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Abstract. Hardware packet-filters for firewalls, based on content-
addressable memory (CAM), allow packet matching processes to keep
in pace with network throughputs. However, the size of an FPGA chip
may limit the size of a firewall rule set that can be implemented in hard-
ware. We develop two irregular CAM structures for packet-filtering that
employ resource sharing methods, with various trade-offs between size
and speed. Experiments show that the use of these two structures are
capable of reduction, up to 90%, of hardware resources without losing
performance.

1 Introduction

FPGA-based firewall processors have been developed for high-throughput net-
works [3, 6, 7]. Such firewall processors must be able to carry out packet matching
effectively based on filter rules. Each filter rule consists of a set of logical op-
erations on different fields of an input packet header. A ‘don’t care’ condition
indicates that a field can match any value.

Content-Addressable Memory (CAM) is a searching device that consists of
an array of storage locations. A search result can be obtained in constant time
through parallel matching of the input with the data in the memory array.
CAM based hardware packet-filters [4] are fast and support various data widths
[3]. However, the size of an FPGA may limit the number of filter rules that
can be implemented in hardware [7]. We describe two hardware structures that
employ resource sharing methods to reduce hardware resource usage for packet-
filtering firewalls. Resource usage reduces approximately linearly with the degree
of grouping of the filter rules in a rule set. These two structures, when applied
to CAM based packet-filters, offer various trade-offs between speed and size
under different situations involving parallel and pipelined implementations. The
contributions described in this paper include:

1. two hardware irregular CAM structures for implementing filter rules;
2. a strategy to generate hardware firewall processors;
3. an evaluation of the effectiveness of the irregular CAM structures, comparing

them against regular CAMs.

P.Y.K. Cheung et al. (Eds.): FPL 2003, LNCS 2778, pp. 890–899, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Irregular Reconfigurable CAM Structures for Firewall Applications 891

Design
phase�

Software
optimisation

phase

Hardware
optimisation

phase�

Rule
reduction

Hardware
configuration

bitstreams

Hardware
firewall rule

representation

High-level
firewall

descriptionAuthorisation
policy� Hardware design

generation

Hardware
design

representation�

Design
capture

Device specific
place and route�

Fig. 1. An overview of our development framework for reconfigurable firewall proces-
sors. There are three main phases: the design phase, the software optimisation phase,
and the hardware optimisation phase.

The rest of the paper is organised as follows. Section 2 gives an overview of
our design framework. Section 3 describes our hardware structures for filter rules.
Section 4 outlines the design generation. Section 5 evaluates the performance of
our approach in terms of speed and size, and Section 6 provides a summary of
current and future work.

2 Framework Overview

As shown in Figure 1, our framework for developing reconfigurable-hardware
packet filtering firewalls consists of three main phases: the design phase, the
software optimisation phase, and the hardware optimisation phase.

During the design phase, the requirements of a firewall are captured as a high-
level description. We use a subset of Ponder [2], a policy specification language,
to create our firewall description language [5]. This firewall description uses
Ponder’s parameterised types and the concept of domains. Our high-level firewall
description supports abstraction from details of the hardware implementation.
It uses constraints to specify low-level hardware requirements such as placement
and partitioning, run-time reconfiguration, timing and size requirements, and
hardware software co-operation.

During the software optimisation phase, high-level firewall rules are reduced
and converted to a hardware firewall rule representation, using parameterised
library specifications. We have developed a series of rule reduction steps to reduce
hardware usage by employing rule elimination and rule sharing methods [5]. A
rule set is divided into a number of groups of hardware filter rules. Sequencing is
performed to preserve the ordering and the semantics of a rule set. Reordering
and partitioning is conducted to facilitate the grouping process. Each group
consists of either a list of rules related by common attributes, or a singleton rule
if no sharing with other rules can be found within the same partition.

During the hardware optimisation phase, hardware firewall rule representa-
tions are converted to a hardware design which is then used to produce the
hardware configuration bitstreams for downloading onto an FPGA. The next
section describes the irregular CAM structures that we develop, and their use in
implementing a rule set in hardware and in facilitating resource sharing.
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Fig. 2. A rule set in hardware implemented as an irregular CAM structure. Each
location contains a variable sized hardware block that implements a group of filter
rules. An array of hardware blocks together form a CAM structure that supports the
whole rule set.
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Fig. 3. A hardware block for a group of singleton filter rule. Instead of having a single
matching processor as in a regular CAM, our hardware blocks for filter rules contain
several field-level hardware comparators that correspond to different fields of an input
packet. When a hardware block is instantiated, filter rules that contain ‘don’t care’
fields will have the corresponding hardware comparators eliminated. This example
shows the situation when no ‘don’t care’ fields are involved in a filter rule.

