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Abstract

Recently deep learning has been successfully shown to solve very complex problems, however
this has largely been limited to supervised learning problems such as classification and regres-
sion. We want to investigate a more open ended problem where labelled training data is not
available but the quality of the solution is. This thesis aims to address one solution where
genetic algorithms are used to train a neural network. The example we use is a mobile vacuum
cleaner. The network must learn to clean the entire room without bumping into obstacles.
This requires a lot of training so we simulate the room and robots to focus on improving the
training method. We show how the basic genetic algorithm and neural network system can
be improved from poor performance a single small room to much higher performance in thou-
sands of larger and unknown rooms. Our final method is able to quickly train robots which
can consistently perform well in small rooms and large empty rooms with limited information,
however the performance degrades in large rooms with many obstacles.
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Chapter 1

Introduction

Deep learning has revolutionised the use of neural networks, in 2011 a deep learning system
became the first visual pattern recognition system to achieve superhuman performance (half
the error rate of humans) [1, 2] and state of the art solutions to other difficult machine
learning challenges such as image captioning [3] and speech recognition [4] also use deep
learning systems. In these problems there is a correct output for each input (the caption of
an image or the transcript of a sound clip) and large amount of hand labelled training data is
required. In real world problems, trianing data is often limited and the value of an output is
not immediately known. An example of this is chess where the player is rewarded or punished
only at the end of the game. Despite these challenges deep learning has recently been applied
to problems such as playing video games using raw pixel values as input [5].
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Figure 1.1: An example of the generate and test loop of a genetic algorithm. Six individuals for
each generation (�) are created with two genetic operators (crossbreeding, X and mutation,
M) then assigned a fitness and sorted (�). The best two individuals are copied into each new
generation without modification to preserve good solutions. Here each individual is a neural
network.

In this thesis we will investigate the effectiveness of an alternative approach, namely
training a neural network with a genetic algorithm. A genetic algorithm is a search heuristic
which can be easily applied to a wide range of optimisation problems as the only requirements
are a fitness function, which given a candidate solution outputs a number used to compare
to other candidate solutions and a method to encode solutions (e.g. as a list of numbers or
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2 CHAPTER 1. INTRODUCTION

Figure 1.2: The static 5×5 room used for training robots during the first phase (left) and a
possible path through the room (right). The black squares are obstacles and the robot must
cover every white square beginning from the top left cell.

nodes in a tree). Specifically, the optimisation problem may be highly non-linear, stochastic or
non-differentiable and therefore ill suited for standard optimisation algorithms [6]. A genetic
algorithm combines pairs of high fitness candidate solutions of one generation using genetic
operators to create the next generation, a technique inspired by natural selection. An example
of this process is shown in Figure 1.1.

A wide range of real world problems in areas such as robot control and finance can be
solved with a genetic algorithm and neural network so this system has broad applications.
Here, we will consider one such application, controlling a robot vacuum cleaner in a simulated
environment. Robot vacuum cleaners are one the first examples of a widely used domestic
robot which can perform a common and complex chore. However all robot vacuum cleaners
sold today are controlled by hand coded rules in a wide range of sophistication, from picking
a random direction in the hope of cleaning new areas to navigating using a map built from
spinning sensor mounted on the robot.

In order to focus on improving the training we will simulate the rooms during the project
as a grid containing several obstacles. The robot will be controlled by a trained neural network
which must reach every empty cell in the room while avoiding obstacles by using information
about the room and the state of the robot to chose appropriate actions. The rooms used will
become more difficult as the genetic algorithm is able to find better neural networks. The
complexity of the rooms split the project into two phases:

1. Initially the robots will the tasked to cover all empty cells of a small static room such
as the room in Figure 1.2.

2. Next, robots will be trained in different static rooms. We will investigate how well the
robot has learnt to generalise its path finding behaviour by testing the robot in rooms
not present during training.
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1.1 Contributions

• We give an overview of the implementation of the simulation, genetic algorithm and
neural network system (Chapter 3) and highlight several key optimisations.

• We show how the basic training system which cleans on average 46.6% of the room
shown in Figure 1.2 after 100 generations of training can be improved to clean 98.6% of
the room. The probability of a single instance of the genetic algorithm finding a solution
with complete coverage has increased from 0% after 1,000 generations to 77% after 50
generations (Chapter 4).

