
Expressive Policy Analysis with
Enhanced System Dynamicity∗

Robert Craven
Department of Computing
Imperial College, London

robert.craven@imperial.ac.uk

Jorge Lobo
IBM T.J. Watson Research

Center
jlobo@us.ibm.com

Jiefei Ma
Department of Computing
Imperial College, London
jm103@doc.ic.ac.uk

Alessandra Russo
Department of Computing
Imperial College, London

ar3@doc.ic.ac.uk

Emil Lupu
Department of Computing
Imperial College, London

e.c.lupu@imperial.ac.uk

Arosha Bandara
Department of Computing

Open University
a.k.bandara@open.ac.uk

ABSTRACT
Despite several research studies, the effective analysis of pol-
icy based systems remains a significant challenge. Policy
analysis should at least (i) be expressive (ii) take account
of obligations and authorizations, (iii) include a dynamic
system model, and (iv) give useful diagnostic information.
We present a logic-based policy analysis framework which
satisfies these requirements, showing how many significant
policy-related properties can be analysed, and we give de-
tails of a prototype implementation.

Categories and Subject Descriptors
K.6.4 [Computing Milieux]: Management of Comput-
ing and Information Systems—System Management ; K.6.1
[Computing Milieux]: Management of Computing and
Information Systems—Project and People Management

General Terms
Design, Management

Keywords
Policies, Formal analysis, Security, Authorization

∗Research was sponsored by the U.S. Army Research Lab-
oratory and the U.K. Ministry of Defence and was accom-
plished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the
U.S. Army Research Laboratory, the U.S. Government, the
U.K. Ministry of Defence or the U.K. Government. The
U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstand-
ing any copyright notation hereon.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’09, March 10–12, 2009, Sydney, NSW, Australia
Copyright 2009 ACM 978-1-60558-394-5/09/03 ...$5.00.

1. INTRODUCTION
There is an obvious relationship between the expressive-

ness of a policy language and the ability to analyse its prop-
erties and impact on system behaviour. Without being ex-
pressive a policy language may not be able to regulate com-
plex system behaviour, apply across heterogeneous compo-
nents, or apply to systems involving frequent changes such
as mobile systems. Yet without analysis much of the ben-
efit of using policy-based techniques and declarative policy
languages may be lost. Arguably, the lack of effective anal-
ysis tools accounts in part for the lack of wider adoption of
policy-based techniques.

A policy framework needs several key properties. First,
it should be expressive. We need to specify both authoriza-
tion [23, 32] and obligation policies [21, 30, 31] formally, and
to allow complex dependencies of one on the other—for in-
stance, authorization to withdraw a library book may be de-
nied if the obligation to return requested items has been re-
peatedly violated. To be expressive, a framework should also
allow policy decisions to depend on aspects of the evolving
system history, so that authorization can depend not only on
a static assignment of roles, or the fixed location of a sensor,
but will vary as the system state changes. Policies must also
provide fine-grained defaults. Many policy languages rely on
a simple, universal default of either permitting or denying
requests not covered by any specific policy rule. SELinux
[26], for example, has blanket denials for actions not cov-
ered explicitly by policy rules. Whilst we support such de-
faults, there is a need for a much more nuanced control over
the default behaviour, so that requests to delete a file may
be denied by default, but requests to read a file would be
authorized [22]. Defaults are also useful in the presence of
conflicts: the policy combination rules of XACML [30], for
example, specify the response to a request which the explicit
policy rules both authorize and deny. Our framework can
represent both sorts of default easily and concisely.

Second, a powerful policy analysis component is essential.
This lets the policies be checked for necessary or desirable
properties. Existing analysis frameworks—[21, 7, 6]—rarely
take into account the changing system state, or only allow
the statement and analysis of temporal constraints and re-
lationships amongst policy decisions. There is a strong re-
lationship between the expressiveness of a policy language

and its analysis, since a less expressive language simplifies
the analysis but also limits the scope of properties that can
be checked. For example, if the language does not allow the
representation of an authorization’s dependence on the ful-
filment of two key obligations, then an analysis of whether
it was even possible to jointly satisfy those two obligations
and then obtain permission, would not be possible.

Yet, expressiveness in the representation of policies, in
the way they rely on each other, and the way in which they
interact with the system, is insufficient. Policy authors also
need to check for a wide variety of properties on the policies
and systems they define. This requires an expressiveness in
the query language of the analysis component, and strength
in the analysis algorithm itself. Analysis should be able to
cope with the following tasks:

• Modality conflicts such as the joint authorization
and denial of a request to perform some action, or the
presence of an obligation to act without the permis-
sions necessary for its fulfilment.

• Separation of duty conflicts, including static sepa-
ration of duty, dynamic, and many other classes (see
[33] for terminology and instances).

• Coverage gaps, where no policy exists to dictate the
correct response to a request.

• Policy comparison, including whether two policies
are equivalent, or one is subsumed by the other.

• Behavioural simulation provides specific sequences
of requests and events to the policy-regulated system
to determine which policy decisions arise.

Third, the output of the analysis component should be
rich enough to provide useful diagnostic information to a
policy writer or system engineer. The system traces, policy
decisions, and actions related to a queried property should
all be indicated by the analysis—in addition to properties
of the actors or principals involved, and the policy rules
used in making the decisions that led to the state reached.
Alternative traces and decisions should also be suggested,
and the user ought to be able to insert constraints which
guide the search for diagnostic information.

Fourth, it is desirable that a policy framework is sep-
arated into a part which is used to describe the policies,
and a part which specifies system behaviour—by which we
mean, the system on which the policies are deployed, and
whose requests and actions the policies govern and shape
[14]. This permits analyzing the behaviour of policies on
different systems—something which is crucial, given the in-
creasing deployment of the same policy on heterogeneous
platforms—and spares the user the effort of formalizing the
policy again for each new system.

This paper presents an expressive logical framework for
policy specification, in which it is possible to analyse for
the types of properties mentioned above. The framework
caters for both authorization and obligation policies, and
incorporates a model of the changing system state. Our al-
gorithm gives policy authors rich diagnostic information on
analyses. We use abductive, constraint logic programming
(ACLP) systems as the basis of our analysis algorithms and
implementation, and the Event Calculus (EC) [25] to de-
scribe how events and actions occurring in the system affect

the system states, leading to circumstances in which a given
policy rule is applicable. This information is an output of
the analysis.

In contrast to other logic-based formalisms ([20, 24, 22]),
our approach caters for more dynamic policy models and
includes an explicit representation of time, with temporal
variables governed by constraints, allowing policies to be
sensitive to changing system state. In addition, we include
a class of obligation policies which monitors when and how
users or the system initiate actions. This is needed for man-
aging security, but is also useful in other applications such
as context-aware adaptation in ubiquitous computing and
privacy. Our policy language is also expressive enough that
existing policy notations such as Ponder2 [31], XACML
[30] and Cassandra [7] can automatically be translated into
it; to provide analysis for specification notations which cur-
rently do not support this. Translation algorithms have been
developed for a large class of Ponder2 policies, and we are
currently working on such schemes for XACML. We have de-
veloped a prototype implementation,1 of our analysis frame-
work.

The paper is organized as follows. Section 2 considers re-
lated work. Section 3 gives the syntax and semantics of the
language, including a number of illustrative examples. Sec-
tion 4 discusses the kinds of analysis our language permits,
together with a discussion of the implementation and com-
plexity properties. Conclusions and future research are in
Section 5.

