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SUMMARY (200 words) 
 
Future e-Health systems will consist of low-power on-body wireless sensors attached to 
mobile users that interact with an ubiquitous computing environment to monitor the health 
and well being of patients in hospitals or at home.  Patients or health practitioners have very 
little technical computing expertise so these systems need to be self-configuring and self-
managing with little or no user input.  More importantly, they should adapt autonomously to 
changes resulting from user activity, device failure, and the addition or loss of services.  We 
propose the Self-Managed Cell (SMC) as an architectural pattern for all such types of 
ubiquitous computing applications and use an e-Health application in which on-body sensors 
are used to monitor a patient living in their home as an exemplar. We describe the services 
comprising the SMC and discuss cross-SMC interactions as well as the composition of SMCs 
into larger structures. 
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1 INTRODUCTION  
Numerous sensors have been developed for monitoring physiological parameters including 
pulse, heart-rate, body temperature, oxygen saturation, as well as behavioural parameters 
such as posture and gait [1-2]. Sensors are either wearable or implanted and communicate 
wirelessly between themselves and with more powerful wearable processing devices such as 
mobile-phones, PDAs, or diagnostic units, which can further interact with a fixed network 
infrastructure at home, in the hospital or in the street. There is considerable research on the 
design of new body sensors and measurement techniques, miniaturisation of existing sensors 
and the design of actuator devices such as drug pumps, bio-electrical and bio-mechanical 
devices [1-2]. There are numerous healthcare applications for these devices including post-
operative care (both in the hospital and at home), monitoring of conditions with episodic 
manifestations such as cardiac arrhythmia, management of chronic conditions such as 
diabetes mellitus, drug regime monitoring and assistance to elderly patients. The benefits to 
patients include early release from hospital and improved quality of life, constant monitoring 
of their clinical condition and well-being, as well as automated alerts and assistance from 
healthcare personnel when needed. The benefits for healthcare providers include a better 
service offered to patients, better understanding of the patient’s condition, reduced usage of 
hospital resources and better medical evidence data for the clinical condition and its 
treatment. Widespread, continuous monitoring of chronic conditions such as cardiac 
problems will enable medical researchers to accurately determine the conditions that lead to 
problems.  However, whilst the sensors and devices for e-Health are a reality today, the 
configuration and management of the multiple sensors and software components necessary 
for these applications still requires considerable technical computing expertise. 
 
Achieving the autonomic computing goal [3] of systems that are self-configuring, self-
healing, self-optimising and self-protecting is necessary for ubiquitous e-Health applications. 
However the challenge is greater than in traditional distributed systems because 
computational resources on sensors and mobile devices are scarce, the systems are 
heterogeneous and there is a constant need to adapt to change. A typical scenario for 
healthcare monitoring is based around a body-area network comprised of multiple sensors 
and actuators and one or more devices of higher computational capability such as a 
PDA/mobile phone or diagnostic devices. This body-area network may interact with a variety 
of other devices depending on its environment. In the home it may interact with servers for 
storage of medical data and more advanced diagnosis, with home control systems that adapt 
the home environment to the patients’ needs or with devices of healthcare personnel during 
home visits. In a hospital or GP clinic the body network may interact with other medical 
devices and may permit those devices to reconfigure its behaviour. In the street it may 
interact with contextual services or access remote services via cellular networks e.g., to 
request emergency assistance. Across all of these environments the body-area network needs 
to behave autonomously whilst continuously adapting its behaviour according to the patient’s 
clinical condition, the patient’s context and interactions with other devices. In short, there is a 
continuous need for self-management.  
 
Traditional network and system management offers a number of techniques for management 
and adaptation including monitoring, event dissemination and correlation, fault diagnosis, 
and policy-based control, which have often been applied in enterprise networks. However, in 
enterprise networks, these techniques are functionally integrated providing their results 
directly to a human systems administrator. This structuring is not suitable for pervasive 
environments where these systems must integrate locally, providing local feed-back control 
and adaptation without user intervention.  
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This paper presents  an alternative approach based on structuring the system into Self-
Managed Cells (SMCs). Each cell is autonomous and must facilitate easy addition or removal 
of components, cater for failed components and error prone sensors, and automatically adapt 
to the user’s current activity, environment, communication capability as well as interactions 
with other SMCs. Each cell will therefore need to implement a local feed-back control loop, 
and we leverage our previous experience with policy-based techniques in order to provide a 
flexible mechanism for driving adaptation decisions. An example of a SMC may be the set of 
sensors, actuators and other devices which form the body-area network for a patient, although 
more complex devices which manage internal resources may be SMCs in their own right. 
However, the set of systems available in a smart home or in a hospital also form a SMC and 
should exhibit autonomous behaviour. A hospital ward, operating theatre and the hospital 
itself should exhibit similar characteristics. It is therefore desirable to consider the SMC as an 
architectural pattern that can be tailored on instantiation and that can be applied at different 
levels of scale from body-area networks to large distributed systems. Although the SMC 
examples used in this paper are aimed at e-Health systems, similar arguments and structures 
can be defined for intelligent buildings, unmanned autonomous vehicles, intelligent 
transportation systems and many other applications.  
 