• We extend the training method to handle multiple rooms (Chapter 5). The robot is
trained on several rooms then tested in a different set of rooms. We show how we
improved the performance of the system built in the previous chapter from 10% to
79.7% in thousands of 8×8 testing rooms not present during training.

• We compare robots trained with our solution to a variety of other methods including
a heuristic travelling salesman solver to approximate the optimum path. We find that
our solution gives reasonable performance in small or mostly empty rooms. However,
in large rooms with many obstacles our solution performs poorly and is outperformed
by other methods (Chapter 6).

1.2 Other Approaches

We can find optimal paths by converting a room to an instance of a travelling salesman
problem (TSP) and using an existing TSP solver. However the purpose of this application
is only to test the suitability of applying genetic algorithms to neural networks and not to
improve upon the TSP solution.

A robot vacuum cleaner currently on the market is the iRobot Roomba which picks a
random direction or performs wall following when reaching an obstacle (Figure 1.3) to clean
a room. This is effective because obstacles can be introduced or removed without affecting
the performance of the robot and this behaviour is very simple to implement. However the
robot may clean some areas much more thoroughly than others and spends much more time
than a human. Other robots such as Neato and Evolution Robots Mint use more elaborate
sensors to clean the room uniformly in a pattern similar to a human.

The Mint is shipped with a separate device which projects an infrared image onto the
ceiling; the robot uses a infrared sensor pointed upward to read the image and determine its
location. The Mint detects obstacles with a forward facing proximity sensor and builds a map
of the room to find a good cleaning path similar to the Neato.

The Dyson 360 Eye uses a vision sensor mounted on top of the robot to scan the room,
the sensor output allows the robot to build a map of the room which is used to approximate
the optimal cleaning path. Unlike the Roomba, the Neato does not bump into obstacles and
can continue cleaning from the same location after automatically returning to the dock to
recharge its batteries.
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Figure 1.3: Long exposure shots of a light mounted on a Roomba (top) and a Mint (bottom).
The Roomba spent 45 minutes cleaning the room while the Mint spent 15 minutes.

Figure 1.4: The Dyson 360 Eye. The vision sensor is visible at the top of the robot, a mirror
which reflects the room into an upward facing camera.



Chapter 2

Background

2.1 Travelling Salesman Problem

The solution to a travelling salesman problem (TSP) is the shortest path which starts and
finishes at given city and visits every other city in the problem exactly once. The problem
can be formally represented by a complete weighted graph where each vertex corresponds to a
city and edge weights are some measure of the cost of travelling between cities, such as time,
cost or distance.

Our robot navigation problem can be presented as a TSP instance by creating a complete
graph with a vertex for each empty cell in the room. The weight of each edge in the graph
is set to the number of cells traversed by the robot in the shortest path between the vertices.
For example, the weight of an edge between any orthogonally adjacent vertices is set to one.
We set the weight of all edges leading to the start node to zero to search for a path instead of
a cycle, this creates an asymmetric TSP. We discuss this conversion in more detail in Section
6.2. The solution to the TSP is the optimum order in which to visit each cell.

An exact solution to a TSP can be found with a dynamic programming algorithm in
O(n22n) time [7]. However, effective heuristics such as the Lin-Kernighan heuristic [8] are
known which can solve an asymmetric TSP with several hundred vertices within several
seconds on modern desktop [9] and a run time complexity of O(n2.2) [10].

2.1.1 Evaluation

An exact solution to asymmetric TSP problems of our size is not tractable, we need a solution
which will work for large 15×15 rooms. Heuristic solutions produce optimum or near optimum
solutions far faster. Since we are not required to produce the best solution for a room, a
heuristic algorithm is a better choice than an exact solver.

A heuristic algorithm will find a solution close to the optimal which we do not attempt to
match, instead we use the solutions to evaluate the quality of solutions found by our training
method. However, the heuristic TSP approach does have disadvantages, namely we must
know the entire room and the room can not change during operation. A neural network is
more flexible and can learn to approximate the optimal decision from incomplete information.

5
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2.2 Artificial Neural Networks

2.2.1 Artificial neurons

An artificial neuron is the basic unit of neural networks. Each neuron takes one or more
inputs and produces a single output. Each input to a neuron is given a synaptic weight which
is multiplied by the input value. An activation function is applied to the sum of the weighted
inputs to give the output of the neuron which may be used by other neurons in the network.