2. RELATED WORK
The Lithium language [20] is a logical formalism for policy

representation and analysis; however, the authors work in
pure first-order logic which imposes on the policy author the
burden of specifying complete definitions (every request has
a decision) since default decision policies are not expressible.
For example, representing that all and only faculty members
are permitted to chair committees; students are not [20] re-
quires a complete specification of faculty and student body
members, which may change dynamically, thus raising the
well-known problem of elaboration tolerance [27]. The use of
default rules—of the kind that our formalism supports—can
simplify specifications and changes to the specification. An-
other important difference in our work is that we perform
hypothetical analysis through abduction, letting the engi-
neer specify initial conditions and sequences of requests or
events in a system only partially; our analysis algorithm then
supplies the additional information which makes a property
true or false.

Our treatment of obligations is based on our experience
with Ponder [13] and deontic logic; the result is similar to
[21]. However, we have adapted obligation policies to pro-
duce a more general language that allows more complex poli-
cies to be represented, and our framework can support anal-
yses such as the strong accountability checking presented in
[21]. Dougherty et al. [15] present a model in which obliga-
tions are tied to authorizations, as conditions on acquiring
permission to access a given resource. The model we use
is more general, allowing obligations that are not tied to
authorizations, as well as mutual dependence. [15] also in-
cludes a system model, though this is conceived abstractly
as a set of state traces, which would need to be defined in

1http://www.doc.ic.ac.uk/~rac101/ffpa/

full—our use of EC domain descriptions allows us to gener-
ate traces of actions which lead to the holding or violation of
policy-related properties, from concise system descriptions.

Barker presents in [4] a language that represents access
control policies using stratified clausal-form logic, with em-
phasis on RBAC policies. However, this work does not dis-
cuss analysis. The Authorization Specification Language
(ASL) [24], the Flexible Authorization Framework (FAF)
[23] and the extension to handle dynamic authorizations dis-
cussed in [11] are also based on stratified clausal-form logic.
They offer techniques for detecting modality conflicts and
some application-specific conflicts in authorization policies.
However, they work with a fixed domain model; in contrast,
our framework does not presume a predefined domain model
and can cater for varying system descriptions.

An access control policy language is presented in [5]; it has
an associated analysis framework based on a subset of trans-
action logic programs and in these respects the approach is
similar to our own. However, although the authors do take
into account the fact that some policy-governed actions can
change role activations, and thus there is some dynamicity
in their framework, they limit the specification to sequences
of operations. Further, they cannot represent explicit pro-
hibitions, and are thus forced into an unchangeable default
assumption that anything not explicitly allowed is to be de-
nied. Our formalism is more expressive: it has explicit prohi-
bitions, and a great degree of control can be exercised in the
way defaults cover policy gaps, or legislate between conflicts.
In [6], the authors use abduction to analyse authorization
policies, focussing on finding explanations for the denial of
access requests. They provide soundness, completeness and
termination results. However, as with [5], there is no fully
dynamic system model. So although credentials can be ab-
duced which would have led to the granting of access, it is
not possible to see which policy-regulated actions, or system
events, would have led to those credentials being present.

Fisler et al. [17] present an approach for the analysis of
role-based access control policies written in XACML. The
underlying formalism is MTBDDs (multi-terminal binary
decision diagrams), and the method supports the analysis
of the impact of changes on policies. There are, however,
a number of limitations. Obligation policies are not sup-
ported, and there is no scope for policies that simultane-
ously permit and deny a given access request (a direct and
oft-noted consequence of the nature of XACML’s combina-
tion rules). We regard support, especially of the latter, as
essential for any generic policy analysis tool. The query lan-
guage (for expressing properties) is somewhat cumbersome,
though the authors acknowledge this as a theme for future
work. Further, though environmental constraints can be in-
cluded, there is no explicit dynamic system model, and so
analysis does not show system traces and policy decisions
which lead to properties of interest.

Finally, in [9, 10] the authors define a simple but power-
ful framework for representing and reasoning about access-
control policy composition. The semantics for access re-
quests is four-valued: permit, deny, undefined, and con-
flict. Analysis is performed by transforming properties to
be checked into constraints which can be fed to a model-
checker; the approach can support coverage-gap, modality
conflict, and policy comparison analysis. The emphasis of
this work is on the definition of an expressive, generic seman-
tics for policy composition and related analysis, and thus

Input regulatory Output regulatory
req(Sub,Tar,Act, T) do(Sub,Tar,Act, T)

deny(Sub,Tar,Act, T)

State Regulatory
permitted(Sub,Tar,Act, T) denied(Sub,Tar,Act, T)
obl(Sub,Tar,Act, Ts, Te, T)
fulfilled(Sub,Tar,Act, Ts, Te, T)
violated(Sub,Tar,Act, Ts, Te, T)
cease obl(Sub,Tar,Act, Tinit, Ts, Te, T)

Table 1: Policy analysis language Lπ: the predicates

there is no system model—the system governed by a policy
is treated as a ‘black box’. By contrast, our two-pronged
approach (policies and systems) is intended to enable the
output of diagnositic information about which system traces
can give rise to which policy properties. We also consider a
wider class of policies, including obligation policies.

3. POLICIES

3.1 Preliminaries
Our operational model broadly follows the architecture

and operation of XACML [30]. There is a policy compo-
nent, consisting of policy decision and enforcement points
(PDP/PEP), and the system to which policies refer and
which they modify. The PDP has access to a policy repos-
itory. Authorization decisions are made in response to re-
quests for a subject to perform an action on a target, using
the policies, and these decisions are then enforced by the
PEP. The PDP also monitors whether obligations of sub-
jects to perform actions have been met or not. Systems
move between states depending on the occurrence of actions
and events—some controlled by policies, some not.

We use many-sorted first-order predicate logic as our base
language, and clearly distinguish the policy representation
language from the domain description language. This al-
lows us to detach policy representations from system repre-
sentations, and compare the implementation of a policy in
different systems easily. The policy representation language,
Lπ, includes sorts for the Subjects, Targets and Actions men-
tioned in policies, together with a sort and constants for
Time, which we represent using the non-negative reals. Stan-
dard arithmetical functions (+, −, /, ∗) and relations (=,
6=, <, 6 etc.) are presumed. The predicates of Lπ, which
we call regulatory predicates, are shown in Table 1. The
predicates permitted, denied are self-explanatory. A partic-
ular instance req(sub, tar, act, t) means that a request for
sub to perform act on tar is made at time t. Instances
obl(sub, tar, act, ts, te, t) and fulfilled(sub, tar, act, ts, te, t) (or
violated(sub, tar, act, ts, te, t)), denote that at time t, sub is
placed under an obligation to perform act on tar between
ts and te, and that the obligation with these parameters
has been fulfilled (resp. violated). Finally, a given instance
cease obl(sub, tar, act, tinit, ts, te, t) is true at time t, if an
obligation initially contracted by sub at tinit to perform act
on tar between ts and te is no longer binding. Our lan-
guage models the revocation of obligations, so we include
revoke(Sub,Tar,Act, Ts, Te) ∈ Action, for each action Act
which is not itself a revocation, to allow this. The output
regulatory predicate do records whether an action is allowed

to occur by the PEP—flattening the essentially four-valued
logic of our policy language into the required two values—
and deny is included for auditing purposes; the logic of these
is discussed in Section 3.2.

The domain description language LD = LD
EC ∪ LD

stat, is
used to represent both changing and unchanging properties
of the system regulated by the policy. We use the Event Cal-
culus [25] (EC) to model this dynamicity in our domains.
The language includes sorts Fluent (for dynamic features
of states), Event (for system events not regulated by poli-
cies), Occurrence (for representing system events regulated
by policies) and Time (as before). The predicates of LD

EC

are standard in the EC (see Section 3.4); the predicates of
LD

stat, for unchanging properties of systems, are user-defined.
A complete definition of the language is in [2].

