
Compiling Policy Descriptions into Reconfigurable Firewall Processors

T.K. Lee, S. Yusuf, W. Luk, M. Sloman, E. Lupu and N. Dulay
Department of Computing, Imperial College,

180 Queen’s Gate, London SW7 2BZ, England
(tkl97, sy99, w.luk, m.sloman, e.c.lupu, n.dulay)@doc.ic.ac.uk

Abstract

We describe a framework for capturing firewall require-
ments as high-level descriptions based on the policy spec-
ification language Ponder. The framework provides ab-
straction from hardware implementation while allowing
performance control through constraints. Our hardware
compilation strategy for such descriptions involves a rule
reduction step to produce a hardware firewall rule repre-
sentation. Three main methods have also been developed
for resource optimisation: partitioning, elimination, and
sharing. A case study involving five sets of filter rules
indicates that it is possible to reduce 67-80% of hard-
ware resources over techniques based on regular content-
addressable memory, and 24-63% over methods based on
irregular content-addressable memory.

1 Introduction

A common element of a firewall architecture [14] is an
Internet Protocol (IP) packet filter to implement authori-
sation policies [6]. A packet filter works by checking the
content of the IP packet header before deciding if commu-
nication is allowed, based on a set of rules. The syntax of
the rules [4, 15] is firewall specific. The ordering of the
rules within a rule set is significant. A packet is sequen-
tially checked against each rule, starting from the begin-
ning of a rule set, until a match for the conditions specified
in a rule is found or the end of the rule set is reached.

Packet filters [1, 9] usually rely on processors run-
ning entirely in software. They suffer from increased
look-up times as the number of filter rules grows. They
therefore have difficulty in keeping up with the current
network throughput. With the recent advances in field-
programmable gate array (FPGA) technology, custom-
developed hardware packet filters [7, 11, 13, 16] that
out-perform their software counter parts become possible.
However, limitations on the amount of available recon-
figurable resources may restrict the number of concurrent
matches. Some studies [7, 11, 16] have been conducted to

optimise the usage of hardware resources, however, they
often do not take into account the redundancy among the
firewall rules in a rule set, and have not utilized information
other than those offered by the IP packet headers.

Firewall rules are notoriously difficult to maintain.
There are several attempts to use high-level languages
[1, 4] or graphical user interface [5] for their description.
However, with the rapid expansion of the internet and the
growing demand of large-scale organisational networks,
rule sets comprising 1000 rules are not uncommon. Conse-
quently, the need for appropriate high-level languages for
firewall description becomes increasingly important.

Ponder [6] is a language for specifying security and
management policies for distributed object systems. Poli-
cies can be written as parameterised types, and can have
constraints.

We describe a framework to specify high-level firewall
rules using Ponder, and to implement such descriptions on
reconfigurable hardware. The contributions described in
this paper include:

� a method for capturing authorisation policies in a
high-level description;

� a rule reduction technique that converts high-level
firewall description to hardware firewall rule repre-
sentation, through partitioning, elimination and shar-
ing;

� a compilation scheme for the framework which in-
volves the rule reduction technique; and

� an evaluation of the effectiveness of the proposed
framework based on a number of case studies.

The rest of the paper is organised as follows. Section 2
gives an overview of our design framework. Section 3 dis-
cusses the design decision for our high-level firewall de-
scription. Section 4 explains our rule reduction technique.
Section 5 describes the implementation scheme. Section 6
outlines a compilation scheme for the design framework.
Section 7 evaluates our approach through some case stud-
ies, while Section 8 provides a summary of current and
future work.

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

2 Framework overview

This section gives an overview of our framework. It
outlines the design objectives, and briefly describes each
stage in the design and development flow.

Our framework allows us to specify high-level firewall
rules and to implement such descriptions on reconfigurable
hardware. There are three basic design objectives:

1. To provide a method to simplify the design process
and to facilitate the maintenance of a firewall. In par-
ticular, to aid the management of authorisation poli-
cies for a complex large-scale organisational network;
and to express firewall rules for reconfigurable hard-
ware implementation.

2. To separate a design into software and hardware
phases; and allowing optimisation to be performed
in both phases, for various hardware implementation
schemes.

3. To achieve efficient hardware utilization. Emphasis
is on overcoming the physical limitations on the size
of reconfigurable hardware, by methods such as shar-
ing of hardware functional units and parameterised li-
brary blocks.

To achieve these objectives, we have three main phases
in the design flow: design phase, compilation phase
and hardware implementation phase. Figure 1 shows an
overview of our framework for developing reconfigurable-
hardware packet filtering firewalls.