The activation function can ensure that the output of the neuron is kept within a certain
range. A common choice for this task is the sigmoid function (Equation 2.1) [11]. Recently,
the rectifier function has also become widely used (Equation 2.2) [12].

S(x) =
1

1 + e−x
(2.1)

f(x) = max(x, 0) (2.2)

2.2.2 Feed forward networks

An artificial neural network is created by connecting the inputs and outputs of neurons to-
gether. The directed graph formed by these neurons and connections is known as the network
topology or architecture and is an important design consideration.

A feed forward network is a neural network organized into two or more layers of neurons
(Figure 2.1). Each neuron in a layer is an input to every neuron in the next layer. There are
no other connections. The first layer consists of input neurons: special neurons which copy
an input of the network directly onto their outputs. Input neurons have no synaptic weights
or activation function. Neurons in the last layer are known as output neurons and the output
of these neurons form the output of the network. These neurons usually have no activation
function. The remaining layers and neurons are referred to as the hidden layers and hidden
neurons.

While the number of input and output neurons is usually fixed by the problem, the number
and size of each hidden layer can vary. Increasing the number of hidden layers and neurons
increases the complexity of the task which the network can perform as each layer can extract
more complex patterns from the previous layer. A neural network is trained to solve a given
problem usually by fixing the topology and searching through the space of all possible synaptic
weights [11].

The output of a layer with m neurons and n inputs in a feed forward network in matrix
notation is:

y = ϕ(Wx) (2.3)

where W is m × n matrix containing the synaptic weights, x is a column matrix containing
the n inputs, y is the m outputs of the layer and ϕ is the activation function of the layer
applied to each element in a column matrix.

2.3 Simulating Neural Networks

This project requires simulation of many neural networks so it is important to reduce the
time spent running a neural network.
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Figure 2.1: A feed forward network with nine inputs, two outputs and a single hidden layer
of four neurons.

2.3.1 TensorFlow

TensorFlow is an open source machine learning library by Google released in November 2015.
The user defines a graph of operations which may include various types of neural networks,
trainers, arithmetic operations and file readers. The graph can be executed any number of
times with different inputs. A key feature of TensorFlow is that a graph will run on GPUs
and CPUs with no code change.

2.4 Genetic Algorithms

A genetic algorithm is a search heuristic introduced by John Holland in the 1970’s inspired
by natural selection [13]. Each candidate solution is encoded as a chromosome which is
sequence of genes. Depending on the problem a single gene may be a binary bit, a number
or an action which an agent can take. The algorithm maintains a population of chromosomes
which is evolved by first evaluating the performance of each chromosome then combining and
mutating the best performing individuals to create the next generation of chromosomes. This
process is repeated for a set time or until the desired fitness is achieved. See Figure 2.2 for
pseudocode.

2.4.1 Fitness function

This function evaluates a chromosome by applying the solution encoded in the chromosome to
the problem and returning a number which indicates the quality of the solution. The fitness
is usually between 0 and 1, and higher numbers usually mean better solutions. For example,
if we use a genetic algorithm to design a race car, the fitness function will build a car from
the given chromosome then simulate the car racing around a track. The time to complete the
course is the fitness of the chromosome.
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1 Randomly generate the i n i t i a l populat ion .
2 repeat
3 Cal l the f i t n e s s func t i on on each chromosome in the populat ion .
4 Add f i t t e s t chromosomes to the new populat ion ( e l i t i s m ) .
5 repeat
6 Choose two parents us ing the f i t n e s s e s and a s e l e c t i o n func t i on .
7 Create two c h i l d r e n from the parents us ing a c r o s s o v e r operator .
8 Apply the mutation operator to each c h i l d .
9 Add the c h i l d r e n to the new populat ion .

10 until new populat ion s i z e equa l s cur rent populat ion s i z e
11 until te rminat ion cond i t i on ho lds

Figure 2.2: Pseudocode of a genetic algorithm.

2.4.2 Elitism

The chromosomes with the highest fitness of a generation are known as elites. These chromo-
somes are copied without modification to the next generation, ensuring that the best solutions
are never destroyed. The number of elites copied is a hyperparameter to the genetic algorithm.

2.4.3 Selection functions

These functions select one parent from the population using the results of the fitness function.
Chromosomes with a high fitness are more likely to be selected. Selected chromosomes are
paired up and bred in an attempt to create children with higher fitness.