3.2 Authorizations

Definition 1 A time constraint C is an expression of the
form τ1 ρ τ2, where each τi is a constant or variable of type
Time, or an arithmetic linear expression built using +, −,
/, ∗, Time constants and variables, and where ρ is one of
=, 6=, <, 6, >, >. y

Note that in this paper, the time T in the head of the rule
is a variable, rather than a fixed time—this means that the
same rule can be applied whenever the conditions in the
body become true.

Definition 2 An authorization rule is a formula

[permitted/denied](Sub,Tar,Act, T)←
L1, . . . , Lm, C1, . . . , Cn.

1. the Li are atoms taken from the set

Lπ ∪ LD
stat ∪ {holdsAt, happens, broken}2

possibly preceded by the negation-by-failure not; the Ci

are time constraints;

2. any variable appearing in a time constraint must also
appear somewhere other than in a time constraint;

3. Sub, Tar, Act, T are terms of type Subject, Target,
Action and Time respectively;

4. for the time argument Ti of each Li 6∈ LD
stat, we must

have C1∧· · ·∧Cn |= Ti 6 T ;3 if C1∧· · ·∧Cn |= Ti = T
then the Li must not be an output regulatory predicate
and if in addition Li ∈ LD

EC, then it should either be
holdsAt or broken.

Where such a rule has ‘permitted’ in the head, it is a posi-
tive authorization rule; otherwise, it is known as a negative
authorization rule. (Additional constraints of local stratifi-
cation will be imposed later.) y

Condition 4 is necessary to ensure that authorizations do
not depend on ‘future’ properties.

Example 1 “A mobile node may delete classified data if it
sends a notification to the supplier of the data 10 minutes in
advance, and the supplier does not respond to the notification
asking the node to retain the data.” y
2For the meaning of these predicates, see Section 3.4.
3We use |= standardly, as FOL semantic entailment.

We represent this as follows:

permitted(N, D, delete, T)←
holdsAt(fileDesc(D, class), Tn), T = Tn + 10,

holdsAt(owner(D, O), Tn),

do(N, O,notify(delete, D), Tn),

not reqInBetween(O, N, retain(D), Tn, T).

The predicate reqInBetween is related to the operator Since
of temporal logics [19]; we have found such a predicate useful
on several occasions. To capture its semantics, the following
rule is always included in our framework:

reqInBetween(Sub,Tar,Act, T ′, T)←
req(Sub,Tar,Act, Tr), T

′ 6 Tr 6 T.

An instance reqInBetween(Sub,Tar,Act, 0, T) means that a
request (with the relevant parameters) was made at some
time before T ; this is related to the modal temporal operator
expressing that a property held at some previous time.

Separation of duty (SoD) [33] and Chinese Wall policies [8]
are often used to demonstrate the expressiveness of security
policy languages. Our formalism can represent all policies
of this type we have examined. Chinese Wall scenarios can
be modelled easily, by considering the system history.

Example 2 “A person cannot assist in a medical situation
once he has taken part in surveying a contaminated area.” y

This can be represented as follows:

denied(Sub, M1, assist, T)←
do(Sub, M2, assist, T

′), T ′ < T,

holdsAt(activity type(M1,medical), T),

holdsAt(activity type(M2, survey(A)), T ′),

holdsAt(area classify(A, contaminated), T ′).

Simple dynamic SoD policies that define mutually exclusive
role activation can be handled as follows:

denied(Subject , roles, activate(role a),T)←
holdsAt(isActivated(Subject , role b),T).

denied(Subject , roles, activate(role b),T)←
holdsAt(isActivated(Subject , role a),T).

Similar encodings can be done for other classes of SoD policy.
When gathering together authorization rules to form an

authorization policy, it is normal to include a number of
more general rules. These can be used to state whether a
request to perform an action is accepted (and the action
performed) by default if there is no explicit permission in
the policy rules; or whether explicit permission is required;
what response (if any) should be given if an action is denied,
and so on. We see it as a virtue of our framework that many
different rules which embody the action of the PEP can be
represented, and that no one approach is fixed as part of
the formalism. This flexibility is crucial if we need to cover
the behaviour of different policy systems in heterogeneous
environments. Consider the three example availability rules
in Table 2. The basic availability rule is more stringent: an
action is permitted by the PEP only when it has been posi-
tively permitted by the PDP—similar to [26]. The positive

do(Sub,Tar,Act, T)←
req(Sub,Tar,Act, T), permitted(Sub,Tar,Act, T). Basic availability

do(Sub,Tar,Act, T)←
req(Sub,Tar,Act, T),not denied(Sub,Tar,Act, T). Positive availability

deny(Sub,Tar,Act, T)←
req(Sub,Tar,Act, T), denied(Sub,Tar,Act, T). Negative availability

Table 2: Policy Regulation Rules

availability rule is less strict: actions are executed so long as
they have not been expressly denied by the policy rules. The
negative availability rule states that an output deny predi-
cate is true whenever an action is explicitly denied by the
policy rules. The effects of this deny predicate can then be
modelled—a typical use may be to cause logs of denials of
requests to be kept in the system.

Definition 3 A policy regulation rule has do or deny in the
head and a body given as in Definition 2. y

Many more policy regulation rules are possible than those
given as examples in Table 2; all are optional inclusions in
an authorization policy.

Definition 4 An authorization policy is a set Π of autho-
rization rules, with the definition of reqInBetween, and pol-
icy regulation rules, such that Π is locally stratified.4 y

Notice that it is possible to add general authorization rules
to a policy, enabling a representation of very fine-grained
defaults controlling responses to requests. For example, if
a user belongs to the root system group, one may want to
permit all the actions of that user by default, unless they
are explicitly denied:

permitted(Sub,Tar,Act, T)←
group(Sub, root),not denied(Sub,Tar,Act, T).

3.3 Obligations
The obligations we represent are on a subject to perform

an action on a target, a class which includes a large number
of practical obligation policies [21]. As in most (if not all)
deontic logics, obligations may be fulfilled or not, allowing us
to represent the behaviour of systems of which humans are
a part. We present a simplified version of our treatment of
obligations here, in which the period during which an action
should be performed is delimited by explicit reference to
time. Our general language also allows the user to specify
events or actions as these delimiters.

Definition 5 An obligation policy rule is a formula

obl(Sub,Tar,Act, Ts, Te, T)← L1, . . . , Lm, C1, . . . , Cn.

where the conditions 1–4 as for Definition 2 hold, with the
addition that Ts and Te should be variables of type Time.
(Ts < Te is not required, but sensible obligation policy rules
will always include constraints which make this true.) y

4A set of rules is locally stratified if in the set of all ground
instances of the rules (i.e. where all variables are replaced by
all their possible values) there is no head of a rule that de-
pends directly or indirectly on the negation of itself. Testing
for local stratification is, in general, computationally hard;
but large classes of rules can be identified as locally stratified
easily based on the time index [29].

Two domain-independent rules accompany the obligation
rules, defining the fulfillment and the violation of an obliga-
tion:

fulfilled(Sub,Tar,Act, Ts, Te, T)←
obl(Sub,Tar,Act, Ts, Te, Tinit), do(Sub,Tar,Act, T ′),

not cease obl(Sub,Tar,Act, Tinit, Ts, Te, T
′),

Tinit 6 Ts 6 T ′ < Te, T ′ < T. (1)

violated(Sub,Tar,Act, Ts, Te, T)←
obl(Sub,Tar,Act, Ts, Te, Tinit), (2)

not cease obl(Sub,Tar,Act, Tinit, Ts, Te, Te),

Tinit 6 Ts < Te 6 T.