Section 2 describes the SMC architectural pattern and its main components, which are then 
presented in detail in Section 3. Section 4 discusses aspects relating to interactions across 
SMCs and composition of SMCs. Sections 5 and 6 present the related work and discuss the 
current status and outstanding issues.  

2 THE SELF-MANAGED CELL (SMC) 
A SMC manages a set of heterogeneous components such as those in a body-area network, a 
room or even a large-scale distributed application. Different interaction and transport 
protocols may be necessary in order to interact with each component. For example, 
interactions with sensors in our prototype occur via IEEE 802.15.4 wireless links whereas 
interactions with more complex devices such as PDAs, mobile phones or gumstixs1 typically 
occur over Bluetooth or WiFi.  The SMC must have a unified view for interacting with these 
components for management purposes and in particular provide a uniform interface for the 
invocation of management actions. Therefore, adapter objects are instantiated for interacting 
with each component upon their discovery.   
 
The SMC defines an architectural pattern that applies at different levels of scale from body-
area networks to larger distributed and enterprise systems. To this extent it must comprise 
services that whilst providing the same interface may have different implementations in 
different SMC instantiations. Since SMCs may need to scale up to larger systems, the set of 
services that constitute the SMC also needs to reflect the management requirements of these 
systems and needs to be dynamically extensible. As most management systems are event-
driven, we assume that SMCs consist of a set of services that interact using a common 
publish/subscribe event bus as shown in Figure 1. Although it is not necessary that all 
interactions be event-based, the use of an event bus confers several advantages. Firstly, it de-
couples the services since a sender does not need to know the recipients of an event, thus 
permitting the addition of new services to the SMC without disrupting the behaviour of 
existing ones. For example, a context service that gathers environment data may be added to 
mobile SMCs or an auditing service may be added to SMCs that require records to be kept of 
interactions that have occurred. Similarly, security services that perform anomaly detection, 
and support authentication and confidentiality as well as optimisation services which try to 
optimise performance according to a utility function could be added in more complex SMCs. 

                                                
1 http://www.gumstix.com 
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Secondly, an event bus allows multiple services to respond concurrently and independently to 
the same notifications with different actions. For example, when a new sensor is discovered a 
policy service may initiate its configuration whilst a diagnostic service would take into 
account the additional input received from that sensor. Finally, the event bus can be used for 
both management and application data such as alarms indicating that thresholds have been 
exceeded e.g., for heart-rate or oxygen saturation. More generally, an event-bus architecture 
is well suited to adaptive ubiquitous systems which are essentially event-driven as changes of 
state in resources need to be notified asynchronously to several, potentially unknown, 
recipients. An event may indicate discovery of a new component, component failure, change 
in context or medical condition e.g. ECG anomaly detected. We have developed a simple 
publish-subscribe event system supporting at-most-once persistent event delivery in which 
the service attempts to deliver the event until it knows that the subscriber is no longer a 
member of the SMC. Interactions between management components are typically event-
based in order to benefit from the extensibility they support. However, we do not insist that 
all interactions take place via the event bus and in particular interactions between application 
components can be based upon other communication paradigms such as simple point-to-point 
messages or remote invocations.  
   

 
Figure 1 The SMC Architectural Pattern 
Figure 1 represents the SMC architectural pattern with an extensible set of services 
communicating through the event bus as well as the management and control adapters to the 
managed resources. Although the set of services may change depending on the context in 
which the SMC is instantiated (e.g., body-area network, home control system, hospital), a 
number of services constitute the core functionality of the SMC and must always be present. 
These include the event bus, a discovery service and a policy service. In our current prototype 
these services are implemented in Java and run on either a PDA or a gumstix device.    
 
The discovery service is used to discover nearby components which are capable of becoming 
members of the SMC e.g. intelligent sensors, and other SMCs when they come into 
communication range. It interrogates the new devices to establish a profile describing the 
services they offer and then generates an event describing the addition of the new device for 
other SMC components to use as appropriate. It also maintains a list of known devices as we 
have to cater for mobile wireless components which may wander in and out of 
communications range and distinguish this from permanent departure from the cell.  
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Figure 2 Policy-based feed-back loop 
The SMC’s adaptation strategy for self-management is achieved through a policy service that 
implements a basic feed-back control loop. As shown in Figure 2 changes of state in 
managed objects are disseminated in the form of events through the event-bus. The policy 
service performs reconfiguration actions and caters for two-types of policies: obligation 
policies (event-condition-action rules) that define which configuration actions must be 
performed in response to events and authorisation policies that specify which actions are 
permitted on which resources or devices. Policies can be added, removed, enabled and 
disabled to change the behaviour of cell components without code modifications and may 
also be used to enable or disable other policies. For example the following policies could be 
specified for a body-area network of sensors monitoring the recovery of a patient with a 
cardiac condition:  
 