Roulette selection

This function can be imagined as assigning each chromosome a number of pockets on a roulette
wheel based on its fitness. The wheel is spun to choose a chromosome. More formally:

1. Create a list of normalized fitnesses by dividing each fitness by the total fitness.

2. Add all previous fitnesses to each fitness in the normalized list. This creates a list of
cumulative fitnesses.

3. Chose a random number between 0 and 1.

4. Return the chromosome corresponding to the first element in the cumulative fitness list
which is greater than the random number.

Tournament selection

Tournament selection requires two additional hyperparameters: k, the size of each tournament
and p, a probability.

1. Create a set of k randomly chosen chromosomes from the population.

2. Sort the set by fitness.
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3. The probability of choosing chromosome i = 0 . . . k − 1 in the sorted set is p(1 − p)i.
Chromosome 0 is the chromosome with the highest fitness of the set.

2.4.4 Crossover operators

A crossover operator combines two parent chromosomes to create a new child chromosome
for the next generation. Each gene in the child’s chromosome is a copy of the corresponding
gene of one parent. Crossover operators differ in how the parent for each gene is selected. A
second child can be created by choosing the opposite parent for each gene, regardless of the
crossover function used.

Typically, genetic algorithms include a crossover rate parameter (the probability that a
crossover is performed on two parents) otherwise both children are copies of the parents.

Single point crossover

One point in the parents’ chromosomes is randomly chosen. All genes before this point are
copied from the first parent to the child. The remaining genes come from the second parent.

Two point crossover

All genes between two randomly chosen points are copied from the first parent. Genes which
are not between these two points come from the second parent.

Uniform crossover

In uniform crossover, each gene in the child chromosome is copied randomly with equal prob-
ability from either parent.

2.4.5 Mutation operator

The mutation operator will randomly modify genes in the chromosome. The probability of a
gene mutating is the mutation rate. The mutation of a gene depends on the encoding; if a
gene is a binary bit then mutating this gene will flip the bit and if a gene is a number then
mutation will add a small random number. This preserves diversity in the population and
helps to prevent early convergence.

2.4.6 Evaluation

Genetic algorithms can be easily applied to a wide variety of problems as only the encoding
and fitness function are problem specific. The selection functions and genetic operators are
general and can be applied to any problem which is encoded as a string of values. Different
genetic operators must be used if genes are more complex such as a nodes of a tree or arbitrary
objects.

However, all genetic operators and most functions described above introduce a new hyper-
parameter in addition to population size and the termination condition, resulting in a large
number of hyperparameters which must be set. Typical ranges for each hyperparameter have
been determined empirically (e.g. less than 1% for the mutation rate) but optimum values
must be found for each new problem.
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Genetic algorithms generate many chromosomes each of which must be evaluated using
the fitness function. This is computationally expensive in some applications e.g. designing an
engine or protein folding require complex simulations and decisions. Furthermore, designing
the fitness function is often challenging as a chromosome’s performance may be difficult to
quantify (e.g. creative tasks, generating music and art) or to express as a single number.

2.5 Neuroevolution

Neuroevolution is the process of using an evolutionary algorithm to train an artificial neural
network. The fitness of a genotype (a chromosome) is found by mapping to a neural net-
work (the phenotype) which is used to control an agent, and measuring the performance.
Neuroevolution is effective in areas such as reinforcement learning and previous studies have
shown neuroevolution to outperform backpropagation at classification problems [14, 15].

2.5.1 Conventional neuroevolution

The most direct form of neuroevolution, the chromosome is simply the list of all weights in
the network in a predetermined order. A genetic algorithm as described above is used to find
a good chromosome.

This approach is simple to implement but does not evolve the network topology, so the
size of each hidden layer must be found first using another method. However, this is not a
significant disadvantage for the project since the networks are small enough that we can try
all combinations of layer sizes.

2.5.2 Co-evolution

More sophisticated methods maintain multiple populations, or species of chromosomes (called
subgenotypes in neuroevolution). Each subgenotype of a species maps to a small part of the
network [16, 17]. Species are evolved separately but evaluation uses a member from all species.
This approach breaks down the complex problem of finding all synaptic weights for a network
into smaller problems such as finding the weights for a single neuron.

Co-evolution encourages species to find different evolutionary niches i.e. all species are
encouraged to perform a different useful task. This causes subgenotypes in a co-evolution
algorithms to be more similar than chromosomes in a genetic algorithm. High similarity in a
population reduces the chance of a poor crossover caused by selecting two parents which both
achieve a high fitness in far apart areas of the search space (Figure 2.3) [17].