At the design phase, the formal requirement of a fire-
wall will be given and additional information that can assist
the optimisation of the firewall implementation will be pro-
vided. The requirements for a firewall is usually contained
in an authorisation policy, which is then transformed into a
high-level firewall description. Such a description consists
of two parts: a firewall control specification, and the do-
main hierarchies of the IP addresses and services. Optional
information including network topology and the available
services together with the firewall description form the in-
put to the next stage of the design flow. At the compila-
tion phase, the firewall description will be converted to a
hardware firewall rule representation, which in turn will go
through a series of optimisation steps. The result is an op-
timised representation of a list of hardware firewall rules
ready to produce a hardware design in the next stage of
the design flow. At the hardware implementation phase,
the representation of firewall rules will be converted to a
hardware design for specific hardware devices. Hardware
specific optimisation techniques can also be used to further
optimise the firewall rules and the overall design. Device
specific tools are then used to place and route the design

Design
phase�

Compilation
�

phase�

Hardware
�

implementation
phase�

 Authorisation policy

Rule reduction

Named-address firewall rules
�

Numeric-address firewall rules
�

+
IP address trees

Ordered sets of partitioned firewall rules
�

Reduced sets of firewall rules
�

Hardware firewall rule representation
�

with parameterised functional unit�

library specifications

Hardware design representation

Hardware configuration bitstreams

Code translation
�

Address translation
Address tree construction

Sequencing, reordering and partitioning
�

Rule elimination
	

Shared resources
�

Hardware optimization
Device specific place and route

Firewall control specification
+

IP and service domain hierarchies

Network topology
�

+
available services�

Figure 1: An overview of the design flow in our frame-
work.

and to generate the necessary hardware configuration bit-
streams for downloading the design on to hardware.

Our framework employs a two-level optimisation ap-
proach. This involves the use of hardware firewall rule rep-
resentation in the compilation phase, and the use of hard-
ware design representation in the hardware implementation
phase. There are two advantages of having an intermediate
representation. First, it allows both software and hardware
optimisations to be performed, based on different sets of
criteria and information available. In particular, it permits
using platform-specific optimisations as well as platform-
independent techniques. Second, it enables a choice of
different hardware implementation schemes based on size,
speed, cost or other requirements.

3 High-level firewall description

This section discusses a novel method that we develop
to capture an authorisation policy in a high-level firewall
description.

To achieve our first design objective (Section 2) of sim-

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

plified design process, we specify an authorisation pol-
icy in a high-level language. We believe such a language
should at least have the following properties: simplify the
design process, facilitate the maintenance, and allow easy
design re-use. In particular, it should

� support abstraction from the hardware implementa-
tion, so that changes to the policies will give a min-
imal or a controllable impact on the hardware; and

� allow the policy administrator, who may have little
knowledge of hardware, to specify performance re-
quirements in a high-level description.

Rather than creating a new language, we come up with a
high-level firewall rule that uses a subset of the Ponder Au-
thorisation Policies syntax and adopt domain hierarchies
[6]. We also provide a compilation scheme to convert such
descriptions to a hardware firewall rule representation.

To allow a high level of abstraction and to facilitate
maintenance, we separate the control requirement of a fire-
wall rule, with the IP address and the port address, from
the conventional syntax of firewall rules. Consequently,
our high-level firewall description consists of two parts: a
firewall control specification, and the domain hierarchies
of the IP addresses and services. In addition we interpret
not only a particular address, but also treat address ranges
and address masks as objects. Furthermore, both the ad-
dresses and ports are included in the domain hierarchy.

It is this design decision that enables our high-level fire-
wall description to become simple to use and easy to main-
tain. Our method is more compact and human readable
than using the conventional syntax of router-based firewall
rules. Changes to the control requirement and the objects
specified are now independent to each other. Examples of
the two domain hierarchies can be found in Figure 2.

We define policy types, as shown in Figure 3, to specify
the PERMIT and DENY requirements for a firewall. The
control requirement can then be linked with the specified
objects by instantiating the appropriate policy types with
the corresponding domain hierarchies.

Constraints are added as an additional control in the fire-
wall control specification. They can be used for grouping
firewall control specification as a hardware partition, deter-
mining run-time reconfiguration or hardware software co-
operation, or providing hints and criteria for introducing
delays, timing requirement, placement requirement, and
size requirement for hardware implementation. Figure 4
shows some possible uses of the constraint.

Figure 5 shows an example of a high-level firewall de-
scription using our specific approach for describing fire-
walls. Our firewall description is more abstract and can
usually result in more compact description; it permits easy
design re-use. The seven lines example shown in Figure 5

10.0.0.0_0.255.255.255

127.0.0.0_0.255.255.255

172.16.0.0_0.15.255.255

192.168.0.0_0.0.255.255

0.0.0.255_255.255.255.0
�

0.0.0.0_255.255.255.0
�

195.55.55.10

195.55.55.0_0.0.0.255

net2�

net3

net4

net1any

(a) An IP address domain hierarchy, which captures the
network topology into the domain path structure.
The object ‘10.0.0.0_0.255.255.255’ represents the
IP address ‘10.0.0.0’ with a mask ‘0.255.255.255’.
Depends on the operator applied, ‘net2’ can
represent all address objects under its branches;
and similarly ’any’ can represent all objects
beneath it, or a ‘don’t care’ condition.

any ip icmp

tcp

udp�

unsafe�

server

dns

smtp

20

> 1024

2000-2003

2049

6000-6003

dns

2049

(b) A service domain hierarchy. Any set of services
can be grouped together and named. Refer to (a)
for interpreting a domain hierarchy.

Figure 2: Examples of IP address and service domain hier-
archies.

would have to be described by 16 lines in Cisco firewall
rules. If the network topology is more complex or involves
more addresses, the differences will be huge. For exam-
ple, if net2 in Figure 2(a) has 100 extra addresses, then
no changes are required for our high-level firewall con-
trol specification, but one would have to write another 100
more firewall rules that correspond to these 100 extra ad-
dresses.

