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I. INTRODUCTION
Network Quality of Service (QoS) management requires
administrators to manage the network devices and infra-
structure to achieve predictable performance. The Differenti-
ated Services (DiffServ) architecture [1] can achieve this by
aggregating network traffic into defined classes of service, and
configuring routers to treat each of these classes appropriate-
ly. In such a network a packet might be handled differently at
each hop based on the DiffServ class to which it belongs. Poli-
cy-based management provides the ability to dynamically con-
figure a system, by separating the rules that govern a system’s
behaviour from the functionality supported by it. Policies can
be specified, and applied to large numbers of devices uniform-
ly. In DiffServ, policies can be used to dynamically reconfig-
ure routers such that the desired QoS goals are achieved as
well as to perform admission control. It is important to be
able to analyse policies to ensure consistency and to ensure
that key properties are preserved in the network configura-
tion, e.g. traffic marked in the same way is not allocated to

different queues. Although adaptation can be realised through
general scripting languages, policy languages adopt a more
succinct, declarative, form in order to facilitate analysis. Many
policy languages have been proposed, but techniques for
refining high level goal into implementable policies, amenable
to analysis for consistency, remain poorly explored. Unless
such techniques are developed and used in network manage-
ment and provisioning tools, the additional expense required
to deploy policy-based management will remain difficult to
justify.

The Service Level Specifications (SLSs) which have to be
satisfied by the network, as well as the derived QoS policies
required to satisfy the SLSs, will change frequently. This pro-
cess of deriving policies from the SLSs is recognized as one of
the most difficult research challenges and is not fully automat-
able; however, techniques and tool support for refinement can
be developed. Tool support to assist administrators in the
refinement of policies would significantly reduce and improve
network administration tasks especially when combined with
analysis tools to ensure that only consistent specifications are
derived. Although generic automated refinement is not
achievable, useful, semi-automated tools can be achieved by
constraining the problem to a well defined functional area,
such as QoS management, where application specific knowl-
edge can be encoded and used.

This paper extends our previous work on policy refinement
for DiffServ QoS management [2] to include techniques for
reusing results of the refinement approach. In particular, we
look at the use of application specific policy refinement pat-
terns. Additionally, we present details of the tools that have
been developed to support the refinement technique. Whilst
the refinement technique is generally applicable, this paper
focuses on our efforts on identifying the goals, strategies and
policies relating to DiffServ QoS management using the
TEQUILA framework [3]. TEQUILA uses DiffServ, with
Multi-Protocol Labelled Switching (MPLS) [4] to provide
dynamic adaptation to varying traffic requirements.

Policy refinement is the process of transforming a high-
level, abstract policy specification into a low-level, concrete
one. Moffett and Sloman [5], identify the main objectives of a
policy refinement process as:
(1) Determine the resources needed to satisfy the policy.
(2) Translate high-level policies into operational policies.
(3) Verify that lower level policies meet the high-level policy

requirements.
Objective (1) involves mapping abstract entities defined as

part of a high-level policy to concrete objects/devices that
make up the underlying system. (2) specifies the need to
ensure that derived operational policies are in terms of opera-
tions supported by the underlying system. (3) requires a pro-
cess for incrementally decomposing abstract requirements into
more concrete ones, ensuring that at each stage the decompo-
sition is correct and consistent. We propose an approach that
meets these objectives by elaborating high-level, abstract goals
into more concrete ones and using abductive reasoning to
derive the actions (strategies) that are supported by the sys-
tem for achieving these concrete goals [6]. These strategies
can then be used in specifying policies that can be enforced by
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the system to achieve the original goal. The goal elaboration
technique makes use of the KAOS [7] requirements engineer-
ing approach, which is based on the use of formal specifica-
tions in conjunction with goal elaboration patterns that are
proven to be correct. Goal elaboration patterns can be appli-
cation-specific, e.g. for QoS management, storage or security,
although KAOS also defines a set of application-independent
patterns together with proofs of their correctness.

This paper presents an overview of our policy refinement
technique together with examples of its application. It focuses
on the underlying formalisms used in the refinement tech-
nique in order to show the derivation and soundness of the
procedure. However, the tools we have developed to support
the refinement procedure mean that users need only have
knowledge of the application domain. To this end, we present
ways of reusing results of the policy refinement procedure and
go on to discuss its limitations, complexity and applicability.

In the next section we present background information
about the TEQUILA framework and our policy refinement
approach followed by details of the implementation of the
policy analysis and refinement tool in section 3. Section 4 pre-
sents some example scenarios of policy refinement in the QoS
management domain and in section 5 we describe the use of
application-specific patterns for reusing refinement results
and automating the refinement procedure. Section 6 presents
related work followed by a discussion in section 7. Finally sec-
tion 8 presents our conclusions and future work.

II. BACKGROUND

A. TEQUILA DiffServ Framework
The TEQUILA framework operates in two modes — an

offline mode that determines the configuration required to
meet long-term traffic demands; and a run-time mode that
adapts the configuration to meet short-term traffic variations.
It can be decomposed into three sub-systems: SLS subscrip-
tion, Traffic Engineering and Monitoring. SLS subscription is
responsible for agreeing the customers’ QoS requirements in
terms of SLSs, while Traffic Engineering is responsible for ful-
filling the contracted SLSs by deriving the network configura-
tion. The Monitoring subsystem provides the above systems
with the appropriate network measurements and assures that
the contracted SLSs are indeed delivered at their specified
QoS. Figure 1 shows a logical representation of this architec-
ture. The TEQUILA framework has been previously present-
ed [8, 9], so we describe here only the behaviour of the
Service Level Specification subscription (SLS-S) and Dynamic
Resource Management (DRsM) components which are used

in the scenarios presented in the next section.
The SLS-S module performs admission control, calculates

counter-offers and updates traffic forecasts using policies and
so is the most relevant component for policy refinement. The
SLS-S module uses the parameters of each requested SLS to
calculate the expected traffic load based on traffic demand
forecasts. This traffic is then aggregated with the expected
traffic accumulated from the SLSs established during this
Resource Provisioning Cycle (RPC). The resulting aggregated
traffic defines the maximum potential demand and is mapped
against the corresponding entries of the resource availability
matrix (RA-Matrix). The result of this mapping is used by the
admission control algorithm when deciding whether requests
should be accepted or rejected. Requests are rejected if the
risk of overwhelming the network with traffic such that QoS
cannot be guaranteed is too high. A state chart model of this
behaviour is shown in Figure 2. A more detailed description
of the subscription admission control algorithm can also be
found in [9].