An obligation is fulfilled when the action a subject has been
obliged to perform is executed (notice that the do in the
body of the rule here means that the action must be al-
lowed by the authorization policies). An obligation is vio-
lated when no such action occurs. The rules for fulfilled and
violated use cease obl as a subsidiary predicate, defined by
the following rules:

cease obl(Sub,Tar,Act, Tinit, Ts, Te, T)←
do(Sub,Tar,Act, T ′), Ts 6 T ′ < T 6 Te.

cease obl(Sub,Tar,Act, Tinit, Ts, Te, T)←
do(Sub′,Sub, revoke(Sub,Tar,Act, Ts, Te), T

′),

Tinit 6 T ′ < T 6 Te.

cease obl denotes the fact that an obligation has either been
fulfilled or revoked. There are therefore two clauses defining
cease obl. The cease obl rule for revocation makes use of the
revoke members of the sort Action, mentioned in Section 3.1;
revocation occurs when the PDP has authorized the request
for a revocation action. The subject requesting a revoca-
tion might be the one bound by the obligation, a central
administrator in the system, or an entirely different agent
and may also be constrained by authorization policies. The
parameters of the revoke argument identify the obligation to
be revoked.

Example 3 “A connecting node should re-indentify itself
within five minutes of making a connection to a server, or
the server must drop the connection within one second.” y

This example in fact includes two obligations: one on the
node making the connection, and one on the server, which
must drop the connection if the node does not fulfil its obli-

gation. They can be formalized as follows:

obl(U, serv, sub2ID(U, serv), T+ε, T+300, T+ε)←
holdsAt(node(U), T), do(U, serv, connect(U, serv), T).

obl(serv, serv, disconnect(U, serv), Te, Te+1, Te)←
violated(U, serv, sub2ID(U, serv), Ts, Te, Te).

The EC predicate holdsAt is used to represent dynamic prop-
erties of the system: in this case, which nodes are registered.
The obligation begins just (ε seconds) after the server con-
nects to the node.

Definition 6 An obligation policy Π is a set of obligation
rules, with the ‘fulfilment’, ‘violation’ and ‘cease obl’ rules,
such that Π is locally stratified. y

Definition 7 A security policy Π = Πa ∪ Πo is any union
of an authorization policy Πa and an obligation policy Πo. y

3.4 Domain Models
We use the Event Calculus (EC) to represent and rea-

son about changing properties of the domains regulated by
policies. The EC is a well-studied, logic-based formalism,
variants of which exist both as logic programs and in first-
order logical axioms (using a second-order axiom to enforce
a circumscriptive semantic). It has the ability to represent
concisely the effect of actions on properties of a system, and
built-in support for the default persistence of fluents. The
EC is used to model, analyse and implement many dynamic
systems (see [1] for a recent example, or [28] for general ref-
erences).

In the EC, effects of events or occurrences are defined by
two predicates initiates and terminates. initiates describes
which state properties are caused hold due to an event; and
terminates describes which properties cease holding after an
event. The rules which define the two predicates can have
conditions. Users may also define a number of state con-
straints, which have atoms of the predicate holdsAt in the
head, and which represent that a state has a given property,
if the same state has certain other properties. Core axioms
are then added, common to any EC formalization, to relate
the behaviour specifications of the initiates and terminates
axioms to state properties. These core axioms, the set EC,
are shown below.

holdsAt(F, T)←
initially(F), not broken(F, 0, T). (3)

holdsAt(F, T)←
initiates(Sub:Tar:Act, F, Ts), Ts < T,

do(Sub,Tar,Act, Ts), not broken(F, Ts, T). (4)

holdsAt(F, T)←
initiates(Event, F, Ts), Ts < T,

happens(Event, Ts), not broken(F, Ts, T). (5)

broken(F, Ts, T)←
terminates(Sub:Tar:Act, F, T ′),

do(Sub,Tar,Act, T ′), Ts < T ′ < T. (6)

broken(F, Ts, T)←
terminates(Event, F, T ′),

happens(Event, T ′), Ts < T ′ < T. (7)

The first clause (3) specifies that a changeable property of
the system holds at time T , if that property held at time 0
and nothing disturbed its default persistence. The next two
clauses (4 and 5) define how a fluent representing a change-
able property comes to be true: by being initiated, either
as a consequence of an action enforced by the PDP/PEP,
or by being the result of an unregulated event occurring
in the system. The final two clauses (6 and 7) represent
how an event disturbs the persistence of a fluent, preventing
its truth from persisting over time; again, there is a clause
for disturbance caused by enforced regulated actions, and
another for disturbance caused by unregulated events. For
more details see the original formulation in [25], or for recent
approaches, [28].

To improve the analysis algorithm, we separate the predi-
cates used to represent the static portion of the system from
the predicates concerning the changing properties. The for-
mer are contained in LD

stat. As these static properties either
hold for all times or none, there is no need to model the
effects of actions on their holding, and thus no need to use
the EC to reason about them.

Definition 8 A domain description D = EC ∪D′ contains
the core axioms EC and a set D′ of formulas of any of the
three forms: a static domain axiom

A← L1, . . . , Ln.

such that A is an atom and L1, . . . , Ln are literals of predi-
cates in LD

stat; a state constraint

holdsAt(F, T)← L1, . . . , Ln.

in which the L1, . . . , Ln are literals of predicates in LD
stat ∪

{holdsAt} and all Time variables in the Li are equal to T ;
or an initiates or terminates axiom

initiates(X, F, T)← L1, . . . , Lm, C1, . . . , Cn.

terminates(X, F, T)← L1, . . . , Lm, C1, . . . , Cn.

such that:

• initiates(X, F, T), terminates(X, F, T) ∈ LD
EC.

• Each Li is a literal of an atom in LD
stat, or else a literal

of the predicate holdsAt; each Ci is a time constraint.

• Each variable appearing in a time constraint must also
appear somewhere other than in a time constraint.

• For any time argument Ti of an Li, we must have C1∧
· · · ∧ Cn |= Ti 6 T .

Domain descriptions must be locally stratified. y

As an example of a common system description in policy
representation, we consider a simple subset of the RBAC
model [16]. We represent user-to-role assignment by the
fluent hasRole(Subject,Role) and permission-to-role assign-
ment by hasPerm(Role,Resource,Action). The access con-

trol can then be expressed by the following axiom:

permitted(Sub,Resource,Act, T)←
holdsAt(hasRole(Sub,Role), T),

holdsAt(hasPerm(Role,Resource,Act), T).

The following axioms capture the role hierarchy inheritance:

holdsAt(subrole(R, R′), T)←
holdsAt(contains(R′, R), T).

holdsAt(subrole(R, R′), T)←
holdsAt(contains(R′′, R), T),

holdsAt(subrole(R′′, R′), T).

holdsAt(hasRole(U, R), T)←
holdsAt(hasUser(R, U), T).

holdsAt(hasRole(U, R), T)←
holdsAt(hasUser(R′, U), T),

holdsAt(subrole(R′, R), T).

One advantage of the EC is that using the same formalism
we can also express the administration of RBAC (ARBAC—
see e.g. [32]). First, we use EC rules to model the effects of
user-role assignments (i.e. adding or removing assignments):

initiates(S:R:assignUser(U), hasUser(R, U), T).

terminates(S:R:unassignUser(U), hasUser(R, U), T).

Then we model the effects of the role-permission assign-
ments:

initiates(S:R:assignPerm(T, A), hasPerm(R, T, A), T).

terminates(S:R:unassignPerm(T, A), hasPerm(R, T, A), T).

And finally, operations to the role hierachy:

initiates(Admin:R:addRole(R′), contains(R, R′), T).

terminates(Admin:R:removeRole(R′), contains(R, R′), T).