4 Rule reduction mechanism

This section explains how the high-level firewall de-
scription produced in the previous section is converted to
a hardware firewall rule representation. In addition, it de-
scribes our new technique for saving hardware resources.

The number of firewall rules that can be simultaneously
put into hardware is limited by the configurable resources
available. To achieve our second and third design objec-
tives in Section 2, we come up with a hardware firewall
rule representation, which is largely implementation inde-
pendent.

Our two-level optimisation approach allows software
optimisation and hardware optimisation [7, 11, 13, 16]
techniques to be used simultaneously. Hardware optimi-

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

type auth+ Permit (subject SrcIP, domain SrcService,
target DstIP, domain DstService,
string UserDefConstraint) {

action TCPconnect, UDP;
when UserDefConstraint;

}
type auth- Deny (subject SrcIP, domain SrcService,

target DstIP, domain DstService,
string UserDefConstraint) {

action TCPconnect, UDP;
when UserDefConstraint;

}

Figure 3: Policy types in our framework. Permit allows a
TCP-connect and UDP packet to pass through if all speci-
fied conditions are fulfilled. Similarly, Deny does not allow
the specified action when the conditions are satisfied.

inst auth+ Permit(/any, /any, /any/net, /any/critical, "AlwaysHW");

(a) A constraint that restricts firewall rules to
hardware implementation; assuming that there is a
hardware-software partition.

inst auth+ Permit(/any/net1, /any, /any/net1, /any/, "Partition=1");
inst auth+ Permit(/any/net2, /any, /any/net2, /any/, "Partition=1");
inst auth+ Permit(/any/net1, /any, /any/net2, /any/, "Partition=2");
inst auth+ Permit(/any/net2, /any, /any/net1, /any/, "Partition=2");

(b) Constraints that restrict intra-network
communications to take place on partition 1; while
inter-network communications can take place on
partition 2. The reasons behind this restriction
may be due to run-time reconfiguration, so that a
hardware block will be reconfigured in the
appropriate region; or to restrict the size or
timing requirement of a partition.

inst auth- Deny(/any, /any, /any/main, /any/game, "Time<17:00");

(c) A constraint that restricts the main servers from
running game services before the time ‘17:00’.
This specification may be implemented as a run-time
reconfigurable hardware partition.

Figure 4: Example uses of constraints in firewall specifica-
tion.

sations focus on reducing the size for each firewall rule,
while software optimisations focus on reducing the number
of firewall rules needed. In addition, software optimisation
can sometimes enhance the applicability of hardware opti-
misation.

The rule reduction mechanism consists of five steps de-
scribed below.

4.1 Code translation

This step involves conversion of high-level firewall de-
scription to low-level firewall rule representation. The aim
is to generate a representation that can be manipulated for
various optimisations before implementing on hardware.

The code translation process employs standard compi-
lation techniques: it has a parsing and a code generation
phase. However, the order of the statements listed in a
specification does not guarantee the order that they are pro-
cessed. This is in conflict to the strict ordering requirement

inst auth- Deny(/any/net1/net2, /any/ip, /any, /any/ip);
inst auth- Deny(/any, /any/ip, /any/net1/net3, /any/ip);
inst auth- Deny(/any/net1/net4/195.55.55.0_0.0.0.255,/any/ip,/any,/any/ip);
inst auth+ Permit(/any, /any, /any/net1/net4/195.55.55.10, /any/server);
inst auth- Deny(/any, /any, /any, /any/unsafe);
inst auth+ Permit(/any, /any/ip/tcp/20, /any, /any/ip/tcp/>1024);
inst auth+ Permit(/any, /any/icmp, /any, /any/icmp);

Figure 5: An example high-level firewall description cap-
turing an authorisation policy for checking incoming pack-
ets using the domain hierarchies in Figure 2. The first
statement instantiates to meet the requirement for denying
packets having source IP address net2, any destination IP
address, any source or destination port address, and with
packet type ip.

Table 1: An example of expanded firewall rules generated
from the specification in Figure 5 by code translation.
__

Source Source Destination Destination
Type IP address port IP address port Action
__

ip 127.0.0.0/0.255.255.255 * * * deny
ip 10.0.0.0/0.255.255.255 * * * deny
ip 172.16.0.0/0.15.255.255 * * * deny
ip 192.168.0.0/0.0.255.255 * * * deny
ip * * 0.0.0.255/255.255.255.0 * deny
ip * * 0.0.0.0/255.255.255.0 * deny
ip 195.55.55.0/0.0.0.255 * * * deny
tcp * * 195.55.55.10 smtp permit
tcp * * 195.55.55.10 dns permit
udp * * 195.55.55.10 dns permit
tcp * * * 6000-6003 deny
tcp * * * 2000-2003 deny
tcp * * * 2049 deny
udp * * * 2049 deny
tcp * 20 * >1024 permit
icmp * * * * permit
__

of firewall rules. To rectify this, we provide an extra pre-
parsing step which is explained in Section 6. Table 1 tab-
ulates the results of converting the example of high-level
firewall description in Figure 5.

