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Abstract—Firewalls remain the main perimeter security pro-
tection for corporate networks. However, network size and com-
plexity make firewall configuration and maintenance notoriously
difficult. Tools are needed to analyse firewall configurations
for errors, to verify that they correctly implement security
requirements and to generate configurations from higher-level
requirements. In this paper we extend our previous work on
the use of formal argumentation and preference reasoning for
firewall policy analysis and develop means to automatically
generate firewall policies from higher-level requirements. This
permits both analysis and generation to be done within the same
framework, thus accommodating a wide variety of scenarios for
authoring and maintaining firewall configurations. We validate
our approach by applying it to both examples from the literature
and real firewall configurations of moderate size (≈ 150 rules).

I. INTRODUCTION

Despite numerous developments in intrusion detection, ap-
plication level traffic filtering and other network security tech-
niques, firewalls remain the main perimeter protection tech-
nique for many corporate or academic organisations. In their
most common occurrence firewalls are configured through an
ordered set of rules specifying which types of traffic should
be permitted or denied based on IP header information. As
a wide variety of protocols need to be accommodated and
as corporate networks have grown, the number of rules in a
typical firewall configuration has been steadily growing.

Based on data collected between 2000 and 2001, Wool
reported [1] average configurations of 144 rules (including
rules for Network Address Translation), and reaching into
their thousands. At these sizes firewall configurations become
difficult to specify and to maintain without adequate tool
support. Beyond the size of the rule set, maintenance is
difficult because changes are more frequently required and are
made by different administrators. Consequently, it becomes
increasingly difficult to predict the effect of specific changes,
such as adding or removing a rule, to determine to what extent
the rule set implements the organisation’s security policies
and preserves desired security properties, and to maintain
a coherent strategy for organising such rule-sets. Errors in
firewall configurations have therefore become increasingly
frequent [1], [2], span a broader range [3] and are likely
even when experienced administrators are responsible for their
specification [3].

A firewall implements a significant subset of an organisa-
tion’s security requirements as stated in its security policy.
Consequently, firewall configurations comprise rules derived
from this high-level security policy. Tools that can derive
firewall configuration rules from higher-level, abstract spec-
ifications reduce the burden on the administrator, the size
and complexity of the specification and the amount of in-
terpretation necessary to implement the security policy. The
process is therefore not only less cumbersome but also less
error prone. Because firewall configuration rules implement
the organisational security policy, they are often called firewall

policies, or policies for short. We will therefore use the terms
high-level policy when referring to more abstract, higher level
specifications and firewall policies or rules when referring to
the firewall configuration rules.

Figure 1 shows an example presented in [4] where a firewall
is used to protect hosts in an enterprise network (acme.com)
from malicious network traffic together with the set of rules
that control the behaviour of the firewall. In this example,
the default security requirement of blocking all traffic is im-
plemented by rules 8 and 11. To implement acme.com’s high-
level policy, ‘allow FTP connections from all hosts in the coy-

ote.com network except for the host called tricky.coyote.com’,
the network administrator must identify the hosts and networks
involved and correctly position new rules in the firewall policy
set. In this case, the requirement is implemented by rules 5 and
6. However, if the administrator had inverted the order of these
rules, the effect would have been to allow FTP connections
from all hosts in the coyote.com network including the host
tricky.coyote.com.

Although a number of tools and techniques for firewall
analysis exist (briefly reviewed in Section II), their ability to
generate firewall rules from higher-level specifications remains
limited; a particular challenge being the ability to generate a
correct rule ordering. The reverse engineering of firewall rules
into higher-level specifications that ignore rule ordering seems
to have been comparatively more successful [5].

Firewall policy analysis is a broad term which usually cov-
ers checking for deployment-independent anomalies that occur
regardless of the network topology or the high-level security
requirements, checking for deployment-specific anomalies that
are specific to the network deployment, the desired security
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Fig. 1. Example firewall configuration [4]

properties or both. Firewall policy generation entails defining
a notation for high-level security requirements, a formal proce-
dure for deriving firewall rules as well as deriving the ordering
of those rules in the configuration. Ordering is required to
define relative rule precedence for overlapping rules, but may
also be influenced by other factors such as performance and
traffic profiles for non-overlapping rules.

