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Abstract

Management in pervasive systems cannot rely on human
intervention or centralised decision-making functions. It
must be devolved, based on local decision-making and feed-
back control-loops embedded in autonomous components.
We have previously proposed the self-managed cell (SMC)
as an architectural pattern for building ubiquitous applica-
tions, where a SMC consists of hardware and software com-
ponents that form an autonomous administrative domain.
SMCs may be realised at different scales, from body-area
networks for health monitoring, to an entire room or larger
distributed settings. However, to scale to larger systems,
SMCs must collaborate with each other, and federate or
compose in larger SMC structures. This paper discusses re-
quirements for interactions between SMCs and proposes key
abstractions and protocols for realising peer-to-peer and
composition interactions. These enable SMCs to exchange
data, react to external events and exchange policies that
govern their collaboration. Dynamically customisable in-
terfaces are used for encapsulation and interaction media-
tion. Although the examples used here are based on health-
care scenarios, the principles and abstractions described in
the paper are more generally applicable.

1 Introduction

Management in pervasive systems cannot rely on human
intervention or centralised decision-making functions. The
former because pervasive devices must be usable by non
technically savvy users. The latter because pervasive de-
vices are mobile and cannot refer to centralised manage-
ment applications for re-configuration and adaptation direc-
tives. Systems such as body-area networks of sensors and
actuators for monitoring a patient’s health, unmanned ve-

hicles or fleets of vehicles must be autonomous and con-
tinuously adapt to changes in their environment or in their
usage requirements. They must therefore be self-managing
with local decision making and feedback control to enable
seamless adaptation. Whilst this structuring in autonomous
entities is a necessity in pervasive environments, it has also
been advocated as a means of constructing large distributed
systems and networks. In essence, this is the proposition of
autonomic computing [10]. To an extent, this goes against
the network management tradition, which focuses on the
functional integration of management components across
an entire corporate system and relies on centralised network
operations centres manned by human administrators.

We have previously introduced the concept of a Self-
Managed Cell (SMC) as an architectural pattern for build-
ing ubiquitous computing applications [11]. A SMC con-
sists of a set of hardware and software components which
form an autonomous administrative domain. SMCs imple-
ment a policy-driven feedback control-loop that determines
which management and re-configuration actions should be
performed in response to events of interest such as device
failures, context changes or changes of state in the SMC’s
resources. The policy approach is itself based on previous
work at Imperial College [5, 16]. SMC examples include
body-area networks for health monitoring, unmanned vehi-
cles, or control of pervasive spaces such as rooms, buildings
or urban environments.

Although SMCs are autonomous, they must be able to
interact with each other in complex ways, federate or com-
pose into larger structures. For example, a body-area net-
work monitoring a patient’s health may comprise “smart”
sensors and complex diagnosis devices that are SMCs in
their own right. In the same way, a SMC controlling a
room will be aggregated under the control of a house SMC
and autonomous unmanned vehicles may be aggregated into
fleets with a common mission. Body-area network SMCs
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may interact with a number of other peer SMCs such as
the SMC running on the PDA of a nurse, a doctor or other
health-care worker, or the SMC controlling the room in
which the wearer is present.

We propose here a way of realising “cross-SMC” inter-
actions that enable complex collaborations between SMCs
in either peer-to-peer or compositional settings. This per-
mits realising scalable pervasive environments in which
SMCs can aggregate into larger structures and engage in
ad-hoc peer-to-peer collaborations. We focus on the basic
abstractions for interactions in terms of exchanges of data,
events and policies between the SMCs and discuss the main
design decisions and architectural choices. Goal-driven col-
laborations relying on distributed planning approaches re-
main part of our plans for future work.

The examples used here are derived from requirements
for e-Health. However, the principles and results are more
generally applicable to other pervasive environments. In
particular, we are currently applying them within the con-
text of self-management for fleets of unmanned vehicles as
well as management of large virtual organisations.

This paper is structured as follows: Section 2 dis-
cusses related work. Section 3 describes the SMC architec-
tural pattern while Section 4 presents the SMC interactions
framework. Section 5 details the behavioural specification
of cross-SMC interactions. Our prototype and early results
are described in Section 6. Concluding remarks and future
work are presented in Section 7.

2 Related work

Although several studies have been devoted to design-
ing frameworks for pervasive spaces, they tend to share two
limitations: they focus on pervasive spaces of a relatively
fixed size (e.g., a room) and they fail to cater for dynamic
interactions between pervasive spaces. Both issues are how-
ever key points in the SMC design.