3 Architecture of Irregular CAM for Firewall Rules

Our approach for implementing a firewall rule set in hardware is to construct
a specialised CAM structure, as shown in Figure 2, to perform packet-filtering.
Conventional regular CAM structures store a single matching criterion in each
memory location. However, instead of having a one-to-one mapping of a filter
rule to a CAM location, we construct each CAM location as a hardware block
that implements a group of filter rules.

A rule set is divided into several groups of filter rules as described in Section 2.
Each of these groups is implemented as a hardware block that corresponds to a
CAM location. These variable sized hardware blocks together then produce an
irregular CAM structure that represents the whole filter rule set.

Hardware blocks are instantiated according to the types of grouping and the
combinations of field attributes. Figure 3 shows a hardware block for a group
of singleton filter rule. It contains several field-level hardware comparators that
correspond to different fields of the input. Matching results are obtained as the
unified result from all the individual comparators. This design is functionally
the same as a regular CAM, except that a regular CAM design will normally
use only one comparator for the input data and does not need the AND gate.
Separating the matching processor into field-level comparators, however, allows



Irregular Reconfigurable CAM Structures for Firewall Applications 893

Type
comparator

Src address
comparator

Src port
comparator

Dst address
comparator

Dst port
comparator

AND Gate

Type
comparator

OR
Gate

...
AND
Gate Result

input T input SA input SP input DA input DP

Fig. 4. A hardware block of a group of shared filter rules using the Siamese Twins
structure. Individual fields of the filter rules having identical data values are shared
by using the same hardware comparators. Fields that cannot be shared have their
corresponding parts OR-ed together. This example shows that a block is instantiated
with all but the Type-field comparator being shared.
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Fig. 5. Hardware blocks of a group of shared filter rules using the Propaganda structure.
A group of filter rules are sub-divided into a head unit and a number of subsequent
units chained to the head. Individual fields of the filter rules having identical data values
are shared by using the same hardware comparators in the head unit. The comparison
result of the shared fields is propagated from the head unit to each of the subsequent
units in the group. Fields that cannot be shared are AND-ed with the propagating
result individually. This example shows that the blocks are instantiated with all but
the Type-field being shared.

us to achieve reduction in resource usage at the expense of introducing a multi-
input AND-gate. When a hardware block is instantiated, filter rules that contain
‘don’t care’ fields will have the corresponding hardware comparators eliminated.

Within a group of rules, hardware resources are shared by attributes that
are common. There are two levels of sharing: field-level sharing and bit-level
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Fig. 6. Hardware firewall processor generation. To improve flexibility, the packet-
filtering processing unit and the platform-specific interfaces are separately generated.

sharing [5]. We develop two irregular CAM structures: the Siamese Twins and
the Propaganda. They both provide field-level sharing but have different trade-
offs between size and speed. A group of shared filter rules are implemented as
hardware blocks using either the Siamese Twins structure, which is optimised
for area, or the Propaganda structure, which is optimised for speed. Figure 4
and Figure 5 show some examples of hardware blocks for a group of filter rules
using the two structures.

In the Siamese Twins structure, the fields of a group of filter rules with iden-
tical data values are shared by using the same field-level hardware comparators.
Fields that cannot be shared have their corresponding parts OR-ed together.
This organisation has the advantage of a simple design, and results in reduction
of resource usage by eliminating redundant hardware comparators.

In the Propaganda structure, a group of filter rules are sub-divided into a
head unit and a number of subsequent units chained to the head. Individual
fields of the filter rules with identical data values are shared by using the same
field-level hardware comparators in the head unit. The comparison result of the
shared fields is propagated from the head unit to each of the subsequent units in
the group. Fields that cannot be shared are AND-ed with the propagating result
individually. Filter rules implemented using the Propaganda structure result
in a list of hardware blocks joined together. Each filter rule within a group
corresponds to a hardware block. The length of the list varies with the number
of rules in a group. This is in contrast to the hardware blocks of Siamese Twins
or singleton filter rules, where there is only one unit.

4 Hardware Firewall Processor Generation

To generate our hardware firewall processors (Figure 6), we separate the gen-
eration of the platform-specific interfaces from the generation of the filtering
processor unit. The interfaces are written in the Handel-C language [1], which
facilitates porting the design to various hardware platforms.