When modeling an instance of an ARBAC system, we
need to define roles, user-to-role assignment and permission-
to-role assignment for administrators to perform operations
on the RBAC system. This can be done by creating the
correct role hierarchy, user-role assignments and role per-
missions. For example,

initially(hasUser(admin, alice)).

initially(hasPerm(admin, R, assignUser(U))).

initially(hasPerm(admin, R, unassignUser(U))).

initially(hasPerm(admin, R, assignPerm(T, A))).

initially(hasPerm(admin, R, unassignPerm(T, A))).

initially(hasPerm(admin, R, addRole(R′))).

initially(hasPerm(admin, R, removeRole(R′))).

We now show a system trace. In general, these are se-
quences of actions, which determine the changes in state
properties. The actions can be either policy-governed (as in
the present case), or outside the control of the policy system
(for example, a human pressing a button). The following is

an example of a system trace in which we assume there are
two roles (Medical Aid and Field Surgeon) present in the sys-
tem, but not yet in any hierarchical relationship with each
other.

do(alice:medical aid:addRole(field surgeon, 0)

do(alice:medical aid:assignPerm(S, initialExamine), 1)

do(alice:field surgeon:assignUser(daneeka), 2)

do(alice:field surgeon:assignPerm(S, operate), 3)

do(alice:medical aid:assignUser(duckett), 4)

In this trace, the administrator Alice adds the role Field
Surgeon to be a sub-role to that of Medical Aid. The latter
role is then assigned the permission to perform the initial
examination of any soldier. Doctor Daneeka is assigned the
role of field surgeon, and the role of field surgeon is assigned
permission to operate. Finally, Nurse Duckett is assigned to
the role of medical aid. Here, as the field surgeon role is a
sub-role of that of medical aid, the permission of perform-
ing the initial examination is inherited by the role of field
surgeon (according to the logic of the axioms expressing in-
heritance given previously) and thus conferred on Doctor
Daneeka.

Below is a simple example of SOD in this RBAC model,
between users assiged to the roles of Medical Aid and Secu-
rity Officer.

denied(Admin, sec officer, assignUser(U), T)←
holdsAt(hasUser(medical aid, U), T).

denied(Admin,medical aid, assignUser(U), T)←
holdsAt(hasUser(sec officer, U), T).

Axioms for constraints and sessions and other administra-
tive operations in RBAC and ARBAC can also be expressed
in our domain description model.

3.5 Domain-constrainted Policies
We bring all the previous definitions together, to describe

our complete models of systems constrained by policies.

Definition 9 A domain-constrained policy P = Π ∪ D is
the union of a security policy Π and a domain description
D, such that P is locally stratified. y

We use the standard stable model semantics [18] of logic
programs. To capture the operational model we start with
any set ∆D of ground instances of non-regulatory predi-
cates from the set {initially, happens} ∪ LD

stat and any set
∆π of ground instances of the regulatory predicate req. The
sets ∆D and ∆π represent information about the inputs to
the system, about events which are not controlled by the
PDP/PEP, and information about the system’s initial state,
together with facts about the unchanging (static) properties
of the regulated system. In general, different sets ∆D, ∆π

can be thought of as representing different initial configura-
tions and runs through the system which is governed by our
policy mechanism.

Definition 10 Let P be a domain-constrained policy (see
Definition 9). Then, a policy-regulated trace is the stable
model of ground(P ∪∆D ∪∆π).5

5Where X is a set of formulas, ground(X) is the set of ground
instances of members of X.

We let model(P∪∆D∪∆π) refer to the (unique) stable model
of ground(P ∪∆D ∪∆π). y

4. POLICY ANALYSIS

4.1 Types and Examples
In this section we illustrate a number of different analysis

tasks which can be performed within our framework.

(i) Modality Conflicts. A task of analysing a domain-
constrained policy P = Π ∪ D to see whether there are no
modality conflicts (e.g. permits and denials over the same
resource, or obligations over resources for which a subject
has no authorizations), is an instance of the more general
task of determining whether (stable) models of the domain-
constrained policy verify a number of properties. For in-
stance, we may wish to prove the following freedom from a
particular kind of modality conflict:

∀T (¬(permitted(sub, tar, act, T)

∧ denied(sub, tar, act, T))) (8)

This formula states that for all times, it is not true that an
action is both permitted and denied. If we cannot prove
this, then we wish to have diagnostic information about
the circumstances in which it fails to be true. Checking
whether the system verifies this property is the task of check-
ing whether there are inputs ∆D and ∆π (see Section 3.5)
such that the property is not true, i.e. whether:

model(P ∪∆D ∪∆π) |=∃T (permitted(sub, tar, act, T)

∧ denied(sub, tar, act, T))

This is equivalent to showing that the previous formula (8) is
false, and can be solved using Abductive Logic Programming
(with constraints—ACLP), which computes the sets ∆D and
∆π. The output of the algorithm will be these sets together
with a number of constraints (expressed as equalities and
inequalities) on the possible values of the time-arguments
appearing in the answers. In our implementation we cur-
rently use an abductive constraint logic programming proof
procedure found in [34].

(ii) Illustration of trace abduction. One of the scenarios we
have been using concerns a natural disaster rescue, in which
a team of medics must react to injuries incurred by people
caught in an earthquake. We will show a sample analysis,
together with the diagnostic information which our proto-
type system provides. Here is a small subset of the policies,
in natural language and then in our policy representation
language:

[Nobody may move a patient with spinal injuries]

denied(Sub,Tar,move(L), T)←
holdsAt(is injured(Tar, spinal), T). (9)

[Medics are allowed to move a patient with a spinal

injury if they are on a spine board.]

permitted(M,Tar,move(L), T)←
holdsAt(is injured(Tar, spinal), T), (10)

holdsAt(on spine board(Tar), T).

[Injuries who are located in a house at risk of collapse

must be moved to hospital within 10 mins by a medic]

obl(M,Tar,move(hosp), Ts, Te, Ts)←
Te = Ts + 10, holdsAt(at(Tar, H), Ts),

holdsAt(at risk(H), Ts), happens(find(X,Tar), Ts),

holdsAt(is injured(Tar, InjuryType), Ts). (11)

In addition to policies such as these, the example domain
also includes formulas which describe the effects of actions,
expressed in the EC formalism described in Section 3.4.
They specify under what circumstances a house is at risk
of collapsing, how this can cause injuries to individuals, the
remedial actions medics can take to treat injuries, and so
on. We do not present these details here.

Even with the few simple policies presented above, a num-
ber of interesting analyses are possible. Are there situations
in which a medic has an obligation which it would be impos-
sible to fulfil, because of the presence of a conflicting autho-
rization policy? There are several different interpretations
of this query, one of which is the following:

obl(Sub,Tar,Act, Ts, Te, Tinit)

∧ not cease obl(Sub,Tar,Act, Tinit, Ts, Te, T) (12)

∧ denied(Sub,Tar,Act, T) ∧ Ts < T.

If there are values of the unbound variables which makes
the above conjunction true, this means there is a time at
which an obligation is binding on a Sub, but at which there
is a negative authorization policy, stating that the Sub will
be denied access to perform the action. This query can be
solved in our framework by the abductive algorithm; one of
the answers returned shows the following groundings for the
variables in (12).

obl(medic, alice,move(hosp), 1, 1, 11)

∧ not cease obl(medic, alice,move(hosp), 1, 1, 11, 2),

∧ denied(medic, alice,move(hosp), 2) ∧ 1 < 2. (13)

The abduced atoms, the union of the sets ∆D and ∆π, were:

{ initially(at risk(house3)), initially(at(alice, street)),

happens(walk(alice, house3), 0), (14)

happens(injure(alice, spinal), 1) }

These atoms represent a series of events and actions in the
system, together with system’s initial configuration, which
will lead to the presence of the modality conflict represented
by (13). They show that if alice is initially in the street, then
walks to house3—which is at risk of collapse—and subse-
quently has a spinal injury, there will be an obligation on
the medics to move her back to the hospital, but a denial of
permission to make that movement.