Although different techniques for firewall analysis have
been proposed, we favour a logic-based approach because
the analysis process can be traced to logical derivations that
can be explained to the user, and because several modes of
reasoning including both deductive and abductive derivations
can be conducted. This enables checking specifications against
a wider set of properties including both the high-level security
requirements of the organisation and the absence of anomalies
identified in the literature. However, classical logic-based tech-
niques are difficult to use for this purpose because reasoning
must occur not only on the rules themselves but also on their
relative priorities. Generating a firewall rule-set from policy
requirements entails generating the ordering (i.e., priorities)
between the rules and this represents a significant challenge.
In this paper we show how this challenge can be overcome and
how a logic based framework was used to generate anomaly

free firewall configurations (including the rule ordering) for
firewalls with approximately 150 rules.

This paper is structured as follows: Section II presents
related work on firewall configuration and analysis; Section III
describes the logic representation of the firewall rules and
argumentation primitives used in subsequent sections; Sec-
tion IV describes the generation of firewall rules; Section V
describes how our firewall configuration framework might be
used in practice whilst Section VI describes our evaluation
results. We present our conclusions and directions for future
work in Section VII.

II. RELATED WORK

A reasonably large array of techniques have been proposed
for the analysis of firewall configurations including techniques
based on testing [6], dedicated algorithms [7], [4], [8], [9],

binary decision diagrams [10], model-checking [11], constraint
logic programming [12], [13], and logic-programming with
priorities [14].

Guttman [7] proposes an algorithm that addresses the lo-
calisation problem, by deriving local postures that correctly
enforce the global policies. Postures represent the policy de-
cisions at inbound or outbound interface of routers. However,
the rules considered are declarative and the algorithm does not
address issues of ordering between the rules, which we seek
to address in our work.

Hazelhurst [10] advocates the use of binary decision dia-
grams (BDD’s) to represent a rule-set as a Boolean expression
and proposes a collection of algorithms for the analysis and
validation of firewall rule-sets. Fang [8] is a firewall analysis
engine based on the combination of a graph algorithm and
a rule-set simulator. Fang parses relevant configuration files
from all packet filtering routers on the network after reading
a topology configuration file (created by the user in a subset
of Firmato’s MDL language [15]). It then allows the user to
query the firewall policy with questions like can host A contact

host B using service C?

Wool [9] improves on the Fang system with the Lumeta
Firewall Analyser. This tool simulates and analyses the secu-
rity policy implemented in the firewall. The user no longer
needs to create a topology configuration file since this is
retrieved automatically using the firewall’s routing table infor-
mation. Lumeta provides built-in queries since it was found
that during testing the users did not know which queries to
issue in order to elicit pertinent information.

Bartal et al. developed the Firmato system [15], which
separates the security policy design from specific firewall
vendors’ low-level rules. This is achieved using a high-level
language to define and analyse the policy that is subsequently
mapped to the firewall rule-set. Firmato separates the security
policy design from the network topology and includes a rule
illustrator which allows a graphical representation of the rule-
set.

Eronen and Zitting [12] developed a tool for analysing
firewall rules based on constraint logic programming (CLP)



techniques. They highlight two problems: (i) the need to
express the high-level security policy in the firewall’s low-
level language and (ii) the need to analyse what a set of
firewall rules actually does. The authors found that by using
logic programming and a generic inference engine (Eclipse),
it was easy to state rules and add to the system’s knowledge
base. Also based on the Eclipse CLP environment Uribe and
Cheung [13] propose a firewall analysis system that caters for
the analysis of network intrusion detection systems (NIDS)
and networks combining both firewalls and NIDS’s.

Al-Shaer and Hamed [4], [3] developed a set of techniques
and algorithms called Firewall Policy Advisor Tools. These use
a firewall policy model (the policy tree) and a classification of
various anomaly types. The authors introduce their firewall
policy editor and state that making changes to an existing
firewall policy can be more difficult than creating a new one.
This is due to the rules being ordered and therefore any
additions or modifications need to be handled properly to avoid
introducing anomalies. The policy editor aids the process of
determining the proper position at which the new rule should
be inserted.

Chomsiri and Pornavalai [16] develop an application to
analyse and minimise the rule-sets of various commercial
firewall products. Their method uses Relational Algebra and
a Raining 2-D box model. By comparing more than two rules
at a time, the technique allows all potential deployment inde-
pendent anomalies to be discovered. The authors argue that
their technique improves on that of Al-Shaer and Hamed [4]
for removing redundancy anomalies.