Co-evolution algorithm

An important implementation detail of the algorithm is the granularity of a species. At the
finest level each subgenotype is a single number corresponding to a weight in the network,
but a subgenotype could also represent all weights of a layer in a feed forward network. We
evaluate a subgenotype by choosing one representative subgenotype from all other species to
create a full geneotype from which the network to control the agent can be built (Figure 2.4).
Representatives are usually the best performing individuals of each species or are chosen with
a probability increasing with fitness. Each subgenotype is typically evaluated in several trials
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Figure 2.3: Six high fitness genotypes in two different conventions. Crossover between indi-
viduals of different conventions is unlikely to produce viable genotypes. [18].
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Figure 2.4: Coevolution with three species [17]

using different representatives in order to estimate the contribution of the individual instead
of the fitness of the combined genotype. This can be done by taking the maximum or average
fitness over all trials. Once evaluation is complete, a new generation is created for each species
in isolation as in a normal genetic algorithm, i.e. there is no interbreeding between species.

Co-evolution has been shown to give significantly better results than classical reinforce-
ment and neuroevolution solutions [16].

2.5.3 Evolving topology with synaptic weights

Network topology can have a significant effect on the quality of the network, but choosing
the right architecture for a problem is difficult; instead, some methods begin with a simple
network and gradually increase the complexity of the network while evolving weights for the
network.

For simple tasks, the right topology can be found with an exhaustive search so the extra
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implementation effort is likely to result in faster search times but not better results.

2.6 Reinforcement Learning

Reinforcement learning is an area of machine learning where an agent (such as our robot
vacuum cleaner) interacts with an environment to maximise a reward signal, without an
explicit teacher as in supervised learning. The agent must learn how its actions affect the
environment and its own decision making policy to maximise the reward [19].

Reinforcement learning algorithms estimate the value of a given state or the value of taking
an action at a given state. After training, the agent will greedily choose actions according the
value function to maximise the total reward. There are many methods for constructing these
estimates such as propagating the final reward of a trace backward along all previous states,
or updating the value of the current state on each state transition.

This is very different to a genetic algorithms training a neural network, a genetic algorithm
searches for a set of parameters which solve the problem instead of searching through the states
of the problem. In the context of our navigation problem, the result of reinforcement learning
is a policy which returns an direction to take given the current state, this policy is far easier
to understand than the synaptic weights returned by the genetic algorithm. The genetic
algorithm is therefore difficult to tune during execution as the function of layers and neurons
is difficult to detect.



Chapter 3

Implementation

In this chapter we give an overview of our training method and some of the implementation
challenges faced during this project.

3.1 Training Method

Before training begins we decide on the network topology used to control the robot (i.e. the
number of input and output neurons and the number and size of each hidden layer). Each
synaptic weight in the network is a parameter to be found by the genetic algorithm. The size
of the genotype is therefore equal to the number of synapses in the chosen topology.

Next, we begin the generate and test loop of the genetic algorithm to find the weights of
the network. In each iteration, the networks are created from the population of genotypes
by inserting each gene into the network topology. The fitness of a genotype is the fraction of
empty cells reached by the robot. The next generation of genotypes is created using crossover
and mutation of the high fitness individuals. This continues until the room is solved (all
empty cells have been reached) or the maximum number of generations, usually 100, have
been created.

3.1.1 Simulation Method

Throughout the project we must determine how effective a given robot is in a given room.
This occurs inside the fitness function of the genetic algorithm and when we evaluate how
well a robot can generalise to new rooms. We call our measure of a robot’s effectiveness in a
room the coverage, this is the proportion of the empty cells in the room which were visited at
least once by the robot. Coverage is calculated by running the following simulation:

1. Place the robot in the top left corner of the room.

2. Assign a direction (north, east, south or west) to each of the four output neurons in the
network.

3. Create a set of previous positions, initially empty.

4. Go to (5) if the termination condition (discussed below) is met, otherwise:

14
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4.1. Add the robot’s position to the previous positions set if this is the first visit to this
cell.

4.2. Create a vector of inputs using the location of obstacles in the given room, the
position of the robot and previous position set.