1. on hr(level) do  
       if level > 100 then  

/os.setfreq(10min); /os.setMinVal(80) 
 

2. on context(activity) do  
            if activity == “running” then 
              /policies/normal.disable(); /policies/active.enable() 

 
3.  auth+ /patient →  /os.{setfreq, setMinVal, stop, start} 
4.  auth+ /patient →  /policies.{load, delete, enable, disable} 

 
Policy 1 is triggered by a heart rate (hr) event as measured by a heart rate sensor and sets the 
frequency for monitoring oxygen saturation (os) as well as new thresholds for the generation 
of events from these measurements. When the heart rate is above 100 the oxygen saturation 
should be checked every 10 minutes and an alarm should be generated if the value is below 
80. Policy 2 assumes the existence of a context sensor notifying the SMC of the patient’s 
current activity. When the patient is running the heart-rate may increase naturally so policies 
applying to the normal mode of operation should be disabled and policies specific to 
strenuous physical activity should be enabled. Policies 3 and 4 are the required authorisations 
to permit management of the oxygen saturation monitor and of the policies themselves.  
 
Based on the lessons learnt from our previous work on policy specification [4] [5] we have 
developed a new light-weight policy service appropriate for limited-resource devices. Both 
the discovery service and the policy service are described in more detail in Section 3. The 
implementation of the policy service is also available in open source form at: 
http://www.ponder2.net.  
 
The policies defined above are specified upon the instantiation of the SMC at a time when an 
oxygen saturation sensor may not exist. Policies are specified in terms of roles which act as 
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placeholders for components within the SMC. Roles are associated with interfaces, which 
define the methods that components must provide and events that those components can raise 
or that can be sent to them. This allows policies to be written in terms of the actions and 
events on those interfaces. When a new device, a sensor or another SMC, is discovered, it can 
be dynamically assigned to a role and policies defined for that role would apply to those 
devices. Several devices may be assigned to the same role and any policy actions would then 
be performed on all the devices associated with that role. We use the term mission for the set 
of policies relating to a role which is loaded onto a remote SMC that is capable of 
interpreting them, as explained in section 4. Figure 3 indicates typical roles for a Patient 
SMC.  Sensors such as heart and temperature sensors monitor the physiological condition of 
the patient while context sensors report on the patient’s current activity. This is necessary in 
order to avoid mistaking an increased heart rate due to physical activity for the symptoms of 
an impending heart attack. The Nurse role will allow interactions with a nurse’s SMC as 
explained in section 4.   
 

 
Figure 3 Patient SMC Roles 

3 THE SMC ARCHITECTURE SERVICES 

3.1 The Discovery Service 
The discovery service is responsible for detecting new devices or other SMCs when they 
come into communication range. It is responsible for maintaining the membership of the 
SMC and informs the other services when devices have joined or permanently left the SMC 
by generating the component-detected and component-left events as shown in Figure 4. The 
discovery service is designed to mask transient disconnections from the SMC. Because the 
discovery service determines when a component has joined the SMC, it also carries out any 
admission control (vetting) for accepting the device in the SMC based on the device’s profile 
and any authentication information available. By making the discovery service policy-driven, 
it can easily be adapted to different applications. 
 
We have implemented a simple device discovery service for our e-Health testbed which can 
run on a PDA, a gumstick or a mobile phone. Although a number of protocols for service 
discovery already exist [22] we needed an implementation that can scale down to the body 
sensor nodes (BSN)2  that we are using and possessed the flexibility to customise the 
discovery service through policies. The discovery service broadcasts its identity message (id; 
type[; extra]) at frequency ωR. This enables the SMC to advertise itself to both devices and 
other SMCs, enables current SMC members to determine that they are still within reach of 
the SMC and avoids having the discovery service in listening mode at all times to detect 
advertisements from new devices. A new device responds to the identity message with a 
unicast device identity message. The discovery service can then query the device to obtain a 

                                                
2 These body sensor nodes (BSNs) were developed in the DTI Ubimon project (see http://www.ubimon.org). 
They have very low-power 16-bit processors, 64 KB RAM, 256KB Flash memory, 6 analog channels for 
sensors and communicate using IEEE 802.15.4 radio. These sensors may need to survive for long periods of 
time without battery replacement.  
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device profile, performs vetting procedures if required, informs the device whether it has 
been accepted for membership, and if so generates a component-detected event which results 
in the device being registered and classified in the policy interpreter’s domain structure (see 
section 3.3) with a device specific adapter being created for that device (see Figure 4). 
 
Each existing member device unicasts its identity message to the discovery service at the 
frequency ωD.  If the discovery service misses nD successive messages from a particular 
device, it concludes that the device has left the SMC permanently, and generates a 
corresponding component-left event. This event will trigger the removal of any notifications 
addressed to that device from the event service and the removal of any adapters and role 
references corresponding to that device in the policy service.  
 