Marmorstein and Kearns [17] describe a passive firewall
analysis tool for iptables (Linux). The tool takes as inputs the
firewall rule-set and the contents of a query file. Their analysis
engine is constructed using a Multi-way Decision Diagram
(MDD) library.

In our previous work [14], we described a technique based
on Argumentation for Logic Programming with Priorities
(LPP). This allows firewall administrators to use higher-level
abstractions to specify their policy requirements. It also allows
preferences to be specified which in turn allows the system to
reason on the relative priorities of rules. Further, by using
LPP, the results of queries are more useful to the user since
they specify the rules that support any given conclusion. The
argumentation based approach is able to perform the same
analyses as supported by the other techniques described above
albeit using a declarative representation of firewall policies
that is more easily extended. Additionally, deployment specific
properties of the network can also be easily checked. In
this paper we show how we have extended our approach to
automatically generate anomaly-free rule sets from a set of
firewall policy requirements.

III. LOGIC-BASED FRAMEWORK FOR REPRESENTING

FIREWALL CONFIGURATIONS

The firewall administrator’s task is to realise the organisa-
tional (high-level) security policy using the firewall’s (low-
level) rule-set. Rubin et al. [18] emphasise both the impor-

tance of the correct initial specification of the firewall rules
and of their continued maintenance. This is especially true
since over time, the firewall rule-set can become untidy and
unwieldy, making it complicated and difficult to understand
- even to its author. This can lead to the introduction of a
variety of errors and conflicts. Al-Shaer et al. [3], present a
classification of such conflicts and highlight the likelihood of
even an experienced network administrator making errors in
the implementation of firewall rule sets.

In this section we present a logic-based framework for
representing firewall configurations that addresses some of
these issues by reducing the burden on the administrator in the
following ways: (1) logical abstractions of network elements
allow policies to be specified at a higher level of abstraction;
(2) automated analysis capabilities allow administrators to
determine the effects of changes in high-level policies on the
the firewall’s behaviour; (3) automated rule generation means
that administrators no longer have to worry about mapping
their high-level policies into low-level rule or the precise order
in which the low-level rules must be placed into the firewall.

Our approach uses a logical framework of argumentation,
within which we map and formalise firewall configurations
such that we can perform the firewall policy analysis and
rule generation described above. The framework captures the
operational semantics of firewall policies declaratively through
the logical semantics of argumentation based preference rea-
soning.

In general, an argumentation framework is a pair < T, A >
where T is a theory in some background (monotonic) logic,
equipped with an entailment relation, |=, and A is a binary
relation on the subsets of T . These subsets of T form the
arguments of the framework and A is an attacking relation
between arguments. For any two arguments ∆1 and ∆2

(∆1, ∆2 ∈ T ) we say that ∆1 attacks ∆2 when (∆1, ∆2) ∈ A.
The semantics of an argumentation framework is based upon

the notion of an admissible argument. These are arguments
which counter attack all other arguments that attack them and
hence (informally) they are at least as preferred as any other
conflicting argument.

Definition 1 (Admissibility of Arguments): Given an argu-
mentation framework 〈T, A〉 an argument, ∆, is admissible
iff (i) ∆ does not attack itself, and (ii) for all arguments ∆′,
if ∆′ attacks ∆ then ∆ also (counter-) attacks ∆′.

The admissible arguments capture the preferred conclusions
of the theory (or policy) and thus give a natural way for
capturing preference based reasoning.

We use a particular framework of argumentation as realised
by the framework of Logic Programming with Priorities (LPP)
and its concrete form of Logic Programming without Negation
as Failure (LPwNF) [19], [20]. This is particularly suited to
representing firewall configurations since the firewall rules
and their ordering can be naturally translated into the LPP
framework as shown in the next sections.