The DRsM module is a distributed component responsible
for reconfiguring the routers in response to short term varia-
tions in traffic. It is triggered by network monitors that track
PHB utilization and raise threshold-crossing alarms when the
bandwidth consumed by a PHB exceeds an upper threshold or
drops below a lower threshold. Two values could be used for
each threshold (trigger and clear values) to avoid repeated
alarms when small oscillations occur. Once an alarm is raised,
the DRsM calculates a new bandwidth allocation and config-
ures the link appropriately; or triggers a new resource provi-
sioning cycle if sufficient bandwidth cannot be allocated.
Policies determine how to calculate the new values, configure
the link or trigger a new RPC.

B. Approach to Policy Refinement
The first phase of the policy refinement process is a technique
for refining high-level goals into concrete achievable goals,
often referred to as System Requirements. The next phase of
the refinement process maps these system requirements to
specific modules/operations that are available within the sys-
tem. In this process, each high-level goal is refined into sub-
goals, forming a refinement hierarchy where the dependencies
between goals at different levels of refinement are based on
the type of goal decomposition used (AND/OR). Additionally
there can be dependencies between goals in different hierar-
chies. The refinement process involves following a particular
path down the hierarchy, at each stage determining if the goal
can be achieved by the system. If a particular goal cannot be
achieved, then we have to either increase the system’s func-
tionality by adding additional management procedures and
services, or manually decompose the goal into appropriate
lower-level goals. In most situations we would expect the user
to do the latter.

FIGURE 1. The TEQUILA DiffServ QoS management framework
operates in an offline mode to determine the network configura-
tion required to meet long term traffic needs; and an online
mode that adapts to short-term variations.
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FIGURE 2. The Service Level Specification Subscription (SLS-S)
module is responsible for handling new SLA subscription
requests, deciding to accept, reject or make counteroffers based
on the policies of the QoS management system.
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KAOS [7] is a technique for goal elaboration, where each
goal is represented as a Temporal Logic rule and elaboration
patterns are used to decompose the original goal into a set of
sub-goals. High-level representations of the goals can be used
to shield the users from the formal specification and reason-
ing processes that are used in the background. Whilst KAOS
does not provide automated support for goal elaboration, it
does define a library of application-independent elaboration
patterns that have been logically proved correct. Table I
shows some patterns of AND-decomposition for goals of the
form P ⇒ ◊ Q (if P holds, then Q will eventually hold in the
future).

In our implementation, these patterns are encoded in the
underlying formalism such that when a user provides a high-
level goal, the system can infer the sub-goals that are valid
decompositions.

For example, given the elaboration patterns presented in
Table I, if the user presents the goal “on receiving a SLS from
AOL, the SLS should be accepted,” the system would suggest
the following sub-goal decompositions:

GP1: on (receive SLS from AOL) then eventually (?Goal1?) AND

?Goal1? then eventually (SLS accepted)

GP2: Goal1? then eventually (SLS accepted) AND

?Goal2? then eventually (SLS accepted) AND

on (receive SLS from AOL) then (?Goal1? OR ?Goal2?)

GP2’: (on (receive SLS from AOL) then eventually (?Goal1?) AND

?Goal1? then eventually (SLS accepted) )

OR (on (receive SLS from AOL) then eventually (?Goal2?) AND

?Goal2? then eventually (SLS accepted) )

The decompositions also have high-level descriptions of
the patterns applied. The user then uses his domain knowl-
edge to choose the decomposition for which the missing goals
(denoted by ?GoalX?) can be specified in a meaningful way.

For a particular application domain, specialised goal elabo-
ration patterns can be defined by an expert such that the high-
level goals and associated decompositions are expressed using
application specific terms. Additionally, the expert can specify
invalid sub-goal combinations by using integrity constraints.
Both of these techniques limit the set of derived decomposi-
tions to those that are applicable and valid for the application
domain. This makes it easier for the user to select a suitable
decomposition without needing to understand the underlying
formalisms.

Having refined the abstract goals into lower-level ones, the
next phase of the process is to assign each refined goal to a
specific object/operation such that the final system will meet
the original requirements. Since KAOS does not provide sup-
port for automating this, we propose the following method for
inferring the operations that must be performed by the system
to achieve a particular goal.

At a given level of abstraction there will be some descrip-
tion of the system (SD) and the goals (G) to be achieved by
the system. The relationship between the system description
and the goals is the Strategy (S), i.e. the Strategy describes the
mechanism by which the system represented by SD achieves

the goals denoted by G. Formally this would be stated as: SD,
S |– G

This requires a representation of the system description, in
terms of the properties and behaviour of the components,
together with a definition of the goals that the system must
satisfy. We use Statecharts to describe system behaviour,
where each transition indicates the invocation of an operation
and/or the occurrence of a system event. Guards are specified
for transitions with pre-conditions for invoking the operation.
We have chosen Statecharts for two reasons: first, because it
is unlikely that system descriptions will be provided in the
underlying formal specification language whereas Statecharts
are a well-known design level behavioural specification nota-
tion and second, because it is possible to translate from the
Statechart specification to the underlying formalism. It is
important to note that the system description information
need not be provided by the user. Instead, the statechart
description of the system may be part of a standard informa-
tion model or may be provided by equipment vendors.

Given the rules describing a system (SD) and the definition
of some desired system state (i.e., the goal — G), abductive
reasoning allows us to derive the facts that must be true for
the desired system state to be achieved. As the goal is repre-
sented by a desired system state the abductive reasoning pro-
cess is essentially deriving a path in the statechart from some
initial state to the desired one. This path is the derived strate-
gy and can be represented using the following syntax:

Strategy AchievedGoal

OnEvent Events derived from transitions with system events.

DerivedActions Actions derived from transitions with operations.

Constraints Constraints derived from guards.

Whether a strategy should be encoded as policy, or as sys-
tem functionality, will depend on the particular application
domain. Although there is no obvious way to automate this
decision, we propose the following guidelines to identify the
situations where a policy-based implementation would be
appropriate:
(1) If the goal refinement results in a disjunction of sub-goals

(i.e. the high-level goal can be achieved by one of an OR-
decomposed set of sub-goals), the strategies derived for
each of the sub-goals could be encoded as policies.