Once a device joins a SMC, it will not respond to discovery service broadcasts from other 
SMCs for as long as its membership in the SMC lasts. Membership can be terminated either 
by the device itself, the SMC (e.g., by performing a reset of the device) or if the device 
misses nR successive identity broadcasts from the discovery service of the SMC to which it is 
bound. Healthcare scenarios often also require a more permanent form of membership. A 
health monitoring sensor should not decide that it has left the SMC because there is a 
problem with the discovery service and then join the SMC of the person sitting next to the 
patient on the bus.  One approach is to use pairing through physical contact or explicit actions 
(e.g., as with simple Bluetooth devices) in order to set-up more permanent associations. We 
are investigating other more secure techniques in the Caregrid project [7].  

3.2 The event bus 
Events are a critical aspect of the SMC as they trigger policies that adapt the SMC’s 
behaviour.  However, as stated previously, not all interactions need to occur via the event 
bus.  The event bus has been implemented as an at-most-once, persistent publish/subscribe 
delivery service, using a router to distribute events to subscribers [9]. The router supports 
content-based subscriptions. Subscribers register to receive notifications of event occurrences 
and specify a filter, which is matched against the events received by the router. All events 
that match the filter are forwarded to that subscriber. In the current implementation, 
publishers do not need to register with the event router, thereby allowing simple sensors to 
send notifications directly without additional registration overhead. However, this has 
disadvantages as it would be desirable to inform publishers with no current subscriptions that 
they do not need to send notifications, thereby enabling them to save power. This feature, 
also known as quenching (e.g. in Elvin [10]) is planned for future revisions of the 
implementation. 
 
The event bus (Figure 4) must guarantee reliable delivery of events since the events are used 
to trigger adaptation and re-configuration actions and this is also required by medical 
applications. Furthermore, it must guarantee that messages from the same publisher will be 
delivered to the subscriber in the same order as they have been received by the router. This is 
required as events from the same publisher may be causally related. To achieve this, all 
messages (including subscription messages) are acknowledged when received by the router 
or the subscribers. The event router maintains proxy objects for all publishers and subscribers 
connected to the bus. These proxies fulfil two functions: firstly they buffer events that have 
not yet been received by subscribers, and secondly they adapt to the specific communication 
protocols used by publishers and subscribers. For example, body sensor nodes communicate 
via basic messaging over 802.15.4 whereas gumstixs and PDAs may communicate using 
datagram protocols over Bluetooth. Buffering of events is necessary in order to mask 
transient communication failures.  
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Figure 4 Event Service Architecture 
As shown in Figure 4 when the event bus receives notification that a new component has 
been added to the SMC, it instantiates a proxy for that device. The type of proxy to be 
instantiated is determined according to the device profile as established previously by the 
discovery service. Event occurrences are then notified to the router. Successful delivery of an 
event to the router causes that event to be delivered to the proxies whose filters match the 
event. Each proxy maintains a FIFO queue of events and attempts to deliver the event at the 
head of the queue periodically until it is successful or it learns that the device is no longer a 
member of the SMC. If the router receives a component-left event (from the discovery 
service), it removes that subscriber’s filters and deletes the proxy for that subscriber; the 
destructor for the proxy purges any events in its FIFO queue. 
 

3.3 The Policy Service 
We have had considerable experience with the use of policies as a means of specifying 
adaptive behaviour in network management and other applications.   The use of interpreted 
policies means they can be easily changed without shutting down or recoding components.  
The policy service maintains adapter objects for each of the components on which 
management actions can be performed. This includes the sensors and other devices present 
within the SMC, services within those devices and remote SMCs. These adapter objects (also 
called managed objects) are grouped in a domain structure that implements a hierarchical 
namespace e.g., similar to a file system.  However, unlike in a file system, domains may 
overlap and a managed object may belong to several domains. Domains, policies and roles 
are managed objects in their own right on which actions can be performed e.g., 
adding/removing an object from a domain, enabling or disabling a policy. Consequently, 
events can trigger obligation policies (ECA rules) that can enable or disable other policies 
and change domains and domain membership [6]. In essence, domains are a means of 
classifying and grouping the managed objects in a hierarchy and permit them to be addressed 
using simple path expressions. 
 
We are concerned primarily with two types of policies: authorisation policies that define 
which actions are permitted under given circumstances and obligation policies that define 
which actions should be performed in response to an event occurring if specific conditions 
are fulfilled (event-condition-action rules). Authorisation policies should be enforced on the 
target components they are protecting as these must make the decision whether to permit or 
deny access. For example a policy of the form:  
 
     auth+  /sensors/temperature →  /pda.reportTemp  

 
would be needed to permit temperature sensors to perform the reportTemp operation on the 
pda.  Obligation policies are implemented by the policy service or loaded into a remote 
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policy service as part of a mission. For example, the following policy specifies that the 
oxygen saturation sensor should be activated when the heart-rate is above 100.  
 
      on heartrate(hr) do if hr > 100 then /sensors/os.activate()  
 
When an obligation policy is created in the policy service, an event subscription for that 
event is sent to the event bus. Upon receiving a notification, the policy service evaluates all 
the obligation policies triggered by that event.  
 

