
This is a preprint of an article accepted for publication in Concurrency and Computation: Practice and
Experience, John Wiley and Sons, Copyright © (2007) (copyright owner as specified in the journal)

AMUSE: Autonomic Management of Ubiquitous
e-Health Systems

E. Lupu1, N. Dulay1, M. Sloman1, J.Sventek2, S. Heeps2, S. Strowes2, K. Twidle1, S.-L.
Keoh1, A. Schaeffer-Filho1

1Department of Computing, Imperial College London, South Kensington Campus, London
SW7 2AZ
2Department of Computing Science, University of Glasgow, 17 Lilybank Gardens, Glasgow
G12 8RZ

SUMMARY (200 words)

Future e-Health systems will consist of low-power on-body wireless sensors attached to
mobile users that interact with an ubiquitous computing environment to monitor the health
and well being of patients in hospitals or at home. Patients or health practitioners have very
little technical computing expertise so these systems need to be self-configuring and self-
managing with little or no user input. More importantly, they should adapt autonomously to
changes resulting from user activity, device failure, and the addition or loss of services. We
propose the Self-Managed Cell (SMC) as an architectural pattern for all such types of
ubiquitous computing applications and use an e-Health application in which on-body sensors
are used to monitor a patient living in their home as an exemplar. We describe the services
comprising the SMC and discuss cross-SMC interactions as well as the composition of SMCs
into larger structures.

KEYWORDS:

Autonomic computing, pervasive systems, self-configuration, policy-based management

Corresponding Author:

Emil Lupu
Department of Computing, Imperial College London, South Kensington Campus, London
SW7 2AZ.
Email: e.c.lupu@imperial.ac.uk
Fax:

The authors wish to thank the UK Engineering and Physical Sciences Research Council for
their support of this research through grants GR/S68040/01 and GR/S68033/01. We would
also like to acknowledge financial support under the CEC TrustCoM project IST -2002-
2.3.1.9.1945

2

1 INTRODUCTION
Numerous sensors have been developed for monitoring physiological parameters including
pulse, heart-rate, body temperature, oxygen saturation, as well as behavioural parameters
such as posture and gait [1-2]. Sensors are either wearable or implanted and communicate
wirelessly between themselves and with more powerful wearable processing devices such as
mobile-phones, PDAs, or diagnostic units, which can further interact with a fixed network
infrastructure at home, in the hospital or in the street. There is considerable research on the
design of new body sensors and measurement techniques, miniaturisation of existing sensors
and the design of actuator devices such as drug pumps, bio-electrical and bio-mechanical
devices [1-2]. There are numerous healthcare applications for these devices including post-
operative care (both in the hospital and at home), monitoring of conditions with episodic
manifestations such as cardiac arrhythmia, management of chronic conditions such as
diabetes mellitus, drug regime monitoring and assistance to elderly patients. The benefits to
patients include early release from hospital and improved quality of life, constant monitoring
of their clinical condition and well-being, as well as automated alerts and assistance from
healthcare personnel when needed. The benefits for healthcare providers include a better
service offered to patients, better understanding of the patient’s condition, reduced usage of
hospital resources and better medical evidence data for the clinical condition and its
treatment. Widespread, continuous monitoring of chronic conditions such as cardiac
problems will enable medical researchers to accurately determine the conditions that lead to
problems. However, whilst the sensors and devices for e-Health are a reality today, the
configuration and management of the multiple sensors and software components necessary
for these applications still requires considerable technical computing expertise.

Achieving the autonomic computing goal [3] of systems that are self-configuring, self-
healing, self-optimising and self-protecting is necessary for ubiquitous e-Health applications.
However the challenge is greater than in traditional distributed systems because
computational resources on sensors and mobile devices are scarce, the systems are
heterogeneous and there is a constant need to adapt to change. A typical scenario for
healthcare monitoring is based around a body-area network comprised of multiple sensors
and actuators and one or more devices of higher computational capability such as a
PDA/mobile phone or diagnostic devices. This body-area network may interact with a variety
of other devices depending on its environment. In the home it may interact with servers for
storage of medical data and more advanced diagnosis, with home control systems that adapt
the home environment to the patients’ needs or with devices of healthcare personnel during
home visits. In a hospital or GP clinic the body network may interact with other medical
devices and may permit those devices to reconfigure its behaviour. In the street it may
interact with contextual services or access remote services via cellular networks e.g., to
request emergency assistance. Across all of these environments the body-area network needs
to behave autonomously whilst continuously adapting its behaviour according to the patient’s
clinical condition, the patient’s context and interactions with other devices. In short, there is a
continuous need for self-management.

Traditional network and system management offers a number of techniques for management
and adaptation including monitoring, event dissemination and correlation, fault diagnosis,
and policy-based control, which have often been applied in enterprise networks. However, in
enterprise networks, these techniques are functionally integrated providing their results
directly to a human systems administrator. This structuring is not suitable for pervasive
environments where these systems must integrate locally, providing local feed-back control
and adaptation without user intervention.

3

This paper presents an alternative approach based on structuring the system into Self-
Managed Cells (SMCs). Each cell is autonomous and must facilitate easy addition or removal
of components, cater for failed components and error prone sensors, and automatically adapt
to the user’s current activity, environment, communication capability as well as interactions
with other SMCs. Each cell will therefore need to implement a local feed-back control loop,
and we leverage our previous experience with policy-based techniques in order to provide a
flexible mechanism for driving adaptation decisions. An example of a SMC may be the set of
sensors, actuators and other devices which form the body-area network for a patient, although
more complex devices which manage internal resources may be SMCs in their own right.
However, the set of systems available in a smart home or in a hospital also form a SMC and
should exhibit autonomous behaviour. A hospital ward, operating theatre and the hospital
itself should exhibit similar characteristics. It is therefore desirable to consider the SMC as an
architectural pattern that can be tailored on instantiation and that can be applied at different
levels of scale from body-area networks to large distributed systems. Although the SMC
examples used in this paper are aimed at e-Health systems, similar arguments and structures
can be defined for intelligent buildings, unmanned autonomous vehicles, intelligent
transportation systems and many other applications.