(2) If the system supports multiple strategies for achieving a
given goal, each of these strategies could be encoded in a
separate policy. This situation might arise when the abduc-
tive process yields multiple solutions.

(3) If a strategy has parameter values that may need to
change in the future, implementing the strategy in a policy
will provide the flexibility to do this.
In addition to elaborating goals and deriving strategies, it

is necessary to map abstract entities to concrete
objects/devices in the system. For example, there might be an
abstract “Network” entity that logically consists of “Routers,”
“Links” etc., each consisting of the relevant managed objects.
A domain hierarchy is used to represent the relationships
between the various abstract entities and the low-level con-
crete objects [10]. This domain hierarchy can be derived using
automated discovery techniques, a capability of commercial
tools such as HP OpenView, CA UniCentre and IBM Tivoli.

Additionally, it is possible to use authorisation policy infor-
mation and object type information to identify the concrete
objects/devices to be specified in the low-level policy. By com-
bining this approach to identify the concrete objects with the
goal elaboration and strategy derivation techniques, the over-
all policy refinement process can be summarized as follows.

The user provides the high-level policy they are interested
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TABLE 1. Application-independent goal elaboration patterns.

Ref Goals Subgoals

GP1 P ⇒ ◊ Q (P ⇒ ◊R) ∧ (P ⇒ ◊Q)

GP2 P ⇒ ◊ Q (P1 ⇒ ◊Q) ∧ (P2 ⇒ ◊Q) ∧ (P ⇒ P1 ∨ P2)

GP2’ P ⇒ ◊ Q (P ⇒ P1 ∧ P1 ⇒ ◊Q) ∨ (P ⇒ P2 ∧ P2 ⇒ ◊Q)
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in refining. This policy would be of the form “On event, if
condition holds then achieve goal.” As described previously,
the KAOS approach is applied to elaborate the high level pol-
icy, making use of both application-independent and applica-
tion-specific refinement patterns. At each stage of elaboration,
the system description and the goals are used to attempt to
abduce a strategy for achieving the goal. If no strategy can be
derived, then the preferred course of action is to further elab-
orate the goals. However, if the existing low-level goals are
already expressed at the lowest level of abstraction in the sys-
tem, it is not possible to elaborate the goals further. In this
situation the system description must be augmented with
more detail. This involves specifying additional management
operations for the system, either as custom-written scripts or
using functionality of commercial management platforms. The
post-conditions of these new operations should match the
goals for which a strategy is required.

Once a strategy is identified, it is used in the action clause
of the final policy. The domain hierarchy is used to identify
the subject and target objects in the system for the derived
policy that correspond to those entities mentioned in the high-
level policy. Finally the event and constraints of the high-level
policy are mapped, by the user, into the final policy which is
written in a notation that does not require knowledge of the
formalisms used (Figure 3). This final step is a manual one
since there is no easy way to capture the domain information
necessary for translating high-level events and constraints into
lower-level ones. This is not a major disadvantage since these
mappings can be done once and encoded into application spe-
cific refinement patterns that are reusable.

Automating this technique requires tools that allow users
to specify the system behaviour and goal information in a
high-level notation, such as UML, and then translate this rep-
resentation into Event Calculus for analysis. Also, the results
of the analysis should be presented in an easy to understand
form. In the next section we present a formal representation
of the managed system and this is followed by a description of
the tool that has been developed to support the refinement
process.

C. Formal Representation of Managed Systems
As described above, the refinement approach we have

developed uses a formal representation of the managed sys-
tem together with abductive reasoning to automatically derive
the strategies for achieving a given goal. In this section we

describe the formal language we use to represent the man-
aged system.

We use Event Calculus (EC) [11] as the underlying formal-
ism since it has well understood semantics; supports all modes
of logical reasoning, including abduction; and the information
we are interested in modelling involves events and temporal
relationships. Because EC supports a representation of time
that is independent of any events that might occur in the sys-
tem, it is a particularly useful way to specify a variety of event-
driven systems. Since its initial presentation, a number of
variations of the Event Calculus have been presented in the
literature [12]. In this work we use the form presented in [13],
consisting of (i) a set of time points (that can be mapped to
the non-negative integers); (ii) a set of properties that can
vary over the lifetime of the system, called fluents; and (iii) a
set of event types. In addition the language includes a number
of base predicates, initiates, terminates, holdsAt, happens,
which are used to define some auxiliary predicates; and
domain independent axioms. These are summarised in Figure
4.

This is the classical form of the Event Calculus where theo-
ries are written using Horn clauses. We use pos and neg func-
tions on the fluents to allow us to keep open the interpretation
of fluents being true/false. When implementing the formalism
using Prolog, circumscription is used to complete predicates,
except for holdsAt, initiallyTrue and initiallyFalse. This
approach allows the representation of partial domain knowl-
edge (e.g. the initial state of the system). The correspondence
between the classical EC with circumscription and the logic
program implementation can be found in [12].

The Event Calculus supports deductive, inductive and
abductive reasoning. Deduction uses the description of the
system behaviour together with the history of events occurring
in the system to derive the fluents that will hold at a particular
point in time. Induction derives the descriptions of the system
behaviour from a given event history and information about
the fluents that hold at different points of time. However, the
reasoning technique that is of particular interest to our work
is abduction. Given the descriptions of the behaviour of the
system, abduction can be used to determine the sequence of
events that need to occur such that a given set of fluents will
hold at a specified point in time.

UML is used as a high-level notation for describing the
managed systems because it is widely adopted standard and is
supported by many commercial tools. The rest of this section
outlines how the UML statechart description of a managed
object can be translated into Event Calculus.

The formal language used is based on that described in
[14], where in addition to the base predicates and axioms of
Event Calculus we make use of the function symbols shown in
Table II. The dynamic model of a managed object describes
its run-time behaviour in terms of the changes in state caused
by performing the management operations. It is important to
note that the formalisation of the managed object behaviour
need only include the stage changes relating to the objects’

FIGURE 3. The Service Level Specification Subscription (SLS-S)
module is responsible for handling new SLA subscription
requests, deciding to accept, reject or make counteroffers based
on the policies of the QoS management system.
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initiates(A,B ,T ) event A initiates  fluent B for all time > T . 
terminates(A,B,T)  event A terminates  fluent B for all time > T. 
happens(A,T)  event A happens at time point T 
holdsAt(B ,T ) fluent B holds at time point T.  
 This  predicate is useful when defining s tatic 
 rules (e.g. state cons traints) 
initiallyT rue(B) fluent B is  initially true. 
initiallyFalse(B) fluent B  is initially false. 



management interface. As mentioned previously, this informa-
tion can be provided as part of a standard information model
or equipment vendors.