4.2 Address translation and address tree con-
struction

This step contains two components, name conversion
and address construction, which are performed in se-
quence. There are two aims: first, to produce a representa-
tion of firewall rules consisting only numerical values; and
second, to generate the critical information for the optimi-
sations in the later steps.

During the first stage, all named identifiers are replaced
by their corresponding numeric values. At the second
stage, two tree structures are constructed for all the IP ad-
dresses contained in the list of firewall rules.

4.3 Sequencing, reordering and partitioning

This step involves locating sequence points and assign-
ing partition boundaries within a rule set. There are two
aims: first, to provide a hint for the optimisations in the
later steps to avoid violating the original authorisation poli-

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

cies that a rule set is represented; second, to tailor the num-
ber of firewall rules to fit on hardware. This may be due to
the reasons such as physical size limit, timing requirement,
and run-time reconfiguration.

A sequence point is where changes to the ordering of a
rule within a rule set will affect the meaning of the policies
being represented. Interchanging the order of any two rules
is allowed if and only if there is no sequence point between
them. Figure 6 shows an example where a sequence point
occurs, as well as an example where there is none.

Partitioning divides a rule set into multiple smaller
groups of rules. The size of each group can be specified
according to some predefined conditions, such as:

� the amount of available hardware resources for imple-
menting firewall rules;

� the critical path and timing requirement for the result-
ing hardware circuitries; and

� the use of run-time reconfiguration.

The property of allowing the ordering of rules within a
group to be freely interchanged can be useful during hard-
ware implementation:

� first, it enables multiple rule matching to be per-
formed in parallel in hardware without the need for
extra circuitry to check or serialize the results;

� second, rearranging the rules and re-partitioning can
sometimes change the size of a partition as desired.

The sequencing process takes both the results generated
in the previous step as the inputs, which are the list of fire-
wall rules and the IP address trees. It then traverses the IP
address trees and looks for conflicting rules. A sequence
point is located whenever a conflict is found. In that case,
a mark will be put in the list of firewall rules in between
the two rules involved to indicate that there is a sequence
point. The process continues until both trees are exhausted.

4.4 Rule elimination

This step removes unnecessary firewall rules. The aim
is to reduce the total number of firewall rules to be imple-
mented on hardware.

Three types of elimination are performed: i) conflicts
due to rules which both allow and deny packets, ii) redun-
dant rule which is a subset of another rule, iii) rules that
can not be reached due to rule ordering.

4.5 Rule sharing

This step checks for similarity among the rules and then
groups them together if close matches are found. The aim
is to share the hardware functional unit among the rules.

.

.
#i ’net1.subnet1.subsubnet1’ on condition C with action X
.

#j ’net1.subnet1.all’ on condition C with action Y
.
.

(a) A fragment of a rule set showing a rule on the
higher-level network following a rule on its sub-
network with different actions; it is given that
rule #i precedes rule #j.

net1
\
subnet1 (#j, condition C, action Y)

\
subsubnet1 (#i, condition C, action X)

(b) An IP address tree constructed using the rule set
in (a). From subnet1 to subsubnet1 would involve
rule #i placing a restriction on subnet1 over the
rule #j.

.

.
#i ’net1.subnet1.subsubnet1’ on condition C with action X
.

<sequence point>
.

#j ’net1.subnet1.all’ on condition C with action Y
.
.

(c) A sequence point is marked between rule #i and #j
for the rule set in (a).

net1 net2
\ \
subnet1 subnet1 (#j, condition C, action Y)

\
subsubnet1 (#i, condition C, action X)

(d) An IP address tree constructed using the rule set
in (a) BUT supposing rule #j is indeed on
’net2.subnet1.all’. Traversing from net1 to its
subsubnet1 or from net2 to its subnet1 does not
result in any conflict among the two rules.

Figure 6: An example of locating and marking sequence
point.

There are two types of sharing: field level and bit level.

Field-level sharing
Firewall rules have a number of data fields. Rules having
identical values in corresponding data fields are grouped
together. In this case, hardware functional units includ-
ing parameterized variable-bit comparators can be shared.
There is no limitation on how many data fields can have
different values, within a group of rules. However, the
greater the number of fields that can be different, the fewer
the number of fields that can share the corresponding hard-
ware among the rules. In addition, the complexity of the
pattern matching process for finding the similarity among
the rules grows by allowing a higher value for the num-
ber of different data field values existed among a group of
rules. Figure 7(a) shows an example of two rules that have
identical data values in all corresponding fields but the Type
field. There are two methods of grouping, and their effects
and requirement in hardware implementation are different.

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

__
Source Source Destination Destination

Type IP address port IP address port Action
--
tcp * * 195.55.55.10 dns permit
udp * * 195.55.55.10 dns permit
__

(a) A fragment of a rule set with two rules which differ
in the Type field.

__
Source Source Destination Destination

Type IP address port IP address port Action
--
tcp|udp * * 195.55.55.10 dns permit
__

(b) Method 1: The rule set in (a) is grouped together
to form a single rule, where the Type field becomes
a list of alternative values. Hardware comparators
except the Type field are now shared.