 
Figure 5 Policy Service: Example Domain Structure and Overall Architecture 
The policy service has been implemented with particular focus on flexibility and the ability to 
load all the code needed on-demand. This enables us to use it across a wide variety of 
applications and devices with different capabilities by only loading those components which 
are necessary in each case.  When started, the policy service has a reference to its root 
domain and only recognizes the import command that can load new classes. Typically, the 
classes loaded are factories that permit the creation of new objects in domains and the first 
class to be loaded is the factory for the domain objects themselves (Figure 5). This enables 
the policy service to create new domain objects to form a hierarchy of domains under the root 
domain. Additional, factory objects are then loaded in order to communicate with the event 
bus, create policies and create adapters for the various sensors and devices in the SMC. The 
event factory is specific to the event bus and encapsulates the protocols necessary to 
communicate with it. However, multiple event factory objects can be created, allowing the 
policy service to connect to different event buses with different underlying protocols e.g. 
XMLBlaster. Similarly, new types of policies e.g., delegation, filtering, etc. can be defined by 
providing and dynamically loading the corresponding factory.  The bsn factory object (shown 
in Figure 5a) encapsulates the code for interacting with a BSN sensor node using IEEE 
802.15.4 radio. Specific factories can then be defined for each of the different types of BSN 
sensors in use eg. hr sensor for heart-rate monitoring which uses the basic bsn adapter for 
interaction with BSN nodes. The same principle has been used in other application areas to 
use Java RMI and SOAP to interact with remote services. When a component-detected event 
appears on the event bus policies determine which factory is used to create the adapter object 
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and in which domain the object will be placed. Other policies specified for that domain will 
then automatically apply to the new component, for example:   
 

on component_detected(id, profile, addr) do 
   if profile == “heart rate” then 
               r = /fact/hr.create(profile, addr);   /sensors.add(r) 

 
If the component is another SMC a similar policy will subsequently select the appropriate 
mission and load it in the remote SMC. This operation returns a reference to the remote 
mission, which is placed within the adapter object for the remote SMC as explained below. 
Figure 5a also shows the other elements of a typical domain structure within a Ponder2 policy 
service [40]. These include the policies domain in which by default all obligation policies are 
stored and domains corresponding to the SMC roles such as the nurse domain. 
 
As shown in Figure 5b the overall architecture of the policy service comprises the domain 
structure, the table matching obligation policies to events and the execution invocation engine 
which is used to make the calls to the objects inside the domain structure. Conceptually the 
policy service has an event interface through which event notifications are received, an 
invocation interface through which external invocations are received (e.g., to load a mision) 
and an action interface through which calls are made to external objects.  
 

4 INTERACTIONS BETWEEN SELF MANAGED CELLS 
The components described in the previous section define a basic SMC that can discover and 
manage simple sensors and devices. To scale the SMC architectural pattern to larger systems 
there is a need to cater for cases in which managed resources are themselves SMCs and to 
provide techniques for composing SMCs.  Even in a body-area network for health monitoring 
some sensors may permit a constrained form of programming in terms of policies or more 
complex diagnostic devices may be SMCs in their own right managing their own resources. 
Two basic types of interactions are of interest to us: composition and peer-to-peer 
interactions.  
 
Composition interactions occur when a managed resource or device within an SMC is itself 
an SMC with its own resources and devices. This implies that the device can itself be 
programmed by the containing SMC in terms of policies that it must enforce. Moreover, the 
device may expose to its containing SMC a management interface for re-configuration. For 
example a diagnostic device may be part of a body-area network SMC and will allow that 
SMC to load new decision algorithms and new policies into it. Composition also implies that 
the contained SMC ceases to advertise itself independently but will rely on the containing 
SMC to bind it with other devices and SMCs with which it needs to interact. Only the 
containing SMC will have access to its management interface.  
 
Peer-to-peer interactions occur for example when a nurse or other health worker visits the 
patient at home. The nurse would typically have her own PDA and medical devices that need 
to interact with the body-area network monitoring the health of the patient. In particular the 
nurse SMC might need to be notified of events occurring within the patient SMC, and may 
need to load policies for execution by the patient e.g., for defining new thresholds or alert 
behaviour. Similarly when discovering the presence of the nurse SMC the patient SMC may 
need to load policies onto the nurse SMC to trigger re-calibration of the patient sensors if 
needed. This avoids the requirement for the nurse PDA to store calibration procedures for all 
possible patient sensors. Peer-to-peer interactions are not necessarily between “peers” at the 
same level of abstraction.  For example, a medical monitoring service may use a wireless 
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communication service as well as a storage area network for storing large quantities of 
monitored data in a layered interaction style. 
 
A mission defines the requirements of one SMC for interacting with another. It is a group of 
policies which define the duties of the remote SMC in terms of the obligation policies it must 
enforce. These obligation policies are written in terms of the mission interfaces for each 
SMC. Mission interfaces specify: 
 

• Events – these are events that are available to the loaded mission and can trigger the 
mission’s policies.  Typical examples of such events are local timers or events from 
the SMC hardware, as well events from remote SMCs. 

