Structural Identification in Medical Imaging (SIMI)
Final Report

Adrian Clay Daniel Breed Raluca Bolovan Shaan Malik
Savvas Kleanthous

January 9, 2012

Contents

3

[1.1 Background| 3
[1.2 Choice of Technologies| 4
[1.2.1 Segmentation and Visualisation Libraries - 'TK and VIK|. 4
[1.2.2 Language Choice - C++H e 4
[1.2.3 GUI Library - Qt[. 5
[1.2.4 Version Control - git| 5
[1.2.5 Buld System - CMake] o 5
[1.2.6 Continuous Integration Server - CTest & CDash| 6
[1.2.7 Testing Framework - googletest and CTest|. 7
1.2.8 IDE - Visual Studio 2010 8

1.3 Project Requirements and Extensions| 8
[1.3.1 Key Requirements| oo 8
[L3.2 Extensionsl e 9

4 Design| e e e e e 9
AT GUI . . .o 9
[1.4.2 Segmentation| e 12
[1.4.3 Image Datal 12
[1.4.4 Orthogonal View| 12
LA5 Toold oo 13
[Drawing Tool (Paintbrush and Eraser)[. 13

LCine Tooll o e e 14
[LiveWire mode for Tine Tooll 15

[2 Software Engineering Issues| 17
2.1 Algorithms Used| e 17
2.1.1 Connected Thresholdl 0. 17
R1.2 TiveWire e 19
[2.1.3 Winding number algorithm| 0000 19
[2.1.4 Marching Cubes| 19

2.2 Technical Challenges| 20
[2.2.1 Memory Leaks 20
[2.2.2 Build System| 21
[2.2.3 Library Issues|. 21
2.2.4 Orientation issue between I'TK and VIK libraries) 21

2.5 Testing Methods and Validation|

[2.0.1 Unit Testing] e

2.0.2 Manual Verificationl oo oo oo

[2.6.1 Code Length|

[2.6.2 Summary of Member Contributions|

2.6.3 Log Book|

3 Conclusions|

3.1 Meeting Key Requirements and Extensions|

(Bibliography|

32
32
33

34

36

36

Chapter 1

Introduction

The medical profession produces and uses CAT and MRI scans to non-invasively inspect the body
and diagnose problems, without recourse to exploratory surgery.

Segmentation - the process of partitioning an image into segments of interest - is an area of Com-
puter Vision that has application in the medical setting, as if an organ or some other anatomical
feature can be extracted from such scans, then further analysis can be performed (calculating the
volume of an organ for example). Therefore, the ability to segment medical scans into anatomical
features can aid in diagnosis.

The purpose of our program SIMI is to aid clinicians or any other professionals whose line of work
involves the use of medical images in performing segmentation on such type of images. Further-
more, it provides the user the ability to perform this process manually or by using semi-automated
algorithms. These characteristics improve the precision of the resulting image.

Another use of SIMI is allowing the user to load a series of scans in order to observe the progression
or the regression of a disease in organs. This is done by comparing the intensities of the infected
organ(s) and their size(s) through the series.

We wanted to make SIMI as user-friendly as possible. The currently available medical imaging
software packages are hard to use and require spending a great amount of time in learning how to
use their features. SIMI presents the advantage of being easy to use by providing the user with an
intuitive interface and requiring him/her to follow as few steps as possible.

1.1 Background

We incorporated some features that worked well in the existing segmentation tools: the orthogonal
view (from ITK-SNAP) because it helps navigating through the image, Livewire(from Turtleseg).
Also after using these tools we were able to make better decisions in designing SIMI. ITK-SNAP’s
3D segmentation algorithm is confusing to use (it involves too many steps) and also it has a
tendency to select regions outside the desired area of interest. We decided to use another algorithm
which performs better(Connected Threshold). Also ITK-SNAP’s interface is not very intuitive and
requires too many steps in processing user input, which renders it difficult to use.

| 1ocm

zoom to fit Bbof 11

Figure 1.1: It can be seen that the segmentation mask has already ”leaked out” of the desired
region.

1.2 Choice of Technologies

1.2.1 Segmentation and Visualisation Libraries - ITK and VTK

As our project required providing the user with a means of segmenting medical images, it was
important to find a library that provided a means of doing this, as trying to implement such
algorithms ourselves would be difficult, as none of us had any experience with Computer Vision
algorithms. It was essential to be able to display an image, and the results of the segmentation,
and so use of a graphics library would be preferable to implementing our own from scratch, which
would be beyond the scope expected for the project.

We were recommended by our supervisor to make use of the C++ ITK and VTK libraries, as
it allowed us to make use of segmentation and visualisation algorithms we would need in order
to meet the basic functionality requirements for our project. There was also some facility for the
two libraries to interface with each other, via the project "ItkVtkGlue”, which would be useful for
converting the results of a segmentation from ITK to a form VTK could display. We therefore
made use of these libraries.

1.2.2 Language Choice - C++

The ITK and VTK libraries provided various language bindings: VTK provided support for Java,
Tecl/Tk and Python, while for ITK, the only supported language binding was Python. We chose
not to use python, as we preferred to use a language we had some experience using, and learning a
new language while developing the project would no doubt have slowed down progress in the initial
stages.

We also found a patch for VITK and ITK, via "VTK.NET” and ”ManagedITK”, which add
bindings for .NET languages. This led us to consider using C#. However, as one of our aims was
for the project to build and run in a Linux environment, we would have had to make use of the
Mono framework. We would have also had to figure out how to compile VITK and ITK to support
this, which would have added to the time for setting up a development environment before we could
start work on the project.

We eventually decided on C++, as we felt it would be more reliable to use the native API to
the libraries we were making use of. Finding support was also an issue, as when we encountered
problems during making our project, we would have had to consider whether the problem was due
to incorrect use of the libraries we used. We felt that increasing the number of libraries our project
depended on would make it more difficult to debug.

1.2.3 GUI Library - Qt

For developing the GUI, we decided on Qt, as it had cross-platform support. We also briefly looked
at using MFC. However, because one of our aims was for the project to work in Linux, we decided
against this.

One of our goals was for the project to run in a Windows and Linux environment, and thus using
a cross-platform GUI library was essential. Qt appeared to be one of the more mature and fully-
featured cross-platform GUI libraries, and it also featured a tool - Qt Designer - which allowed for
easy creation of the layout and look of the GUI elements in a window. Qt facilitates the production
of easily maintainable and reusable code.

1.2.4 Version Control - git

The version control systems we considered using were: subversion, mercurial and git.

We opted to not use subversion, as it lacked the facility of local (off-line) commits. We felt this
would be a useful feature to have, as it would enable us to make small regular commits locally to
take advantage of the security a versioning system offers, in terms of being able to undo changes
or inspect a previous version.

We chose git over mercurial, as some of our group members had used git in a previous project,
and we felt that having some group members familiar with the tool would speed up the process of
learning how to use it for group members that were not familiar with it.

Deciding on a place to host a central repository was considered. We compared two services that
offered such hosting: bitbucket and github.

We chose bitbucket, as it offered a free private account with up to 5 users (the number of
members in our group), and we were unsure at the beginning of the project whether there would be
another group assigned to the same project as us, and we therefore thought that a private account
was preferable.

1.2.5 Build System - CMake

Our project required the use of a wide variety of libraries from different vendors. In order to simplify
the management of linking these libraries, and to achieve our goal of cross-platform development,
we enlisted the help of a build system. As using the VITK and I'TK libraries required making use of

the cross-platform CMake build system, we considered using this. After some research, we found
that it generated Makefiles for a Unix environment, and Visual Studio 2010 project files for use in
a Windows environment.

CMake works by configuring the project within a file named CMakeLists.txt. Within this file,
you specify the source files which make up your project, and list the libraries which the project
depends on. The CMakeLists.txt file was relatively simple, and it simplified linking the ITK and
VTK libraries to our project. Thus, we opted to use this to build our project as well. To build the
project, one would run CMake against the CMakeLists.txt file. CMake would use a number of
built in scripts to attempt to locate the libraries specified in the configuration file, and prompts the
user if they cannot be found so that they may be set manually. Additionally, the target compiler is
tested to make sure it is suitably able to compile the project. CMake will then generate a program
maintenance file for the target platform. On Linux, CMake would generate a Makefile, and on
Windows, CMake would generate a Visual Studio 2010 solution file. The program may then be
built by a native compiler on the target platform.

1.2.6 Continuous Integration Server - CTest & CDash

One of the goals of our project was to make our program function correctly on Linux and Windows.
This meant that we needed to test our tool on both platforms. We decided to set up a Continuous
Integration Server, which would build and test the project on both platforms, and display the
results on an overview webpage. The webpage would allow all group members to verify that the
project was functioning correctly on Windows and Linux. We decided this was necessary, as each
group member would be primarily working on one of the platforms (eg. Linux), and would rarely
use the other.