__
Source Source Destination Destination

Type IP address port IP address port Action
--
tcp * * 195.55.55.10 dns permit
udp + + + + +
__

(c) Method 2: The rule set in (a) is grouped together
to share the hardware comparators. A ’+’ mark in
the fields indicates that the values of a particular
field of a rule is identical to the corresponding
field in the rule precedes it.

Figure 7: An example of field-level sharing. The com-
monality in the data fields among the rules are exploited.
Corresponding data fields having identical values among
the rules will share the corresponding hardware.

� Method 1 uses a list of alternative values to represent
data fields that are different, and a single value to rep-
resent data fields that are identical among the rules. A
number of rules are grouped together to form a single
rule. An example is shown in Figure 7(b).

� Method 2 keeps the same number of rules in a group.
However, a mark is used to indicate that a particular
field in a rule is having an identical value to the cor-
responding field in other rules among the group. An
example is shown in Figure 7(c).

Bit-level sharing
Bit-wise numeric operation can be used to deduce the re-
dundancy between two or more numeric values of IP or
port addresses. This method looks for commonality in bit
level, regardless of the numeric values that the data are rep-
resented. It matches the binary ’1’s and ’0’s at bit-level
among the corresponding fields in the rules. The results
are two set of match values. One set contains a mask and
the bits of the data field that are identical among the rules.
The other set contains a mask and a list of bits of the data
field that are different among the rules. Two examples can
be found in Figure 8.

The sharing process takes the list of firewall rules as

Source Source Destination Destination

Type IP address port IP address port Action

ip 172.16.0.0/0.15.255.255 * * * deny
ip 192.168.0.0/0.0.255.255 * * * deny

(a) A fragment of a rule set.

172.16.0.0/0.15.255.255 = 1010 1100 0001 XXXX XXXX XXXX XXXX XXXX
192.168.0.0/0.0.255.255 = 1100 0000 1010 1000 XXXX XXXX XXXX XXXX

Mask for identical bits = 1001 0011 0100 0000 XXXX XXXX XXXX XXXX
Identical bit = 1..0 ..00 .0..

Mask for different bits = 0110 1100 1011 1111 0000 0000 0000 0000
Difference bit (1) = .01. 11.. 0.01 XXXX
Difference bit (2) = .10. 00.. 1.10 1000

(b) Bit-wise deduction for the rule set in (a).

Source Source Destination Destination

Type IP address port IP address port Action

tcp * * 62.189.241.2 www permit
tcp * * 62.189.241.4 www permit
tcp * * 62.189.241.3 www permit
tcp * * 62.189.241.1 www permit

(c) A fragment of a rule set.

62.189.241.2 = 0011 1110 1011 1101 1111 0001 0000 0010
62.189.241.4 = 0011 1110 1011 1101 1111 0001 0000 0100
62.189.241.3 = 0011 1110 1011 1101 1111 0001 0000 0011
62.189.241.1 = 0011 1110 1011 1101 1111 0001 0000 0001

Mask for identical bits = 1111 1111 1111 1111 1111 1111 1111 1000
Identical bit = 0011 1110 1011 1101 1111 0001 0000 0...

Mask for different bits = 0000 0000 0000 0000 0000 0000 0000 0111
Difference bit (1) =010
Difference bit (2) =100
Difference bit (3) =011
Difference bit (4) =001

=XXX

(d) Bit-wise deduction for the rule set in (c).

Figure 8: Examples of bit-level sharing. The commonal-
ity of the ’1’s and ’0’s for a data field among the rules is
deduced.

input and searches for close matching for the correspond-
ing data fields among the rules. The criteria for the pat-
tern matching process include the number of fields that can
have different values among the rules and the number of
rules that can be grouped together in a match.

Grouping of rules separated by sequence points can lead
to violation to the original authorisation policy that a rule
set is represented. In order to avoid such a situation, a rule
set is divided into segments where each segment begins and
ends with a sequence point (see Section 4.3). The match-
ing process is performed independently on each segment.
Reordering can be performed among the rules within the
same segment in order to facilitate a grouping.

Technique for implementing the two methods of field-
level rule sharing is explained in Section 5.

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

5 Implementing hardware sharing

This section describes how resource sharing can be
achieved on hardware. In particular, it explains the require-
ments and proposes an implementation scheme for the two
different methods of hardware firewall rule representation
generated by the rule reduction mechanism.

A hardware firewall rule is usually implemented as a set
of comparators as in Figure 9(a). Each comparator corre-
sponds to one of the data fields in a firewall rule. Whether
the comparators are physically separated or cascaded to-
gether is implementation dependent. However, in terms
of hardware-resource consumptions, they are basically the
same.

Figure 9 shows the differences between a set of rules
with and without sharing the resources on hardware. The
sharing process does not change the hardware implemen-
tation of just a single firewall rule. Indeed, the represen-
tation of a group of shared hardware firewall rules is im-
plemented as an overlapping cluster. To achieve a higher
saving of hardware resources, achieve a larger overlapping
area. This in turn is determined by the number of rules in
the sharing group, and the fields that are shared among the
rules.