Often, research studies assume pervasive spaces of a
relatively fixed size. For example, Gaia [13] seeks to ex-
tend the traditional operating system concept, by providing
a view of a meta-operating system but focuses on room-
sized environments. On the other hand, ISAM [1] aims
to address resource management and application adapta-
tion and focuses on large-scale multi-institutional environ-
ments. One.world [7], in turn, provides a less sophisticated
infrastructure that enables applications to adapt to con-
text changes but focuses on small room-like environments.
iROS [8] emphasises the ability to integrate “legacy” ap-
plications but relies on centralised servers and limits itself
to room-sized environments. Oxygen [12] is mainly con-
cerned with how users interact with the system. It mentions
the dynamic establishment of collaborative regions, which
can be room-sized or even campus-wide but does not detail

how this is achieved.
The second aspect relates to the federation of perva-

sive spaces. Whilst much of the literature focuses on the
architecture of pervasive spaces and their supporting ser-
vices, less attention is paid to the interactions and collab-
oration between such spaces. Gaia recognises the impor-
tance of federating Gaia spaces, but this is not part of the
core view of its active spaces and is regarded as future re-
search. ISAM assumes that the neighbourhood of each ex-
ecution cell is configured by an administrator, and remains
static for most of the time. iROS deliberately assumes a sin-
gle pervasive space. Finally, Oxygen recognises the impor-
tance of establishing collaborative regions. However, de-
tails on how they are established are scarce. Furthermore, it
is not clear whether this can be extended to collaborations
between collaborative regions, where collaborative regions
interact with each other.

In contrast, we consider the SMC as an architectural pat-
tern applicable at different levels of scale, ranging from
body-area networks, to large-scale virtual organisations.
SMCs are expected to dynamically discover and collabo-
rate with other SMCs, whilst most other projects focus on a
single-size, single-instance perspective.

The IBM autonomic manager has some similarity to
our SMC approach in that it autonomously manages a set
of resource, while exposing a management interface to
other autonomic managers, as though it is a managed re-
source. However, interactions between SMCs are consid-
erably more sophisticated than the simple resource sen-
sor/effector interface described in [3].

3 Self-managed cell architectural pattern

To provide autonomous management in pervasive envi-
ronments, we have introduced the self-managed cell (SMC)
as the basic building block of our pervasive systems [11]. A
SMC consists of hardware and software components which
form an administrative domain that is able to operate au-
tonomously. Components (also referred to as managed re-
sources), include physical sensors and actuators, devices
such as PDAs, Gumstix, mobile phones and computers as
well as software services and components within those de-
vices. They are heterogeneous in nature and must be ac-
cessed by the SMC’s management services through adapter
objects that provide a uniform management interface and
hide the specifics of the interactions with those components.
A typical set-up we use for health-care monitoring com-
prises a Gumstix1 device hosting management services that
control several sensors (e.g., heart-rate, temperature, accel-
eration) hosted on BSNs (Body Sensor Nodes) 2 as well as
other devices such as diagnostic devices hosted on PDAs

1http://www.gumstix.com
2http://vip.doc.ic.ac.uk/bsn/



or other Gumstix. Communication with BSN nodes typi-
cally occurs through IEEE 802.15.4 radio links while com-
munication between Gumstix devices or with PDAs occurs
through Bluetooth or Wi-Fi.

Figure 1. Self-managed cell architecture.

A SMC comprises a dynamic set of management
services that are integrated through a common pub-
lish/subscribe event bus (Figure 1). This has the advantage
of de-coupling the services, as an event publisher does not
require prior knowledge of the recipients when sending a
message, and permits adding new services to the SMC with-
out disrupting the behaviour of existing ones. The core ser-
vices of a SMC are: the event service, the policy service
and the discovery service; however, other services such as
context, authentication, accounting or application specific
services may be used in different SMCs. The SMC’s core
services implement a policy-driven feedback control-loop
(Figure 2) [15] in which changes of state in the managed
resources or changes of context are published on the event
bus and trigger the execution of obligation policies in the
form of event-condition-action rules that determine which
adaptation actions need to be performed.

The policy service caters for two types of policies: obli-
gation policies that define the management actions that
must be performed in response to events, and authorisa-
tion policies that specify which actions are permitted on
which resources and services. Policies can be added, re-
moved, enabled and disabled to change the behaviour of a
SMC without interrupting its functioning. The managed ob-
jects to which policies apply can be internal SMC resources,
adapters for external services or policies themselves. All
managed objects are kept in a domain structure that im-
plements a hierarchical namespace similar to a file system;
however, domains may overlap and a managed object may
belong to several domains. The SMC policy service is based
on the Ponder23 system, which in addition to policies can
interpret nested sequences of commands that identify the
managed object to be used and parameters or sub-elements
within the XML that are to be sent to the object.