Section 2 describes the SMC architectural pattern and its main components, which are then
presented in detail in Section 3. Section 4 discusses aspects relating to interactions across
SMCs and composition of SMCs. Sections 5 and 6 present the related work and discuss the
current status and outstanding issues.

2 THE SELF-MANAGED CELL (SMC)
A SMC manages a set of heterogeneous components such as those in a body-area network, a
room or even a large-scale distributed application. Different interaction and transport
protocols may be necessary in order to interact with each component. For example,
interactions with sensors in our prototype occur via IEEE 802.15.4 wireless links whereas
interactions with more complex devices such as PDAs, mobile phones or gumstixs1 typically
occur over Bluetooth or WiFi. The SMC must have a unified view for interacting with these
components for management purposes and in particular provide a uniform interface for the
invocation of management actions. Therefore, adapter objects are instantiated for interacting
with each component upon their discovery.

The SMC defines an architectural pattern that applies at different levels of scale from body-
area networks to larger distributed and enterprise systems. To this extent it must comprise
services that whilst providing the same interface may have different implementations in
different SMC instantiations. Since SMCs may need to scale up to larger systems, the set of
services that constitute the SMC also needs to reflect the management requirements of these
systems and needs to be dynamically extensible. As most management systems are event-
driven, we assume that SMCs consist of a set of services that interact using a common
publish/subscribe event bus as shown in Figure 1. Although it is not necessary that all
interactions be event-based, the use of an event bus confers several advantages. Firstly, it de-
couples the services since a sender does not need to know the recipients of an event, thus
permitting the addition of new services to the SMC without disrupting the behaviour of
existing ones. For example, a context service that gathers environment data may be added to
mobile SMCs or an auditing service may be added to SMCs that require records to be kept of
interactions that have occurred. Similarly, security services that perform anomaly detection,
and support authentication and confidentiality as well as optimisation services which try to
optimise performance according to a utility function could be added in more complex SMCs.

1 http://www.gumstix.com

4

Secondly, an event bus allows multiple services to respond concurrently and independently to
the same notifications with different actions. For example, when a new sensor is discovered a
policy service may initiate its configuration whilst a diagnostic service would take into
account the additional input received from that sensor. Finally, the event bus can be used for
both management and application data such as alarms indicating that thresholds have been
exceeded e.g., for heart-rate or oxygen saturation. More generally, an event-bus architecture
is well suited to adaptive ubiquitous systems which are essentially event-driven as changes of
state in resources need to be notified asynchronously to several, potentially unknown,
recipients. An event may indicate discovery of a new component, component failure, change
in context or medical condition e.g. ECG anomaly detected. We have developed a simple
publish-subscribe event system supporting at-most-once persistent event delivery in which
the service attempts to deliver the event until it knows that the subscriber is no longer a
member of the SMC. Interactions between management components are typically event-
based in order to benefit from the extensibility they support. However, we do not insist that
all interactions take place via the event bus and in particular interactions between application
components can be based upon other communication paradigms such as simple point-to-point
messages or remote invocations.

Figure 1 The SMC Architectural Pattern
Figure 1 represents the SMC architectural pattern with an extensible set of services
communicating through the event bus as well as the management and control adapters to the
managed resources. Although the set of services may change depending on the context in
which the SMC is instantiated (e.g., body-area network, home control system, hospital), a
number of services constitute the core functionality of the SMC and must always be present.
These include the event bus, a discovery service and a policy service. In our current prototype
these services are implemented in Java and run on either a PDA or a gumstix device.

The discovery service is used to discover nearby components which are capable of becoming
members of the SMC e.g. intelligent sensors, and other SMCs when they come into
communication range. It interrogates the new devices to establish a profile describing the
services they offer and then generates an event describing the addition of the new device for
other SMC components to use as appropriate. It also maintains a list of known devices as we
have to cater for mobile wireless components which may wander in and out of
communications range and distinguish this from permanent departure from the cell.

5

Figure 2 Policy-based feed-back loop
The SMC’s adaptation strategy for self-management is achieved through a policy service that
implements a basic feed-back control loop. As shown in Figure 2 changes of state in
managed objects are disseminated in the form of events through the event-bus. The policy
service performs reconfiguration actions and caters for two-types of policies: obligation
policies (event-condition-action rules) that define which configuration actions must be
performed in response to events and authorisation policies that specify which actions are
permitted on which resources or devices. Policies can be added, removed, enabled and
disabled to change the behaviour of cell components without code modifications and may
also be used to enable or disable other policies. For example the following policies could be
specified for a body-area network of sensors monitoring the recovery of a patient with a
cardiac condition:

1. on hr(level) do
 if level > 100 then

/os.setfreq(10min); /os.setMinVal(80)

2. on context(activity) do
 if activity == “running” then
 /policies/normal.disable(); /policies/active.enable()

3. auth+ /patient → /os.{setfreq, setMinVal, stop, start}
4. auth+ /patient → /policies.{load, delete, enable, disable}

Policy 1 is triggered by a heart rate (hr) event as measured by a heart rate sensor and sets the
frequency for monitoring oxygen saturation (os) as well as new thresholds for the generation
of events from these measurements. When the heart rate is above 100 the oxygen saturation
should be checked every 10 minutes and an alarm should be generated if the value is below
80. Policy 2 assumes the existence of a context sensor notifying the SMC of the patient’s
current activity. When the patient is running the heart-rate may increase naturally so policies
applying to the normal mode of operation should be disabled and policies specific to
strenuous physical activity should be enabled. Policies 3 and 4 are the required authorisations
to permit management of the oxygen saturation monitor and of the policies themselves.