In the following, we provide implementations for the
two field-level rule sharing methods described in Sec-
tion 4.5:

� Method 1: Siamese Twins
Individual fields of the firewall rules having identi-
cal data values are simply shared by using the same
hardware functional units. Fields that can not be
shared have their corresponding parts OR-ed together.
An example of which is shown in Figure 9(b). Ad-
vantages of this method include simple design, and
large savings in hardware designs. However, it pro-
duces irregular hardware circuitries that exhibit dif-
ferences in size and timing behaviour. It poses dif-
ficulties when implementing pipelining and regular
hardware data structures such as content-addressable
memory. On the other hand, it is suitable for imple-
mentations that involve irregular hardware data struc-
tures. Figure 10 shows the implementation schemes
for Siamese Twins.

� Method 2: Propaganda
Individual fields of the firewall rules having identical
data values are sharing the corresponding hardware
functional units through the use of extra 2-input AND
gates. It is this relatively little extra cost that com-
pensate for the removal of the much larger cost of
the corresponding hardware comparators of the data
fields. An example of which is shown in Figure 9(c).

Type
comparator�

Src IP address
�

comparator�
Src port
�

comparator�
Dst IP address

comparator�
Dst port

comparator�

Type
comparator�

Src IP address
�

comparator�
Src port
�

comparator�
Dst IP address

comparator�
Dst port

comparator�

(a) Two firewall rules without sharing any resources on
hardware.

Type
�

comparator�

Src IP address
�

comparator�
Src port

�

comparator�
Dst IP address
�

comparator�
Dst port

�

comparator�

Type
comparator�

OR-gate
�

(b) Siamese Twins: two firewall rules sharing the
functional units on hardware. In this example, all
but the type comparator are shared through the use
of an OR-gate.

Type
comparator�

Src IP address
�

comparator�
Src port
�

comparator�
Dst IP address

comparator�
Dst port

comparator�

Type
�

comparator� &
�

&
�

&
�

&
�

(c) Propaganda: two firewall rules sharing the
functional units on hardware. In this example, all
but the type comparator are shared through the use
of 2-input AND gates.

Figure 9: An example showing the differences of firewall
rules with and without sharing the resources on hardware.

The advantage of this method is the regular design
and simple to implement. Hardware techniques usu-
ally favour regular designs, and hardware cores that
are available commercially or in public domains tend
to use regular data structures. Therefore, this method
is suitable for adoption by current designs with little
modifications. Figure 11 shows the implementation
schemes for Propaganda.

Notice that a hardware functional unit is used in a hard-
ware firewall rule only when the corresponding field con-
tains a normal data value. A ’don’t care’ condition is nor-
mally implemented as a by-passing wire and does not re-
quire any logic gates at all.

Implementation using our rule reduction technique, and
in particular the rule sharing method, requires less hard-
ware for a set of firewall rules. A reduction in hardware
consumption with a smaller hardware circuitry will, in gen-
eral, have less routing and gate delays. Therefore, it is
reasonable to expect that designs incorporating rule shar-
ing will have shorter critical paths or at least can meet the
same timing requirement as those without using it. In other
words, it can maintain the speed performance, if not better.

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

Type
comparator�

Src IP address
�

comparator�
Src port

�

comparator�
Dst IP address

comparator�
Dst port

comparator�

OR-gate
�

Type
�

comparator�

Src IP address
�

comparator�
Src port

�

comparator�
Dst IP address

comparator�
Dst port

comparator�

Type
comparator�

Action
�

Action

Type
�

comparator�

Type
comparator�

Src IP address
�

comparator�
Src port

�

comparator�
Dst IP address

comparator�
Dst port

comparator� Action
�

result

input
�

A pipelined structure showing a group of shared hardware
firewall rules with other non-shared rules. Results are
obtained from the last stage of the pipeline. Parallel
structure will have similar layout, except without the
pipeline stages and results are obtained in parallel.

Figure 10: Implementation scheme for Siamese Twins.

6 Compilation scheme

This section outlines a compilation scheme for the
framework. In particular, it discusses the issues involved
in each stages during the conversion of a high-level fire-
wall description to the desired hardware configuration bit-
stream. Lastly, we describe how our existing tools are re-
lated to the framework.

Figure 12 shows an overview of the compilation steps.
There are three stages in the compilation flow:

� Parsing
We use the Ponder Toolkit as the Ponder Parser. How-
ever, specifications have no ordering in Ponder and
this is in contrast with the firewall rules which require
strict ordering. Therefore, we provide a pre-parsing
step that put a tag to every statements in the firewall
description. This tag is simply a number that gets in-
cremented by one each time after a statement from
a firewall description is read. This pre-parsing step
allows the ordering to be preserved both during and
after the Ponder Parser.

� Code generation
There are two phases at this stage and they correspond
to each of the levels in our two-level optimisation ap-
proach. We design the code generator which converts
the firewall description (see example in Figure 5) to
the hardware firewall rule representation (see exam-
ple in Table 1) at Phase 1. Various choices of hard-
ware design code can be generated at Phase 2.

� Hardware implementation
Platform and device specific environments as well as

Type
comparator�

Src IP address
�

comparator�
Src port

�

comparator�
Dst IP address

comparator�
Dst port

comparator�

Type
comparator� &

	
&

	
&

	
&

	

Action

Action

input

Type
�

comparator�
Src IP address

�

comparator�
Src port

�

comparator�
Dst IP address

�

comparator�
Dst port

�

comparator� Action

DD DD DD D
�

D
�

Type
comparator� &

	
&

	
&

	
&

	
Action

D
�

D
�

DD DD D
�

D
�

Type
comparator�

Src IP address
�

comparator�
Src port

�

comparator�
Dst IP address

comparator�
Dst port

comparator� Action

result
(a) A pipelined structure showing a group of shared

hardware firewall rules with other non-shared rules.
Results are obtained from the last stage of the
pipeline. Notice that the pipeline registers may
increase the size of the design.