3http://www.ponder2.net

Figure 2. The feedback control-loop.

The event bus disseminates the events needed to trigger
obligation policies. Events generated by managed resources
and by the services are transmitted to all the subscribed
services enabling them to react concurrently to event oc-
currences within the SMC. Asynchronous events are well
suited to pervasive systems in which most of the applica-
tions are event driven. However, we do not require that all
interactions between SMC services be event driven.

The discovery service is used to detect new devices
which are capable of joining the SMC, such as sensors and
other SMCs in the vicinity. It interrogates new devices to
establish a profile describing the services they offer and
generates an event describing the addition of a new device
for other SMC components to use it as appropriate. The
discovery service is also responsible for vetting new de-
vices before accepting them in the SMC and managing the
SMC’s membership, as it is necessary to distinguish tran-
sient failures which are common in wireless communica-
tions from permanent departure from the SMC (e.g., device
out of range, switched off, or failure). When a new device
is discovered, policies are used to decide in which domains
the device and its accessible components should be placed.
Policies applying to those domains will then automatically
apply to the respective components.

4 SMC interactions

Although SMCs are autonomous, they need to interact
with each other and aggregate into complex structures to
scale to larger systems. Such interactions must be estab-
lished autonomously with little or no user intervention.

4.1 Interaction requirements

A SMC managing a patient’s health needs to interact
with numerous peer SMCs. During home visits by a nurse
or other health-care practitioner it needs to permit the nurse
SMC to access the data held on the patient’s current physio-
logical condition and must notify the nurse of events occur-



ring within the patient SMC. The patient SMC may also
need to be notified of events occurring within the nurse
SMC, for example the fact that the nurse has started a spe-
cific diagnostic procedure. The nurse may need to load
policies for execution by the patient, for example for defin-
ing new thresholds or alert behaviour. Similarly, the pa-
tient SMC may need to load policies onto the nurse SMC
for example, to trigger re-calibration of the patient sensors
if needed. Similar exchanges would be required when the
patient SMC encounters a SMC controlling devices in a
General Practitioner’s (GP) clinic, however, a GP may have
additional access to the patient’s resources e.g., the ability
to change dosage on drug delivery pumps. Other peer-to-
peer interactions may also occur between the patient SMC
and SMCs surrounding it such as environmental monitoring
(e.g. pollen count, allergies), pharmacies, or other public
services.

We can draw several requirements from the example
above. Firstly, SMCs must detect the presence of peer
SMCs and decide autonomously whether to establish an in-
teraction. Interactions between peer SMCs require a SMC
to be able to invoke operations on its peer, to receive event
notifications from its peer as well as to notify its peer of se-
lected internal events occurring within itself. More complex
interactions may require exchanges of policies between the
SMCs, if a SMC can request another to behave in a specific
way. Secondly, the interface exposed to a peer SMC may
include only a subset of the available operations and events
depending on the kind of SMC and the role (e.g. doctor
or nurse) it can play in the interaction. Finally, a SMC may
wish to expose the resources it possesses though an external
interface and may choose to mediate the interactions with
those resources.

Whilst peer-to-peer interactions occur frequently as
SMCs interact with neighbouring autonomous components,
composition interactions enable grouping SMCs into larger
autonomous structures and scaling SMC management to
larger environments. Composition encapsulates a SMC
with its own resources, as a managed resource within the
containing SMC. This implies that the SMC can be pro-
grammed by the containing SMC in terms of policies that it
must enforce. Moreover, the device may expose to its con-
taining SMC a management interface for re-configuration.
For example a diagnostic device may be part of a body-
area network that will load new decision algorithms and
new policies into it. Similarly, larger sensors may be au-
tonomous components and thus SMCs in their own right.
For example, even BSN nodes can be connected to multiple
analogue sensors and support internal event-based interac-
tions. We have also implemented a basic policy service for
BSNs to cater for adaptation to changing circumstances [9].

Composition also implies that the contained SMC be-
haves as a managed resource within the outer SMC and

ceases to advertise itself independently. Interactions be-
tween the contained SMC and external SMCs are subject
to the authorisation and possibly mediation from the outer
SMC which may require preventing access to them from
the outside environment. A SMC cannot be contained, i.e.
treated as a managed resource, by more than one containing
SMC, although it may interact with other SMCs for appli-
cation purposes subject to authorisation from its managing
SMC. Although a contained SMC is a managed resource, it
must retain control of the interfaces it exposes and the poli-
cies it accepts from its managing SMC. This is for reasons
of integrity rather than security as it is important to ensure
that an autonomous device cannot be compromised i.e., de-
vices preserve their autonomy.