CMake provides a unit testing system named CTest. In addition, it also provides a web based
dashboard, named CDash, which displays the results of recent runs of CTest from various build
servers. Each unit test within is specified in the CMakeLists.txt file, by giving a test executable
and some arguments. The test is regarded as passed if the return value is 0.

| simi

i

g Dashboard

DASHEOARD CALENDAR PREVIOUS CURRENT _ PROJECT ADMINISTRATION

Mo Lodsie sota ss o Sunday, January 08 2012 05:00:00 UTC ksig

Mo Nightly Builds

Continuous

2N -0-IET EIXCEUTS

WisUE02 doc i 5 LUk Linuse 24+ BN

ACCENTOR? 210 B 04 |2012.00.08T14 8118 LTS

WEARTD o 1E B8 Lk L s:-ﬂ-ﬁu-] 0 | 202-07-08T14 50602 UTC
ACCENTORD Win32-vs 10 B3 04 | 201 2-09-08T14 1012 0TS
BB dng v B ulk Lz BIER D |20t 20 R08TIA 11D UTE
ACCENTORD winaz-eg 1o B3 04 |200 204-08T14.01,24 UTC

P Lineres B D {200 2-0-08T1d DOOSUTE
SCCENTORD win3z-vs 10 B

ACCEN 082 Wanizvs 10 B

03 (20 2--08T1 3553 UTC
04 |20 =0-08 T 2LR3TUTE

WSS doc e & Uk Linuez++ B D |2012-04-D08T1 S4005 UITE

ACCENTOSZ Wdndzs 10 BE I o= | 201200 ceTI3AIBUTE
WSSOI dne Ic 82 ulk Linue-c++ By 0 |2012-04.08T1 3 AX06 LTS

Figure 1.2: Screenshot of our continuous integration CDash displaying test results

The above screenshot shows our overview web page. As you can see, we used two build machines,
ACCENTOR2 (Windows 32bit), and visualO2 (Linux 64-bit). The right hand columns show the
number of tests which passed or failed. The screenshot shows a situation (the bottom two rows)
where a test failed on Linux, but passed on Windows, allowing us to quickly detect that there was
a problem on Linux. Clicking the number of tests passed/failed displays detailed output from the
unit test.

Our continuous integration server was operated by a series of scripts. BitBucket was configured
to send a notification to the DoC web servers each time a commit occurred. This in turn sent a
notification to our Linux and Windows build servers, which then checked out the latest git revision
and built and tested the code. The results of these tests were then submitted to the DoC web
server, which saved the results of the tests in a database, so that they may be inspected using the
CDash interface.

1.2.7 Testing Framework - googletest and CTest

Unfortunately, CTest proved to be relatively basic, in that you could only specify an executable
and some arguments to run, and CTest would inspect the return value. In order to write viable
unit tests, it would either require having a separate executable for each test, or adding boilerplate
code to our test executable’s main method to switch between the tests. In addition, all the result of
each assertion had to be tracked manually throughout the test, in order to ensure that the correct
return value is given.

We decided to supplement our use of CTest with a unit testing framework. We considered two
options: QTest (Built into Qt), and the Google C++ Testing Framework.

As our main goal was to reduce the amount of overheads involved in managing our unit tests,
we chose the Google C++ Testing Framework. This was because it provided a macro for tighter
integration with CTest, and it was possible to combine all the tests into one executable. The
framework also provided a main method for the test executable, which handled the arguments and
the invocation of each test. The CTest macro provided would automatically add each test to CTest,
by providing the correct arguments to Google’s main method. It was important that each unit test
existed in CTest, as our CDash displayed the results of CTest, and not the Google C++ Testing
Framework. Without this capability, all the Google Tests would have shown up as one unit test on
the dashboard, providing a reduced level of feedback.

We rejected QTest, as it required each test case (group of tests) to run as a separate executable,
and did not provide a macro, meaning you would need to add each test case to the CMakeLists.txt
file manually. In addition, CTest/CDash would have only displayed the result of each test case,
rather than each unit test.

1.2.8 IDE - Visual Studio 2010

The build system CMake we had chosen could generate Unix Makefiles for a Linux environment,
and Visual Studio 2010 project files for a Windows environment. We therefore had to choose Visual
Studio 2010 as an IDE to build and test the project in Windows.

1.3 Project Requirements and Extensions

1.3.1 Key Requirements

A pre-requisite to being able to segment medical images is being able to load them. There exist a
number of different medical formats, and so it would be useful to be able to handle a few different
image formats rather than just one. A facility to save the resulting segmentation was also essential.

e Load medical images of type DICOM and VTK. After performing a segmentation, the result
will be converted into a VTK format.

Although we aimed to make use of semi-automated I'TK segmentation algorithms, having man-
ual control of the segmentation to make tweaks and changes would be expected by a user.

e Segment images using a manual pen/eraser tool, by colouring in 2D slices.

We opted for having 2D segmentation as a key requirement, as we assumed it would run faster
than a full 3D segmentation algorithm. This would be important for user interactivity.

e Allow the user to perform 2D region growing on a 2D slice.

A useful reference for the user while segmenting an image would be how large the current
segmentation is. The intention was that this would give the user an idea of whether the segmentation
included what they expected, provided they already had an idea of how large the segmentation ought
to be.

e Calculate the volume of a 3D segmented object by counting the number of voxels ! it contains.

It was considered useful to provide a safety net in case the user forgot to save the result of their
work.

e An auto-save feature. Periodically save any segmentations created.

1.3.2 Extensions

One use-case a user might expect would be being able to segment multiple features within an image.
Thus we considered supporting this functionality.

e Allow user to perform multiple segmentations in one file, and set a colour and a label for each
segmentation.

While the tools we chose to implement in the Key requirements would allow the user to produce
a 3D segmentation, it would have to be done slice by slice (using the manual pen tool or the
2D segmentation tool). Making use of a 3D segmentation algorithm would further automate the
segmentation process for the user, and thus save their time.

e 3D region growing.

There are several different algorithms that attempt to segment features of interest in an image.
These all work with varying degrees of success, depending on the type of image, image quality,
resolution, sensitivity to any user information given, etc. Thus it would be useful for the user to
have a fall-back to use a different algorithm, should one produce spurious results for a given image.

e Implement an alternative algorithm to perform segmentation (using one of the following
algorithms: Geodesic Contours, Watershed, Level Set, Livewire)

The most useful safety net to provide a user would be an undo facility, so they could recover
from any mistakes they made to the segmentation while using the program.

e Have a (bounded) undo facility that can undo the last n user actions.

With the aim of extending the project to be used by a wide audience, including Linux as a
deployment environment would allow for more users to use our program.

e Build project on Linux.

1.4 Design
1.4.1 GUI

One of our intentions was to make the process of using SIMI as easy as possible. Thus from
the GUI point of view, by displaying a QToolbar on the left hand side with menus for each tool
appearing only after the corresponding button had been pushed, makes it easier for the user to
perform the action that he/she chooses rather than being distracted by the display (had all the
options been statically presented on the screen). Also, all the buttons display intuitive icon images
and explanations of their purpose.

Woxels, or Volumetric Pixels, are analogous to pixels, but in 3D.

File Edit Image Help

Shape Round : Size o | ——o—x 10

3D SEG
Zoom To Fit

Figure 1.3: The paint tool is selected and the corresponding options appear on top of the orthogonal
view

2D SEG

Edit Image Help

Freehand drawing: @ Piecewise linear) Continuous curve () Livewire] Autoclose

@

3D SEG
Accept | Undo Point || Close Loop || Clear | | Zoom To Fit Accept | Undo Paint

2D SEG

Figure 1.4: The selected tool is now the Line tool, and as you can see different options are displayed

10

Another GUI design decision that was made to aid usability was creating the Open dialog to
currently accept .vtk and .nii images (and just use one dialog) or DICOM (for these images another
dialog will be opened to select a series). We felt that not forcing the user to use multiple dialogs
for opening the first two mentioned types of images would make our program more user-friendly.
This would have been an issue with using the native QFileDialog class.

[Dialog + X
e Size Type Date Modified - I_I HeadCT vtk
¥ [E5 simizo12 Folder 17/10/2011 12... . TN
P [smi_msc... Folder 20/12/2011 18...
-] ImagesForAn... Folder 04/10/2010 17...
] Nephrectomy Folder 14/11/2011 17...
P [PET histo Folder 26/04/2011 11...
B [Pelvic Folder 07/11/2011 13...
P [Prostates Folder 14/11/2011 17...
B [video Folder 22/12/2011 14...
P [UCL facedata Folder 24/10/201119... ||
P [users Folder 25/03/2011 16...
-] expunged Folder 14/07/2011 20...
ﬁ selinux Folder 21/03/2011 08...
[bin Folder 08/01/2012 13... || =
ﬁ media Folder 08/01/2012 11...
B ont Folder 29/11/2011 21...
5 mont Folder 21/04/2011 17...
B svs Folder 06/01/2012 15... [—
5 etc Folder 08/01/2012 14...
5 dev Folder 08/01/2012 13... ||
,<_ [1 IE
| Cancel | | Ok | | Next