In order to model the behaviour of the management oper-
ations, we specify their pre- and post-conditions. Performing
an operation on the system will modify the state of the system
in such a way that, once the operation is complete, there will
be some new fluents that hold, and some other fluents that
cease to hold. This is represented using the initiates and ter-
minates predicates, which are defined in the Event Calculus,
according to the following schema:

initiates(doAction(_, op(ObjTarg, Action, Parms)),

PostTrue, Tm) ←
PreCondition ^ mgdObj(ObjTarg, ClassName).

terminates(doAction(_, op(ObjTarg, Action, Parms)),

PostFalse, Tm) ←
PreCondition ^ mgdObj(ObjTarg, ClassName).

The first rule above states that when the doAction event
occurs at time, Tm, if the PreConditions are true, then the
fluent defined by PostTrue will hold after that time. Under
the same conditions, the second rule states that the fluent
defined by PostFalse will cease to hold after time, Tm.

Typically, the latter rule is used to invalidate the old value
of an object attribute when it changes as a result of the system
moving to a new state. In both of these rules, the PreCondi-
tion will be represented by a conjunction of holdsAt predi-
cates. The mgdObj(ObjTarg, ClassName) predicate in the
body of each rule indicates that the rule defines an operation
for the type, ClassName.

It is possible to transform this state chart into the Event
Calculus notation presented previously where the input shown
on each transition arrow is the operation being performed; for
transitions between different states, the any attributes that
change become the PostFalse fluents; next state values
become the PostTrue fluents; and the current state values,
together with any guard expressions, become the PreCondi-
tions. In order to avoid problems with recursion and infinite
looping, self-transitions are omitted from the formal represen-
tation.

So following this scheme, Figure 5 shows the formal repre-
sentation derived from the state chart representation of the
SLS-S module shown in Figure 2. Here Rule 1 defines the ini-
tial state of the SLSModule object to be ‘init’. The next

rule specifies that the occurrence of the reqReceived(sls)
event and the registerSLS(sls) event cause the state to
become ‘slsRegistered’. This transition requires that the
object ceases to be in the ‘init’ state and this is specified by
the terminates(…) predicate in Rule 3. The remaining transi-
tions of the statechart are defined in the similar manner in
Rules 4–9. These rules also show how we make use of the
pos() function described previously.
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FIGURE 5. Formal representation of SLS-S Module behavior.

1- initiallyTrue(pot_state(Obj, status, 'init'))syms  
 mgdObj(Obj, ‘classSLSModule’).

2- initiates(doAction(_, op(Obj, registerSLS, parms(sls))),
 pot_state('d_mgdObjsd_slsmgr', status, 'slsRegistered'), T)←

holdsAt(pos(pot_state(Obj, status, 'init')), T),
happens(sysEvent(reqReceived(sls)), T),

  mgdObj(Obj, ‘classSLSModule’),
  time(T).

3- terminates(doAction(_, op(Obj, registerSLS, parms(sls))),
 pot_state(Obj, status, 'init'), T) :-

holdsAt(pos(pot_state(Obj, status, 'init')), T),
happens(sysEvent(reqReceived(sls)), T),

  mgdObj(Obj, ‘classSLSModule’),
  time(T).

4- initiates(doAction(_, op(Obj, makeCounteroffer, parms(sls))),
pot_state(Obj, status, 'slsCounterofferMade'), T) ←

holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),
  mgdObj(Obj, ‘classSLSModule’),
  time(T).

5- terminates(doAction(_, op(Obj, makeCounteroffer, parms(sls))),
 pot_state(Obj, status, 'slsRegistered'), T) ←

holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),
  mgdObj(Obj, ‘classSLSModule’),
  time(T).

6- initiates(doAction(_, op(Obj, reject, parms(sls))),
 pot_state(Obj, status, 'slsReqRejected'), T) ←

holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),
  mgdObj(Obj, ‘classSLSModule’),
  time(T).

7- terminates(doAction(_, op(Obj, reject, parms(sls))),
 pot_state(Obj, status, 'slsRegistered'), T) ←

holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),
  mgdObj(Obj, ‘classSLSModule’),
  time(T).

8- initiates(doAction(_, op(Obj, accept, parms(sls))),
 pot_state(Obj, status, 'slsReqAccepted'), T) ←

holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),
  mgdObj(Obj, ‘classSLSModule’),
  time(T).

9- terminates(doAction(_, op(Obj, accept, parms(sls))),
 pot_state(Obj, status, 'slsRegistered'), T) ←

holdsAt(pos(pot_state(Obj, status, 'slsRegistered')), T),
  mgdObj(Obj, ‘classSLSModule’),
  time(T).

←

TABLE 2. Predicates and function symbols for formal representation of managed systems.

Symbol Description

mgdObj(Obj, ClassName) Predicate used to indicate that Obj is an instance of the managed object
type denoted by ClassName.

pot_state(Obj, Attr, Value)

Function used to represent the potential value of an attribute of an object
in the system. It can be used in an initiallyTrue predicate to specify
the initial state of the system and also as part of rules that define the
effect of actions.

op(Obj, OpName, Parms) Function used to denote the operations specified in an action event (see
below)

systemEvent(Event)
Function that represents any event that is generated by the system at run-
time. The Event argument specified in this term can be any application
specific function symbol.

doAction(ObjSubj, op(ObjTarg, OpName, Parms))
Function that represents the event of the action specified in the operation
term being performed by the subject, ObjSubj, on the target object,
ObjTarg.
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III. POLICY ANALYSIS AND

REFINEMENT TOOL
The technique for policy refinement presented here is

based on formal methods, which by their very nature can be
difficult to use. The formal specification of the system and
policies can be particularly verbose and the results generated
from the strategy derivation process are not easy to interpret.
Therefore it is important that adequate tool support is provid-
ed for administrators and that the tool developed helps them
to easily specify the organization and behaviour of the man-
aged system, together with the goals and policies that apply.