Note that composition interactions have similar require-
ments to peer-to-peer interactions in terms of permitting
invocations, raising and receiving events, and exchanging
policies between the contained and the containing SMC.
The differences between composition and peer-to-peer in-
teractions lie in the degree of access permitted i.e., which
methods and events are exposed and which policies are ac-
cepted from the containing SMC. The second important dif-
ference is that there can be only a single containing SMC
and thus some of the methods and events are guaranteed
to be invoked by a single entity. Finally, the third impor-
tant difference is that a contained SMC ceases to advertise
itself and thus its interactions with other devices are gov-
erned by its containing SMC. This allows the outer SMC
to selectively hide the complexity of the composed struc-
ture, and only expose selected functionality in its external
interactions (for example, the patient SMC would expose
its sensors to the doctor, but hide them from other patients).

A SMC’s interface may need to change dynamically as
the SMC may acquire or lose functionality, for example
through the addition/failure of a particular sensor or through
composition with a new SMC. To achieve this we are using
a variation of the role object pattern [4] that enables dynam-
ically adding new functionality to a core object by associat-
ing it with a new capability.

4.2 Customised interfaces

As discussed above, a SMC must determine which func-
tions it wishes to export to its peers, and do so through spe-
cific customised interfaces. The customised interface ex-
posed depends on the the kind of SMC it is interacting with
(e.g. doctor, nurse) and even that SMC’s identity. Although
it would be possible to expose all the functions on a sin-
gle interface and use authorisation policies to restrict access
from external entities, this would make all operations to ser-
vices and resources visible externally even if they are not
accessible. This could have unwanted privacy implications
for example in medical applications or security implications



in military applications. Therefore, an external SMC should
see only those functions that a SMC wants to expose in a
customised interface generated specifically for that interac-
tion. Note that this interface could be generated from the
SMC’s authorisation policies.

A SMC typically mediates interactions between its re-
sources and other SMCs. This mediation is implemented
by a proxy object which maps the functions exposed in the
customised interface to internal operations on the SMC’s
resources (e.g., a method named “readTemperature” is
mapped to the “/sensor/temp.read” operation on an inter-
nal sensor). This approach avoids exposing the internal re-
sources directly and permits realising more complex trans-
formations e.g., of the parameters received or the result re-
turned, when interacting with other SMCs. Additionally,
this approach permits controlling which methods are ex-
posed by adding or removing the respective mappings. In
our prototype, the interface exposed by a SMC is imple-
mented as a managed object that provides the functionality
of the proxy object described above. For example, the in-
terface exported by a patient to a nurse will also act as a
proxy for the invocations where the nurse tries to access the
internal sensors of the patient SMC.

In addition to invocations on a remote SMC, asyn-
chronous communication through events is an important
means of interaction between SMCs. Thus, an interface
defines: (a) events, which can be published externally by
the SMC (i.e., to which external SMCs can subscribe); (b)
notifications, which are external events of which the SMC
can be notified (i.e., that external entities publish within the
SMC); and (c) operations, which are the methods that can
be invoked on the SMC by a remote entity. Figure 3 shows
the XML commands for generating an interface that a pa-
tient may export to a doctor SMC. It specifies that the doctor
SMC may receive monitoringReady events and may raise
startMonitoring and stopMonitoring events within the pa-
tient SMC. Additionally, the doctor SMC can invoke the
readECG and scheduleTask operations on the patient SMC.

<create>
<event name="monitoringReady"

localEvent="ready"/>
<notification name="startMonitoring"

localEvent="start"/>
<notification name="stopMonitoring"

localEvent="stop"/>
<operation name="readECG"

localOp="/local/hearBeatSensor.read"/>
<operation name="scheduleTask"

localOp="/local/javaTimer.createTask"/>
</create>

Figure 3. Customised interface of a patient.

Figure 3 also shows the mappings of the events, notifi-
cations and operations to local resources within the patient
SMC. These mappings would not be visible to the client
SMC when it queries the specification of the interface. Note

that new operations, events and notifications can be added
or removed from the interface definition, to change the func-
tions exported.

4.3 Interaction establishment

Interaction establishment is initiated as a result of a
newSMC event being generated by the SMC’s discovery ser-
vice [11], as depicted in Figure 4. This event contains the
name of the discovered SMC, its profile, which identifies
its type (e.g. patient, doctor or sensor), and a generic inter-
face. The generic interface is application independent and
common to all discoverable SMCs. It defines the operations
necessary for exchanging customised interfaces and estab-
lishing the interaction.

Figure 4. Interaction establishment overview.