Policy authors can look at this output and take necessary
actions. One response might be to introduce exceptions to
the policy rule (9) in order to avoid the modality conflict, but
for the purpose of illustrating another capability of our anal-
ysis framework, we consider a different possibility. Our pre-
vious experience developing policy analysis tools has shown
that it is possible to build interfaces that hide much of the
formal representations, presenting information in a format
less expert users can understand.

(iii) Constrained search and multiple solutions. Suppose
the policy author, familiar with some details of the system

which is being controlled by the policy, notes that the sample
trace above, which gives rise to a modality conflict of the
kind queried, has the event

happens(injure(alice, spinal), 1)

It may be that this event would never occur in the real
system—let us say e.g. that it is known that alice had been
outfitted with a specially-reinforced protective suit for the
exploration of dangerous buildings. The system model, as
an abstraction of the real world, might not contain this in-
formation, but the policy author is aware of it. In this cir-
cumstance, our analysis system allows its user to modify the
original query (12), to introduce a constraint stating that
alice is not injured. The modified query would be:

obl(Sub,Tar,Act, Ts, Te, Tinit)

∧ not cease obl(Sub,Tar,Act, Tinit, Ts, Te, T) (15)

∧ denied(Sub,Tar,Act, T) ∧ Ts < T

∧ not holdsAt(injure(alice, spinal), T)

This includes the relevant constraint, as the final literal. Its
inclusion prevents the first solution, the abduced atoms (14),
from being found by our analysis procedure; alternative solu-
tions are explored, such as that represented by the following
sample sets of abduced atoms. First:

{ initially(at risk(house3)), initially(at(bob, street)),

happens(walk(bob, house3), 0), (16)

happens(injure(bob, spinal), 1) }

This solution has ignored alice, and suggested that bob may
find himself in the same situation as that represented in (14).
Another solution:

{ initially(at risk(house3)), initially(at(bob, street)),

initially(at(alice, street)), initially(injured(bob, leg break)),

happens(carry(alice, bob, house3), 0), (17)

happens(injure(bob, spinal), 1) }

This is a different analytic trace: both alice and bob are in
the street to start with, and bob has a leg injury. At time 0,
alice carries bob to the house which is at risk, whereupon
bob is spinally injured, and our modality conflict arises.

(iv) Separation of Duty. Separation of duty has been
mentioned several times in previous sections. Checking for
properties related to it follows the same pattern as for other
properties. For example, violations of dynamic SoD can be
checked with:

model(P ∪∆D ∪∆π) |=
∃T (permitted(sub, roles, activate(role a), T)

∧ permitted(sub, roles, activate(role b), T))

This query states that there is a time at which sub is per-
mitted both to activate role A, and role B.

(v) Coverage gaps. We can also—as mentioned in the
introduction—perform coverage analysis, in which a policy
is checked, against the background of a particular system,
to see whether there are system traces in which a request
for action is not governed by policy decisions. Coverage
gap analysis has two types: the first involves checking the
explicit policy rules for gaps, without taking into account

the default logic of the policy regulation rules; the second
adds the policy regulation rules. We make remarks on each
kind below.

The first kind of coverage gap analysis considers situa-
tions in which a request for the performance of an action is
received, but there is no explicit permission or denial implied
by the authorization policy rules of the system. This form
of analysis can be performed using a query of this form:

model(P ∪∆D ∪∆π) |=
∃Sub,Tar,Act, T (req(Sub,Tar,Act, T)

∧ ¬permitted(Sub,Tar,Act, T)

∧ ¬denied(Sub,Tar,Act, T))

As with the modality conflict analysis above, diagnostic trace
information is supplied.

Any action to be performed on a person who is explicitly
stated not to have a spinal injury, for example, will not be
covered by the set {(9), (10), (11)}; a query of, say:

req(Sub,Tar, triage, T) ∧ not permitted(Sub,Tar, triage, T)

∧ not denied(Sub,Tar, triage, T) (18)

∧ not holdsAt(is injured(Tar, spinal), T)

finds many answers, depending on the number of subjects
and targets in the domain.

This kind of coverage analysis concerns the absence of
what we might call explicit authorization decisions for a re-
quest for action: the case where there is no positive or nega-
tive authorization policy rule covering the case in question.
Whether or not an action is enforced by the PEP follow-
ing a request, however, is decided in our framework by the
conjunction of these authorization rules and the rules gov-
erning default availability, which have do in their head (see
Section 3.2). Thus, a situation may arise in which, whilst
there is no decision on an access request explicitly forced by
the authorization rules, the request is still allowed or denied,
because of the presence of a policy regulation rule such as:

do(Sub,Tar,Act, T)← not denied(Sub,Tar,Act, T).

This leads us, therefore, to the second general type of cover-
age gap analysis: that which asks for requests which would
be allowed, but not as a result of the explicit authorization
policies, but merely as a consequence of the default permis-
sions of the system. These cases can be found by a query
such as:

req(Sub,Tar,Act, T) ∧ not permitted(Sub,Tar,Act, T)

∧ do(Sub,Tar,Act, T).

Again, this general form of query can be made specific to
individual users or actions, or types of users and actions.

(vi) Behavioural simulation. Note that to some degree
the example query (18) mixes coverage gap analysis with
behavioural simulation. In the latter, a typical query would
involve inputting a series of events and requests for a system
and analysing, deductively, what permissions were granted,
and what the resulting system state is. In query (18), we
specify properties of the system trace by including

not holdsAt(is injured(Tar, spinal), T)

excluding some system traces but allowing others.
A more straightforward example of behavioural simulation

is shown by considering the sample trace of do atoms given

towards the end of Section 3.4, in which an administrator
Alice assigns a number of users and permissions to roles.
Given that simulation of the behaviour of the system, a user
can query whether, for instance, Nurse Duckett is permitted
to perform an initial examination of a patient at time 2:

permitted(duckett, P, initialExamine, 2).

This would be answered negatively; although the permis-
sion for initial examinations has been assigned to the role
of medical aid by time 2, Nurse Duckett has not yet been
given the role. If the same query is posed after the system
has further evolved—say, at time 5—then the authorization
would be granted.

(vii) Policy comparison. In this form of analysis, we check
to see whether one policy is included in another, whether one
implies another, or they are equivalent, etc.

Our analysis framework allows us to test for these inclu-
sions, enabling an engineer who modifies a policy to prove
whether his modifications would have an effect, and whether
any added elements are, in fact, redundant. Suppose, for ex-
ample, that the current policy set is {(9), (10), (11)}, as in
our running example, and let us say that the proposed new
positive authorization rule is

[Patients in category ‘z’ are allowed to be moved]

permitted(M,Tar,move(L), T)←
holdsAt(category(Tar, z), T). (19)

Suppose the domain is such that a person is classified as
in category z if and only if they have a spinal injury. For
example, the domain description may contain the following:

initiates(injure(Tar, spinal), is injured(Tar, spinal), T).

initiates(injure(Tar, spinal), category(Tar, z), T).

terminates(cure(Tar, spinal), is injured(Tar, spinal), T).

terminates(cure(Tar, spinal), category(Tar, z), T).

In this case, adding the rule (19) to the policy would have
no effect. If Π2 denotes the policy set {(9), (10), (11)}, and
Π1 denotes the set {(9), (10), (11), (19)}, with D being the
full version of our system description, including the initiates
and terminates rules above, then we would receive a positive
answer to the query Π1 ⊆D Π2, indicating that relative to
the particular system description, the rule (19) is redundant.
(Π1 ⊆D Π2 means that, given a domain description D, for
all system traces, permissions, denials, or obligations implied
by the policy Π1 are also implied by the policy Π2.)