Based on the lessons learnt from our previous work on policy specification [4] [5] we have
developed a new light-weight policy service appropriate for limited-resource devices. Both
the discovery service and the policy service are described in more detail in Section 3. The
implementation of the policy service is also available in open source form at:
http://www.ponder2.net.

The policies defined above are specified upon the instantiation of the SMC at a time when an
oxygen saturation sensor may not exist. Policies are specified in terms of roles which act as

6

placeholders for components within the SMC. Roles are associated with interfaces, which
define the methods that components must provide and events that those components can raise
or that can be sent to them. This allows policies to be written in terms of the actions and
events on those interfaces. When a new device, a sensor or another SMC, is discovered, it can
be dynamically assigned to a role and policies defined for that role would apply to those
devices. Several devices may be assigned to the same role and any policy actions would then
be performed on all the devices associated with that role. We use the term mission for the set
of policies relating to a role which is loaded onto a remote SMC that is capable of
interpreting them, as explained in section 4. Figure 3 indicates typical roles for a Patient
SMC. Sensors such as heart and temperature sensors monitor the physiological condition of
the patient while context sensors report on the patient’s current activity. This is necessary in
order to avoid mistaking an increased heart rate due to physical activity for the symptoms of
an impending heart attack. The Nurse role will allow interactions with a nurse’s SMC as
explained in section 4.

Figure 3 Patient SMC Roles

3 THE SMC ARCHITECTURE SERVICES

3.1 The Discovery Service
The discovery service is responsible for detecting new devices or other SMCs when they
come into communication range. It is responsible for maintaining the membership of the
SMC and informs the other services when devices have joined or permanently left the SMC
by generating the component-detected and component-left events as shown in Figure 4. The
discovery service is designed to mask transient disconnections from the SMC. Because the
discovery service determines when a component has joined the SMC, it also carries out any
admission control (vetting) for accepting the device in the SMC based on the device’s profile
and any authentication information available. By making the discovery service policy-driven,
it can easily be adapted to different applications.

We have implemented a simple device discovery service for our e-Health testbed which can
run on a PDA, a gumstick or a mobile phone. Although a number of protocols for service
discovery already exist [22] we needed an implementation that can scale down to the body
sensor nodes (BSN)2 that we are using and possessed the flexibility to customise the
discovery service through policies. The discovery service broadcasts its identity message (id;
type[; extra]) at frequency ωR. This enables the SMC to advertise itself to both devices and
other SMCs, enables current SMC members to determine that they are still within reach of
the SMC and avoids having the discovery service in listening mode at all times to detect
advertisements from new devices. A new device responds to the identity message with a
unicast device identity message. The discovery service can then query the device to obtain a

2 These body sensor nodes (BSNs) were developed in the DTI Ubimon project (see http://www.ubimon.org).
They have very low-power 16-bit processors, 64 KB RAM, 256KB Flash memory, 6 analog channels for
sensors and communicate using IEEE 802.15.4 radio. These sensors may need to survive for long periods of
time without battery replacement.

7

device profile, performs vetting procedures if required, informs the device whether it has
been accepted for membership, and if so generates a component-detected event which results
in the device being registered and classified in the policy interpreter’s domain structure (see
section 3.3) with a device specific adapter being created for that device (see Figure 4).

Each existing member device unicasts its identity message to the discovery service at the
frequency ωD. If the discovery service misses nD successive messages from a particular
device, it concludes that the device has left the SMC permanently, and generates a
corresponding component-left event. This event will trigger the removal of any notifications
addressed to that device from the event service and the removal of any adapters and role
references corresponding to that device in the policy service.

Once a device joins a SMC, it will not respond to discovery service broadcasts from other
SMCs for as long as its membership in the SMC lasts. Membership can be terminated either
by the device itself, the SMC (e.g., by performing a reset of the device) or if the device
misses nR successive identity broadcasts from the discovery service of the SMC to which it is
bound. Healthcare scenarios often also require a more permanent form of membership. A
health monitoring sensor should not decide that it has left the SMC because there is a
problem with the discovery service and then join the SMC of the person sitting next to the
patient on the bus. One approach is to use pairing through physical contact or explicit actions
(e.g., as with simple Bluetooth devices) in order to set-up more permanent associations. We
are investigating other more secure techniques in the Caregrid project [7].

3.2 The event bus
Events are a critical aspect of the SMC as they trigger policies that adapt the SMC’s
behaviour. However, as stated previously, not all interactions need to occur via the event
bus. The event bus has been implemented as an at-most-once, persistent publish/subscribe
delivery service, using a router to distribute events to subscribers [9]. The router supports
content-based subscriptions. Subscribers register to receive notifications of event occurrences
and specify a filter, which is matched against the events received by the router. All events
that match the filter are forwarded to that subscriber. In the current implementation,
publishers do not need to register with the event router, thereby allowing simple sensors to
send notifications directly without additional registration overhead. However, this has
disadvantages as it would be desirable to inform publishers with no current subscriptions that
they do not need to send notifications, thereby enabling them to save power. This feature,
also known as quenching (e.g. in Elvin [10]) is planned for future revisions of the
implementation.

The event bus (Figure 4) must guarantee reliable delivery of events since the events are used
to trigger adaptation and re-configuration actions and this is also required by medical
applications. Furthermore, it must guarantee that messages from the same publisher will be
delivered to the subscriber in the same order as they have been received by the router. This is
required as events from the same publisher may be causally related. To achieve this, all
messages (including subscription messages) are acknowledged when received by the router
or the subscribers. The event router maintains proxy objects for all publishers and subscribers
connected to the bus. These proxies fulfil two functions: firstly they buffer events that have
not yet been received by subscribers, and secondly they adapt to the specific communication
protocols used by publishers and subscribers. For example, body sensor nodes communicate
via basic messaging over 802.15.4 whereas gumstixs and PDAs may communicate using
datagram protocols over Bluetooth. Buffering of events is necessary in order to mask
transient communication failures.