Figure 1.5: Dialog for opening .vtk, .nii files

[Dialog + X

Select a series

1.3.12.2.1107.5.2.30.25737.30000010062910184590600000535.2t5e2d1133 - |

Back ‘ | Cancel ‘ | Ok

Figure 1.6: Dialog for opening DICOM files

11

1.4.2 Segmentation

Segmentation is a major part of the program. The user can perform a number of different seg-
mentations, and all change the segmentation mask. Each type of segmentation has its own class
and methods corresponding to the interactions required for the segmentation. Figure shows
the inheritance diagram for the Segmentation class. For example, the DrawingSegmentation class
provides methods for drawing points, lines and paths on the segmentation mask. For each segmen-
tation class there exists a QWidget which interacts with the methods of the class. For example the
SegThresholdsMenu has two QSlider objects which call the setThresholds method of a Connect-
edThresholdThreeD class.

| Segmentation |

t
| | |

CnnnectedThreshnldThreeD| | DrawingSegmentation | | SavedSegmentation | | TwoDSegmentation

| ConnectedThreshold

Figure 1.7: Inheritance diagram for Segmentation

1.4.3 Image Data

A major component of the system is the Similmage class: it contains all the image data, mask
data and methods for querying information about the image. As shown in the inheritance diagram
(figure we had a couple of subclasses for the Similmage. The Similmage class is constructed
when loading a VTK or similar image, whereas the SimiDicomImage is used when loading a series
of images in the Dicom image format. During development it was found that these separate
constructors were creating duplication of code and so a SimilmageFactory class was created which
centralised the process of checking the type of the image and creating the corresponding object.

| Similmage |

t
| |

| SimiBlankimage ‘ |SimiDicumImage|

Figure 1.8: Inheritance diagram for Similmage

1.4.4 Orthogonal View

The orthogonal view is a QWidget which contains three ViewSeg classes. The ViewSeg class is
itself a QWidget which has methods for manipulating what is displayed. The ViewSeg class has
methods for manipulating the camera location, manipulating the location of the cursor and setting
the active tool. A tool dictates the behaviour of the mouse (e.g. the DrawingTool makes the
mouse act as a paintbrush). We designed the OrthogonalView class such that methods called on

12

an OrthogonalView would propagate to the ViewSeg objects inside. The Render method of the
OrthogonalView calls the Render method on the three ViewSeg objects.

1.4.5 Tools

Each tool has its own interactions and methods pertaining to its purpose. Each subclass of SimiTool
as shown in figure has an execute method which gets called when the user performs a mouse
event on one of the ViewSeg objects. The tool will be told which ViewSeg sent the message, the
mouse event ID and any data associated such as mouse coordinates.

Only one tool can be enabled at one time, and when the user selects a different tool from the
menu then setTool method will be called on the OrthogonalView object which in turn calls setTool

on each ViewSeg object inside of it.
| | |

| CursorTool | | CragTool | | DrawingTool ‘ | SeedTool | |5nappinng:unI| |View8napping|

Figure 1.9: Inheritance diagram for SimiTool

When we began designing SIMI, one of the first decisions we had to make was to choose which
mask annotating tools we were going to implement.

Drawing Tool (Paintbrush and Eraser)

The first and obvious tool we decided to implement was the Drawing Tool. The user had to be
able to manually mark the mask at any point he wanted. Respectively, he would have to be able
to "unmark” the mask as he sees fit. That is why we decided to add a two modes to the Drawing
Tool. One to allow the user to add to the mask, and another to delete sections. These are available
via the GUI as the Paintbrush and the Eraser respectively.

13

& 5IMI

File Edit Image Help

Shape and size of brush can be adjusted.|

Shape (Round 2| " Size = 10

| Paintbrush tool is selected. |

@
Eid
=
Al

3D 5EQ

Zoom To Fit

Figure 1.10: Use of the Drawing Tool.

Line Tool

The main drawback of the manual annotation using the Drawing Tool is the low accuracy. The low
accuracy is because of two reasons. First, and most important, is the low accuracy of the human
hand. Additionally, marking a point using the Drawing Tool, also ”paints” a small radius of points
around it. That is why we decided to build the Line Tool. The Line Tool, is a tool that allows you
to mark a large surface in an easy and more accurate way. The main functionality of the tool is
that the user marks two points, and the tool connects the with a line. When a closed loop of lines
is formed, then the tool can mark the whole surface on the mask.

The first mode we built for the Line Tool, the Linear mode, would connect the two points with
a straight line. That is the simplest form of the Line Tool. Although one might rarely need to
annotate a surface of straight edges, the main advantage is the very fast marking of big surfaces
with a few clicks. Moreover, if one zooms in the image and places a big number of short straight
lines, he can give the illusion of a straight curved line and so mark a surface, quite accurately.

This capability of the Linear mode of the Line mode, led us to formalise this feature and build
a separate mode for it, calling it the Curve mode. The Curve mode has all the functionalities of
the Linear mode. The difference is that this mode allow the user to click and drag so that he can
connect two points with a curve. In reality the tool places a big number of very small straight lines,
and so produces a curve.

14

* SIMI

File Edit Image Help

Freehand drawing: ® Piecewise linear Continuous curve Live
@ The user clicks on points and a polygon is created.
| Line Toal is selected | When finished, the user can add what is drawn ta the
segmentation.
-
Y

--'

Accept Undeo Point || Clese Loop || Clear | | Zoom To Fit

3D SEQ

N e

Figure 1.11: Making use of the Piecewise Linear mode of the Line Tool.

LiveWire mode for Line Tool

The next step, when deciding which tools to use, was to try to increase even more the accuracy.
That is the reason we decided to introduce Livewire functionality to the Line Tool. The Livewire,
using an algorithm (described in another section), helps in the selection of a surface of interest in
a quick and accurate way, using mouse clicks only. That is the main reason why we decided to
implement the Livewire.

15

Continuous curve @ Livewire Autoclose|The user clicks between two points, and the algarithm
[Livewire mode is selected. | fallows the line of the “steepest gradient edge” ta join
the twao points

p || Clear | | Zoom Ta Fik Accept Undeo Point || Close Loop || Clear | | Zoom To Fit

Figure 1.12: Use of the LiveWire mode of the Line Tool.

16

Chapter 2

Software Engineering Issues

2.1 Algorithms Used

2.1.1 Connected Threshold

For our project we wanted a semi-automatic method for segmenting images. There are a number
that have been developed but we wanted to use one which had been developed and tested as part of
the Insight Toolkit. We found that the Connected Threshold algorithm had been used successfully
by a number of other people who were looking at segmenting medical images|[I].

The 3D and 2D Connected Threshold segmentation algorithms used in our project make use
of region growing with one seed point and a maximum threshold and minimum threshold. Region
growing is an iterative process which looks at adjacent pixels to determine if they are connected.
In the Connected Threshold algorithm, a pixel is connected to another if its intensity falls within
the range of the configured maximum to minimum threshold values. The algorithm starts with
the region being that of the seed point and iteratively increases this region by adding the adjacent
connected pixels.

The 2D Connected Threshold algorithm was relatively fast, this allowed us to make it interactive
with the GUI. Whenever the slider values for minimum and maximum threshold values are changed
the algorithm is re-run and updates the GUIL. The 3D Connected Threshold algorithm was much
slower, we only ran the algorithm when the user clicked the ” Compute” button.

On the sample images we used the algorithm performed very well, and if you knew the specific
thresholds you could view separate skin and bone structures.

17

® SIMI

File Edit Image Help

@ Lower] 1076 Upper] 1444 Compute

Zoom To Fit Zoom To Fit

2D SEQ

Update Zoom To Fit Zoom To Fit

Figure 2.1: Applying ” Connected Thresholds” using an intensity range of 1000-1500

& SIMI

File Edit Image Help

@ Lower — 1415 Upper | 1812 Compute

Zoom To Fit Zoom To Fit

2D SEQ

Update Zoom To Fit Zoom To Fit

Figure 2.2: Applying ”Connected Thresholds” using an intensity range of 1400-1800

18

2.1.2 LiveWire

An important part of SIMI is to give the user the chance to manually segment an image. One of
the methods that have been implemented is the ”Livewire mode” of the Line Tool. The Livewire
algorithm, as used in our program, will connect two points on a 2D image by following edges of
great colour differences. It is also known as Intelligent Scissors.

In reality, the Livewire looks for the minimum cost path on a directed weighted graph. To do
that, the Livewire makes use of two main sub-algorithms: One to produce the graph, and one to
find the minimum cost path. To find the minimum path, an implementation of Dijkstra’s algorithm
is used.

To produce the graph, each pixel represents a node on the graph. Directed edges from each
pixel connect them to all their neighbour pixels. The weight of each edge is calculated by a cost
function that depends on three variables: the gradient of the image, the zero crossing, and the
boundary smoothness constraint associated with the gradient direction at each pixel.

When the graph is produced, Dijkstra’s algorithm finds the path wanted.

2.1.3 Winding number algorithm

The Line Tool works by defining a set of adjacent lines that form a closed loop. Then the user
should be able to copy the whole area on the mask. To decide whether a point is in a closed curve
or not, a "Point in closed curve” algorithm is needed. The one we used was the Winding number
Algorithm.

The algorithm works by computing the winding number of a point, with respect to the closed
curve. If the winding point is non-zero, then the point lies within the curve. The winding number
of a point in respect to a closed loop is an integer representing the number of counter-clockwise
circles that are travelled around the point by the curve.