One way of checking whether Π1 ⊆D Π2 is to relativize
the policy representation languages, so that the state regu-
latory predicates receive a subscript. Policies from Π1 would
then be written using permitted1, obl1, and so on; and poli-
cies from Π2 would be written using permitted2, obl2, etc.
Clauses which are common to all domain descriptions or se-
curity policies, such as the EC axioms or the rules giving
the meaning of fulfilled and violated ((1) and (2)), would
be replaced by two versions: one containing the subscript 1
on the state regulatory predicates, and one containing the
subscript 2. If the three queries:

permitted1(Sub,Tar,Act, T)

∧ not permitted2(Sub,Tar,Act, T),

denied1(Sub,Tar,Act, T) ∧ not denied2(Sub,Tar,Act, T),

obl1(Sub,Tar,Act, Ts, Te, T)

∧ not obl2(Sub,Tar,Act, Ts, Te, T)

each returned no answers, given a domain description D,
this would be a proof that Π1 ⊆D Π2.

Further, as with previous forms of policy analysis, the
queries can be made as general or specific as the analysis
task demands. It is possible to ask, for instance, whether
a policy Π1 extends the obligations of users on the medical
team to move patients, compared to policy Π2, by a query
such as:

obl1(Sub,Tar,move(L), Ts, Te, T)

∧ not obl2(Sub,Tar,move(L), Ts, Te, T)

∧ not holdsAt(team(Sub,medical), T)

Further examples and system traces can be found on the
website for the implementation.

4.2 Implementation
A prototype implementation of our formal analysis frame-

work is freely available to download.6 The implementation
uses the open-source abductive constraint logic program-
ming ASystem [34]. Tests have enabled us to find modality
conflicts, coverage problems, and other interesting proper-
ties of policies in conjunction with system descriptions, such
as those earlier in this section.

The ASystem is based on finite domains. For this reason,
we adapted our axioms to work on an integer base for Time,
and chose a maximum time to consider in order to make
the Time domain finite. In all cases we examined, analysis
results under these modifications would hold under the orig-
inal version of the axioms with R. However, the systems is
modular, so that a solver based on the real numbers could
simply be ‘plugged in’ to the algorithm instead. This is an
area of current investigation.

4.3 Termination and Complexity
We consider termination and computational complexity

properties for two aspects of our formal framework—the
runtime evaluation of policy rules, and the offline analysis
of policies accomplished using the abductive approach just
described. By evaluation, we mean the determination of an-
swers to queries about which actions are permitted, denied,
or constrained by obligations, using SLDNF.

The language we use (the sorts Subject, Target, Action,
Fluent, Event) is finite. If we further stipulate that the
models of a domain-constrained policy P = Π ∪ D must
be such that in the security policy component Π, there is
a maximum value t such that whenever a body of a policy
rule is made true by the model, all time indices must belong
to some interval [ts, ts + t], and if only a finite number of
actions can occur within any given finite time, then a finite
amount of information needs to be stored about the system
evolution in order to evaluate policies. For example, if

permitted(Sub,Tar,Act, T)← holdsAt(f, T ′), T = T ′ + 10.

is in the policy, we know we must record information about
whether the fluent f holds 10 seconds in the past; beyond 10

6From http://www.doc.ic.ac.uk/~rac101/ffpa/.

seconds, we may not care (depending on the other policies
in Π) what happens to f . For any given domain-constrained
policy, a bound on the amount of domain-dependent infor-
mation which needs to be stored can be calculated, based
on the language, the policy set, and the domain description.

In order to ensure that the evaluation of policy rules ex-
pressed in our formalism terminates, and that this proce-
dure runs efficiently, we must ensure that there are no circu-
lar dependences amongst the members of our security poli-
cies (see Definition 7). We do this by insisting that there
is a total ordering amongst the triples (Sub,Tar,Act), such
that whenever an authorization or obligation policy rule con-
tains Sub, Tar, Act in the head with time index T , all lit-
erals with time index T ′ = T in the body of the predicates
permitted, denied, obl can only contain Sub′, Tar′, Act′ such
that (Sub′,Tar′,Act′) < (Sub,Tar,Act) in the ordering. Fur-
ther, whenever a negative literal in the body of a policy rule
contains a variable, that variable should also appear in some
positive literal of the body. (This way we ensure that selec-
tion of literals during policy evaluation is safe in the sense
of logic-programming.)

Under these conditions, a result from [12] can be used to
show that the evaluation of queries for literals of permitted,
denied and obl can be performed in time polynomial in the
length of the preceding history relevant to queries, these
histories being bounded by the size of the language that we
assume to be finite. Authorizations are typically evaluated
when a req is received for permission to perform an action;
the fulfillment of obligations can be monitored using tech-
niques such as view maintenance in relational databases or
a version of the RETE algorithm for production rules. We
also have soundess and completeness theorems for our for-
mal framework, for policy evaluation queries.

In the case of the analysis tasks using the ACLP abduc-
tive procedures, matters are more complicated. We have a
guarantee of soundness. In the most general case, our lan-
guage is expressive enough to allow the presence of circular
dependences amongst literals in policy rules, and thus there
is not, at the most general and unrestricted level, a guaran-
tee of termination and therefore of completeness. However,
if we make a further restriction that, in addition to a max-
imum time interval [ts, ts + t] in the body of policy rules
(which we made for the case of policy evaluation, above),
there is also a maximum time in the past that we will re-
curse over in our analyses, we can ensure termination and
completeness. Further, our language is expressive enough
to represent, and our analysis algorithms powerful enough
to solve, classes of problem such as the ones identified in
[32] and in [21] that are NP-hard, giving an indication of
the computational complexity of the abductive analysis we
use. Having abduction as a uniform mechanism for solving
analysis problems will let us work on optimizations and ap-
proximations for abductive procedures semi-independently
of the analysis. The implementation of abduction we use
now is more general than strictly required in our analyses.

5. CONCLUSION
A formal policy framework must incorporate obligations

as well as authorizations, include an analysis component us-
ing information about changing system state for accurate
proof of significant properties, provide rich diagnostic in-
formation as output, separate the representation of system
from policy, and include policies which depend on each other

and contain fine-grained defaults. Many languages aim to
achieve some of these goals, but none succeed in achieving
all in a way which balances expresiveness with efficiency of
evaluation and analysis.

Our framework was designed to meet these requirements.
We defined the structure of the policy language, and de-
scribed how we use the EC to depict and reason about chang-
ing properties of the system. We gave examples of autho-
rization and obligation rules, and described how abductive
algorithms lying at the heart of our framework can be used
in the analysis, discussing the current implementation.

By separating the representation of the laws of system
evolution, and constraints on the system state, from the
authorizations and obligations which define policy decisions
we gain clarity in the representation but also the ability to
switch domain descriptions easily and study the behaviour
of policies on different systems.

The choices we have made in the design of the language
show that it is possible to encode subtle default relation-
ships and decisions without sacrificing efficiency, readability
or concision. The use of temporal constraints and an explicit
representation of time has enabled us to express complex de-
pendences of policy decisions on changing system states, as
well as on other policies.

Abductive Constraint Logic Programming is a suitable
paradigm for the kinds of analysis task we wish to perform
on policies. We have used it successfully to provide rich
diagnostic information on the system traces and initial con-
ditions which give rise to properties of policies in heteroge-
nous environments: in this way, the use of ACLP with the
Event Calculus and separable policies and system represen-
tations has been shown to be an effective combination for
policy analysis. We have also used abduction, in our analy-
sis framework, to fill in a partially-specified system, so that
initial conditions which might give rise to e.g. modality con-
flicts are generated as hypotheses.

Further work is ongoing both at the implementation and
at the theoretical level. At the moment, all suitable ACLP
systems use integers as a basis of their constraints, but the
modularity of the abductive approach we have taken means
that an implementation based on reals is entirely feasible.
We are also completing the work on translations between our
framework and other languages for policies representation.
We currently have translation schemes for Ponder2 [31], and
are working on schemes for XACML [30] and others.