For the purposes of this paper, a logic program with

priorities in the LPwNF framework denoted by, T , consists
of four parts:



TABLE I
PREDICATE AND FUNCTION SYMBOLS FOR LOGIC-BASED REPRESENTATION OF FIREWALL CONFIGURATIONS

Symbol Description

ipaddr(Name, [A, B, C, D]) Predicate specifying the IP address A.B.C.D of a host or network Name. Finite domain
variables are used to represent address ranges.

traffic(Name, [Protocol, SrcPort,DstPort]) Predicate specifying the protocol, source and destination ports for the traffic type Name.
Finite domain variables are used to represent port ranges

action(Action, Pkt) Predicate specifying the action (allow or block) to be performed for a packet defined
using the pkt/3 function.

ruleorder(Name1, Name2) Predicate specifying that the rule called Name1 should be given higher priority than the
rule called Name2. This is an abducible predicate.

subset(Pkt1, Pkt2) Auxiliary predicate that is true iff the packets represented by Pkt1 are a subset of those
represented by Pkt2. Pkt1 and Pkt2 are defined using the pkt/3 function.

fwrule(Name, Action, Pkt) Function specifying a firewall rule called Name that defines the Action (allow or deny)
for a packet characterised using the pkt/3 function.

pkt(TrafficName, SrcName, DestName) Function specifying the signature for traffic TrafficName from SrcName to
DestName

(i) a basic part logic program P , consisting of rules of the
form:

Name : L ← L0, . . . , Ln, (n > 0)
where, for our application, L, L1, . . . , Ln are positive
literals. As usual in Logic Programming a rule containing
variables is a compact representation of all the ground
rules obtained from this under the Hebrand universe.
Each ground rule has a unique (parametric) name, Name,
which is a term, given at the front of the rule.

(ii) a higher part H, specifying conditional, dynamic priori-
ties amongst rules in P or H. Rules in H have the form:
Name : prefer(rule1, rule2) ← L1, . . . , Ln, (n > 0)
to be read: if (some instance of) the conditions
L1, . . . , Ln hold, then (the corresponding instance of)
the rule named by rule1 has higher priority than (the
corresponding instance of) the rule named by rule2. The
priority rule is also given a name, Name;

(iii) an auxiliary background part B, which is a normal logic
program defining (auxiliary) predicates occurring in the
conditions of rules in P ,H but not in the conclusions of
any rule in P ;

(iv) a notion of incompatibility which, for our purposes, can
be assumed to be given as a set of rules defining the
predicate conflict/2, e.g.,

conflict(rule1, rule2)
which states that (an instance of) the rule named by
rule1 is incompatible with the corresponding instance of
the rule named by rule2. The incompatibility relation is
symmetric and always includes that L is incompatible
with ¬L and that prefer(r, s) is incompatible with
prefer(s, r) for any two rule names r, s.

Further details of the formal definition of the argumentation
framework can be found in the Appendix.

To represent firewall configurations as a LPwNF theory,
we must specify three types of information: the high-level
policies, the network elements and traffic types relevant to
the policies, and any additional properties to be satisfied when
generating firewall rule ordering. Table I lists the symbols used
to represent this information in our formalism.

A. High-level Policies

These form the basic part P of the LPwNF theory, and
specify whether the action of the firewall for particular type
of traffic from a given source to destination should be allow or
block. We specify these policies using the action/2 predicate
which takes as arguments, an action constant (either allow or
block) and the packet definition (specified using the pkt/3
function). We can use this predicate to define rules for the
high-level policy ”allow FTP connections from all hosts in

the coyote.com network” as follows:
fwrule(coyote ftp reqs, allow, pkt(ftp, coyote, any)) :

action(allow, pkt(ftp, coyote, any)).

Note that the policy can be specified using names for traffic
type, source and destination rather than low-level protocol,
port number and IP address information. Also, high-level
policies need not specify any rule ordering. The Name part
of the rule is specified using the fwrule/3 function which
can be used to identify the firewall rule elsewhere. We use the
following rules to propagate the action specified in a given
high-level policy to all sub-packets that match the policy:

fwrule(coyote ftp reqs, allow, SubPacket) :

action(allow, SubPacket)) ←
subset(SubPacket, pkt(ftp, coyote, any)).

fwrule(tricky ftp reqs, block, SubPacket) :
action(block, SubPacket)) ←

subset(SubPacket, pkt(ftp, tricky, any)).

Finally, we use the conflict/2 predicate to capture the
operational behaviour of firewalls where a single rule is always
applied to a packet even if multiple rules match. It is therefore
inconsistent for two different rules to apply to the same packet:

conflict(fwrule(Rx, , Pkt), fwrule(Ry, , Pkt)) ←

Rx %= Ry .