Although the winding number algorithm is a bit costlier than the Ray casting algorithm that is
also widely used, it has the advantage that it allows for crossing lines on the closed curve without
ruining the result.

2.1.4 Marching Cubes

The goal of our program is to help the user produce a segmentation from a medical image. To
verify the segmentation produced, it is useful to be able to visualise it in 3D.

The segmentation produced is a 3D mask image comprised of a number of voxels. Voxels are
the 3D analog of 2D pixels. While a 2D pixel is considered a fixed size square, a voxel is considered
as a cuboid. Several voxels of different colours/intensities can be used to build up an image.

To convert this voxel image into a polygonal mesh that VI'K can render, we make use of
an algorithm known as ”Marching Cubes”. The purpose of the ”Marching Cubes” algorithm is to
produce a polygonal mesh from an image consisting of voxels. A voxel is processed by the algorithm
if its intensity is greater than some predefined limit. This helps to select a skin to generate among
an image of different intensity voxels.

The algorithm takes each voxel in turn and considers its neighbours (other voxels that touch it
at one of its 8 vertices). Depending on the configuration of its neighbours, a piece of a polygonal
mesh, with a certain configuration, is used to represent that voxel. The process is repeated, until
all voxels have been examined.

19

The result is a topologically consistent polygonal mesh (that is, there are no tears in the mesh
produced). This may then be used by VTK’s rendering pipeline to be shown to the user.

Update Zoom To Fit

Figure 2.3: Result of applying ”Marching Cubes” algorithm on an image of voxels.

2.2 Technical Challenges

2.2.1 Memory Leaks

The size of medical images is usually large, as the images are typically in three dimensions. To
process images, it is necessary to load them into memory. As memory is finite, it was important
that our program managed memory efficiently. In C++, there is no automatic garbage collection,
which makes the process of managing memory more difficult, as each object must be told specifically
to delete itself. In addition a fatal crash occurs, if an object is deleted twice, further increasing
complexity.

A solution to this problem is to make use of smart-pointers. ITK and VTK[4] both provide
implementations, and both implementations are used within SIMI. Both implementations work by
counting the number of times they have been referenced. When the smart-pointer is dereferenced,
and the number of references reaches 0, the object deleted, and the memory it occupied is reclaimed.
This solves the problem of double-frees, and memory leakage, as the process of deleting objects
becomes semi-automated.

Whilst smart-pointers provide an effective way to protect against memory leakage, it would be
inefficient to use smart-pointers on all objects. This is because a smart-pointer creates an overhead
by effectively acting as a middleman to an object, and for smaller objects, which do not occupy
much memory, this overhead may outweigh the benefit. This is especially true for small objects,
which exist only for the scope of a single function, as the object can easily be managed within a
function, and its lifespan may be very short. This means that some objects may need to be created
and deleted manually in order to retain performance.

VTK provides a useful feature for finding leakages for these smaller objects. By enabling
the VTK_DEBUG_LEAKS flag within VTK, the program will output a count of the number of

20

instances of a class which are still in memory after a program has destructed. An example output
from VITK_DEBUG_LEAKS is shown below:

Class "vtkXOpenGLRenderWindow" has 3 instances still around.
Class "vtkOpenGLScalarsToColorsPainter" has 15 instances still around.
Class "vtkImageImport" has 2 instances still around.

This has helped us to trace the source of some memory leaks, as we can find where these classes
were initialised, and make sure we delete the objects appropriately.

2.2.2 Build System

The unit testing framework required there to be a separate test executable in order to run the unit
tests. This provided a problem, in that the code available in the main program would also need to
be accessible from the test executable. The usual method of adding source files to each executable
in CMake, resulted in the compiler processing some portions of the source code more than once.
This nearly doubled the build time of our project. In order to resolve this problem, we moved all
the code from the main executable except from the main method into a static shared object. Each
executable (the main executable, and the test executable) then linked its main method onto the
shared object. This meant that the code would only need to be compiled once, but would still be
available in both executables.

2.2.3 Library Issues

Whilst configuring our project to link with the numerous libraries (ITK, VTK, Qt, etc..) required
for our project, we encountered a number of issues with operating system supplied binaries. For
example, Ubuntu’s version of VI'K was not built with Qt support, and was therefore unable to
display graphics within a Qt interface. To solve these issues, it was decided that we would build
and maintain our own versions of the libraries, so that they are configured correctly for our project.
This solves the immediate problem of missing features from the binary versions, but may affect the
ability for the program to be deployed elsewhere. It is therefore likely that some of our dependencies
would need to be distributed along with our project, which could possibly cause licensing issues.
Fortunately, ITK and VTK are both licensed under the BSD License, and Qt is licensed under
LGPL (Lesser General Public License). Both these licences allow the redistribution of unmodified
versions of the libraries concerned.

2.2.4 Orientation issue between ITK and VTK libraries

Another library issue we faced involved viewing the image. We made a design decision to make
use of I'TK’s image object, as opposed to VI'K’s image object to store our image and mask. This
was because we would have to pass an ITK object to and from the ITK library when we wanted
to perform a segmentation. Thus it made sense to store our image internally as the same format.

However, to display the image, we had to convert the itk image to a vtkimageData object, via
an itk filter. There was a problem with the image displayed, as pointed out by our supervisor, in
that the orientation of one of the views was the opposite to what you would expect. The image
appeared flipped in the XZ plane.

21

After searching the itk and vtk message boards, it appeared that this problem was frequently
encountered. One of the proposed solutions was to adjust the orientation of the camera to correct
this[2]. All that would be required would be to change the camera position, such that the view was
flipped in the X7 axis to show the correct orientation.

2.2.5 Positioning of the Cursor

One of the main problems we faced fairly early on the project were the different coordinate sys-
tems supported by VTK. All the different structures in VTK were built using different coordinate
systems, with extremely limited documentation. The creators themselves have admitted a lack of
support on this issue.

After researching the problem, we decided to use a coordinate system as our default system and
transform all others to that. This did not prove to be an easy task, as no transformation functions,
or coordinate system definitions were provided. We did manage, though, to build them ourselves.

2.3 Risks

2.3.1 Libraries

A problem we encountered was making use of the large VIK and ITK libraries. When trying
to implement a feature, it was not always obvious which classes to study and make use of. The
documentation available provided details on each class and its usage, but it proved difficult to find
an overview of the structure of the libraries, which made making design decisions regarding how to
interface with the libraries difficult at times.

We found the advice of our supervisor helpful on such occasions, as he was familiar with the
libraries. Also searching VTK and ITK’s mailing lists for questions regarding implementing certain
functionality was useful.

2.3.2 2D segmentation

We were warned by our supervisor that the process of extracting a 2D slice from a 3D image
and then inserting the same slice back into the image might be a difficult process. This was an
important part of the software as it was needed as part of the 2D connected threshold algorithm.

After trying a number of functions available as part of the Insight Toolkit we found that ex-
tracting a 2D slice was an easy process. Trying to insert a 2D slice was a harder process however
and we found that it was easier to write some code from scratch to set the voxels in the 3D image.

Adrian spent a number of weeks looking at the problem while doing other tasks because of
the anticipated difficulty. We felt that by trying to tackle the problem early on in the project we
allowed plenty of time for finding the solution and the risk of not completing this crucial component
was reduced.

2.4 Collaboration Issues

During the second week of the project, one of the members fell ill for a few days, and as a result
had to miss two meetings in a row. This caused him difficulties compiling the libraries that we

22

were going to use. We managed to solve this by helping him compile all the libraries and setting
up Visual Studio quickly, so he could catch up.

Towards the end of term it was on occasion difficult to find times when we were all free to meet
to discuss the project. Typically we aimed to meet on a Monday, in order to prepare a version
with added features to show at our next supervisor meeting on a Wednesday. Because we could
not typically find times when we were all free on Monday or Tuesday, our compromise was to meet
after 5pm on Mondays to prepare for the next meeting with our supervisor.

2.5 Testing Methods and Validation

2.5.1 Unit Testing

As mentioned in the Choice of Technology section, we made use of unit testing in order to verify
that certain portions of the system worked as expected. This also gave the added benefit of testing
the code on different operating systems. We planned to use unit tests wherever possible.

Unit tests were considered unnecessary for some portions of the code, which simply construct
objects for use with algorithms within ITK/VTK. The results of operations such as these (Marching
Cubes, Segmentation etc) were often inspected visually to ensure correct behaviour. However, at
certain places we performed some operations within SIMI, and some of these were covered by unit
tests.

For example, while starting work on the Undo feature, writing unit tests in conjunction with
writing the code made for a useful safety barrier against regressions when developing the feature.
However, due to time constraints, the feature wasn’t fully implemented. Nevertheless, the use of a
unit test for auxiliary functions that would have been used by the undo feature managed to find a
bug in the implementation of a function that compared whether two images were equal.

2.5.2 Manual Verification

One of the difficulties encountered during our project was mapping the mouse cursor position on
each orthogonal view to the correct voxel within the image. This was not trivial, as each orthogonal
view allowed the user to zoom and pan, and in addition, the size of each voxel could vary.