A key requirement of the tool is to make the underlying
formal notation and reasoning techniques usable. To this
end, we allow all information regarding managed objects and
their behaviours to be specified in UML using any available

editor (e.g. Rational Rose, ArgoUML etc). Then, by using
the standard XML Meta-data Interchange (XMI) format of
UML, it is possible import these specifications into the poli-
cy analysis and refinement tool. This tool can handle the
specification of policies, goals, domain hierarchy and the
generation of analysis results.

Figure 6 shows the overall architecture of the tool for poli-
cy analysis and refinement. As can be seen, there are 3 princi-
pal components — the domain service; the analysis service;
and the user-interface client application.

A. Domain Service 
The domain service provides functionality for storing and

retrieving information that describes the entire managed sys-
tem. In addition to the domain hierarchy itself, this includes
the policies, managed objects and goals. Figure 7 shows a
detailed class diagram of the objects stored in the domain
service, together with the programming interface provided to
the other components for accessing the domain hierarchy.
The base class for all types of information stored in the
domain service is called ManagedEntity and this class has
entityID, name, domainPath and description attributes
which are inherited by all the subclasses. For a given man-
aged entity instance, the entityID attribute is assumed to be
a unique identifier.

Additionally, results from analysis activities are stored in
objects of type AnalysisResult and associated with the man-
aged entity to which they apply. As shown, a managed entity
can be a domain, policy, managed object or goal.

B. Analysis Service
The analysis service deals with the requirements of translating
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FIGURE 6. Formal representation of SLS-S Module behavior.
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FIGURE 7. Classes used by domain service to store managed system information. Domain class is used to organize managed objects and
policies; Policy class stores, Ponder code and compiled XML representation of policies in the system; ManagedObject is used to represent
devices and managed objects with types designated by the className attribute; Goal has associated GoalDecompositions which in turn
have sub-goals; Strategy store management operations, events and pre-conditions associated with a given decomposition. Finally, all
managed entities have AnalysisResult objects that store inconsistency information.

ManagedEntity

name : String
domainPath : String
description : S tring
enti tyID : String
<<create>> ManagedEntity() : void
addAnalysisResult(result:  AnalysisR esult) :  void
removeAnalysisR esult(resultID:  S tring) :  void

Domain

add(entity: ManagedEntity) : void

remove(entityID: String) : void

update(entityID:  S tring,newE ntity: ManagedEntity) : void

Policy

policyType : int
codeP onder : String
codeXML :  S tring

<<create>> Policy() : void

ManagedObject

className : S tring
initValues : List

<<create>> ManagedObject() : void

G oal

formalDef :  S tring
goalType : int

<<create>> Goal() : void

G oalDecomposition

decompID : String
addStrategy(strategy: S trategy) :  void
removeS trategy(strategyID: String) : void
<<create>> GoalDecompos ition() : void

S trategy

events : String
preconds : String
operations : String
strategyID : String

<<create>> S trategy() : void

AnalysisR esult

resultType : int

result : String

resultID : String

<<create>> AnalysisResult() : void

DomainS erver

configFileLocation : String
add(entity: ManagedEntity) : void
remove(entityID: String) : void
update(entityID:  S tring,newE ntity: ManagedEntity) : void
get(entityID:  S tring) :  ManagedEntity

0..*

+members

0..*

+decomps

2..*

+subgoals

0..*

+strategies

0..*

+analys is

+strategy

0..*

+refinedpolicy

0..*

+mgdObjs



IEEE ETRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 3, NO. 2, SECOND QUARTER 2006 8

the high-level representations of the policy-based manage-
ment system into the underlying formalism and generating the
analysis and refinement results. To do this the analysis service
is integrated with the SICStus Prolog system which provides
deductive reasoning capabilities. Abductive reasoning is pro-
vided by the A-System abductive proof engine [15] which runs
within the SICStus Prolog environment.

Translation of the high-level representations of the domain
hierarchy, managed object behaviours, policies and goals is
achieved through the use of XML style sheet transformations
(XSLT). The AnalysisServer class is implemented as a Java
RMI server providing methods for analysis tasks like retrieving
policy conflict data and performing review queries. Whenever a
change is made to information stored in the domain service, the
analysis server uses the Analyser class to initiate the process of
generating the required Prolog code. The actual translation
functions are implemented in the CodeGen component (Figure
6). The AnalysisServer is also used to generate the decom-
positions and strategies for high-level goals.

C. Analysis and Refinement Client
The final component of the analysis and refinement tool is

the client application that implements the user interface (Fig-
ure 8). The primary view of this application is based on an
new version of the Ponder hyperbolic domain browser [10]. It
uses the HyperGraph library [16] to implement a hyperbolic
viewer to browse a hierarchical domain structure more effec-
tively than a simple tree viewer . It also supports the option of
selectively collapsing certain sub-domain hierarchies.

In order to view the detailed information regarding any par-
ticular entity in the domain hierarchy, a context sensitive prop-
erties pane was used. Whenever the user selects an element of
the domain hierarchy, the tabbed panel in the bottom half of
the screen shows the details relating to that particular element.
For example, Figure 8 illustrates the goal decomposition detail
panel, showing the sub-goal information, together with the

derived strategies. At present, the tool is a research prototype
that aims to demonstrate the practical applications of our
approach to policy analysis and refinement. For this reason,
some of the specifications shown in the user interface are still
presented in the formal notation. However, we expect usage to
be considerably simplified in production versions of the tool.

In the next section we present two scenarios where the poli-
cy refinement approach and tool described are used to derive a
policy to meet the requirements of the TEQUILA framework.

IV. DIFFSERV GOALS, 
STRATEGIES AND POLICIES

A. Example 1: Admission Control

Consider an example where a new SLS from the customer,
AOL, requires a pipe between routers R1 and R6 with Expedit-
ed Forwarding (EF) per hop behaviour, 20ms delay, zero pack-
et loss, and a 10Mb/s throughput guarantee. SLS[customer: aol;
scope: pipe(r1,r6); qos: qosClass(EF, 20, 0); bwReq:
bw(10Mb/s)], is presented to the SLS-S subscription module.
The SLS-S module registers the SLS, compares its contents
with the RA-Matrix and decides whether to accept, reject or
make a counteroffer. Policies are used to influence the choice
of the SLS-S module. The policy that applies depends on the
goals that need to be achieved. For example, the highest level
goal below ensures that the SLS request is processed:

G1: Goal SLSRequestProcessed

FormalDef slsReqReceived(SLS) ⇒
◊ slsRequestProcessed(SLS).