In Section IV we show how this conflict is resolved in
the argumentation reasoning framework by making use of
abduction to derive the ordering between conflicting rules. The
ordering is computed to match firewall behaviour where the
first matching rule is applied.



B. Network Elements and Traffic Types

This information forms the auxiliary part B of the LPwNF
theory, mapping the high-level names used in the policies to
low-level IP address, protocol and port numbers. We represent
both host and network IP addresses, ports and protocols
for types of traffic and IP packet headers using ipaddr/2,
traffic/2 and pkt/3 respectively. Using these symbols, the
representation of the acme.com network together with the host
tricky.coyote.com shown in Figure 1 is:

ipaddr(acme, [161, 120, 33, D]) ← D in 0..255.
ipaddr(tricky, [140, 192, 37, 20]).

Additionally, we would represent the ports and protocols
relevant to FTP traffic as follows:

traffic(ftp, [tcp, SP, 21]) ← SP in 1..65536.

We can also specify logical groupings of network el-
ements and traffic types using the addr group/2 and
traffic group/2 symbols. For example, assuming we have
defined the traffic types ftp, scp and tftp, it is possible to
group these together as the type file transfer protocols as
follows:

traffic group(file transfer protocols, ftp).
traffic group(file transfer protocols, scp).
traffic group(file transfer protocols, tftp).

The subset/2 relation takes these logical groupings into
account when deciding if a particular packet is a subset of
another.

Finally, we can combine these definitions together with
the pkt/3 predicate to represent file transfer traffic from
tricky.coyote.com to acme as pkt(ftp, tricky, acme).

C. Rule Ordering Properties

These properties form the higher part H of the LPwNF
theory and are used when generating the ordering of the fire-
wall rules. They can be classified into two types, application-
independent properties and application-specific properties.

Application-independent properties. An example of an
application independent property of the final rule order would
be the absence of shadowing anomalies. As shown in [21], a
rule Rx is shadowed by a rule Ry if Rx matches a subset of
packets matched by Ry , Rx has lower precedence than Ry and
the actions of Rx and Ry are different. Therefore to avoid this
anomaly, we must make sure that Rx has higher precedence.
This can be specified in our formalism as follows:

order(avoid shadow, Rx, Ry) :
prefer(order(basic, Rx, Ry), order(basic, Ry , Rx)) ←

fwrule(Rx, Action1, Pkt1)∧
fwrule(Ry, Action2, Pkt2)∧
Rx %= Ry ∧ Action1 %= Action2
subset(Pkt1, Pkt2).

Application-specific properties. These are properties that
are specific to the network configuration and organisation in
which the firewall is deployed. For the example in Figure 1,
the following rule specifies that rules that allow WWW traffic
from host wiley.coyote.com have higher precedence than rules
that block WWW traffic from the coyote.com network:

order(www wiley, Rx, Ry) :
prefer(order(basic, Rx, Ry), order(basic, Ry , Rx)) ←

fwrule(Rx, allow, pkt(www, wiley, ))∧
fwrule(Ry, block, pkt(www, coyote, )).

In the next section we will show how the logic framework
presented above can be used to generate firewall configura-
tions.

IV. GENERATING FIREWALL CONFIGURATIONS

As described previously, generating a firewall configuration
entails mapping the high-level security policies to low-level
rules as well as deriving the ordering of those rules in the
configuration. The combination of the high-level policy and
the network information specifications defined in the previous
section and deductive reasoning can be used to fulfil the first
part of the generation process. However, deriving the rule order
requires that we complete the higher part H of the LPwNF
theory, in order to resolve the conflict that specifies it is incom-
patible for two firewall rules to apply to the same packet (see
Section III-A). To deal with such incompleteness we can use
abductive reasoning to help us fill in the missing information
such that the rule ordering properties we defined are satisfied.
Abductive reasoning is a well understood technique in logic
programming and AI [22] which can be used to derive a set
of assertions, ∆A, such that given a domain description, D,
and some desired goal, G, (D ∪ ∆A) |= G holds.