We design the hardware code generator that takes the hardware firewall rule
representation as input, and generate the hardware packet-filtering processor
(Figure 6) in VHDL. During the implementation of a CAM location, a hard-
ware block is instantiated according to the attributes of the field in a group of
filter rules. These include the combinations of fields that are shared and not
shared, and the number of rules in a group. Furthermore, there are structures
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for replicating and connecting the non-shared fields for a group of rules. All our
hardware blocks can be used in both parallel and pipelined mode.

Our implementations target the Xilinx Virtex series FPGAs. We follow the
vendor’s recommendation [8] of reprogramming lookup tables as Shift Registers
(SRL 16). The JBits tool is then used to reconfigure the SRL 16 blocks to desired
matching values, for various locations in our irregular CAMs.

5 Performance Evaluation

To analyse the performance of our irregular CAM, we compare implementations
that employ the Siamese Twins and the Propaganda structures against those
based on regular CAMs. We evaluate the implementations in terms of clock
speed and hardware resource consumption.

In addition to using rule sets from network sites, we also generate artificial
rule sets. Our rule set generator is based on real filter rule sets and covers a
wider spectrum of possible real situations as well as some worst-case scenarios.
The test data include the effects of ‘don’t care’ fields, the degree to which rules
are grouped, and the size of rule sets. For the purpose of the experiments, ‘de-
gree of grouping’ means the percentage of rules within a rule set that are in a
shared group. The resource usage figures include resource to support the I/O
to RAM, which is a fixed overhead and is insignificant when compared with the
overall resources required by a rule set. All the experiments are performed on
a Celoxica RC1000-PP reconfigurable hardware platform that contains a Xilinx
Virtex XCV1000 FPGA device.

5.1 Resource Usage

Figure 7 shows the resource usage for rule sets with different degrees of grouping,
and the effects of ‘don’t care’ fields. The resource usage of regular CAM remains
unchanged as the degree of grouping varies.

When the degree of grouping is at 0% as shown on the left-hand-side of
Figure 7 (a) and (b), there is no reduction in resource usage in the case of no
‘don’t care’ fields, but there is around 45% reduction in the case with ‘don’t care’
fields for both the Siamese Twins and the Propaganda structures. A rule set that
does not contain any ‘don’t care’ fields in all of its rules is unrealistic. In reality,
most rule sets contain a certain amount of ‘don’t care’ fields. This suggests that
both Siamese Twins and Propaganda will achieve reduction in resource usage
over a regular CAM, whenever a ‘don’t care’ field exists in a rule set.

For the parallel versions, the resource usage of Siamese Twins and Propa-
ganda are about the same as shown in the lower parts of Figure 7 (a) and (b),
where their corresponding graphs almost overlap. For the pipelined version, Pro-
paganda uses noticeably more resources than Siamese Twins. This is due to the
additional pipeline registers. This suggests that both Siamese Twins and Propa-
ganda are suitable for implementations involving parallel structures. However, if
an implementation must involve pipelining and when resource usage is the main
concern, Siamese Twins is the preferred choice.
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(a) No ‘don’t care’ fields.
In this test, none of the filter rules
contain ‘don’t care’ fields.
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(b) With ‘don’t care’ fields.
In this test, each filter rule has one of
the address fields as well as one of the
port fields assigned as ‘don’t care’.

Fig. 7. Resource usage versus degree of grouping. Resource usage of both Siamese
Twins and Propaganda reduce approximately linearly with the degree of grouping.
For the parallel versions, both structures perform almost identically. For the pipelined
versions, Siamese Twins is considerably better. Note that for this test, one of the
address field is not shared in a group. Since the address field is the largest field in a
filter rule, it gives the worst case resource usage for a single non-shared field.

When the degree of grouping is low (less than 10%), the pipelined versions
consume 3.8 times more resources then their parallel counterparts. This shows
the well-known trade-offs between speed and size. However, when the degree of
grouping is high (larger than 70% in the case of no ‘don’t care’ fields, and larger
than 50% in the case with ‘don’t care’ fields), the pipelined versions of Siamese
Twins consume comparable or fewer resources than the parallel versions of the
regular CAM. These two figures correspond to 138% (in the case of no ‘don’t
care’ fields) and 188% (in the case with ‘don’t care’ fields) of the speed of the
regular CAM. This suggests that, in situations when both size and speed should
be optimised, a pipelined version of Siamese Twins can be better than a parallel
version of the regular CAM.