8

Figure 4 Event Service Architecture
As shown in Figure 4 when the event bus receives notification that a new component has
been added to the SMC, it instantiates a proxy for that device. The type of proxy to be
instantiated is determined according to the device profile as established previously by the
discovery service. Event occurrences are then notified to the router. Successful delivery of an
event to the router causes that event to be delivered to the proxies whose filters match the
event. Each proxy maintains a FIFO queue of events and attempts to deliver the event at the
head of the queue periodically until it is successful or it learns that the device is no longer a
member of the SMC. If the router receives a component-left event (from the discovery
service), it removes that subscriber’s filters and deletes the proxy for that subscriber; the
destructor for the proxy purges any events in its FIFO queue.

3.3 The Policy Service
We have had considerable experience with the use of policies as a means of specifying
adaptive behaviour in network management and other applications. The use of interpreted
policies means they can be easily changed without shutting down or recoding components.
The policy service maintains adapter objects for each of the components on which
management actions can be performed. This includes the sensors and other devices present
within the SMC, services within those devices and remote SMCs. These adapter objects (also
called managed objects) are grouped in a domain structure that implements a hierarchical
namespace e.g., similar to a file system. However, unlike in a file system, domains may
overlap and a managed object may belong to several domains. Domains, policies and roles
are managed objects in their own right on which actions can be performed e.g.,
adding/removing an object from a domain, enabling or disabling a policy. Consequently,
events can trigger obligation policies (ECA rules) that can enable or disable other policies
and change domains and domain membership [6]. In essence, domains are a means of
classifying and grouping the managed objects in a hierarchy and permit them to be addressed
using simple path expressions.

We are concerned primarily with two types of policies: authorisation policies that define
which actions are permitted under given circumstances and obligation policies that define
which actions should be performed in response to an event occurring if specific conditions
are fulfilled (event-condition-action rules). Authorisation policies should be enforced on the
target components they are protecting as these must make the decision whether to permit or
deny access. For example a policy of the form:

 auth+ /sensors/temperature → /pda.reportTemp

would be needed to permit temperature sensors to perform the reportTemp operation on the
pda. Obligation policies are implemented by the policy service or loaded into a remote

9

policy service as part of a mission. For example, the following policy specifies that the
oxygen saturation sensor should be activated when the heart-rate is above 100.

 on heartrate(hr) do if hr > 100 then /sensors/os.activate()

When an obligation policy is created in the policy service, an event subscription for that
event is sent to the event bus. Upon receiving a notification, the policy service evaluates all
the obligation policies triggered by that event.

Figure 5 Policy Service: Example Domain Structure and Overall Architecture
The policy service has been implemented with particular focus on flexibility and the ability to
load all the code needed on-demand. This enables us to use it across a wide variety of
applications and devices with different capabilities by only loading those components which
are necessary in each case. When started, the policy service has a reference to its root
domain and only recognizes the import command that can load new classes. Typically, the
classes loaded are factories that permit the creation of new objects in domains and the first
class to be loaded is the factory for the domain objects themselves (Figure 5). This enables
the policy service to create new domain objects to form a hierarchy of domains under the root
domain. Additional, factory objects are then loaded in order to communicate with the event
bus, create policies and create adapters for the various sensors and devices in the SMC. The
event factory is specific to the event bus and encapsulates the protocols necessary to
communicate with it. However, multiple event factory objects can be created, allowing the
policy service to connect to different event buses with different underlying protocols e.g.
XMLBlaster. Similarly, new types of policies e.g., delegation, filtering, etc. can be defined by
providing and dynamically loading the corresponding factory. The bsn factory object (shown
in Figure 5a) encapsulates the code for interacting with a BSN sensor node using IEEE
802.15.4 radio. Specific factories can then be defined for each of the different types of BSN
sensors in use eg. hr sensor for heart-rate monitoring which uses the basic bsn adapter for
interaction with BSN nodes. The same principle has been used in other application areas to
use Java RMI and SOAP to interact with remote services. When a component-detected event
appears on the event bus policies determine which factory is used to create the adapter object

10

and in which domain the object will be placed. Other policies specified for that domain will
then automatically apply to the new component, for example:

on component_detected(id, profile, addr) do
 if profile == “heart rate” then
 r = /fact/hr.create(profile, addr); /sensors.add(r)

If the component is another SMC a similar policy will subsequently select the appropriate
mission and load it in the remote SMC. This operation returns a reference to the remote
mission, which is placed within the adapter object for the remote SMC as explained below.
Figure 5a also shows the other elements of a typical domain structure within a Ponder2 policy
service [40]. These include the policies domain in which by default all obligation policies are
stored and domains corresponding to the SMC roles such as the nurse domain.

As shown in Figure 5b the overall architecture of the policy service comprises the domain
structure, the table matching obligation policies to events and the execution invocation engine
which is used to make the calls to the objects inside the domain structure. Conceptually the
policy service has an event interface through which event notifications are received, an
invocation interface through which external invocations are received (e.g., to load a mision)
and an action interface through which calls are made to external objects.

4 INTERACTIONS BETWEEN SELF MANAGED CELLS
The components described in the previous section define a basic SMC that can discover and
manage simple sensors and devices. To scale the SMC architectural pattern to larger systems
there is a need to cater for cases in which managed resources are themselves SMCs and to
provide techniques for composing SMCs. Even in a body-area network for health monitoring
some sensors may permit a constrained form of programming in terms of policies or more
complex diagnostic devices may be SMCs in their own right managing their own resources.
Two basic types of interactions are of interest to us: composition and peer-to-peer
interactions.

Composition interactions occur when a managed resource or device within an SMC is itself
an SMC with its own resources and devices. This implies that the device can itself be
programmed by the containing SMC in terms of policies that it must enforce. Moreover, the
device may expose to its containing SMC a management interface for re-configuration. For
example a diagnostic device may be part of a body-area network SMC and will allow that
SMC to load new decision algorithms and new policies into it. Composition also implies that
the contained SMC ceases to advertise itself independently but will rely on the containing
SMC to bind it with other devices and SMCs with which it needs to interact. Only the
containing SMC will have access to its management interface.