Formally, the integration of abductive reasoning within
an argumentation framework is done by first isolating the
incompleteness in some of the predicates of the theory, which
are called abducible predicates. We will denote the set of
abducible predicates by A. We then extend the argument
rules of the theory, T , by a set of generic rules of the form
Name : ∆A for any (ground) literal DeltaA whose predicate
is an abducible predicate (∆A ∈ A). In addition, we add in the
theory generic priority rules that give any (existing) rule whose
conclusion is incompatible with ∆A higher priority over the
new argument rule name : ∆A. We can then apply the same
argumentation base semantics, as described above, allowing us
now to include in our admissible arguments missing informa-
tion in the form of abductive hypotheses supported by these
new arguments for abducible literals.

We apply this to the problem of generating a rule order
for the firewall policy, by introducing an abducible predicate,
ruleorder(Rx, Ry), which captures the abductive hypothesis
that rule Rx has higher precedence (i.e. is stronger) than rule
Ry:

order(basic, Rx, Ry) :
prefer(fwr(Rx, Action1, Pkt), fwr(Ry, Action2, Pkt))

← Rx %= Ry ∧ ruleorder(Rx, Ry).
We also include an incompatibility definition to ensure

that the orderings ruleorder(Rx, Ry) and ruleorder(Ry , Ry)
cannot be part of the same admissible argument:

conflict(order(basic, Rx, Ry), order(basic, Ry , Rx)).
This incompatibility definition, together with the rule order-
ing properties defined previously will constrain the possible



abducible hypotheses that can be included in an admissible
argument.

We can now generate the rule ordering by invoking the
argumentation reasoning procedure with the goal of satisfying
each of the firewall requirements specified in the basic part of
the LPwNF theory. The admissible arguments generated for
these queries will include the order/3 terms that specify the
relative order between rules such that the defined properties
are satisfied. We utilise a simple finite domain constraint
expression to translate the relative ordering between rule pairs
into a total order for the rule set.

In the next section we summarise how our framework would
be used in practice.

V. USAGE

The framework we have developed provides a compre-
hensive environment for firewall configuration authoring and
maintenance. In essence, based on the network information,
the high-level security policy requirements and the desirable
properties for the firewall configuration, the framework can be
used in three ways: a) to review a firewall configuration by
querying the formal model for reachable nodes, types of traffic
allowed/denied etc. b) to analyse a firewall configuration in
order to detect anomalies and to detect if deployment specific
properties have been violated and c) to generate a firewall
configuration that can be translated to the format specific to
the firewall used. Whilst a) is typically achieved by using the
argumentation framework in a deductive reasoning mode both
b) and c) are achieved through using argumentation together
with abductive reasoning. The analysis performed in b) takes
into account the rule ordering of the actual configuration as
shown in detail in [14], whilst in c) a new rule order is being
generated.

It is relatively simple to acquire network topology infor-
mation and to automatically translate it to the formal rep-
resentation. Security policy requirements can be specified in
terms of traffic flow requirements across the firewall. Higher-
level concepts such as sub-networks, address groups, service
specific port ranges, rule-sets, etc. can be easily defined at the
logical level or read from existing configurations. The firewall
administrators would thus only need to specify and/or modify
these requirements ignoring rule ordering aspects.

Desirable properties such as absence of anomalies or de-
ployment specific properties (i.e., specific to the network
topology) need to be formally specified. However, these
specifications are not likely to change often and would typi-
cally be loaded from libraries. These properties are used as
goals during the analysis phase where the abductive proof
procedure is used to identify counter examples that violate
these properties. The same properties are used as background
knowledge during the generation phase. Thus, the generated
firewall configuration satisfies the required properties. If all
properties cannot be satisfied the abductive proof procedure
will fail to find any admissible ordering.

Note that the framework remains general. Thus it is pos-
sible to specify not only precedence relationships between
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Fig. 2. Performance results for rule generation: Number of rules vs. time to
generate rule ordering

individual firewall rules but also precedence relationships
between precedence relationships. This allows to define how
precedence relationships should be defined based on external
factors. For example, the framework can be easily extended
to have a default behaviour such that precedence is given to
rules that correspond to the most frequent traffic types thus
optimising the firewall configuration to the expected traffic
profile.

VI. EVALUATION

The approach to generating firewall configurations described
above has a number of advantages when compared to the
techniques presented in the literature.

• Declarative: The logic-based declarative specification of
firewall requirements and configuration properties makes
it easy for administrators to understand the policy set.