In order to verify that our solution performed as expected, we developed a tool to generate
test images with voxels varying in size in each dimension. A resulting image generated by the tool
would have the appearance of an equal sized cube, made up of a different number of voxels on
each side. Each side of the cube would be made equal length by changing the voxel size for that
dimension. The image would also have the property that no two adjacent voxels would have the
same colour.

This allowed us to check that the cursor mapped to the correct position by clicking within a
square, and checking that the other orthogonal views updated to the correct voxel. In addition,
we wrote the co-ordinates of the selected voxel to the terminal, and verified that the co-ordinates
corresponded to the selected voxel.

Another test performed using this image was boundary checking. It was possible to click and
drag within each voxel, and check that the other views only changed when the cursor left one
coloured voxel, and entered another.

23

File Ediz Image Help

E" m

A0 SEG

Zoom To At Zoom To Fit
20 SEG
F
- E -
Uprdate Zoom To Fit Zooarmn To Fit

Figure 2.4: Screenshot displaying one of the generated checkerboard images used for verifying that
mouse cursor position mapped to the correct voxel within the image.

In order to verify that we were displaying the orthogonal views correctly, we compared our
views with the orthogonal views within ITK-SNAP. Using this method, on one occasion we found
that one of our views was displaying upside-down. We were able to correct this problem and match
ITK-SNAP’s views, which allowed us to conclude that our views were working correctly.

2.6 Achievements and Member Contributions

2.6.1 Code Length

The table shown below contains the number of lines for .cpp files and does not include the lengths
of the .h(header) files or .ui(used for the user interface). By using Qt Designer, automatic XML
code was generated for the .ui files.

Class Name Lines of Code

ConnectedThreshold 64
ConnectedThresholdThreeD 65

24

CursorTool 172

DragTool 30
DrawingSegmentation 227
DrawingTool 85
ImageLine 72
LiveWirelmageFunction 266
LiveWireTool 72
SavedSegmentation 22
SeedTool 104
Segmentation 6
SimiBlankImage 17
SimiDicomImage 24
Similmage 196
SimilmageFactory 33
SimiUtils 57
SnappingTool 59
TracingTool 86
TwoDSegmentation 128
View3D 130
ViewCursor 205
ViewSnapping 424
connected2dmenu 67
enclopdialog 118
erasermenu 53
imagedetails 106
main 22
mainwindow 522
opendialog 135
orthogonalview 114
paintbrushmenu 41
polygontoolmenu 82
segthresholdsmenu 78
setimageopt 56
settings 46
viewseg 336

2.6.2 Summary of Member Contributions

Below is a list of the features/functionality each group member contributed to the project:

e Adrian

— Researching Connected Threshold

25

Taking 2D slices from a 3D image
— 2D segmenting

3D segmenting
— Putting 2D slice back into 3D image

e Daniel

Autosave & Crash Recovery Feature

Load Recent Images Feature

— Test Image Generator (Checkerboard Test Image)

Set up Testing Framework (Integration with CMake and CDash)
Continuous Integration Servers and Related Scripts (CRON / BATCH)

e Raluca

Open Dialog for loading images.

Setting the brightness of an image.

— Display of image information.

MainWindow main menus, toolbar and menus for tool buttons.
e Savvas

— Researching coordinate systems in VTK

Building the cursor and its correct display on the GUI

Completing the Drawing and the Eraser Tool
— Line Tool

Implementation of the Livewire algorithm

e Shaan

— Loading Images (DICOM and other formats: vtk, nii, etc)
— 3D View of segmentation mask.

— Image navigation in the Orthogonal View.

26

2.6.3 Log Book

Adrian
Week 1 (17/10/11 - 23/10/11)
1 hour | Setting up Git and discussing roles
Week 2 (24/10/11 - 30/10/11)
1 hour | Setting up Wiki and first report
2 hours | Working on report and setting up CMake/CTest
Week 3 (31/10/11 - 6/11/11)
2 hours | Working with Shaan with ITK/VTK/QT integration
2 hours | Researching and implementing 2D region growing
4 hours | Working with C++, inheritance and creating classes for segmentation
Week 4 (7/11/11 - 13/11/11)
3 hours | Working with Raluca on viewseg class and series dialog class
2 hours | Cleaning up, refactoring code
3 hours | Getting orthogonal view working and transparent overlay mask
1 hour | Working on fixing code with events
2 hours | Trying to get VTK interactor working
Week 5 (14/11/11 - 20/11/11)
4 hours | Working with vtk interactor and image intensities
4 hours | Working on writing segmentation to overlay mask
2 hours | Integrating the segmentation into the GUI
Week 6 (21/11/11 - 27/11/11)
3 hours | Segmentation from 2D to 3D
1 hour | Working with Raluca integrating her changes
3 hours | Improving the segmentation
Week 7 (28/11/11 - 4/12/11)
1 hour | Fix a number of bugs with segmentation
1 hour | Allow segmentation to be loaded from file
3 hours | Worked on paintbrush and changing the colour of the mask
3 hours | Worked on eraser
Week 8 (5/12/011 - 11/12/11)
1 hour | Refactoring some code
2 hours | Investigating and fixing bug with drawing tool
2 hours | Writing some unit tests

27

Raluca

Week 1 (17/10/11 - 23/10/11)

3 hours | Researching best GUI practices
2 hours | Created the initial GUI design
2 hours | Setting up QT
Week 2 (24/10/11 - 30/10/11)
1 hour | First report
3 hours | Familiarization with QT Creator (Tutorials on how to use it)
3 hours | Familiarization with QT Designer and building mock projects
Week 3 (31/10/11 - 6/11/11)
6 hours | MainWindow (creation, enabled the Main Menu’s actions, created
shortcuts, created the Toolbar)
3 hours | Setup Build Environment (installed ITK, VTK, CMake)
2 hours | Merging the GUI with the rest of the project
2 hours | Created a widget for displaying the images.
Week 4 (7/11/11 - 13/11/11)
7 hours | Second report
Week 5 (14/11/11 - 20/11/11)
4 hours | Read C++ GUI Programming with Qt4 by Jasmin Blanchette and
Mark Summerfield
2 hours | Researching on how to determine the brightness in an image,

classes that must be used

Week 6 (21/11/11 - 27/11/11)

2 hours | Image Details (created the display)

3 hours | Similmage (added intensity and rescale filters, created methods
for brightness)

2 hours | Brightness Dialog (added sliders for brightness)

2 hours | MainWindow (methods for opening a dialog, added methods for
displaying the Brightness Dialog)

7 hours | Open Dialogs (research on which classes would be most suitable,

created one dialog for opening vtk, nii images and another for DICOM)

Week 7 (28/11/11 - 4/12/11)

1 hour

MainWindow (added enabling, disabling functionality to actions and
buttons depending if an image has been opened or not)

2 hours

Custom layout for mainwindow

4 hours

Image Details (added display functions to voxel spacing, current
voxels coordinates intensity, image size, added methods to
OrthogonalView and ViewSeg to get the necessary information for
the dialog)

Week 8 (5/12/011 - 11/12/11)

2 hours | Merging git
1 hour | ImageDetails (function for displaying World Coordinates)
4 hours | Created classes for the tool menus (zoom, paintbrush, eraser, polygon
segmented thresholds, connected 2d)
2 hours | Mainwindow (added QStackedWidget for displaying the menus for the

tools one at a time depending on which tool is chosen)

28

Savvas \

Week 1 (17/10/11 - 23/10/11)

Week 2 (24/10/11 - 30/10/11)

4 hours | Setup Build Environment

2 hours | Overlaying lines (Investigated using a transparent QWidget)
Week 3 (31/10/11 - 6/11/11)

4 hours | Setup Build Environment

4 hours | Overlaying lines (Drawing to a transparent QWidget)

3 hours | Merge (Tried to overlay lines in main project)
Week 4 (7/11/11 - 13/11/11)

4 hours | Report 2

4 hours | Pen Tool (tried using built-in class vtkImageTracerWidget)

Week 5 (14/11/11 - 20/11/11)
4 hours | Pen Tool (tried using built-in class vtkImageTracerWidget)
1 hour | Cursor Tool (tried using built-in class vtkImageTracerWidget)
3 hour | Cursor Tool (using VTK actors)
Week 6 (21/11/11 - 27/11/11)

4 hours | Overlaying lines (Researching coordinate systems in VTK)

5 hours | Cursor Tool (Displayed in all three orthogonal views correctly)
Week 7 (28/11/11 - 4/12/11)

4 hours | Pen Tool (Devised algorithm to make drawing smooth)

7 hours | Line Tool ()

3 hours | Line Tool (Researched algorithms and implemented one to fill the area

defined by Line Tool)

Week 8 (5/12/011 - 11/12/11)

2 hours | Line Tool (fixed a bug on the display of the lines)
2 hours | Line Tool (added curvy lines option to the tool)
1 hour | Added code to some buttons
2 hour | Pen Tool (Added shape functionality)
5 hours | Seed Tool (Implemented a visual part of the tool)
2 hours | Line Tool (Improved the auto-close feature of the tool)
2 hours | Line Tool (Research on the LiveWire algorithm)
3 hours | Line Tool (Implementation of the LiveWire algorithm through itk
implementation online)
1 hour | Pen Tool (Connected some code to the main window buttons)
2 hours | Report 3

29

Shaan ‘

Week 1 (17/10/11 - 23/10/11)

2 Hours

Setup Build Environment (Installed V52010, CMake. Built VTK. Tried
compiling example VTK projects.)