Since applying the abductive analysis to the system descrip-
tion of the SLS-S module does not produce strategies for
achieving this goal, it is necessary to elaborate it further by

FIGURE 8. Policy refinement tool user interface. The top pane displays the domain hierarchy and the bottom pane has a number of detail
tabs. Here we show the detail of a goal decomposition, together with the strategies derived. The decomposition rule (bottom left)
describes the relationship between the sub-goals.
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the domain-independent pattern GP2’ (see Table I) to decom-
pose the above goal into the following sub-goals. In each case
we use abduction to derive a strategy:

G2: Goal SLSRequestAccepted

FormalDef slsReqReceived(SLS) ⇒
slsReqAccepted(SLS) ^

slsReqAccepted(SLS) ⇒
◊(slsRequestProcessed(SLS).

G3: Goal SLSRequestRejected

FormalDef slsReqReceived(SLS) ⇒
slsReqRejected(SLS) ^

slsReqRejected(SLS) ⇒
◊slsRequestProcessed(SLS).

G4: Goal SLSCounterofferMade

FormalDef slsReqReceived(SLS) ⇒
slsCounterofferMade(SLS) ^

slsCounterofferMade(SLS) ⇒
◊slsRequestProcessed(SLS).

S1: Strategy G2: SLSRequestAccepted

OnEvent slsReqReceived(SLS)

DerivedActions slsm.registerSLS(SLS) →
slsm.accept(SLS).

S2: Strategy G3: SLSRequestRejected

OnEvent slsReqReceived(SLS)

DerivedActions slsm.registerSLS(SLS) →
slsm.reject(SLS).

S3: Strategy G4: SLSCounterofferMade

OnEvent slsReqReceived(SLS)

DerivedActions slsm.registerSLS(SLS) →
slsm.makeCounteroffer(SLS).

As shown in Figure 9, goal elaboration yields a disjunction
of goals (G2-G4), and the user can select the sub-goal that
best satisfies the requirement. Strategies (S1-S3) are derived
automatically and identify the action sequences (->, sequence
operator) that achieve each of the sub-goals. In this scenario,
the required high-level policy is that SLS requests from cus-
tomer ‘AOL’ with qosClass(EF, 20, 0) should be accepted if
the bandwidth requested is less than the bandwidth available
in the RA-Matrix for the same QoS class. As this policy
achieves the SLSRequestAccepted goal we can encode the
corresponding strategy into a policy as follows:

P1: inst oblig /policies/slsm/acceptAOLSLS_P1 {

on slsReqReceived(SLS);

subj s = /slsmPMA;

targ t = s.slsm;

do t.register(SLS) -> t.accept(SLS);

when SLS.customer = ‘aol’ &&

SLS.qosClass = qosClass(ef, 20, 0) &&

t.getAvailBW(SLS.qosClass) > SLS.bwReq; }

Whilst the strategy is derived automatically, user interven-
tion is required to map the event and constraints specified in
the goal into the policy. Additionally, the system helps the
user select the specific subjects and targets by automatically
identifying objects of the required types in the domain hierar-
chy. Thus, the high-level goal specified by the network admin-
istrator is refined into a concrete policy.

Figure 8 shows how this scenario would appear in the poli-
cy refinement toolkit. Here the top panel illustrates the goal
elaboration hierarchy within the organizational domains of the
system. The bottom panel shows the detail of one of the goal
decompositions, where the relationship between the sub-goals
is shown by the decomposition rule in the bottom left, and the
strategies derived are shown to the right.

B. Example 2: Adapting to Traffic Increase
This scenario illustrates how the TEQUILA framework

responds to short-term traffic changes from customers. The net-
work administrator wants to ensure that when such an increase
occurs between 11am and 1pm and causes a network utilisation
greater than 85 percent of the maximum allocation, the band-
width allocation should be increased by 10 percent and spare
capacity should be equally split amongst the PHBs. In this situa-
tion the Dynamic Resource Management (DRsM) module at
each link along the traffic route would respond as follows:
(1) On receiving a traffic increase alarm, the DRsM decides

on the appropriate action to adapt to the increase using
guideline values for maximum, minimum and congestion
bandwidth allocations provided by the ND.

(2) Configure the link/PHB with this new value and decide on
how to allocate any spare link capacity amongst all the
link/PHBs.
Policies are used at each of the stages above, to decide

how to calculate the new bandwidth allocation, and how to
distribute spare link capacity. In each case the exact policy to
be used depends on the required goal. For the policy deci-
sions on calculating the new bandwidth allocation and then
allocating spare capacity, the high-level goal (G6) should
achieve the state “adapted configuration” when an alarm is
raised. This can be stated as follows:

G6: Goal ConfigAdaptedForBWUtilIncrease

FormalDef alarmRaised(bwUtilIncr, [utilValue, PHB]) ⇒
◊ configAdapted.

In this case the abductive analysis of G6 yields no strategy,
so the goal must be elaborated further. Applying GP2’ yields
the sub-goals NewRPCRequested (G7) or CalculatedCon-
figNewBWAllocation (G8). Each of these goals leads to the
high-level goal G6 being satisfied as shown in their formal
definitions below.

G7: Goal NewRPCRequested

FormalDef alarmRaised(bwUtilIncr, [utilValue, PHB]) ⇒
requestedNewRPC ^
requestedNewRPC ⇒ ◊ configAdapted.

G8: Goal CalculatedConfigNewBWAllocation

FormalDef alarmRaised(bwUtilIncr, [utilValue, PHB]) ⇒
calcAndConfigNewBWAlloc ^
calcAndConfigNewBWAlloc ⇒ ◊ configAdapted.

In the scenario, the high-level policy requires calculating
and configuring a new bandwidth allocation, represented by
goal G8 above. However, since it is not possible to automati-
cally derive a strategy for this goal, it is necessary to elaborate
it further, this time using a combination of the patterns GP2’
and GP1. Figure 10 indicates the applicable patterns at each
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FIGURE 9. Goal decomposition for SLS subscription scenario.
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stage with the following goals:

G9: Goal calcNewBWAlloc

FormalDef calcNewBWAlloc(newValue) ⇒ ◊ configNewBWAlloc.