Peer-to-peer interactions occur for example when a nurse or other health worker visits the
patient at home. The nurse would typically have her own PDA and medical devices that need
to interact with the body-area network monitoring the health of the patient. In particular the
nurse SMC might need to be notified of events occurring within the patient SMC, and may
need to load policies for execution by the patient e.g., for defining new thresholds or alert
behaviour. Similarly when discovering the presence of the nurse SMC the patient SMC may
need to load policies onto the nurse SMC to trigger re-calibration of the patient sensors if
needed. This avoids the requirement for the nurse PDA to store calibration procedures for all
possible patient sensors. Peer-to-peer interactions are not necessarily between “peers” at the
same level of abstraction. For example, a medical monitoring service may use a wireless

11

communication service as well as a storage area network for storing large quantities of
monitored data in a layered interaction style.

A mission defines the requirements of one SMC for interacting with another. It is a group of
policies which define the duties of the remote SMC in terms of the obligation policies it must
enforce. These obligation policies are written in terms of the mission interfaces for each
SMC. Mission interfaces specify:

• Events – these are events that are available to the loaded mission and can trigger the
mission’s policies. Typical examples of such events are local timers or events from
the SMC hardware, as well events from remote SMCs.

• Notifications – these are events that the mission can raise within either the local
SMC in which it has been loaded or the remote SMC.

• Local actions – that may be invoked by the mission’s policies in the SMC in which
it has been loaded. These may be actions on local resources such as hardware
sensors or actuators.

• Remote actions – that may be invoked by the mission’s policies either when the
mission is running locally or in a remote SMC.

The events and actions specified in the mission interfaces define a scope for specifying
mission policies. The concept of a mission and mission interface is common to both
composition and peer-to-peer interactions, although a mission interface for peer-to-peer
interactions is likely to be more limited in the range of actions and events defined compared
to that available to a containing SMC. In both cases, authorisation policies are needed to
specify which SMCs are permitted to load a mission, invoke remote actions and subscribe to
receive events.

Figure 6 Missions across SMCs
When an SMC discovers a new SMC with which it wants to collaborate, it will first assign
that SMC to the corresponding role in its structure and will instantiate the required missions
at the remote SMC. A reference to the remote mission will be kept as part of that SMCs role.
For example, as shown in Figure 6, when the nurse SMC discovers the patient’s body-area
network SMC it instantiates a patient mission on the patient’s SMC if permitted by the latter.
Similarly, upon discovery of the nurse SMC the patient may instantiate at the nurse a mission
defining the policies it expects the nurse to fulfil, if permitted. Note that it is not necessary
that both missions are initiated. In many cases of composition only the external SMC will
instantiate a mission in the managed SMC but not vice-versa.

The Patient mission loaded by the nurse into the patient relies on the following interfaces
(Figure 7): the Nurse SMC must expose actions for storing monitoring data and displaying an
ECG as well as the ability to be notified that the ECG is currently in progress. The patient

12

generates the events notifying: (1) that the mission has been loaded, (2) the heart rate (hr)
value and (3) endECG() to notify that the recording has finished. It also must provide the
actions needed to read the recording logs, raise a timer event and read the ECG data.

Figure 7 Mission Invocations
The mission specification is parameterised by the Nurse and Patient interfaces (nurse and
patient) as shown below:

 mission patientT(nurse, patient, ECGlevel, ECGTime) do
 1. on patient.mloaded() do

 nurse.store(patient.readlog())
 2. on patient.hr(level) do
 if level > ECGlevel then

 patient.startECG()
 patient.timer(ECGTime, endECG())
 nurse.ecgOn()

3. on patient.endECG() do
 nurse.display(patient.readECG())

The patient’s SMC generates a mloaded() event after the mission has been successfully
loaded. This triggers Policy 1 to read the patient’s data logs and then to store them in the
nurse SMC. Policy 2 is triggered by heart rate events generated by the patient’s SMC. It
specifies that if the heart rate becomes greater than ECGLevel an ECG should be started on
the patient SMC for the duration ECGTime. The timer action requests the patient SMC to
generate the endECG event after ECGTime has elapsed. The ecgOn event informs the nurse
that the ECG reading has started. Note that ECGTimer and ECGLevel are parameters that are
provided to the mission upon instantiation as they may be specific to the patient being visited.
Policy 3 specifies that when the ECG is finished it must be read from the patient’s SMC and
displayed on the nurse’s SMC. The mission is instantiated at the patient’s SMC by the nurse
who provides the references to the SMC instances along with the values for ECGTimer and
ECGLevel. Thus the nurse SMC would typically have an obligation policy to trigger the
instantiation:

on newPatient(p) do
ref = p.loadMission(/patients.interface, p.interface, 82, 40); /roles[p].add(ref)

Authorisation policies are needed in both SMC’s to permit the actions to be invoked. In the
nurse’s SMC the following authorisations are needed:

13

 auth+ /patient → /nurse.store
 auth+ /patient → /nurse.displayECG

In the patient’s SMC the following authorisation policy is needed:

 auth+ /nurse → /patient.loadMission

It is assumed that authorisation policies are not needed for local actions performed as part of
the mission. Actions to load, remove, enable and disable missions are provided in the
management interface of all SMCs. The ability to load policies into a remote SMC facilitates
customization of interactions between SMCs and permits to dynamically program the
behaviour of a contained SMC. However, this implies that the receiving SMC is able to
verify the received policies in terms of their format, semantics and conflicts with other
policies before accepting them. The design and implementation of this verification process
remains to be investigated.