Week 2 (24/10/11 - 30/10/11)

3 Hours | First Report
3 Hours | Setup Build Environment (Rebuilt VTK correctly)
5 Hours | Setup Build Environment (Made simple CMake project that used VTK

and ITK libraries)

Week 3 (31/10/11 - 6/11/11)

3 Hours

Opening Files (Loading a DICOM image)

3 Hours

Merging (Basic CMake project with a QT GUI, opening files,
segmentation)

Week 4 (7/11/11 - 13/11/11)

2 Hours | Refactoring
3 Hours | Image Navigation (Setting position of the three views)
3 Hours | Image Navigation (Slider bars change current position, and are updated
to reflect current position)
4 Hours | Second Report
Week 5 (14/11/11 - 20/11/11)
1 Hour | Orthogonal Views (Researched how to draw a cursor)
3 Hours | Opening Images (DICOM)
4 Hours | Display Image Bug (An orthogonal view displayed incorrectly: appeared

flipped)

Week 6 (21/11/11 - 27/11/11)

1 Hour

Display Image Bug (Corrected the flipped orthogonal view by changing
position of vtkCamera)

2 Hours | Merging (Cursor Tool)

2 Hours | Refactoring

6 Hours | 3D View (Researched how to display the segmentation mask in 3D)
Week 7 (28/11/11 - 4/12/11)

2 Hours | 3DView (Zoom to Fit feature)

6 Hours | 3DView (Position Selection)

1 Hour | Bug Fix (Cursor didn’t show in Linux)

Week 8 (5/12/11 - 11/12/11)

3 Hours | Volume Calculation

5 Hours | Report 3

2 Hours | GUI Work (Orthogonal View buttons for the Line Tool)

2 Hours | Merging (Tool buttons appear only when a tool is selected)

30

Daniel

Week 1 (17/10/11 - 23/10/11)

2 Hours

Set up build environment on Windows 7 64-bit (Compiled
VTK/ITK & Qt)

Week 2 (24/10/11 - 30/10/11)

2 Hours | Researched CMake/CTest and Continuous Integration servers
1 Hour | Report 1
3 Hours | Set up build environment on Windows 7 64-bit (Enabled some additional

features within VTK, linked VTK/ITK & Qt with SIMI)

Week 3 (31/10/11 - 6/11/11)

4 Hours | Set up build & test environment on TS08 (Windows) and Linux lab
machines
2 Hours | Researched C++4 unit testing frameworks, and evaluated GTest
2 Hours | Patched CDash to make it compatible with DoC web servers
1 Hour | Added code to automatically create a mask image of the same dimensions

as main image on image load

Week 4 (7/11/11 - 13/11/11)

2 Hours | Created sample “Calculator” project, to test integration between
GTest, CMake, CTest and CDash

1 Hour | Report 2

3 Hours | Fixed UI Bug in Windows (Open dialog caused crash due to string

formatting on Windows)

Week 5 (14/11/11 - 20/11/11)

2 Hours | Added feature to Save Mask Image

3 Hours | Added first unit test, and integrated CTest/CDash into out
CMakeLists.txt file

5 Hours | Created build/test scripts for Linux and Windows, and set them to

run via cron/scheduled tasks

Week 6 (21/11/11 - 27/11/11)

1 Hour | Fix buffer allocation problem (now zeros memory, to prevent random
data appearing within image)
5 Hours | Created Checkerboard Test Image Generator, to test if SIMI’s cursor

handles spacing between voxels correctly

Week 7 (28/11/11 - 4/12/11)

2 Hours | Bug fixing (old image would remain on 3D view after loading new image)
5 Hours | Added Open Recent Images feature
Week 8 (5/12/011 - 11/12/11)
3 Hours | Ul Fixes for Windows
2 Hours | Bug fixing (vtkImageViewer2 would not render on new UT layout)
3 Hours | Merged new UI layout
3 Hours | Evaluated QTestLib for UI testing
4 Hours | Report 3

31

Chapter 3

Conclusions

3.1

Meeting Key Requirements and Extensions

We set out with a number of key requirements for the project, all of which were completed:

Be able to load medical images of type DICOM and VTK.
Be able to segment images using a manual pen/eraser tool, by colouring in 2D slices.
Allow the user to perform 2D region growing on a 2D slice.

Integrate with ITK such that you can extract 2D slices of the 3D image, and send them to
ITK for processing.

Calculate the volume of a 3D segmented object by counting the number of voxels it contains.

An auto-save feature. Periodically save any segmentations created.

We also completed some of our extensions:

3D region growing.
Build project on Linux.

Implement an alternative algorithm to perform segmentation: Livewire

There were a number of tasks which we had outlined as extensions which we were unable to
complete due to time constraints:

Allow user to perform multiple segmentations in one file, and set a colour and a label for each
segmentation.

Have a (bounded) undo facility that can undo the last n user actions.

We found that despite working over the Christmas holiday, we would not be able to complete
these extensions. Instead, we concentrated on fixing the small bugs and making improvements
suggested by our supervisor.

We were also able to complete some features that we found useful or occurred to us during the
course of developing the project:

32

e Used an integration server to display our test results.

e Created custom mouse functionality to the viewer so it can pan around the image.

3.2 Future Extensions

If we were to be given additional time to work on the project, the first feature we would implement
would be an Undo feature, as listed in the original extensions, which we weren’t able to complete
due to time constraints. We often found ourselves wishing for an undo feature, during the course
of testing features related to changing the mask (such as the tools).

Although we were able to implement two segmentation algorithms (LiveWire for 2D segmen-
tation, and Connected Threshold for 3D segmentation), it would have been beneficial to support
another 3D segmentation algorithm, to allow the user to choose between more than one in an
instance where an algorithm produces spurious results.

33

Bibliography

[1] Connected threshold segmentation of ventricles in the brain. http://www.insight-journal.
org/browse/publication/194.

[2] Ttk mailing list. http://www.itk.org/pipermail/insight-users/2009-June/031128.html.
[3] A livewire implementation in itk. http://insight-journal.org/browse/publication/230.
[4] Vtk smart pointers tutorial. http://www.vtk.org/Wiki/VTK/Tutorials/SmartPointers.

[5] VTK Users. Kitware. ISBN 1930934238.

34

http://www.insight-journal.org/browse/publication/194
http://www.insight-journal.org/browse/publication/194
http://www.itk.org/pipermail/insight-users/2009-June/031128.html
http://insight-journal.org/browse/publication/230
http://www.vtk.org/Wiki/VTK/Tutorials/SmartPointers

Appendices

35

Appendix A

User Guide

36

SIMI

MANUAL

Adrian Clay
Daniel Breed
Raluca Bolovan
Shaan Malik

Sawvas Kleanthous

Section 1 - Table of contents

Contents
Section 1- Table Of CONENTSuiiiiiiiiieeeeeeeee e e e e s e eeeeeeeas 2
=Tt o T O V=T V= 3
2.1 ADOUL this QOCUMENT. ..ceiiiiiiiiitiiie ettt e e e e e e e e e e s s e e e eeeeeeeaaanns 3
B T U1 o 1=Y o1 PSP UP PP 3
2.0 2 ADSEACE. .ttt et e e e e e e e e e e e e e e e e e e e raeees 3
2.1.3 Addressee of the dOCUMENt.........ccoiiiiiiiiiiiiiii e 3
2.1.4 How to read this dOCUMENToooiiiiiiiiiiiii e 3
2.2 INErOUCEION ..ttt e e e ettt e e e e e s et e et e e e e e e e s anb et e eeeeeeeeaane 4
Section 3-Working With SIML.........coo i e e e e e e e e e e e e e e e e eesennan 5
B.L GUI OVEIVIEW. ...ttt ettt ettt e e et e e et e e et e e e eeba s e e ean e e eanaseeanneeeeannsaenenn 5
A 1= oY =48] = Yo RPN 6
32 o To)V o N [- [o I Yo T g - (TSR 6
3.2.2 OrtNOZONAI VIEWS.....ccieeiiiiiiieeeeeeeeeetie e e e ettt e e e e e e e ettt e e e e e e e aabbeeeeeeesessaateeeeeeesbaannnns 7
3. 2.3 HOW t0 USE the CUISOTuiiiiiiiiiiiiieeeeee et e e e e 8
3.2.4 Getting SOME eXEra ATailS . ..uuuuuieiiiiiiii e e e e e e e e e e 9
3.2.5HOW t0 ZOOM iN @NA QUL ...eiiiiiiiiiiiiiiceec e e 10
3.2.6 HOW tO drag the IM@E ...uuuueiiiiiiiiiiiiiiiiiieiiiti s e e s 10
3.2.7 Adjusting the picture brightnesscoeiiiiiiiiiiiee e 11
B2 8 EXITING SIMLL et e ettt e e e e e e ettt b e e e e e e e ebbba e e e e eeeernnaaans 12
Yot (o) o I o [} 1] g V=i do o TSSO UUPUPTTPOION 12
4.1 The concept Of the MASK......cuuuuiei i e e e e e e e e e e et e e e e e e eaaaaaes 12
4.1.1 What is the MasK......c.eeiiiiiiiiiiiiiiiiiiic e 12
4.1.2 HoW t0 €dit the Maskcceerriiiiiiiiiieee e e 13
4.2 Drawing and Eraser TOO!ciiiiiiiiiiiiiiiiiieeiieee ettt ettt eeeeeabessbteabbasbbesbbaabbsnssennaennns 13
4.2.1How to draw on and erase the Maskcceeeeiiiiiiiiiiiiiieie e 13
4.2.2 Changing the settings of the Drawing and the Eraser ToolS..........ccccceviiiiiiiiiiiiiiiiiiiiiennn. 15
B.3LINE TOO ceiiiiiiieeeeee et e e e e e 15
4.3. 1 HOW 0 USE the LN TOO!uiiiiiieeeiiiiiiiiiiieeee ettt e et e e e e e reeeeeee e e 15
4.3.2Linearand CUNVe MOTE.........ouiiiiiiiiiiiiiiiiiiee ettt e rrae e e e e e 18
4.3.3 LiVEWITE MOUEceiiiiiiiiiiiiiiiieee e e e ettt e e e et e e e e s s e e e e e e s s s nnnneeeeeeeeeanns 18
4.4 2D Connected Threshold SEgMENTatioN.........cceviiiiiiiiee e e e e 19