Obligation policies triggered by the newSMC event de-
termine whether to establish a peer-to-peer or composition
interaction. The interaction manager is a service running
locally in each SMC, and it is used to bootstrap interac-
tions. For example, the policy shown in Figure 5, deployed
in a patient SMC, specifies that a peer-to-peer interaction
should be established when discovering a doctor SMC. It
achieves this by invoking the method bindAsPeer in the lo-
cal interaction manager. Similarly, a composition relation-
ship can be established with a sensor through the bindAs-
Resource method.

The interaction managers in the two SMCs then ex-
change their customised interfaces. The interaction man-
ager from the discoverer SMC selects a customised inter-
face based on the remote SMC’s profile and sends it to the
interaction manager in the remote SMC. Similarly, the re-
mote SMC selects a customised interface and returns it to
the discoverer if it accepts the interaction. Each SMC stores
the received interface in its local domain structure. Note
that simple BSN nodes will not initiate discovery but will
only respond to being discovered.



<create type="obligation" event="/event/newSMC">
<arg name="name"/>
<arg name="genericInterface"/>
<arg name="profile"/>
<condition>

<eq>!profile;<!-- -->doctor</eq>
</condition>
<action>

<use name ="/SMCCore/interactionManager">
<bindAsPeer name="!name;"

genericInterface="!genericInterface;"
profile="!profile;"/>

</use>
</action>

</create>

Figure 5. Interaction policy.

4.4 Domain structure and roles

When two SMCs interact, obligation policies specified
in one SMC may define invocations to be performed on the
other SMC. Furthermore, as discussed in Section 4.1, SMCs
may exchange policies between them. One SMC may re-
quest that the remote SMC behave in a particular way and
can achieve this by sending to the remote SMC a set of obli-
gation policies. In both cases policies are written in terms
of the events and actions of a remote SMC before that SMC
comes into proximity. Therefore, a SMC must know the
interface it expects an encountered SMC to have e.g., a pa-
tient will have a description of the interfaces it expects a
doctor or a temperature sensor to have. Policies applicable
to that SMC can then be specified in terms of this expected
interface.

We use roles as placeholders within the local domain
structure for SMCs discovered at run-time. Roles are as-
sociated with an expected interface, that defines the oper-
ations, events and notifications that remote SMCs are ex-
pected to provide in order to be assigned to that role. Then,
policies for that role can be defined in terms of the expected
interface’s events and operations as explained in the follow-
ing section. When an interaction is established, the remote
SMC is assigned to a role based on its profile. At this point
the SMC verifies that the customised interface offered by
the remote SMC provides a superset of the elements re-
quired in the expected interface. Policies already specified
for that role will then apply to the remote SMC. Several
SMCs might be assigned to the same role (e.g., a doctor can
interact with several patients). Additionally, the role is also
a suitable place to store the customised interface that can be
exported to that SMC. For example, the doctor will store in
the patient role the interface it expects patients to provide
as well as the interface that it will export towards patients.
Figure 6 illustrates a domain structure for a patient SMC
with roles for interacting with sensors, doctors and nurses.

In summary, a role provides three functions to facilitate
cross-SMC interactions: (a) it identifies the expected in-
terface that remote SMCs must provide to be assigned to

Figure 6. Domain structure and roles.

that role; (b) it identifies the interface that the SMC will
export to remote SMCs of that kind (e.g., the setTempera-
tureThreshold method is to be exported to a doctor but not
to a nurse); and (c) it defines a placeholder for the remote
managed objects and SMCs for which policies are specified.

5 Missions: behavioural specifications of
SMC interactions

After the initial steps for establishing an interaction have
been performed, the SMCs can start their collaboration (col-
laborations between ubiquitous entities is also called recom-
binant computing [6]). This permits a SMC to be notified
of and react to events occurring in the other SMC and thus
extend its control-loop.

Complex interactions can be defined by exchanging poli-
cies between SMCs. These policies define how the SMCs
should behave in the context of the interaction in terms of
sending notifications to other SMCs, and reacting to both
internal events and external notifications by invoking man-
agement actions locally or on remote SMCs. We introduce
the concept of a mission as a means of grouping the duties
of the remote SMC in the interaction specified in terms of
the obligation policies it must enforce. Thus, a mission is a
group of obligation policies specified in terms of the inter-
faces of two or more interacting SMCs.

A mission is normally specified before the target SMC
has been discovered and is therefore defined in terms of the
expected interfaces of the SMCs involved. As described in
Section 4.4 these interfaces are associated with roles within
the local SMC so we informally say that a mission is written
as a function of the roles of the SMCs involved. The obli-
gation policies i.e., event-condition-action rules grouped



Figure 7. Missions across SMCs.

within the mission are thus written in terms of the events
and actions defined in the expected interfaces associated
with the roles. When a new SMC is discovered and as-
signed to a role, obligation policies within the current SMC
determine which missions should be instantiated on it.