5 RELATED WORK
IBM has been the prime mover towards autonomic computing [3] and HP is also addressing
similar issues in on-demand Utility Data Centres [11]. However most of the industrial work
focuses on large clusters and web servers whereas we are concentrating on pervasive
computing which is potentially more dynamic due to the mobility of components. The
Universal Plug and Play (UPnP) Architecture supports resource discovery and configuration
of consumer devices (TV, video recorder, air conditioning etc.), which communicate via
wireless within a home or office [8]. It concentrates on device configuration rather than
configuration of software within nodes and does not support the adaptability required for
healing, optimising or protecting.

There are a number of pervasive systems projects that define frameworks for realising
pervasive spaces [14,15]. By and large these projects tend to focus on spaces of relatively
fixed size such as a room or a house and tend to focus on specific concerns such as context-
related applications, user presence and intent or foraging for computational resources.
Although they recognise the federation and composition of spaces as a main concern, little
work has been done in that direction. In contrast, we consider an architectural pattern at
different scales and focus on generic adaptation mechanisms (i.e., through policies). Cross-
SMC interactions are a basic feature for our model although further elaboration is needed.

There are many discovery services for both fixed and ad-hoc networks including UPnP [8],
SLP [17], Jini [18], SDP [19], Zeroconf [20], Konark [21], DEAPspace [16] – a recent
survey and taxonomy of service discovery can be found in [22]. These protocols vary
substantially in their infrastructure (directory based vs. directory less), language dependence
and transport protocol dependence. Some of them provide membership management whilst
others focus on providing device reconfiguration functionality. We needed a very simple
protocol that could be easily implemented on simple sensors such as BSN nodes or even
simpler and that could be policy driven so that different actions can be taken when devices
are discovered based on the policy specification. We have therefore implemented the protocol
described in this paper. However other protocols could be used in different applications in
conjunction with the policy service instead.

There are many publish-subscribe event services such as Elvin [10], XMLBlaster [12],
Gryphon [23,24], JMS [25] and Sienna [13]; unfortunately, none of these routers are
designed to run on small devices such as body sensor nodes (BSNs) and PDAs. After
experimenting with several, including Elvin, XMLBlaster and Sienna, we have implemented

14

our own service for use with the body-area network of BSN sensor nodes. However, in
different applications that are less restricted in power consumption and computational
capabilities we have also used the policy service in conjunction with XMLBlaster, Siena and
others. As explained in Section 3.3 the policy service can use different event services
simultaneously through different adaptors and act as a gateway between them.

Work on policy-driven systems has been going on for over a decade in various application
areas. Traditional approaches rooted in network and systems management include PCIM
[27], PDL [26], NGOSS Policy [Error! Reference source not found.], Ponder [4] and
PMAC [29]. They have a common base in the use of event-condition-action rules for
adaptation but are aimed at the management of distributed systems and network elements and
do not scale down to implementations on small devices and sensors. Other approaches have
been aimed at interactions between distributed agents and include LGI [30], KAoS [31], and
Rei [32] although they all have a slightly different focus. LGI policies use a simple Prolog
notation to specify the actions that agents must undertake upon the receipt or sending of
messages. It assumes that policies are interpreted by trusted controllers at each agent’s site.
KaOS is a collection of component-based agent services developed to support mobile agents
and subsequently extended for grid computing and Web Services environments. Policy
specification takes an ontology based approach and policies are represented using the DAML
notation [33]. Rei, like KAoS follows an ontology approach to policy representation
although, like in LGI, policies can be specified in a simpler Prolog-based notation. The
enforcement is based on a decision engine that uses deductive reasoning to infer the rights
and obligations of objects in the managed system in response to requests that specify the
current state of the system. Finally a number of approaches such as XACML [34] focus on
authorisation policies alone. Our approach is based on our experience with the design and
implementation of the Ponder system but is intended to cater for simple pervasive computing
devices as well as larger distributed systems.

6 CURRENT STATUS AND FUTURE WORK

We have built implementations of the core SMC services including the event service, the
discovery service and the policy service [40] which run on both PDAs and gumstix devices.
We have also implemented the client side of the service discovery protocol and adapter
objects for interacting with BSN nodes that can currently host a variety of sensors for
temperature, acceleration, heart-rate monitoring and oxygen saturation. A simple version of
the policy service also runs on BSN nodes. This has enabled us to build concrete
demonstrators in which sensors can be discovered and configured by the SMC dynamically
and policies can be changed dynamically and applied automatically to the devices. Although
the underlying XML-based policy service and protocols for federating and exchanging
policies between SMCs already exists, the higher-level language model supporting mission
specifications and remote instantiation of mission specifications is in the process of being
implemented. We intend to demonstrate SMC federation between “smart-devices” –
themselves SMCs – and body-area networks as well as between a home network and a body-
area network.

Cross SMC interactions also require further work. Although the concept of mission enables
us to deploy sets of policies (missions) to remote SMCs, further work is needed to define
more complex SMC-based structures which recursively compose. This will be necessary in
order to apply the SMC paradigm to larger configurations such as sensor networks or
autonomous fleets of unmanned vehicles undertaking complex missions such as search and
rescue. Further work is also needed on the composition of SMCs and interactions between

15

SMCs at different layers of abstraction. A SMC should be able to expose an abstract interface
realised by aggregating the functionality of its resources and needs to fulfil abstract goals that
it must refine and achieve in terms of its resources and interactions with other SMCs. This
requires techniques such as planning and policy-refinement. Although we have previously
worked on policy refinement [35], these techniques require significant computational
resources and work is needed to scale these approaches down to PDA-like devices.

In order to evaluate the applicability of the SMC as an architectural pattern in different
contexts we are in the process of developing solutions based on the SMC architecture for
both unmanned autonomous vehicles [36] and large scale distributed systems in the form of
Virtual Organisations [37]. In the latter case the policy-service has been used in a large
collaborative project developing a framework for Virtual Organisations, which provides
service composition based on Web-services in conjuction with different discovery services
and using different invocation paradigms e.g., SOAP, WSRF/WSDM. Policies are used
within this context in order to change configurations on the virtualisation points of services
and to specify how the virtual organisation should react to changes in membership, violation
of service level agreement parameters and changes in the reputation and reliability of
participants.