• Notifications – these are events that the mission can raise within either the local 
SMC in which it has been loaded or the remote SMC.  

• Local actions – that may be invoked by the mission’s policies in the SMC in which 
it has been loaded. These may be actions on local resources such as hardware 
sensors or actuators. 

• Remote actions – that may be invoked by the mission’s policies either when the 
mission is running locally or in a remote SMC.  

 
The events and actions specified in the mission interfaces define a scope for specifying 
mission policies.   The concept of a mission and mission interface is common to both 
composition and peer-to-peer interactions, although a mission interface for peer-to-peer 
interactions is likely to be more limited in the range of actions and events defined compared 
to that available to a containing SMC.   In both cases, authorisation policies are needed to 
specify which SMCs are permitted to load a mission, invoke remote actions and subscribe to 
receive events. 
 

 
Figure 6 Missions across SMCs 
When an SMC discovers a new SMC with which it wants to collaborate, it will first assign 
that SMC to the corresponding role in its structure and will instantiate the required missions 
at the remote SMC. A reference to the remote mission will be kept as part of that SMCs role. 
For example, as shown in Figure 6, when the nurse SMC discovers the patient’s body-area 
network SMC it  instantiates a patient mission on the patient’s SMC if permitted by the latter. 
Similarly, upon discovery of the nurse SMC the patient may instantiate at the nurse a mission 
defining the policies it expects the nurse to fulfil, if permitted. Note that it is not necessary 
that both missions are initiated. In many cases of composition only the external SMC will 
instantiate a mission in the managed SMC but not vice-versa. 
 
The Patient mission loaded by the nurse into the patient relies on the following interfaces 
(Figure 7): the Nurse SMC must expose actions for storing monitoring data and displaying an 
ECG as well as the ability to be notified that the ECG is currently in progress. The patient 
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generates the events notifying: (1) that the mission has been loaded, (2) the heart rate (hr) 
value and (3) endECG() to notify that the recording has finished. It also must provide the 
actions needed to read the recording logs, raise a timer event and read the ECG data.   
  

 
Figure 7 Mission Invocations 
The mission specification is parameterised by the Nurse and Patient interfaces (nurse and 
patient) as shown below:  
 

 mission patientT(nurse, patient, ECGlevel, ECGTime ) do  
     1.   on patient.mloaded() do  

    nurse.store(patient.readlog()) 
     2.   on patient.hr(level) do  
                  if level > ECGlevel then 

                   patient.startECG() 
   patient.timer(ECGTime, endECG()) 
                          nurse.ecgOn()  

3.   on patient.endECG() do  
   nurse.display(patient.readECG()) 

    
 
The patient’s SMC generates a mloaded() event after the mission has been successfully 
loaded.  This triggers Policy 1 to read the patient’s data logs and then to store them in the 
nurse SMC. Policy 2 is triggered by heart rate events generated by the patient’s SMC. It 
specifies that if the heart rate becomes greater than ECGLevel an ECG should be started on 
the patient SMC for the duration ECGTime. The timer action requests the patient SMC to 
generate the endECG event after ECGTime has elapsed. The ecgOn event informs the nurse 
that the ECG reading has started. Note that ECGTimer and ECGLevel are parameters that are 
provided to the mission upon instantiation as they may be specific to the patient being visited. 
Policy 3 specifies that when the ECG is finished it must be read from the patient’s SMC and 
displayed on the nurse’s SMC. The mission is instantiated at the patient’s SMC by the nurse 
who provides the references to the SMC instances along with the values for ECGTimer and 
ECGLevel. Thus the nurse SMC would typically have an obligation policy to trigger the 
instantiation:  
 

on newPatient(p) do  
ref = p.loadMission(/patients.interface, p.interface, 82, 40);  /roles[p].add(ref) 

 
Authorisation policies are needed in both SMC’s to permit the actions to be invoked. In the 
nurse’s SMC the following authorisations are needed:  
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 auth+ /patient → /nurse.store 
 auth+ /patient → /nurse.displayECG  

 
In the patient’s SMC the following authorisation policy is needed:  
 
  auth+ /nurse  → /patient.loadMission 
 
It is assumed that authorisation policies are not needed for local actions performed as part of 
the mission. Actions to load, remove, enable and disable missions are provided in the 
management interface of all SMCs. The ability to load policies into a remote SMC facilitates 
customization of interactions between SMCs and permits to dynamically program the 
behaviour of a contained SMC. However, this implies that the receiving SMC is able to 
verify the received policies in terms of their format, semantics and conflicts with other 
policies before accepting them. The design and implementation of this verification process 
remains to be investigated.  
 