5.2 Speed

Figure 8 shows the speed performance for rule sets with different degrees of
grouping, and the effects of ‘don’t care’ fields. The maximum operating frequency
of regular CAM remains unchanged as the degree of grouping varies.

Results for the parallel versions are shown in the lower parts of Figure 8
(a) and (b). Both Siamese Twins and Propaganda performs approximately the
same as the regular CAM. Results for the pipelined versions are shown in the
upper parts of Figure 8 (a) and (b). While Propaganda performs comparable
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(a) No ‘don’t care’ fields.
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(b) With ‘don’t care’ fields.

Fig. 8. Speed performance versus degree of grouping. Propaganda consistently achieves
comparable performance to the regular CAM. Siamese Twins, while having approxi-
mately the same performance as regular CAM in the parallel version, suffers from
performance degradation when the degree of grouping increases in the pipelined ver-
sions. Note that for this test, all the shared rules using the Siamese Twins structure
are grouped into a single CAM location. This produces the highest propagation delay
and so the lowest performance.

to or sometimes slightly better than the regular CAM, the Siamese Twins suf-
fers from performance degradation when the degree of grouping increases. This
reduction in performance is due to the increased routing and propagation de-
lay of the enlarged OR-structure inside the Siamese Twins. When the degree
of grouping is low (less than 10%), both structures are 2.5 times faster than
their parallel counterparts. When the degree of grouping is at 100%, the perfor-
mance of Siamese Twins is reduced by nearly 50% to have similar performance
to its parallel counterpart. This suggests that both Siamese Twins and Propa-
ganda are suitable for implementations involving parallel structures. However,
if implementations involve pipelining and when speed is also a major concern,
Propaganda can be a better choice.

Figure 9 shows that maximum operating frequency is determined not only
by the degree of grouping, but also by the maximum group size. For the parallel
versions, both Siamese Twins and Propaganda do not vary much with the degree
of grouping. For the pipelined versions as shown in the top-left parts of Figure 9
(a) and (b), when the group size is small, the performance of Siamese Twins
is comparable to the regular CAM even at 100% degree of grouping. When the
group size is large (100 rules/location), its performance decreases by nearly 50%.

The effects of maximum group size suggest that there can be a trade-off be-
tween resource utilisation and the maximum operation frequency. In order to
avoid performance degradation at a high degree of grouping, one can choose
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Fig. 9. Speed performance versus maximum group size for pipelined implementations.
When the maximum group size is small (less than 20 rules/location in the case of no
‘don’t care’ fields, and less than 30 rules/location in the case with ‘don’t care’ fields)
the performance of Siamese Twins and the regular CAM are comparable. In this test,
the degree of grouping is always 100%, but the group of shared filter rules are broken
down into a number of smaller groups.

to impose either a ceiling group size or a maximum degree of grouping for the
pipelined versions of Siamese Twins. For example, groups with number of rules
exceeding the ceiling group size can be broken down into several smaller groups.
This method can maintain performance, but at the expense of using more hard-
ware resources to implement the additional groups.

5.3 Results Summary

The analysis results are discussed in Section 5.1 and Section 5.2. The maximum
reduction in hardware usage and maximum group size before performance degra-
dation are shown respectively in Table 1 and Table 2. For the purpose of the
experiments, performance degradation is defined as no more than 10% reduction
in speed, when compared to corresponding regular CAMs.

Table 1. Maximum reduction in hardware usage before performance degradation.

Reduction in hardware usage Degree of grouping
Siamese Twins Parallel 84% 100%

Pipelined 60% with ‘don’t care’ 30%
18% without ‘don’t care’ 20%

Propaganda Parallel 84% 100%
Pipelined 90% 100%

Table 2. Maximum group size before performance degradation (Siamese Twins
pipelined).

Rule / Location Reduction in hardware usage
With ‘don’t care’ 30 90%
Without ‘don’t care’ 10 85%
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6 Conclusion

We have presented the Siamese Twins and the Propaganda irregular CAM struc-
tures. These two structures employ resource sharing to reduce hardware usage
for packet-filtering firewalls. Experiments show that resource usage reduces ap-
proximately linearly to the degree of grouping of the filter rules in a rule set.
These two irregular CAM structures offer various trade-offs between speed and
size, under different situations involving parallel and pipelined implementations.
Both structures are capable of reduction, up to 90%, of hardware resources of
regular CAMs without losing performance.

Current and future work includes the use of bit-level sharing to achieve fur-
ther reduction in hardware usage, and global and local optimisations of irregular
CAM using the Siamese Twins and the Propaganda structures.
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