Our broader objective is to define a refinement framework,
of which the analysis framework will form a part. Within
this context, an expressive abstract policy language is neces-
sary both to represent a broad spectrum of high-level policies
but also to accommodate different concrete mechanisms on
which policies need to be implemented. Our previous work
on policy refinement [3] for network quality of service man-
agement suggests that many of the properties we have built
into our analysis framework (expressivity, separation of the
laws for system change from policies, flexible expression of
defaults, etc.) are also valuable for policy refinement.

6. ADDITIONAL AUTHORS
Additional authors: Seraphin Calo (IBM T.J. Watson Re-

search Center, email: scalo@us.ibm.com) and Morris Slo-
man (Department of Computing, Imperial College London,
email: m.sloman@doc.ic.ac.uk).

7. REFERENCES
[1] D. Alrajeh, O. Ray, A. Russo, and S. Uchitel.

Extracting requirements from scenarios with ilp. In
S. Muggleton, R. P. Otero, and
A. Tamaddoni-Nezhad, editors, ILP, volume 4455 of
LNCS, pages 64–78. Springer, 2006.

[2] A. Bandara, S. Calo, R. Craven, J. Lobo, E. Lupu,
J. Ma, A. Russo, and M. Sloman. An expressive policy
analysis framework with enhanced system dynamicity.
Technical Report, Department of Computing, Imperial
College London, 2008.

[3] A. K. Bandara, E. C. Lupu, A. Russo, N. Dulay,
M. Sloman, P. Flegkas, M. Charalambides, and
G. Pavlou. Policy refinement for diffserv quality of
service management. In Integrated Network
Management, pages 469–482. IEEE, 2005.

[4] S. Barker. Security policy specification in logic. In
Proc. of Int. Conf. on AI, pages 143–148, June 2000.

[5] M. Y. Becker and S. Nanz. A logic for state-modifying
authorization policies. In ESORICS, pages 203–218,
2007.

[6] M. Y. Becker and S. Nanz. The role of abduction in
declarative authorization policies. In P. Hudak and
D. S. Warren, editors, PADL, volume 4902 of LNCS,
pages 84–99. Springer, 2008.

[7] M. Y. Becker and P. Sewell. Cassandra: Flexible trust
management, applied to electronic health records. In
CSFW, pages 139–154. IEEE Computer Society, 2004.

[8] D. F. C. Brewer and M. J. Nash. The chinese wall
security policy. In IEEE Symposium on S & P, pages
206–214, 1989.

[9] G. Bruns, D. S. Dantas, and M. Huth. A simple and
expressive semantic framework for policy composition
in access control. In P. Ning, V. Atluri, V. D. Gligor,
and H. Mantel, editors, FMSE, pages 12–21. ACM,
2007.

[10] G. Bruns and M. Huth. Access-control policies via
belnap logic: Effective and efficient composition and
analysis. In CSF, pages 163–176. IEEE Computer
Society, 2008.

[11] S. Chen, D. Wijesekera, and S. Jajodia. Incorporating
dynamic constraints in the flexible authorization
framework. In ESORICS, pages 1–16, 2004.

[12] J. Chomicki. Efficient checking of temporal integrity
constraints using bounded history encoding. ACM
Trans. Database Syst., 20(2):149–186, 1995.

[13] N. Damianou, N. Dulay, E. Lupu, and M. Sloman.
The ponder policy specification language. In
M. Sloman, J. Lobo, and E. Lupu, editors, POLICY,
volume 1995 of LNCS, pages 18–38. Springer, 2001.

[14] D. J. Dougherty, K. Fisler, and S. Krishnamurthi.
Specifying and reasoning about dynamic
access-control policies. In U. Furbach and N. Shankar,
editors, IJCAR, volume 4130 of LNCS, pages 632–646.
Springer, 2006.

[15] D. J. Dougherty, K. Fisler, and S. Krishnamurthi.
Obligations and their interaction with programs. In
ESORICS, pages 375–389, 2007.

[16] D. Ferraiolo and D. Kuhn. Role based access control.
In 15th National Computer Security Conference, pages
554–563, 1992.

[17] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and

M. C. Tschantz. Verification and change-impact
analysis of access-control policies. In G.-C. Roman,
W. G. Griswold, and B. Nuseibeh, editors, ICSE,
pages 196–205. ACM, 2005.

[18] M. Gelfond and V. Lifschitz. The stable model
semantics for logic programming. In R. Kowalski and
K. Bowen, editors, Proc. 5th International Conference
and Symposium on Logic Programming, pages
1070–1080, Seattle, Washington, August 15-19 1988.

[19] R. Goldblatt. Logics of time and computation. Center
for the Study of Language and Information, Stanford,
CA, USA, 2nd edition, 1992.

[20] J. Y. Halpern and V. Weissman. Using first-order logic
to reason about policies. ACM Trans. Inf. Syst.
Secur., 11(4), 2008.

[21] K. Irwin, T. Yu, and W. H. Winsborough. On the
modeling and analysis of obligations. In Proc. of ACM
CCS, pages 134–143, 2006.

[22] S. Jajodia, P. Samarati, M. L. Sapino, and V. S.
Subrahmanian. Flexible support for multiple access
control policies. ACM Trans. Database Syst.,
26(2):214–260, 2001.

[23] S. Jajodia, P. Samarati, and V. Subrahmanian. A
logical language for expressing authorizations. In Proc.
of the IEEE Symposium on S & P, pages 31–42, 1997.

[24] S. Jajodia, P. Samarati, V. Subrahmanian, and
E. Bertino. A unified framework for enforcing multiple
access control policies. In Proc. of the ACM SIGMOD
Conf., May 1997.

[25] R. Kowalski and M. Sergot. A logic-based calculus of
events. New Generation Computing, 4:67–95, 1986.

[26] P. Loscocco and S. Smalley. Integrating flexible
support for security policies into the linux operating
system. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference, pages 29–42,
Berkeley, CA, USA, 2001. USENIX Association.

[27] J. McCarthy. Elaboration tolerance. In Proc. Common
Sense 98, 1998.

[28] R. Miller and M. Shanahan. Some alternative
formulations of the event calculus. In A. C. Kakas and
F. Sadri, editors, Computational Logic: Logic
Programming and Beyond, volume 2408 of LNCS,
pages 452–490. Springer, 2002.

[29] C. Nomikos, P. Rondogiannis, and M. Gergatsoulis.
Temporal stratification tests for linear and
branching-time deductive databases. Theor. Comput.
Sci., 342(2-3):382–415, 2005.

[30] OASIS XACML TC. extensible access control markup
language (XACML) v2.0, 2005.

[31] G. Rusello, C. Dong, and N. Dulay. Authorisation and
conflict resolution for hierarchical domains. In Proc. of
IEEE Policy Workshop, June 2007.

[32] R. Sandhu, V. Bhamidipati, and Q. Munawer. The
arbac97 model for role-based administration of roles.
ACM Trans. Inf. Syst. Secur., 2(1):105–135, 1999.

[33] R. Simon and M. E. Zurko. Separation of duty in
role-based environments. In CSFW, pages 183–194.
IEEE Computer Society, 1997.

[34] B. Van Nuffelen. Abductive constraint logic
programming: implementation and applications. PhD
thesis, K.U.Leuven, Belgium, June 2004.

	Introduction
	Related Work
	Policies
	Preliminaries
	Authorizations
	Obligations
	Domain Models
	Domain-constrainted Policies

	Policy Analysis
	Types and Examples
	Implementation
	Termination and Complexity

	Conclusion
	Additional Authors
	References