The work presented in this paper focuses on the adaptive systems infrastructure, the use and
the implementation of the SMC architectural pattern. Patient trials to determine user
acceptance of healthcare monitoring, what sort of feedback to users is required, performance
in real environments, the issues related to interaction between social workers and healthcare
personnel in the use of sensor-based home monitoring, as well as the business processes
related to the commercial infrastructure, are being addressed in the DTI funded Saphe project
[41].

There is a wide range of security and trust issues to be addressed particularly for health-based
applications. Traditional aspects of authentication and access control are challenging because
devices have limited capabilities for cryptographic operations or evaluation of complex
access control policies. The issuing and verification of credentials is difficult to achieve
computationally but SMCs still need to interact with other devices and SMCs with which
they share no previous knowledge or key material. Additionally, in health-based scenarios
there is a constant need to adapt the trade-off between protection, patient privacy and access
to services depending on current context. For example, in an emergency situation having
access to the monitored data is of paramount importance but the SMC may not have access to
a networked infrastructure to decide that the person attending is a genuine health-care
professional. Similarly, medical information is exchanged between SMC devices across
wireless links that can be trusted to different extents. Issues of trust are therefore particularly
important as security decisions have to be taken with very limited or no user intervention
based on limited information and according to current context. Information relating to trust,
recommendations, reputation and experience of previous interactions with the other party are
likely to contribute to the decision. Although, we have started working on these issues
[38,39] further work is ongoing within the CareGrid project [7].

7 CONCLUSIONS

We have proposed the SMC structure as a basic architectural pattern that aims to provide
local feed-back control and autonomy and advocated the realisation of more complex systems
through the composition and peer-to-peer interactions between SMCs. Our particular focus is
on health-care monitoring as this provides a wide range of benefits to the public at large
whilst presenting numerous challenges in terms of both SMC functioning and interactions.

16

However, we are also working towards applying the SMC architecture in other scenarios and
thus demonstrating its wider applicability.

The use of the event-bus as the primary means of exchanging management information de-
couples architectural components and provides the basis for extending the functionality of the
SMC by adding additional services (e.g., context, accounting) as well as scaling the SMC to
larger numbers of managed resources by using alternative implementations of the SMCs
services. For example we are experimenting with different event buses such as XML Blaster
and Siena for larger distributed systems and our own for body-area networks.

Policies, in particular in the form of event-condition-action rules, provide a simple and
effective encoding of the adaptation strategy required in response to changes of context or
changes in requirements. The ability to dynamically load, enable and disable the policies
together with the ability to use policies in order to manage policies caters for a wide variety
of application needs. However, this also raises a number of issues to be addressed: (i) how to
verify dynamically loaded policies to determine their acceptability? (ii) how to structure large
sets of policies in terms of meaningful higher level abstractions? Whilst the concept of
missions introduced in this paper attempts to provide an initial answer to the latter, it needs to
be further refined to cater for more complex configurations. Although a spectrum of
techniques can be used for verification of dynamically loaded policies ranging from simple
authorisation to conflict analysis and sandboxing, further work is needed to determine how
these techniques can be used in conjunction with one another and in which circumstances.
Event-condition-action rules can express most desired behaviours and the temptation is often
strong to use the obligation policies as a general programming paradigm. However, this leads
to programs that are awkward to write and difficult to maintain as it is difficult to keep track
of the propagation of information between functions through events. Policies should be used
for encoding the “strategy” for adaptation i.e., which adaptation actions to perform, not the
actions themselves.

8 REFERENCES

1. Yang G.-Z (Ed.). Body Sensor Networks. Springer-Verlag, March 2006. ISBN 18462871.
2. Proceedings International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2006),

MIT Boston, April 2006. IEEE Computer Society.
3. Kephart, J.O., Chess, D.M. The vision of autonomic computing. IEEE Computer 36(1):41-50, Jan 2003.
4. Damianou N, Dulay N, Lupu E, Sloman M:, The Ponder Specification Language Proceedings IEEE

Workshop on Policies for Distributed Systems and Networks (Policy 2001), Bristol, UK, Jan. 2001,
Springer-Verlag LNCS 1995, pp. 18-39.

5. Damianou N, Dulay N, Lupu E, Sloman M, Tonouchi T.: Tools for Domain-based Policy Management
of Distributed Systems, Proceedings IEEE/IFIP Network Operations and Management Symposium
(NOMS), Florence, Italy, April, 2002, pp. 203-217.

6. Lymberopoulos L, Lupu E, Sloman M: An Adaptive Policy Based Framework for Network Services
Management, Journal of Network and Systems Management, Special Issue on Policy-Based
Management, 11(3):277-303, Sep. 2003, Plenum Press Publishing.

7. EPSRC CareGrid Project http://www.doc.ic.ac.uk/%7End/projects/CareGrid.html [accessed 30/05/06]
8. Universal Plug and Play Device Architecture. http://www.upnp.org/resources/documents.asp [accessed

30/05/06]
9. Strowes S, Badr N, Dulay N, Heeps S, Lupu E, Sloman M, Sventek J: An Event Service Supporting

Autonomic Management of Ubiquitous Systems for e-Health. Proceedings of the 26th International
Conference on Distributed Computing Systems Workshops (ICDCSW’06): 5th International Workshop
on Distributed Event-Based Systems, Lisbon, Portugal, July 2006, pp. 22-27.