4.5 3D Connected Threshold Segmentation..........ciiiiiiiiiiiiiiiiiiiiiiiiiiiiee e 19

Section 2 - Overview

2.1 About this document

2.1.1 Subject

This document represents the user manual for SIMI.

SIMI is an image editing tool, for medical 3-dimensional images.

2.1.2 Abstract

The focus of this manual is to explain the different functions and tools offered by SIMI's user interface.

2.1.3 Addressee ofthe document

This document is addressed to anyone who wants to use SIMI.

2.1.4 How to read this document

This is a reference document, and so it is not necessary to read from cover to cover

2.2 Introduction

The intention of the Structural Identification in Medical Imaging (SIMI) is to allow a clinician to perform
segmentation on medical images.

The medical profession produce and use CAT and MRI scans to non-invasively inspect the body and
diagnose problems, without recourse to explorative surgery.

Segmentation - the process of partitioning an image into segments of interest - is an area of
Computer Vision that has application in the medical setting, as if an organ or some other anatomical
feature can be extracted from such scans, then further analysis can be performed (calculating the
wlume of an organ for example). Therefore, the ability to segment medical scans into anatomical
features can aid in diagnosis.

SIMI provides functionality to traverse through the 3D dataset, via 3 orthogonal views, as well as
display the result of applying a segmentation algorithm in 3D.

Section 3 - Working with SIMI

3.1 GUI Overview

Tool buttons

Orthogonal
views

3D view
Update
button

Zoom to fit
buttons

Figure 3.1 The main window as seen when SIMlI is loaded

When one loads SIMI, the program opens up a window that looks like the picture above.

The three orthogonal views are going to display the 3D image, while the 3D view will display the 3D
segment, after an algorithm has been applied and the Update button is pressed.

The Tool buttons will be individually explained in further detail in the following chapters and sections.
Each of them represents a different functionality of the program.

3.2 Getting started
3.2.1 Howto load an image

Let's get started now.

The first thing that you probably want to do is to load an image. SIMI supports DICOM, nii and vk
images. To load an image, choose the Open option from the File menu:

BEY Py ——
N

File | Edit Image Help

MNew Ctrl+N
Open Ctrl+Q
Open Recent L3

entation Ctri+Shift+5

tation

Close This Window Ctri+W
Exit SIMI Ctrl+Q

Figure 3.2 Open button

and navigate in your disk to select the picture you would like to load. When you click OK, and the
image is loaded, the three orthogonal views, should have automatically updated. You should be able
to see a crosshair, indicating the point that is currently selected:

o T W
—_ e

Fre B0 bmege Help

Figure 3.3 The main window as seen when an image is loaded in SIMI

From now on, you will be able to load the same picture in an easier way, using the Open Recent

submenu:

\lirFile‘| Edit Image Help

Mew tri+N !
Open Ctri« 0 [
Open Recent 4 C/apecs/HeadCT vtk

C:/apics/Senes_2.rnm

C/apics/Senes_1.na

~ ma e - s - i L

Figure 3.4 Open recent submenu

3.2.2 Orthogonal views

Before continuing on, you should first know a few things about the way the three orthogonal views
work.

SIMI has an internal cursor that, at all times, focuses on some point of the 3-dimensional image. This
point is defined by its three coordinates: the x-coordinate, the y-coordinate and the z-coordinate, all
defined on a Cartesian 3-dimensional coordinate system.

Each of the three orthogonal views display a 2-dimensional slice of the image. An XY slice, given a
z0-coordinate, is defined as the plane that is parallel to the plane defined by the X-axis and the Y-
axis, whose points all have z0 for their z-coordinate.

7

The upper-left view displays the XY plane of the picture, the upper-right view displays the YZ plane
and the lower-right view displays the XZ plane.

3.2.3 Howto use the cursor

Having loaded an image, it is only natural that you might want to navigate through it. Fortunately the
default tool that is selected by SIMI is the cursor tool. The crosshair that is visible on the three
orthogonal views at all times, indicates the point that the cursor currently focuses on. But the
crosshair can only indicate two of the three dimensions. The third dimension (for example the z-
coordinate for the upper-left view) is indicated by the slider bars that are on the right of the three
orthogonal views.

You can change the point of focus in two different ways.

The first is by manually moving the crosshair, when the cursor tool is selected, and the second is by
re-adjusting one of the slider bars.

If you want to remain on the same image slice, but focus on another point, you only have to left-click
on the point you want to focus on. Additionally, you may drag the crosshair by left-clicking and holding
while moving the mouse. Dragging the crosshair is a great help when greater accuracy is required.

If you need to change the image slice you are viewing, you can mowe the slider bar. The uppermost
position of the sliders represent the zero depth for a particular view, while moving the slider
downwards increases the depth.

5] SIMI

e T B o S

File Edit Image Help

L]

ZoomToFit | Zoom To Fit

[update Zoom To Fit Zoom To Fit

Figure 3.5 The main window after the cursor has been moved

3.2.4 Getting some extra details

When great accuracy is a concern, a simple crosshair might not do. You might also need to know the
exact dimensions of the image you are working with.

Some extra details about the picture itself and the cursor can be found by choosing the Image Details
option of the Image menu:

5] SIMI
File Edit |Image | Help
Brightness

&

Image Details
I

-
'—

Figure 3.6 Image Details button

This should open up a dialog box with quite some more details about the picture and the current
position of the cursor. Mind, that the information given by the Image Details window change
dynamically. That means that moving the crosshair or the slider bar updates the given information.
Additionally, you may calculate the wolume of a segment (when you have started defining one) by
pressing on the Recalculate button:

B SIMI . — 3
Flews EditmlmagenmHelp
&
5| Image Details @I. x|

Dimensions
x: 128 y: 128 z: 115

Voxel Spacing
x: 2.10938 y: 2.10938 2

Intensicy Range

min 0 max 4095

Z|

Voxel Coordinates

x: 28 y: 85 Fo -]
World Coordinates
x: -105.945 y: -48.945 . 65

Current Voxel's Intensity
154

Segmentation Volume

= Recaloulate

Zoom Ta Fit

Update | [Zoom ToFit Zoom Ta Fit

Figure 3.7 Image Details pop-up window

3.2.5 Howto zoomin and out

Zooming in and out in SIMI is extremely easy and flexible. All you need to zoom in a view is to roll
your scroll wheel upwards while pointing to the view. As you might imagine, to zoom out, you will have
to roll downwards your scroll wheel. This functionality is available at all times while an image is
loaded.

If you wish to restore the initial state, all you need to do is press the Zoom To Fit button that is located
under each view on the right.

3.2.6 How to drag the image

If you tried to zoom in the image, you might have noticed that the "camera" zooms in the centre of the
slice. This is not very practical, as it limits the area of the image you may zoom in, as you cannot see
other parts of the slice.

That is why the cursor tool has an image dragging functionality too: If the cursor tool is the selected
tool, then right-clicking the image and holding, while moving your mouse, will move the whole slice.

10

Clicking on the Mowe To Fit button, will restore to the initial state any dragging you might have done
on the slice.

Figure 3.8 An orthogonal view as seen before and after some dragging

3.2.7 Adjusting the picture brightness

At any time during your work, you may adjust the minimum and the maximum brightness of the image
display.

To do that, you will have to choose the Brightness option from the Image menu:

- awﬂ l
File Edit lmage] Help

Brightness l

)

Image Details

Figure 3.9 Brightness button

11

When you do that, a window will pop up.

On that window, you may re-adjust the minimum and the maximum brightness values by moving the
sliders, as you wish:

Set Maximum

2660

Set Minimum

s60 ——]

Figure 3,10 Brightness pop-up window

3.2.8 Exiting SIMI

To exit SIMI, you may use the Exit Simi option from the File menu. If you have more than one SIMI
windows open, Close This Window will only close the current window, and keep the rest. Close This
Window, will have the same effect as Exit Simi, if you only have one window of SIMI open.