As shown in Figure 7, when the nurse SMC discovers a
patient’s body-area network SMC, it instantiates a mission
on it if permitted by the latter. Similarly, the patient may
instantiate at the nurse a mission defining the policies it ex-
pects the nurse to fulfil in the interaction. Note that it is not
necessary that both missions be initiated.

In essence, missions are a constrained form of program-
ming a remote SMC and are akin to a form of dynamically
loaded code. Thus, before executing this code i.e., instanti-
ating the mission and its policies, the receiving SMC must
validate the received mission through a procedure detailed
in Section 5.2. This is necessary in order to avoid that the
received mission compromises the integrity of the SMC ei-
ther accidentally or maliciously.

5.1 Specifying a mission

Figure 8 shows an example of a mission for ECG moni-
toring downloaded from a nurse to a patient. This specifica-
tion is a template taking as arguments the roles (and implic-
itly their interfaces) to which it relates as well as two addi-
tional arguments (time and frequency) that will be specified
at run-time when the mission is instantiated. Conceptually,
the mission specifies the obligations that patients must en-
force in order to enable a nurse to perform an ECG. The
argument values refer to the specific nurse and patient that
are to interact and are given upon instantiation.

This mission comprises an obligation policy triggered by
a startMonitoring event received from the nurse, which re-
quests the patient to schedule two tasks: one reads the pa-
tient’s ECG for a specified time and at a specific frequency,
and the other notifies the nurse when the monitoring has
finished. Thus, this mission relies on the methods sched-
uleTask and readECG that are expected to be present in the
patient’s interface, and on events that must be either gener-

ated or received by the SMC. The method generate used in
this example is a generic method through which an entity
can publish an event to an external SMC. Its argument must
be one of the notifications defined in the receiving SMC’s
interface. The method load, not shown in the example, is
used to load a mission and is also generic to all SMCs.

<create>
<arg name="nurse" type="interface/nurse"/>
<arg name="patient" type="interface/patient"/>
<arg name="time" type="integer"/>
<arg name="freq" type="integer"/>
<policy name="ECGMon" event="!nurse;.startMonitoring">
<action>

<use name="!patient;">
<scheduleTask freq="!freq;" time="!time;">

<use name="!patient;">
<readECG />

</use>
</scheduleTask>
<scheduleTask delay="!time;">

<use name="!nurse;">
<generate event="!patient;.monitoringReady"/>

</use>
</scheduleTask>

</use>
</action>

</policy>
</create>

Figure 8. Patient monitoring mission (from
nurse).

When a mission is specified, a first verification of the
mission is performed, to ensure that it complies with the
expected interfaces of the roles involved. This is achieved
by parsing the different policies and building a dependency
table that includes all the events and actions which policies
refer to as well as the role interface to which they are ex-
pected to belong. This table is then checked against the ex-
pected interfaces associated with those roles. The mission
is considered valid if all the dependencies are satisfied.

5.2 Loading a mission

When a mission is instantiated at a remote SMC, that
SMC receives the mission specification and the parameters



and must instantiate the obligation policies contained in the
mission within its own scope. However, before doing this it
must check that the mission is well-formed, that all the mis-
sion’s dependencies can be satisfied within its local envi-
ronment and that the policies received do not conflict either
with its own policies or with policies originated from other
missions. We discuss here how the first two requirements
are addressed. Although we have, in the past, developed
several algorithms for policy conflict analysis [2] their im-
plementation has not yet been integrated in the SMC frame-
work.

5.2.1 Step 1: Check that the mission is well-formed

A source SMC may maliciously or accidentally embed ad-
ditional code in the mission and attempt to load it in the
target SMC. Therefore, the first step in validating the mis-
sion is to check that it is well-formed; namely, that it con-
tains only arguments and obligation policies and that it is
syntactically correct. This includes inspecting the policies
in the mission and verifying that they use solely operations
and events pertaining to the role interfaces given as argu-
ments. A policy attempting to invoke operations on other
objects will generate an error and abort the instantiation of
the mission. This ensures that the mission is self-contained
and prevents malicious SMCs from “guessing” operations
available in the target SMC.