• Modular: The approach presented is modular as we can
add or remove properties to be used in the rule order
generation with minimal impact on the specification.
Properties may concern deployment specific information,
which depends on the network topology, or background
rules about the relative frequency of traffic flows to
optimise rule matching. Achieving similar extensions to
techniques such as those proposed by Al-Shaer et al.,
would involve modifying the underlying algorithms for
each new property.

• Explanatory: The derivation performed in order to reach
the rule ordering can be documented and shown to the
administrator in terms of the rules applied at each step.

We have implemented our approach by building on the
GORGIAS implementation of the LPwNF proof procedure.
Testing has been carried out using both simple examples,
such as that presented in Figure 1 and a larger enterprise
firewall specification containing approximately 150 policies
and involving 1800 host/network definitions. In each case were
able to generate rule orderings that eliminated both shadowing
and redundancy anomalies. Other anomaly types, such as
correlation and generalisation, are also detected by our analysis



procedure but not removed since they are not considered to
be errors in the firewall configuration.

For the enterprise firewall specification we have started with
the actual configuration which was translated to the logic based
representation described in Section III. This provided the back-
ground knowledge together with the properties specifying the
desirability of avoiding shadowing and redundancy anomalies.
The rule generation procedure was then executed to derive the
relative ordering of the rules. The correctness of the generated
configuration was then manually checked.

Whilst we have yet to fully analyse the performance results
from these tests, we present some preliminary findings in
Figure 2. These results were obtained by taking subsets of
the larger 150 rule firewall configuration and recording the
time taken to generate the anomaly-free rule ordering. The
experiment was run on a machine equipped with a AMD 64bit
processor and 4GB RAM, running SWI-Prolog (v.5.6.14) on
Ubuntu Linux (v.2.6.20.3). The label on each bar indicates
the number of rule interactions in each set (i.e., number of
rule pairs that had the potential to cause an anomaly). The
results show that even for the largest policy set, containing the
most interactions, we are able to generate the ordering in less
than 15 seconds. Whilst this is slower than the rule insertion
techniques for producing anomaly free orderings proposed in
[3], it remains within acceptable limits for what is in essence
an off-line activity.

The number of rules tested is close to the average firewall
size according to [1] however many configurations are much
larger. It would be desirable to evaluate our implementation
against larger requirements sets; first, to evaluate its applica-
bility and usefulness in other practical settings and second, to
evaluate and allay concerns regarding its scalability for future
use. However, larger firewall specifications occur mainly in
corporate environments and thus far we have had difficulties
procuring such specifications. Our experience is that randomly
simulated rule sets do not provide realistic empirical results.
In the general case, abductive reasoning in logic programming
with priorities is NP-complete. However, firewall rules have
a simple form and the domains for all rule variables are
well defined. Our empirical measurements suggest that the
approach could be applied to much larger cases and no efforts
have so far been made to optimise the implementation. We
aim to continue the evaluation of this approach both from an
empirical and a theoretical point of view.

VII. CONCLUSIONS AND FUTURE WORK

Argumentation logic permits non-monotonic reasoning with
conflicting rules, and complex reasoning over the priorities of
those rules. This permits to perform both analysis and gener-
ation of anomaly free firewall configuration rules thereby sig-
nificantly reducing the burden and complexity of maintaining
firewall configurations. Its advantages over other techniques lie
in its modularity allowing customisation to the specifics of the
network, the security policy and the properties desired of the
resulting configuration, in its flexibility allowing analysis and
review through both deductive and abductive reasoning over

the specification and in its explanatory power as each logic
derivation can be traced and presented to the user. Thus, we
believe the above features make our approach an attractive
alternative to existing techniques for firewall configuration
management. However, these advantages appear to be gained
at a significant performance cost (although we have not
attempted any optimisations). The performance achieved so
far appears to remain within acceptable limits although further
evaluation work is needed on larger specifications, which are
unfortunately difficult to obtain.