Type
comparator

Src IP address
comparator

Src port
comparator

Dst IP address
comparator

Dst port
comparator

Type
comparator & & & &

Action

Action

input

Type
comparator

Src IP address
comparator

Src port
comparator

Dst IP address
comparator

Dst port
comparator Action

Type
comparator & & & & Action

Type
comparator

Src IP address
comparator

Src port
comparator

Dst IP address
comparator

Dst port
comparator Action

result

(b) A parallel structure showing a group of shared
hardware firewall rules with other non-shared rules.
Results are obtained in parallel.

Figure 11: Implementation schemes for Propaganda.

place and route tools are used to convert a hardware
design into the corresponding hardware configuration
bitstreams.

Our existing development tools can automatically gen-
erate hardware designs from representation of firewall
rules to either Handel-C or VHDL code. However, they
are not yet capable of producing irregular structures as re-
quired by our new rule reduction methods. Furthermore,
due to the complexity of generating irregular structures
to a granularity level as required by the bit-level sharing
method, we have no plan to convert the current tools to
support this bit-level optimisation. Instead, we decide to
modify the tools to support coarse-grain reduction optimi-
sation down to data field level. On the other hand, we plan
to support bit-level optimisation through the development
of a new tool using other hardware optimisation technique.

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

Handel-C
�

Compiler
�

VHDL
�

Compiler
�

Pre-Parser

Code generator
�

(Phase 1)
�

Code generator
�

(Phase 2)
�

Place & Route tools

Ponder Parser
�

High-level firewall description

Ponder specification
�

Hardware firewall rule representation

Hardware design
in

Handel-C
�

Hardware design
�

in
VHDL

�

Hardware configuration bitstream
�

Parsing
�

stage�

Code
	

generation

stage�

Hardware
implementation
�

stage�

Figure 12: An overview of the compilation steps.

7 Case studies

This section reports some findings on using our new ap-
proach for producing packet-filtering firewall on reconfig-
urable hardware.

We compare the new approach with two other hardware
implementation techniques. The reductions in hardware
usage are estimated by calculating the area usage of five fil-
ter rule sets, on a Virtex XCV1000 FPGA. These rule sets
compose of a mixture of both incoming and outgoing traf-
fic controls on general network services, mail and WWW
servers. We do not include I/O and related control circuits
in the hardware usage estimates. Figure 13 shows the re-
sult of the hardware usage of a regular content-addressable
memory (CAM) structure [11], an irregular CAM structure
[7], and the rule reduction optimisation.

We calculate the amount of hardware resources saved
based on the number of look-up tables required. For the
new approach using the rule reduction mechanism, we em-
ploy our previous hardware architecture [12, 13] for paral-
lel matching structures that does not include any hardware-
level of space optimisation. We use only optimisation gran-
ularity at data field level.

The estimated result shows that our new approach us-
ing the rule reduction optimisation can reduce the hardware
usage by 67-80% from the regular CAM implementation,

0

100

200

300

400

500

600

700

800

Set 1 Set 2 Set 3 Set 4 Set 5

Regular CAM

Irregular CAM

Rule reduction

Figure 13: Hardware usage, in terms of number of look-up
tables, of five filter rule sets using three different imple-
mentation techniques.

and 24-63% from the irregular CAM implementation. It is
believed that further improvement can be achieved by ex-
ercising hardware-level optimisation such as serialisation.

Although it is possible to produce an irregular pipeline
structure, our current tools allocate regular rectangular
blocks on hardware for the filter-rule matching. In other
words, even though we would have already modified our
tools to support this new technique, the hardware space
saved would be scattered around as small unused blocks,
which are difficult to reuse for additional filter rules.

We also compare how changes to an authorisation pol-
icy will reflect on the high-level firewall description ap-
proach with the conventional router-based firewall rule
method. We estimate the impact by introducing changes
on the network topology, and control requirement on IP
address and service. The firewall description approach re-
sponses to changes by requiring modification on the cor-
responding domain hierarchies and/or the control speci-
fication statement. On the other hand, the conventional
rule set responds to changes by requiring the correspond-
ing original firewall rule(s) from an unstructured list being
picked up, and then either being modified or replaced by
new rules.

It is generally easy to locate an object from a hierar-
chy than spotting it from an unstructured list. Moreover,
changes on a single specification statement can affect all
corresponding objects; while changing a list of unrelated
rules requires all relevant rules to be changed at the same
time.

However, the effect of a change of the firewall descrip-
tion may not immediately affect the hardware implementa-
tion. It is because any changes on the control specification
statements or the domain hierarchies will affect the overall
data redundancy that can be deduced in the resulting rule
set. Therefore, the impact may not be directly proportional
to the degree of changes introduced. A big change can have

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

no effect at all, if it was being picked up and eliminated by
the rule reduction step. A small change can have profound
effect, if it introduces new partitioning and grouping in the
hardware firewall rule representation.

