.

REFERENCES

[1] J. Sventek, N. Badr, N. Dulay, S. Heeps, E. Lupu, and M. Sloman,
“Self-Managed Cells and their Federation,” in Workshop Proceedings
of the 17th Conference on Advanced Information Systems Engineering
(CAiSE’05).

[2] M. Sloman, Ed., Network and Distributed Systems Management. Ad-
dison Wesley, May 1994, ISBN: 0201627450.

[3] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder policy
specification language,” in POLICY ’01: Proceedings of the Interna-
tional Workshop on Policies for Distributed Systems and Networks.
London, UK: Springer-Verlag, 2001, pp. 18–38.

[4] G. Fitzpatrick, T. Mansfield, S. Kaplan, D. Arnold, T. Phelps, and
B. Segall, “Augmenting the workaday world with elvin,” in Proceedings
of the Sixth European conference on Computer supported cooperative
work. Norwell, MA, USA: Kluwer Academic Publishers, 1999, pp.
431–450.

[5] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and
evaluation of a wide-area event notification service,” ACM Transactions
on Computer Systems, vol. 19, no. 3, pp. 332–383, Aug. 2001. [Online].
Available: http://serl.cs.colorado.edu/∼carzanig/papers/

[6] S. Grant, M. P. Kovacs, M. Kunnumpurath, S. Maffeis, K. S. Morrison,
G. S. Raj, and J. McGovern, Professional JMS, 1st ed., P. Giotta, Ed.
Wrox Press, March 2001, ISBN: 1861004931.

[7] Softwired, “iBus//Mobile homepage,” http://www.softwired-inc.com/
products/mobile/mobile.html, accessed 17 January, 2006.

[8] Bluetooth SIG, Inc., “The official bluetooth membership site,” https:
//www.bluetooth.org/, accessed 20 January 2006.

[9] “Zigbee alliance,” http://www.zigbee.org/, accessed 20 January 2006.
[10] P. Eugster, R. Guerraoui, and J. Sventek, “Type-Based Pub-

lish/Subscribe,” Swiss Federal Institute of Technology, Lausanne
(EPFL), Tech. Rep., 2000.

[11] S. Liang, The Java Native Interface: Programming Guide and Reference.
Addison Wesley, July 1999, iSBN: 0201325772.