We have demonstrated in this paper that automated genera-
tion of firewall configurations is possible with a large degree
of flexibility and whilst remaining agnostic to the specifics
of the deployment architecture. Nevertheless, much work
remains to be done. Although our framework has the ability
to generate rule orderings optimised according to expected
traffic profiles further work is required in order to implement
this optimally. Although we have argued that it is desirable
to generate firewall configurations from high-level specifi-
cations, the current logical framework still uses primitives
close to the specification level of firewall rules. Although
we do not anticipate particular challenges in defining higher-
level abstractions in terms of the low-level predicates used in
the logic based representation, further work is required. Our
previous work on policy refinement [23] also provides valu-
able lessons on the realisation of higher-level specifications.
Finally, modern firewalls provide stateful inspection, support
for Virtual Private Networks, Network Address Translation,
intrusion detection etc. and operate in a distributed setting.
Further work is required to incorporate these features in the
logical representation, analysis and generation, and to evaluate
their impact on the complexity of the reasoning procedure.
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APPENDIX

LOGICAL FRAMEWORK FOR ARGUMENTATION

The work presented in this paper uses a particular frame-
work of argumentation as realised by the framework of Logic
Programming with Priorities (LPP) and its concrete form of
Logic Programming without Negation as Failure (LPwNF)
[19], [20].

This appendix provides further details on the formalisation
of of argumentation and preference entailment. We start by re-
introducing the basic definitions (detailed in Section III) where
a logic program with priorities in the LPwNF framework
denoted by, T , is defined to consist of four parts:

(i) a basic part logic program P , consisting of rules of the
form: Name : L ← L0, . . . , Ln, (n > 0), where for
our application, L, L1, . . . , Ln are positive literals. Each
ground rule has a unique (parametric) name, Name.

(ii) a higher part H, specifying conditional, dynamic priori-
ties amongst rules in P or H. Rules in H have the form:
Name : prefer(rule1, rule2) ← L1, . . . , Ln, (n > 0)
which can be read: if (some instance of) the conditions
L1, . . . , Ln hold, then (the corresponding instance of)
the rule named by rule1 has higher priority than (the
corresponding instance of) the rule named by rule2. The
rule itself is named Name;

(iii) an auxiliary background part B, which is a normal logic
program defining (auxiliary) predicates occurring in the
conditions of rules in P ,H but not in the conclusions of
any rule in P ;

(iv) a set of rules defining the predicate conflict/2, e.g.,
conflict(rule1, rule2) which states that (an instance
of) the rule named by rule1 is incompatible with the
corresponding instance of the rule named by rule2.

The local priority information, given at the level of the rules
of a theory, is lifted to give a preference over sets of rules that
compose arguments and counter arguments. This preference,
together with the incompatibility relation synthesize the at-
tacking relation of the argumentation framework of LPwNF
as follows.

Definition 2 (Attacking Relation of Arguments in LPwNF):

Let T be an LPwNF theory and ∆, ∆′ subsets of T . Then ∆′

attacks ∆ (or ∆′ is a counter argument of ∆) iff there exists
a literal, L, and subsets ∆1 of ∆′ and ∆2 of ∆ such that:

(i) ∆1 |=LP L and ∆2 |=LP LC, minimally
(ii) (∃r ∈ ∆1, s ∈ ∆2s.t.∆2 |=LP prefer(s, r))

⇐ (∃r ∈ ∆1, s ∈ ∆2s.t.∆1 |=LP prefer(r, s))

where |=LP is the entailment relation of the underly-
ing logic programming framework, LC is any literal such
that incompatible(L, LC) holds and minimally, means that
∆ |=LP L and that L cannot be derived from any proper
subset of ∆.

The second condition in this definition states that an argu-
ment ∆′ for L attacks an argument ∆ for a contrary conclusion
LC only if the set of rules that it uses to prove L are at least
of the same strength (under the priority relation priority/2) as
the set of rules in ∆ used to prove the contrary. Note that the
attacking relation is typically not symmetric.

The admissible arguments of any LPwNF theory, T , given
the above general definition of admissibility, allow us to define
a preference entailment, |=PR, as follows:

Definition 3 (Preference Entailment in LPwNF): Given an
LPwNF theory, T , and a literal, L, the (skeptical) preference
entailment, T |=PR L, holds iff:

(i) there exists a (maximal) admissible sub-theory T ′ of T
such that T ′ |=LP L, and

(ii) for any L that is incompatible with L there does not exist
an admissible sub-theory T ′′ of T such that T ′′ |=LP L.

When only the first condition of the above is satisfied we
say that the theory T credulously prefers or possibly prefers

L.