G10: Goal configNewBWAlloc

FormalDef configNewBWAlloc ⇒ ◊ configAdapted.

G11: Goal setCalculatedNewBWAlloc

FormalDef calcNewBWAlloc (newValue) ⇒
(newValue = calcValue)

^ (newValue = calcValue) ⇒ ◊ configNewBWAlloc.

G12: Goal overrideNewBWAllocNDMax

FormalDef calcNewBWAlloc (newValue) ⇒
(newValue = drsm.ndMaxBWAlloc) ^
(newValue = drsm.ndMaxBWAlloc) ⇒

◊ configNewBWAlloc.

G13: Goal overrideNewBWAllocNDCong

FormalDef calcNewBWAlloc (newValue) ⇒
(newValue = drsm. ndCongBWAlloc) ^
(newValue = drsm.ndCongBWAlloc) ⇒

◊ configNewBWAlloc.

G14: Goal propSplitSpareCapacity

FormalDef configNewBWAlloc ⇒
spareCapProportionallySplit ^

spareCapProportionallySplit ⇒ ◊ configAdapted.

G15: Goal equalSplitSpareCapacity

FormalDef configNewBWAlloc ⇒ spareCapEquallySplit ^
spareCapEquallySplit ⇒ ◊ configAdapted.

G16: Goal explicitySplitSpareCapacity

FormalDef configNewBWAlloc ⇒
spareCapExplicitlySplit([splitValues]) ^
spareCapExplicitlySplit([splitValues]) ⇒

◊ configAdapted.

In this scenario, the goals of the administrator are G11 and
G15. So, we are interested in the strategies for setting the new
bandwidth to the newly calculated value and splitting spare
capacity equally. Performing the abductive analysis on the
statechart representation of the DRsM calculation and config-
uration module behaviours yields the following strategy, which
in turn can be encoded into a policy:

S5: Strategy G11: setCalculatedNewBWAlloc &&

G15: equalSplitSpareCapacity

OnEvent alarmRaised(bwUtilIncr, [utilValue,

PHB])

DerivedActions calcValue = drsm.incrAllocBW(PHB,pct) ->

drsm.configureLink(PHB, calcValue) ->

drsm.splitSpareCapEqually

Constraints drsm.incrAllocBW(PHB, pct) <

drsm.ndMaxBWAlloc(PHB).

P3: inst oblig /policies/adaptTrafficIncreaseAOLSLA_P1 {

on alarmRaised(bwUtilIncr, [utilValue, ef]);

subj s = /routers/FromR1/ToR6/drsmPMAs/;

targ t = s.drsm;

do calcValue = t.incrAllocBW(ef, 10) ->

t.configureLink(ef, calcValue) ->

t.splitSpareCapEqually;

when t.incrAllocBW(ef, 10) < t.ndMaxBWAlloc(ef) &&

time.between(‘11:00’, ‘13:00’);

}

Note that the abductive analysis results in a strategy that
includes constraints. These are derived from the guards
defined in the state chart of the system behaviour and must
therefore be included in addition to any other constraints
manually mapped from the high-level policy. This is illustrated
in policy P3, which combines the strategy constraint with the
time constraint from the high-level policy.

V. APPLICATION-SPECIFIC

REFINEMENT PATTERNS

In the scenarios described above, specific policies were
derived by refining individual goals. Refining every goal would
be onerous for network administrators as the process is only
partially automated.

Some of this automation results from allowing the reuse of
pre-defined goal elaboration patterns when decomposing
high-level goals. As described previously, users are presented
with a template for the possible low-level goals, together with
a high-level description of the pattern being used. This allows
users to select suitable decompositions without needing to
understand the underlying formal derivation. We extend this
idea of reuse by defining refinement patterns that directly
relate a goal, to the set of policies that could achieve it. Each
pattern is parameterised according to the specifics of the high-
level goal. To achieve this, we introduce the following syntax
for a policy refinement pattern construct:

policyPattern patternName(ParameterList) {

description A description of the policy pattern.

goalHierarchy goal [refinesTo (goalHierarchy)]

policies { // Group of policies that will achieve

// the goals associated with this pattern.}

}

FIGURE 10. Goal decomposition for traffic increase scenario.
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The network administrator can use the derived strategies
and policies in the above construct to capture the pattern for
later reuse. For example, in scenario 1, where the high-level
goal was to process SLS requests, we derived a policy that
achieved the sub-goal that the SLS request was accepted when
constraints relating to the customer, QoS class and available
bandwidth were met. The administrator can generalise this
policy by parameterising these constraint values and by using
the policyPattern construct described above. The pattern for
this situation is shown below:

policyPattern /ptn/acceptSLS(String customer, QoSClass qc) {

description Accept incoming SLS from customer provided it is \

for a specified QoSClass and bandwidth available.

goalHierarchy SLSRequestProcessed refinesTo (SLSRequestAccepted);

policies {

oblig acceptSLS1 {

on slsReqReceived(SLS);

subj s = /slsmPMA;

targ t = s.slsm;

do t.register(SLS) -> t.accept(SLS);

when SLS.customer=customer && SLS.qosClass=qc &&

t.getAvailBW(SLS.qosClass)>SLS.bwReq; } } }

The network administrator can achieve the same goal for a
different customer or QoS class, by instantiating this pattern
with the appropriate values. The policy management tool can
aid the administrator to select the appropriate refinement pat-
tern by providing a search interface for the pattern repository
that matches the goals presented (including the constraints),
with goals specified in the patterns. Note that the goal defini-
tion in the above example only mentions those goals which
are satisfied by the pattern; SLSRequestRejected and
SLSCounterofferMade are omitted. This ensures that this pat-
tern will only be highlighted when the administrator searches
for patterns relating to SLSRequestAccepted.

For example, to create policies that ensure that SLS
requests from customer ‘pipex’ are accepted when they con-
tain the QoS class qosClass(AF1, 50, 15 percent), the adminis-
trator would search for patterns relating to the
SLSRequestAccepted goal. Having identified the above pat-
tern, he would instantiate it as follows:

inst policyPattern acceptPipexSLS =

/ptn/acceptSLS(‘pipex’,

qosClass(AF1,50, 15 percent));

The policy management system instantiates each of the
policies in this pattern with the parameters specified, then the
overall policy specification can be analysed for inconsistencies
as shown in [14].