Section 4 - Editing tools

4.1 The concept of the mask

4.1.1 What is the mask

The previous chapter have shown all the different ways you can use to navigate through your 3-
dimensional image. That is all very good, but in most cases you probably need to make some

observations on the image. You might want to manually or algorithmically select a part of the 3D
image and inspect it, calculate its volume etc.

That is where the concept of the "mask" comes in. You can imagine the mask to be a 3-dimensional
transparency where you can "note down" the segments of the image you might want to inspect.

When you have made all your "notes" on the mask, you may inspect the volume on the 3D \iew, by
clicking on the Update button that is located below the 3D view on the right.

12

4.1.2 How to edit the mask

There are two main ways to annotate your image's mask. You can either do it manually, or
algorithmically by one of the algorithms that SIMI provides. All the different ways are going to be
expanded in detail in the following sections.

SIMI offers two different tools that can be used to manually annotate the mask. The first one is the
Drawing Tool that can be used as a pen on the mask. The other one is the Line Tool that can be
used tofill an area defined by a set of lines.

Respectively SIMI offers two different algorithmic annotation methods. Those are the 2-dimentional
segmentation and the 3-dimentional segmentation. Both of them will be explained in detail.

At any point, you may erase any part of your "notes" on the mask. This can be done by using the
Eraser Tool. The Eraser Tool works exactly like the Drawing Tool, and you can think of it as an

"inverse pen". For simplicity, the Drawing and the Eraser Tool, are going to be explained in the same
section, as the way you can use them is identical. The only difference is the result.

4.2 Drawing and Eraser Tool

4.2.1 How to draw on and erase the mask

As mentioned abowve, the Drawing and the Eraser Tools are going to be explained together, as they
have identical user interfaces.

To draw on the mask using the Drawing Tool, you will first have to select the drawing tool. To do that,

you will have to click on the button with this image: 4
When you select the tool, its button should be highlighted with a yellow shade.

To draw on the mask using the Drawing Tool , just left-click on one of the orthogonal views and drag
your mouse without releasing.

13

You are going to see a green semi-transparent line appear on the path of your motion. This indicates
a note on your mask. You can draw whatewver you wish to select on any view or slice of the image.

You may see what you have drawn on the 3D view by pressing the Update button:

Fle Edt Imsge Melp

Figure 4.1 The Drawing tool in use

You may not be completely satisfied with the result you got. That is fine since we have the Eraser
Tool. You may use the eraser in exactly the same way, to erase your notes. To select the Easer Tool,

you will have to click on the button with this image: S

Once the button is highlighted, you may use the tool:

14

GEY] l [~
Fle Edt Imege Hep B

Sape [Rowd v| see »

Dses
ZoamToFit ZoomToFit

s

Figure 4.2 The Eraser tool in use on the previous image

4.2.2 Changing the settings of the Drawing and the Eraser Tools

There are two parameters you may adjust when using the Drawing or the Eraser Tool. The first is the
shape and the second is the width of your brush.

SIMI allows you to draw with a round or square brush and change the width:

‘ Zoom To Fit

Figure 4.3 The different settings of the Drawing tool in use

To change the shape, just use the drop-down list that is located right above the upper-left view, and to
change the size, just slide the bar that is located right next to the drop-down list.

4.3 Line Tool

4.3.1 How to use the Line Tool

15

The Drawing Tool that was described in the above section, is quite nice and flexible, but it is quite
tiring when you would like to manually select large areas of interest. The Line Tool helps to cover this

need. Using the Line Tool, you can select a region of a slice and with the press of a button annotate
the whole area on the mask.

Let's get started.

First you will need to select the Line Tool by pressing on the button with the image: /\/

When the button is highlighted, try clicking on one of the views. This will print a small red cross on the
view you hawe clicked:

| Accept | | Undo Point OoscLoop: | Clear | | ZoomToFt

Figure 4.4 A view with one handle

This marks the first handle you have chosen. The Line Tools works by connecting handles on the

image with lines. If you click again at another point in the same view, then the red cross will move to
the point you last clicked and a purple line will appear between the two points:

;Accepti { Undo Pont | | Close Loop | | Clear | Zoom To Fit

Figure 4.5 A view with a second handle added

You can add more handles -and lines- in the same way.

At any point, clicking on the Undo Point button, will remove your last handle, and the line connecting it
to your penultimate one.

16

When you add a third point, you will see that a red dashed line that connects your first and last

handles appears:

m

[Acceth [Undo Point / :Close Loop] Clear Zoom To Fit \

Figure 4.6 A view with a third handle added

When the red dashed line is present, it means that your handles may define a region. Your handles
define a region if and only if their number is greater than two. When a region can be defined, the

Close Loop button, that is located below the view, can be used.

Pressing the Close Loop button connects your first and your last handles. And paints all the lines red.
This is to indicate that you have defined a region and that the Accept button can be used:

m

LAcceptrj | UndoPonti dose Loop \ |7 Clear j Zoom To F:tj\

Figure 4.7 A view with a closed loop of lines

When your lines have turned red, then you can use the Accept button. This clears all your lines and

"paints" this whole area on the mask:

17

[Accept] \UndoPontJ [CloseLoop] | Clear J LZoomToﬁt]

Figure 4.8 The result of pressing Accept on the previous figure's view

At any point, the Clear button, just clears all your lines and handles.

4.3.2 Linear and Curve mode

The Line Tool has three modes. The Linear mode, the Curve mode and the Livewire mode. This
subsection will talk about the differences of the Linear and the Curve modes.

Let's talk about the Linear mode for now. This is the default mode of the Line Tool. You have already
seen (in the previous subsection) how to use this mode. One thing that hasn't been cowvered is what
happens when you try to drag. Left clicking and moving your mouse while on the Linear mode of the
Line Tool, will draw a continuous line. In reality it produces a large number of handles all located near
each other, giving the impression of a free curwy line. But trying the Undo Point button for a few times,
you can see the different handles.

The only difference between the Curve mode and the Linear mode, is that when you press the Undo
Point after you've produced a curw line by dragging your mouse, in Curve mode, then the whole line
will disappear. i.e. Only a single handle is produced when you drag your mouse.

4.3.3 Livewire mode

18

The third mode of the Line Tool is the Livewire mode. The Livewire, using an algorithm, will consider
the colour differences in an image, and will try to predict the path you intend to follow. The way it
works, it that it tries to follow a path where the colours change steeply.

You can use the Livewire in the same way that you use the Linear mode. Just add a new handle.
Instead of connecting the points with a straight line, it will connect them with the livewire:

i:Accept \ \ Undo Point [’fClose Loop ;’ | Clear ' Zoom To Fit

Figure 4.9 The livewire used with only one handle (other than the first one)

4.4 2D Connected Threshold Segmentation

SIMI provides semi automaticsegmentation in the form of a connected threshold algorithm. It
worksinboth 2D and 3D mode. In 2D mode the algorithm will only workin the slice that you select.
To use the tool first load your 3D image as described in section 3.2.1, then select the “2D” button on
the left hand side of the maininterface. Once the segmentation menu atthe top of the window is
visible then select aseed point by clicking on any pointinthe image inany of the views. By adjusting
the slidersinthe segmentation menuyou can change the lowerand upperthresholds of the region
growingalgorithm. The result of the algorithm will be displayed as you change the sliders. Once
happy withyourthresholds, you canselecta new seed pointand perform the process again.

4.5 3D Connected Threshold Segmentation

The processfor 3D connected threshold segmentation is similarto the process outlined above. First
load an image and then selectthe “3D” button on the left hand side of the maininterface. Then
place the seed point foryoursegmentationinasimilarmannerand selectthe thresholds you wish
for upperand lower. Once you have the correctthresholds selected click the “Compute” button to
performthe algorithmand display the result.

19

	Introduction
	Background
	Choice of Technologies
	Segmentation and Visualisation Libraries - ITK and VTK
	Language Choice - C++
	GUI Library - Qt
	Version Control - git
	Build System - CMake
	Continuous Integration Server - CTest & CDash
	Testing Framework - googletest and CTest
	IDE - Visual Studio 2010

	Project Requirements and Extensions
	Key Requirements
	Extensions

	Design
	GUI
	Segmentation
	Image Data
	Orthogonal View
	Tools
	Drawing Tool (Paintbrush and Eraser)
	Line Tool
	LiveWire mode for Line Tool

	Software Engineering Issues
	Algorithms Used
	Connected Threshold
	LiveWire
	Winding number algorithm
	Marching Cubes

	Technical Challenges
	Memory Leaks
	Build System
	Library Issues
	Orientation issue between ITK and VTK libraries
	Positioning of the Cursor

	Risks
	Libraries
	2D segmentation

	Collaboration Issues
	Testing Methods and Validation
	Unit Testing
	Manual Verification

	Achievements and Member Contributions
	Code Length
	Summary of Member Contributions
	Log Book

	Conclusions
	Meeting Key Requirements and Extensions
	Future Extensions

	Bibliography
	Appendices
	User Guide