4.3. Calculate the output of the given network using the input vector.

4.4. Find the output neuron with the highest value. The direction assigned to this
neuron in (2) is the next direction.

4.5. Update the robot’s position.

4.6. Go back to (4).

5. Return the fraction of empty cells visited at least once by the robot.

3.1.2 Simulation termination condition

The simulation is ended if (1) all cells have been visited, (2) the robot ran into an obstacle
or into the edge of the room or (3) the robot is caught in a loop. The first two conditions
are straightforward but (3) is more complex. An example of a loop is shown in Figure 3.1
where the robot has reached the top left cell for the third time. The inputs to the network
on the third visit to this cell are identical to the second visit as the previous position set has
not changed, therefore the robot will make the same choice and go east. In the next step,
the inputs are again identical to the inputs during the second visit to the top middle cell and
the robot will move to the top right cell. This continues causing the robot to travel around
the edge of the room forever and crucially no new cells will ever be covered. Therefore, the
simulation should end when the robot reaches the top left cell for the third time as the result
of the simulation will not change.

The obvious solution, which we initially used, is to set a maximum number of steps which
is much larger than the number of empty cells in the room and only check conditions (1) and
(2). Any robot stuck in a loop will use the maximum number of steps but the simulation will
still return the correct coverage. This is simple to implement but inefficient. Furthermore,
choosing a maximum number of steps may led to incorrect results when a simulation is
terminated before achieving the true coverage. To ensure that this does not happen we set
the maximum number of steps to ten times the number of empty cells. This is much higher
than necessary but we did not want to risk any incorrect results.

A better solution, which we now use, is to trigger condition (3) when the robot reaches
a previously visited cell without visiting any new cells in the steps in-between. This detects
a cycle before the robot begins the loop and removes the need for the maximum step limit.
Verifying that this produces the correct result is simple, we ran both versions with the same
random seed and saved and all coverage results over several trials. We found no differences in
the results. The new solution is on average 12.2 times faster without any doubt about early
simulation terminations. Even with a better estimate of the maximum number of cells this
new solution will outperform the maximum steps method as a simulation is ended as soon as
the robot is locked in a loop.
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Figure 3.1: Path of robot which is now stuck in a loop.

3.1.3 Input vector

At each step in the simulation, the inputs to the network are formed by creating a vector with
three elements for each cell in the room. These elements are set as follows:

• Room input: set to 1 if the cell contains an obstacle, 0 otherwise.

• Position input: set to 1 if the robot is in the cell, 0 otherwise.

• History input: set to 1 if the robot has already visited the cell, 0 otherwise.

In some experiments we ignored one of these inputs and used two input neurons per cell.

3.2 Room Generation

For training and testing the robots created in Chapter 5 we need tens of thousands of unique
rooms of a given size. We cannot design each room manually due to the quantity required.
Instead we generate this room set randomly before beginning the training with the genetic
algorithm. We generate a room by creating a grid with the given width and height then
randomly placing obstacles on the grid, if this grid is a valid room we add this to the room
set otherwise we throw away the room. We repeat until the room set has the required size.
A grid is a valid room if all of the following conditions are met:

1. The top left cell (the starting cell) is empty.

2. All empty cells can be reached from the top left cell.

3. The room is different from all previously generated rooms.

We check the second condition by running a depth first search through empty cells begin-
ning at the top left cell. If the number of empty cells reached by this search is equal to the
total number of empty cells in the grid, the condition is met.

Examples of rooms of various sizes generated with this method are shown in Figure 3.2.
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Figure 3.2: Examples of rooms created with our generator. We used several different room
sizes during the project. Black cells represent obstacles and the robot must pass through all
white cells.
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3.2.1 Complete room set generation

When using small room sizes such as 4×4, we can use the set of all valid 4×4 rooms as this
is a relatively small set (5,293 rooms) and simulating a robot in each of these rooms can be
done quickly and in parallel. To generate the set of all rooms of a given size (a complete room
set) the method described above is inefficient as we rely on chance to find new rooms. For
example, if we have generated 5,290 out of 5,293 valid 4×4 rooms, each new room we generate
has a 0.057% chance of being unique.

We initially solved this problem by finding the power set of the set of all cells in the room.
In a 1×2 room with the two cells indexed by 1 and 2 the power set is {Ø, {1}, {2}, {1, 2}}.
For each set S in this power set we create a candidate room by placing obstacles on the cells
in S then check if this room is valid. This reduced the complete 4× 4 room generation from
35 seconds to 0.6 seconds.