5 RELATED WORK 
IBM has been the prime mover towards autonomic computing [3] and HP is also addressing 
similar issues in on-demand Utility Data Centres [11]. However most of the industrial work 
focuses on large clusters and web servers whereas we are concentrating on pervasive 
computing which is potentially more dynamic due to the mobility of components.  The 
Universal Plug and Play (UPnP) Architecture supports resource discovery and configuration 
of consumer devices (TV, video recorder, air conditioning etc.), which communicate via 
wireless within a home or office [8].  It concentrates on device configuration rather than 
configuration of software within nodes and does not support the adaptability required for 
healing, optimising or protecting. 
 
There are a number of pervasive systems projects that define frameworks for realising 
pervasive spaces [14,15]. By and large these projects tend to focus on spaces of relatively 
fixed size such as a room or a house and tend to focus on specific concerns such as context-
related applications, user presence and intent or foraging for computational resources. 
Although they recognise the federation and composition of spaces as a main concern, little 
work has been done in that direction. In contrast, we consider an architectural pattern at 
different scales and focus on generic adaptation mechanisms (i.e., through policies). Cross-
SMC interactions are a basic feature for our model although further elaboration is needed. 
 
There are many discovery services for both fixed and ad-hoc networks including UPnP [8], 
SLP [17], Jini [18], SDP [19], Zeroconf [20], Konark [21],  DEAPspace [16] – a recent 
survey and taxonomy of service discovery can be found in [22]. These protocols vary 
substantially in their infrastructure (directory based vs. directory less), language dependence 
and transport protocol dependence. Some of them provide membership management whilst 
others focus on providing device reconfiguration functionality. We needed a very simple 
protocol that could be easily implemented on simple sensors such as BSN nodes or even 
simpler and that could be policy driven so that different actions can be taken when devices 
are discovered based on the policy specification. We have therefore implemented the protocol 
described in this paper. However other protocols could be used in different applications in 
conjunction with the policy service instead.  
 
There are many publish-subscribe event services such as Elvin [10], XMLBlaster [12], 
Gryphon [23,24], JMS [25] and Sienna [13]; unfortunately, none of these routers are 
designed to run on small devices such as body sensor nodes (BSNs) and PDAs. After 
experimenting with several, including Elvin, XMLBlaster and Sienna, we have implemented 
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our own service for use with the body-area network of BSN sensor nodes. However, in 
different applications that are less restricted in power consumption and computational 
capabilities we have also used the policy service in conjunction with XMLBlaster, Siena and 
others. As explained in Section 3.3 the policy service can use different event services 
simultaneously through different adaptors and act as a gateway between them.  
 
Work on policy-driven systems has been going on for over a decade in various application 
areas. Traditional approaches rooted in network and systems management include PCIM 
[27], PDL [26], NGOSS Policy [Error! Reference source not found.], Ponder [4] and 
PMAC [29]. They have a common base in the use of event-condition-action rules for 
adaptation but are aimed at the management of distributed systems and network elements and 
do not scale down to implementations on small devices and sensors. Other approaches have 
been aimed at interactions between distributed agents and include LGI [30], KAoS [31], and 
Rei [32] although they all have a slightly different focus. LGI policies use a simple Prolog 
notation to specify the actions that agents must undertake upon the receipt or sending of 
messages. It assumes that policies are interpreted by trusted controllers at each agent’s site. 
KaOS is a collection of component-based agent services developed to support mobile agents 
and subsequently extended for grid computing and Web Services environments. Policy 
specification takes an ontology based approach and policies are represented using the DAML  
notation [33]. Rei, like KAoS follows an ontology approach to policy representation 
although, like in LGI, policies can be specified in a simpler Prolog-based notation. The 
enforcement is based on a decision engine that uses deductive reasoning to infer the rights 
and obligations of objects in the managed system in response to requests that specify the 
current state of the system. Finally a number of approaches such as XACML [34] focus on 
authorisation policies alone. Our approach is based on our experience with the design and 
implementation of the Ponder system but is intended to cater for simple pervasive computing 
devices as well as larger distributed systems.         
 

6 CURRENT STATUS AND FUTURE WORK 
 
We have built implementations of the core SMC services including the event service, the 
discovery service and the policy service [40] which run on both PDAs and gumstix devices. 
We have also implemented the client side of the service discovery protocol and adapter 
objects for interacting with BSN nodes that can currently host a variety of sensors for 
temperature, acceleration, heart-rate monitoring and oxygen saturation. A simple version of 
the policy service also runs on BSN nodes. This has enabled us to build concrete 
demonstrators in which sensors can be discovered and configured by the SMC dynamically 
and policies can be changed dynamically and applied automatically to the devices. Although 
the underlying XML-based policy service and protocols for federating and exchanging 
policies between SMCs already exists, the higher-level language model supporting mission 
specifications and remote instantiation of mission specifications is in the process of being 
implemented. We intend to demonstrate SMC federation between “smart-devices” – 
themselves SMCs – and body-area networks as well as between a home network and a body-
area network.  
 