10. Elvin http://www.mantara.com/ [accessed 30/05/06]
11. HP Utility Data Center: Enabling Enhanced Datacenter Agility,

http://www.hp.com/large/globalsolutions/ae/pdfs/udc_enabling.pdf, May 2003 [accessed 25/05/05]

17

12. xmlBlaster.org http://www.xmlblaster.org/ [accessed 30/05/06]
13. Carzaniga A, Rosenblum D, Wolf AL: Design and Evaluation of a Wide-Area Event Notification

Service. ACM Transactions on Computer Systems 2001, 19(3):332-383.
14. Roman, M., C. Hess, R. Cerqueira, A. Ranganathan, R. Campbell, K. Nahrstedt. A middleware

Infrastructure for Active Spaces. IEEE Pervasive Computing 2002; 1(2):22-31.
15. Garlan, D. D.P. Siewiorek, A. Smailagic, P. Steenkiste. Project Aura: toward distraction free pervasive

computing. IEEE Pervasive Computing 2002; 1(2):22-31.
16. Nidd M: Service Discovery in DEAPspace. IEEE Personal Communications 2001; 8(4):39-45,.
17. E. Guttman, C. Perkins, J. Veizades, and M. Day, “RFC 2608: Service Location Protocol, Version 2,”

June 1999.
18. SUN Microsystems, Jini Architectural Overview www.sun.com/jini [accessed 30/05/06].
19. Bluetooth SIG, Specification of the Bluetooth System. Volume I: Core Specification, February 2001,

www.bluetooth.com/dev/spec [accessed 30/05/06]
20. IETF Zeroconf Working group, “Zero Configuration Net-working,” http://www.zeroconf.org/ [accessed

30/05/06]
21. S. Helal, N. Desai, V. Verma, C. Lee, Konark - A Service Discovery andDelivery Protocol for Ad-hoc

Networks, Proceedings 3rd IEEE Conference on Wireless Communication Networks (WCNC), New
Orleans, March 2003, pp. 2107 - 2113 vol. 3.

22. Zhu F, Mutka MW, Ni LM: Service discovery in pervasive computing environments. IEEE Pervasive
Computing 2005; 4(4):81–90.

23. Zhao Y, Sturman D, Bhola S: Subscription Propagation in Highly-Available Publish/Subscribe
Middleware. Proceedings ACM/IFIP/USENIX International Middleware Conference, Toronto, Canada,
October 2004, pp. 274 - 293.

24. Bhola S, Strom S, Bagchi S, Zhao Y, Auerbach J: Exactly-once Delivery in a Content-based Publish-
Subscribe System. Proceedings Dependable Systems and Networks, Maryland, June 2002.

25. Sun Microsystems http://java.sun.com/products/jms/ [accessed 30/05/06]
26. Lobo J., Bhatia R., Naqvi S.: A Policy Description Language. Proceedings 16th National Conf. on

Artificial Intelligence, Orlando, Florida, USA, July 1999, pp. 291 - 298.
27. B. Moore, E. Ellesson, J. Strassner, and A. Westerinen. "Policy Core Information Model -- Version 1

Specification." Network Working Group - RFC3060, http://www.ietf.org/rfc/rfc3060.txt, 2001.
28. Strassner, J. Policy-Based Network Management: Solutions for the Next Generation. Morgan Kaufmann:

San Francisco, CA, 2004, ISBN-10: 1558608591
29. Agrawal D., Calo S., Giles J., Lee K.-W., Verma D.: Policy Management for Networked Systems and

Applications. Proceedings 9th IFIP/IEEE International Symposium on Integrated Network Management,
Nice, France, IEEE, May 2005, pp. 455 - 468 .

30. Minsky N. H., Pal P.: Law-Governed Regularities in Object Systems - Part 2: A Concrete
Implementation. Theory and Practice of Object Systems (TAPOS), John Wiley. 2, 1997.

31. Uszok A, Bradshaw J, Jeffers R, Suri N, Hayes P, Breedy M, Bunch L, Johnson M, Kulkarni S, Lott J:
KAoS Policy and Domain Services: Toward a Description-Logic Approach to Policy Representatin,
Deconfliction and Enforcement. Proceedings of 4th IEEE Workshop on Policies for Networks and
Distributed Systems (Policy 2003), Lake Como, Italy, IEEE, June 2003, pp. 93 - 96.

32. Kagal L: Rei: A Policy Language for the Me-Centric Project. Technical Report: HPL-2002-270, HP
Laboratories Palo Alto, CA, USA, 2002.

33. DAML. The DARPA Agent Markup Language. http://www.daml.org, 2000. [accessed 30/05/06]
34. OASIS. XACML 2.0 Core: eXtensible Access Control Markup Language (XACML) Version 2.0.

www.oasis.org [accessed 30/05/06]
35. Bandara A., Lupu E, Russo A, Dulay N., Sloman M., Flegas P., Charalambides M., Pavlou G.: Policy

Refinement for DiffServ Quality of Service Management. Proceedings IEEE/IFIP International
Symposium on Integrated Network Management (IM 2005). May 2005, Nice France, pp. 469-482.

36. Asmare E, Dulay N, Kim H, Lupu E, Sloman M.: Management Architecture and Mission Specification
for Unmanned Autonomous Vehicles. Proceedings Systems Engineering for Autonomous Systems
Defence Technology Centre Conference, Edinburgh, July 2006

37. EU Project TrustCoM, IST -2002-2.3.1.9-1945. http://www.eu-trustcom.com [accessed 30/05/06]
38. Keoh S-L, Lupu E., Sloman M.: PEACE: A Policy-based Establishment of Ad-hoc Communities.

Proceedings 20th Annual Computer Security Applications Conference (ACSAC), Tucson, Arizona, USA,
December, 2004, pp. 386 - 395.

39. Grandison T. and Sloman M.: Trust Management Tools for Internet Applications, Proceedings 1st Int’l
Conf. Trust Management, LNCS 2692, Springer-Verlag, 2003, pp. 91–107

40. Ponder2 Policy System. http://www.ponder2.net [accessed 06/11/06]

18

41. SAPHE: Smart and Aware Pervasive Healthcare Environment
http://ubimon.doc.ic.ac.uk/saphe/index.php?m=338 [accessed 06/11/06]