VI. RELATED WORK
There are few practical studies on policy refinement.

Power [17] is a policy-authoring environment where a domain
expert specifies policy templates (as Prolog programs), which
guide the user in selecting the elements from an information
model to be included in the policy. This approach lacks any
analysis capabilities to evaluate the consistency of the results.
Additionally, Power does not provide support for automatical-
ly deriving the actions to be included in a policy. Therefore,
domain experts must have a detailed understanding of system
and formalism. Our refinement patterns are similar to the
Power templates, however, our approach incorporates a com-
plete analysis technique and provides automated derivation of

action sequences.
Verma presents an approach to policy translation for Diff-

Serv QoS management that is based on a set of tables which
identify the relationships between Users, Applications,
Servers, Routers and Classes of Service supported by the net-
work [18]. When presented with new SLSs, the system per-
forms a series of table look-ups to identify the correct
configuration for the specified user, application and service
class. This technique can be fully automated, but depends on
the correctness of the table which requires domain expertise.

This technique is similar to the case-based reasoning
approach to policy transformation proposed by researchers at
IBM [19] where table look-ups are used to match high-level
requirements parameters to device level configuration values.
For example, by building a database of the average response
times of a web-server farm containing different numbers of
servers, case-based reasoning can be used to determine the
number of servers that should be activated to satisfy a given
response time requirement. This approach to policy refine-
ment has limited applicability since it can only be used in
those cases for which it is feasible to build a database of the
requirements and configuration parameters.

VII. DISCUSSION
The current state of the art in systems management requires
administrators to be familiar with the intricate details of the
equipment they manage and to often perform configurations
manually. In enterprise environments where the management
tasks span different levels of abstraction from applications and
services to physical devices; and are highly heterogeneous,
administration becomes increasingly difficult. Policy-based
management allows administrators to change the management
strategy of a system by changing policies dynamically rather
than reimplementing management functionality.

Effective systems management requires the ability to verify
properties of the system. In particular it is necessary to anal-
yse policies to detect inconsistencies. After preliminary work
on modality and application specific conflicts [20], we have
shown how an Event Calculus representation of both policies
and managed systems can be used, together with abductive
reasoning for policy analysis [14]. Like the refinement tech-
nique presented here, the analysis uses a statechart represen-
tation of system behaviour and the domain hierarchy. The
abduction process derives not only the presence of conflicts
but also a description of the conditions under which the con-
flicts will occur. Since the analysis and refinement techniques
are based on the same formalism the two can easily be inte-
grated.

An important consideration when using formal techniques
is to ensure that the implementation is decidable and compu-
tationally feasible. In our implementation, we ensured this by
limiting ourselves to stratified logic programs. This permits a
constrained use of recursion and negation while disallowing
those combinations that lead to undecidable programs [21].
Stratified logic programs are decidable in polynomial time
[22].

The work presented in this paper has shown how to par-
tially automate the refinement of policies whilst hiding the
details of the underlying formal techniques from the user.
Achieving this objective whilst also providing some degree of
consistency checking and automated reasoning capability
requires the use of models. The refinement procedure requires
some user intervention, e.g. to map constraints associated with
goals into the final policies. However, this only requires users
to be familiar with the models of the resources being man-
aged, not the underlying formalisms being used to support the
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refinement process. This task will become easier when stan-
dard information models (e.g. CIM) are adopted.

Our refinement process is built on a systematic, formal and
semi-automated approach to goal refinement thus ensuring
that derived strategies meet the high-level policy require-
ments. System descriptions are used to ensure that derived
policies are enforceable by the system. Using domain hierar-
chies to model the relationships between abstract entities and
concrete objects, together with type information, identifies the
objects required to execute strategies. These features illustrate
how this solution satisfies the objectives of policy refinement
identified in [5].

In addition to meeting these functional objectives, a key
challenge in developing a policy refinement approach is to
achieve an acceptable trade-off between the generality of the
approach and the level of automation possible. Fully-automat-
ed approaches are also highly specialised to particular applica-
tions domains and cannot be applied to other domains. On
the other hand, generalised approaches to refinement require
experts who are familiar with both the application domain and
low-level formal representations to provide information
regarding the managed system. 

Our approach addresses this challenge by providing a gen-
eral refinement procedure that can be specialised by libraries
of reusable application specific patterns. Also, although the
underlying approach uses formal specifications, network oper-
ators need only use libraries of goals and refinement patterns
together with high-level notations (e.g. Statecharts) for
describing the managed system. Thus, the selection of goal
and refinement patterns can be mostly driven by their natural
language description. The tools we are developing aim to min-
imise the amount of required knowledge and intervention
from network operators.

Other open challenges related to policy refinement include
how to derive additional policy information such as the
parameter values to be used with the management operations,
low-level events and constraints; how to better guide the user
in selecting appropriate goal decompositions and strategies
when multiple solutions are derived; and how to optimise the
refinement procedure such that it is feasible to use it for run-
time decision making in a policy-managed environment. This
last item is particularly relevant in the context of autonomic
computing, where the aim is to have systems that are capable
of self-management.

VIII. CONCLUSIONS AND

FUTURE WORK

This paper focuses on policy refinement for QoS manage-
ment. Through specific examples, we have shown how goals
can be elaborated using refinement patterns and how abduc-
tion can be used to derive strategies that achieve these goals.
We have also shown how these strategies can be encoded into
policies for specific scenarios and also in general refinement
patterns for later reuse. Additionally, we have described the
tool that has been developed to support this refinement pro-
cess and shown how it is used to derive the strategies for
relating to an admission control scenario of the TEQUILA
DiffServ framework. Note that the techniques employed: goal
elaboration, strategy derivation and use of refinement pat-
terns are not QoS specific and can be used in other applica-
tion domains.

As mentioned, an area of policy refinement that requires
further study is the derivation of parameter values for manage-
ment operations, e.g. the bandwidth to be allocated for a par-
ticular link. We are currently working on integrating constraint

logic programming techniques into our formal reasoning
framework to provide such capabilities. Additionally, we hope
to provide further automation of the refinement process by
leveraging utility functions to rank the goal decompositions
and strategies derived by the abductive inference procedure.
Finally we are working to improve the usability of the analysis
and refinement tools, with particular emphasis on minimising
the use of any formal notations in the specification of goals
and related information.
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