Cross SMC interactions also require further work. Although the concept of mission enables 
us to deploy sets of policies (missions) to remote SMCs, further work is needed to define 
more complex SMC-based structures which recursively compose. This will be necessary in 
order to apply the SMC paradigm to larger configurations such as sensor networks or 
autonomous fleets of unmanned vehicles undertaking complex missions such as search and 
rescue. Further work is also needed on the composition of SMCs and interactions between 
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SMCs at different layers of abstraction. A SMC should be able to expose an abstract interface 
realised by aggregating the functionality of its resources and needs to fulfil abstract goals that 
it must refine and achieve in terms of its resources and interactions with other SMCs. This 
requires techniques such as planning and policy-refinement. Although we have previously 
worked on policy refinement [35], these techniques require significant computational 
resources and work is needed to scale these approaches down to PDA-like devices.        
 
In order to evaluate the applicability of the SMC as an architectural pattern in different 
contexts we are in the process of developing solutions based on the SMC architecture for 
both unmanned autonomous vehicles [36] and large scale distributed systems in the form of 
Virtual Organisations [37]. In the latter case the policy-service has been used in a large 
collaborative project developing a framework for Virtual Organisations, which provides 
service composition based on Web-services in conjuction with different discovery services 
and using different invocation paradigms e.g., SOAP, WSRF/WSDM. Policies are used 
within this context in order to change configurations on the virtualisation points of services 
and to specify how the virtual organisation should react to changes in membership, violation 
of service level agreement parameters and changes in the reputation and reliability of 
participants.  
 
The work presented in this paper focuses on the adaptive systems infrastructure, the use and 
the implementation of the SMC architectural pattern. Patient trials to determine user 
acceptance of healthcare monitoring, what sort of feedback to users is required, performance 
in real environments, the issues related to interaction between social workers and healthcare 
personnel in the use of sensor-based home monitoring, as well as the business processes 
related to the commercial infrastructure, are being addressed in the DTI funded Saphe project 
[41].   
 
There is a wide range of security and trust issues to be addressed particularly for health-based 
applications. Traditional aspects of authentication and access control are challenging because 
devices have limited capabilities for cryptographic operations or evaluation of complex 
access control policies. The issuing and verification of credentials is difficult to achieve 
computationally but SMCs still need to interact with other devices and SMCs with which 
they share no previous knowledge or key material. Additionally, in health-based scenarios 
there is a constant need to adapt the trade-off between protection, patient privacy and access 
to services depending on current context. For example, in an emergency situation having 
access to the monitored data is of paramount importance but the SMC may not have access to 
a networked infrastructure to decide that the person attending is a genuine health-care 
professional. Similarly, medical information is exchanged between SMC devices across 
wireless links that can be trusted to different extents. Issues of trust are therefore particularly 
important as security decisions have to be taken with very limited or no user intervention 
based on limited information and according to current context. Information relating to trust, 
recommendations, reputation and experience of previous interactions with the other party are 
likely to contribute to the decision. Although, we have started working on these issues 
[38,39] further work is ongoing within the CareGrid project [7].  

7 CONCLUSIONS 
 
We have proposed the SMC structure as a basic architectural pattern that aims to provide 
local feed-back control and autonomy and advocated the realisation of more complex systems 
through the composition and peer-to-peer interactions between SMCs. Our particular focus is 
on health-care monitoring as this provides a wide range of benefits to the public at large 
whilst presenting numerous challenges in terms of both SMC functioning and interactions. 
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However, we are also working towards applying the SMC architecture in other scenarios and 
thus demonstrating its wider applicability.  
 
The use of the event-bus as the primary means of exchanging management information de-
couples architectural components and provides the basis for extending the functionality of the 
SMC by adding additional services (e.g., context, accounting) as well as scaling the SMC to 
larger numbers of managed resources by using alternative implementations of the SMCs 
services. For example we are experimenting with different event buses such as XML Blaster 
and Siena for larger distributed systems and our own for body-area networks. 
  
Policies, in particular in the form of event-condition-action rules, provide a simple and 
effective encoding of the adaptation strategy required in response to changes of context or 
changes in requirements. The ability to dynamically load, enable and disable the policies 
together with the ability to use policies in order to manage policies caters for a wide variety 
of application needs. However, this also raises a number of issues to be addressed: (i) how to 
verify dynamically loaded policies to determine their acceptability? (ii) how to structure large 
sets of policies in terms of meaningful higher level abstractions? Whilst the concept of 
missions introduced in this paper attempts to provide an initial answer to the latter, it needs to 
be further refined to cater for more complex configurations. Although a spectrum of 
techniques can be used for verification of dynamically loaded policies ranging from simple 
authorisation to conflict analysis and sandboxing, further work is needed to determine how 
these techniques can be used in conjunction with one another and in which circumstances. 
Event-condition-action rules can express most desired behaviours and the temptation is often 
strong to use the obligation policies as a general programming paradigm. However, this leads 
to programs that are awkward to write and difficult to maintain as it is difficult to keep track 
of the propagation of information between functions through events. Policies should be used 
for encoding the “strategy” for adaptation i.e., which adaptation actions to perform, not the 
actions themselves.  
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