5.2.2 Step 2: Check mission parameters

When a mission is instantiated by one SMC on another e.g.,
the doctor instantiates a mission on a patient, the argument
values sent to the patient are the generic interfaces of the
SMCs involved. This is because in missions involving more
than two SMCs each SMC has a different view of the ca-
pabilities of the SMCs with which it interacts. For exam-
ple, in Figure 9, where the dashed lines represent interface
exchanges and the solid lines represent mission instantia-
tion, the doctor’s interface to a nurse SMC (NS) may be
different from the interface that the patient has to the same
nurse SMC (NS’). Thus, if the doctor wants to instantiate
in the patient SMC a mission that involves interactions with
the nurse SMC it will pass as argument to the mission the
generic interface of the nurse SMC. It will be up to the pa-
tient SMC to contact the nurse SMC and obtain an interface
to that SMC if it does not have one already.

Thus, when receiving a mission, the recipient SMC must
establish the interactions and obtain a customised interface
from all the SMCs given as mission parameters.

5.2.3 Step 3: Check mission dependencies

A SMC that has received a mission must check the policy
dependencies (i.e., events, notifications and operations used

Figure 9. Mission requirements satisfied by
the interfaces known to the doctor (a) but not
by those known to the patient (b).

in the mission’s policies) against the interfaces that it has
for the SMCs given as mission parameters. This can be
achieved by computing the policy dependencies and check-
ing them against either: (a) expected interfaces it knows for
those SMCs or (b) the customised interfaces it has obtained
from the remote SMCs once it has established an interac-
tion with them. The former is sufficient because an inter-
action will subsequently be established with a SMC only
if the customised interface received from that SMC is more
specific (i.e., supports a superset of events, notifications and
operations) than the expected interface for that SMC. This
approach enables delaying binding to the remote SMC un-
til the binding is actually required, but is more restrictive
since it requires the SMC to have an expected interface for
the remote SMC and the customised interface may offer ad-
ditional operations that are not present in the expected in-
terface. The second approach is more permissive as it al-
lows the mission to contain policies that use operations not
present in the expected interface but requires establishing
an interaction with the remote SMCs when the mission is
received. In terms of our previous example (Figure 9) the
doctor instantiates a mission on the patient which requires
the patient to interact with a nurse. The patient will verify
this mission against the expected interface it has for nurses
or may obtain a customised interface from the nurse given
as parameter and check the policy dependencies of the mis-
sion against this interface. In our implementation, we have
chosen the latter option as it enables the doctor to deploy
a mission to the patient that takes advantage of operations
provided by the specific nurse the patient will be interacting
with (e.g., the nurse in that specific GP clinic or ward).

5.2.4 Step 4: Instantiate mission

If all the above steps succeed, the receiving SMC instanti-
ates the obligation policies contained in the mission, using
the argument values provided by the source SMC. Argu-



ments that are basic types require a trivial variable substitu-
tion, and the interfaces are substituted with the appropriate
adapter object for the remote SMC. These policies can now
trigger internal actions within the patient based on events
occurring in either the doctor or the nurse SMC or trigger re-
mote invocations on the doctor and nurse SMCs in response
to events occurring within the patient SMC. It is thus pos-
sible to encode complex collaborations between the SMCs
and both the patient and the nurse SMCs can deploy mis-
sions to each other in a similar fashion.

For a SMC to deploy a mission to another it must be au-
thorised to do so by authorisation policies in the recipient
SMC. Furthermore, the actions specified in the mission’s
policies also need appropriate authorisations in the receiv-
ing SMC. The access control framework for the SMC is pre-
sented in detail in [14].

6 Implementation and discussion

Our current implementation caters for most of the con-
cepts described in this paper, including the implementation
of the obligation policies in the Ponder2 interpreter, the se-
lection and exchange of interfaces between interaction man-
agers, the deployment of missions, the verification of mis-
sions by the recipient SMC, and their instantiation. The cur-
rent implementation of the interaction framework is in Java
and is integrated with the newest version of the Ponder2
policy interpreter. However, porting the interaction frame-
work to the Gumstix, where initial versions of the core ser-
vices are running already, remains to be done. Integration
with the lightweight implementation of the SMC core ser-
vices [9] for constrained BSN sensors also remains to be
addressed.

When instantiated, the SMC starts the policy service,
which in turn creates a local instance of the interaction man-
ager and of the other core services. All managed objects,
including missions, interfaces and roles are created through
factory objects that can be loaded on-demand and can be
invoked at run-time using XML based commands to create
new instances. This also enables us to cater for scenarios
in which interactions occur spontaneously and the role de-
scriptions need to be loaded dynamically.

In order to build the scenario described in this paper, we
have pre-deployed in the SMCs: (a) the policies that de-
termine which type of interactions need to be created (Fig-
ure 5), (b) the role definitions for doctors, patients and sen-
sors, and (c) the mission specification illustrated in Figure
8. Customised interfaces are at present specified rather than
generated from authorisation policies as the access control
framework has only recently been implemented.