On the other hand, the conventional rule set method
‘mirrors’ the pattern on hardware. A change on one fire-
wall rule affects only the circuitry on the pre-defined cor-
responding part on the hardware.

8 Summary

We have presented a design flow for developing hard-
ware packet filters. It employs a two-level optimisation
approach that allows software and hardware optimisations
to proceed independently.

We have described a method of capturing an authorisa-
tion policy in a high-level firewall description. It is based
on a policy specification language using domain hierar-
chies; and supports constraint that specifies restrictions for
hardware implementation.

We have explained a hardware optimisation technique
and have outlined a compilation scheme for the design
framework. A case study shows that hardware reduction
of 67-80% and 24-63% is possible, over regular and irreg-
ular content-addressable memory implementations respec-
tively.

Current and future work includes using constraints to
facilitate run-time reconfiguration [10] and hardware soft-
ware co-operation [3]. Exploration of various hardware-
level optimisation techniques, such as methods based
on binary decision diagram [16] and content-addressable
memory [7], is under investigation: the former is capable
of producing a compact representation of filter rules, while
the latter is capable of fast database search on irregular
structures. The extension of our framework to cover imple-
mentations on reconfigurable platforms [2] and other appli-
cations such as network intrusion detection [8] are also of
interest.

Acknowledgements. The support of UK Engineering and Phys-
ical Sciences Research Council (Grant number GR/R 31409,
GR/R 55931 and GR/N 66599), Celoxica Limited and Xilinx,
Inc. is gratefully acknowledged.

References

[1] A. Begel, S. McCanne, S.L. Graham, “BPF+: Exploiting
Global Data-flow Optimisation in a Generalized Packet Fil-
ter Architecture”, in Proc. SIGCOMM, Computer Commu-
nication Review, 29(4), 1999, pp. 123-134.

[2] P. Bellows et. al., “GRIP: A Reconfigurable Architecture
for Host-Based Gigabit-Rate Packet Processing”, in Proc.
IEEE Symp. on Field-Programmable Custom Computing
Machines, IEEE Computer Society Press, 2002.

[3] G. Brebner, “Single-chip Gigabit Mixed-version IP Router
on Virtex-II Pro”, in Proc. IEEE Symp. on Field-
Programmable Custom Computing Machines, IEEE Com-
puter Society Press, 2002.

[4] Cisco Systems Inc., Cisco PIX Firewall Command Refer-
ence, http://www.cisco.com/.

[5] Cisco Systems Inc., Cisco Secure Policy Manager Policy
Configuration Guide, 2001. http://www.cisco.com/.

[6] N. Damianou, N. Dulay, E. Lupu and M Sloman, “The Pon-
der Policy Specification Language”, in Proc. Workshop on
Policies for Distributed Systems and Networks, LNCS 1995,
Springer, 2001, pp. 18-39.

[7] J. Ditmar, K. Torkelsson and A. Jantsch, “A Dynamically
Reconfigurable FPGA-based Content Addressable Mem-
ory for Internet Protocol Characterization”, Field Pro-
grammable Logic and Applications, LNCS 1896, Springer,
2000.

[8] R. Franklin, D. Carver and B.L. Hutchings, “Assisting Net-
work Intrusion Detection with Reconfigurable Hardware”,
in Proc. IEEE Symp. on Field-Programmable Custom Com-
puting Machines, IEEE Computer Society Press, 2002.

[9] P. Gupta and N. McKeown, “Packet Classification on Multi-
ple Fields”, in Proc. SIGCOMM, Computer Communication
Review, 29(4), 1999, pp 147-160.

[10] J.R. Hess et. al., “Implementation and Evaluation of a Proto-
type Reconfigurable Router”, in Proc. IEEE Symp. on Field-
Programmable Custom Computing Machines, IEEE Com-
puter Society Press, 1999.

[11] P.B. James-Roxby and D.J. Downs, “An Efficient Content-
addressable Memory Implementation Using Dynamic Rout-
ing”, in Proc. IEEE Symp. on Field-Programmable Custom
Computing Machines, IEEE Computer Society Press, 2001.

[12] T.K. Lee, S. Yusuf, W. Luk, M. Sloman, E. Lupu and
N. Dulay, “Development Framework for Firewall Proces-
sors”, in Proc. IEEE International Conference on Field-
Programmable Technology, 2002.

[13] W. Luk, S. Yusuf and R. Nagarajan, “Incremental Devel-
opment of Hardware Packet Filters”, in Proc. International
Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA), CSREA Press, 2001, pp. 115-118.

[14] J.T. McHenry, P.W. Dowd, “An FPGA-Based Coproces-
sor for ATM Firewalls” in Proc. IEEE Symp. on Field-
Programmable Custom Computing Machines, IEEE Com-
puter Society Press, 1997.

[15] R. Russel, Linux IPCHAINS-HOWTO,
http://www.linuxdoc.org/HOWTO/IPCHAINSHOWTO.html.

[16] R. Sinnappan and S. Hazelhurst, “A Reconfigurable Ap-
proach to Packet Filtering”, Field Programmable Logic and
Applications, LNCS 2147, Springer, 2001.

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