The discovery service discovers new devices over IEEE
802.15.4, Wi-Fi or Bluetooth. If the new device is a SMC
(as indicated by its profile) a newSMC event is generated

that will trigger the policies that decide if an interaction
should be established, and whether it is a peer-to-peer or
a composition one. The interaction managers in the two
SMCs then exchange customised interfaces, assign the in-
terface received from the remote SMC to the appropriate
role and generate a local newSMCBinded event at each
SMC. This triggers policies that determine which missions
should be loaded on the partner SMC. The verification pro-
cedure described in Section 5.2 is then carried out before
the policies included in the mission are instantiated.

We have tested our implementation in a small-scale set-
up consisting of three SMCs: ECG sensor, patient and doc-
tor. The ECG sensor and the patient establish a composi-
tion interaction while the patient and the doctor establish a
peer-to-peer interaction. The doctor is then given access to
the ECG sensor but the access is mediated by the patient
SMC. Missions have been loaded from the patient SMC to
the ECG sensor, and from the doctor to the patient SMC.
We were able to test the functionality of our implementa-
tion running on workstations, but not on Gumstix devices
yet. Therefore, we have not included performance results,
as the measurements obtained in workstations would not re-
flect a realistic situation. We have used XML for both the
policy specification and for operation invocation on objects.
Although this adds some performance overhead, it increases
implementation flexibility as we can have different types
of policy interpreters and managed objects implemented in
various programming languages. It can also be mapped
on to many different communication mechanisms. We are
working on a more intuitive higher-level policy specifica-
tion notation which can be transformed into XML. Overall,
our evaluation indicated that the SMC framework is suit-
able for realising self-management but may not be suitable
for real-time application data such as high-frequency sensor
measurements.

For body-area networks for health monitoring we have
implemented our own discovery service and event bus. Al-
though a number of applications offering similar functional-
ity exist, we needed implementations that could scale down
to small devices and could be used in conjunction with pol-
icy decisions. However, when using the SMC pattern in
larger scale environments, more efficient implementations
(e.g., such as SIENA for the event bus) can be used.

7 Concluding remarks and future work

Using the SMC as an architectural pattern, basic SMCs
can be dynamically assembled into larger and more com-
plex structures. This allows SMCs to scale-down to indi-
vidual devices, and scale-up to cater for larger pervasive
applications. Policies provide not only a means of adapt-
ing to events corresponding to changes of state in the man-
aged resources (e.g. failures or performance degradation)



but also to define how SMCs should behave when they
encounter new autonomous entities and in particular new
SMCs. Through the concept of missions, obligation poli-
cies in the form of event-condition-action rules can be used
to enact a rich spectrum of collaborations between SMCs.

Although we started by considering peer-to-peer rela-
tions as intrinsically different from composition relations,
their requirements proved to be quite similar in terms of the
need to cater for cross-SMC invocations and exchanges of
events and policies. What varies substantially are the invo-
cations that are permitted, events that can be exchanged and
policies that can be accepted. The other substantial differ-
ence lies in the ability of a composite SMC to hide its un-
derlying complexity. The use of customised interfaces and
mediated interactions have proved useful in terms of both
reducing complexity and handling interactions with hetero-
geneous components. Mediated interactions are essentially
for management activities and do not preclude establishing
direct interactions with resources for application purposes.

The SMC pattern, which is based on a dynamic set of ser-
vices integrated around a publish/subscribe event bus and
uses policy-based adaptation, has proved applicable to a
wide spectrum of environments. Although this paper has fo-
cused on health monitoring, we have worked on similar ap-
plications for fleets of unmanned autonomous vehicles (the
term mission originates from there) and in large distributed
settings such as virtual organisations.

Finally, the abstractions and protocols defined here pro-
vide a basis on which SMC collaborations can be defined.
However, further work remains to be done towards: (a) in-
tegrating in the current framework procedures for checking
policy analysis, conflict detection and resolution, (b) inte-
grating the current implementation with the access control
framework and (c) extending the mission concept to both
cascaded configurations and higher-level abstractions for
SMC interactions. In respect to the latter we are currently
working on the appropriate infrastructure for defining mis-
sions that can encapsulate other mission specifications e.g.,
the doctor would deploy a mission to the nurse SMC that
itself contains the instructions for the nurse to load specific
(sub-)missions to any of the patient SMCs that it encoun-
ters. Higher-level abstractions may include collaboration
definitions whose enforcement is itself distributed and col-
laborations based on exchanges of high-level goals which
require planning procedures and algorithms to be scaled
down to embedded devices.
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