Later in the project we became interested in the complete 5×5 room set but the method
described above requires too much memory so we could not generate this set. There is no need
to store the entire power set then run the valid room check, we can check each candidate room
immediately after generation. To implement this we generate candidate rooms from numbers
and check if these are valid. We convert a number to a room by interpreting the number as a
binary string and assigning each bit to a cell in the room. A zero means the cell is empty and
a one means the cell contains an obstacle. For example the number 32 creates a room with
an obstacle in the fifth cell (when generating 4×4 rooms this cell is immediately south of the
starting cell). By counting from 0 to 2A where A is the room area we can efficiently generate
a complete room set and we can now generate the complete 5×5 set (1,054,065 rooms) in
about five minutes.

3.3 Path Plots

The result of a simulation is a list of (x, y) coordinates representing the location of the robot
at each simulation step. We found it useful to create visualisations of these paths, for example
Figure 3.3. We colour code cells so we can easily identify which areas of a room where covered
perfectly (green), which areas contained inefficiencies (yellow) and which areas were missed
(white). In large rooms with complex paths it can be difficult to spot where the path ends
after a collision or a loop so we colour these cells red.

Initially, we drew the path through the center of each cell which creates ambiguous paths
plots such as Figure 3.4a. In these plots it is not always possible to tell which direction the
robot took and the exact number of visits to each cell. To address this, we calculate c, the
coordinate of each point which the path line must pass through using:

c = (x + o, y + o) (3.1)

where o =
1

2
+ 0.15

(
c− v − 1

2

)
(3.2)

where x and y is the robot location from the path list, c is the number of times which this
cell has been visited before, v is the total total visits to this cell over the entire simulation
and 0.15 is a scaling constant which we found gave the most visually appealing plots. This
equation spaces the path points out along the leading diagonal of each cell which allows us
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[(0, 0), (0, 1), (0, 0), (1, 0), (1,

1), (1, 2), (0, 2), (0, 3), (1, 3),

(2, 3), (2, 4), (3, 4), (3, 3), (3,

2), (4, 2), (4, 1), (3, 1), (2, 1)]

Generation 4 training, 76.190% coverage

Figure 3.3: An example of a path (left) through the default training room found by an early
version of our training method, and the visualisation (right). The robot begins in the top left
corner and travels in the direction indicated by the arrow. Any cells visited exactly once are
coloured green and cells visited more than once are coloured yellow. Cells coloured in red are
the location where the robot made a mistake causing the end of the simulation.

to follow the robot’s path (Figure 3.4b). These lines appear cluttered when the robot makes
many visits to a single cell but we found this preferable to the ambiguity of the old plots.

3.4 Architecture

An overview of the main objects in our program can be seen in Figure 3.5. Below we describe
the functionality of each:

• GA Base: This object is extended by an implementation of a genetic algorithm to find
the weights of the network. We extended this object by a variant of the genetic algorithm
(discussed in Chapter 4) and our implementation of the canonical genetic algorithm.
Both implementations are given a dictionary of hyperparameters (e.g. maximum number
of generations, population size, mutation rate) a fitness function and a testing function.
Both versions of the genetic algorithm are implemented in general terms, there is no
knowledge of simulations, neural networks or robots in these objects. This removes
duplication between the genetic algorithm implementations.

• Parameters: Contains the hyperparameters for the genetic algorithm and information
to generate the training and testing room sets. These parameters can be overridden by
the user at the command line, for example to see the effect of a higher mutation rate or
to test with more rooms than usual.

• Genetic Operators: A library of all genetic operators (crossover, mutation and se-
lection functions) used throughout the project. These functions can be used in any
implementation of a genetic algorithm, so this library reduces duplication.

• Generational Statistics: Further reduces duplication between implementations of
the genetic algorithm by implementing common functionality which is run after each
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Generation 39 training, 98.718% coverage

(a) An example of our initial path plots.

Generation 39 training, 98.718% coverage

(b) An example of our final path plots.

Figure 3.4: Effect of the path offset equation. On the left the path line always passes through
the center of a cell, on the right the path line is offset by a small amount along the leading
diagonal of the cell with each visit.

generation and at the end of the genetic algorithm. This includes projecting genotypes
into two dimensions with t-SNE and saving testing paths to disk.

• Room: An immutable room storing the dimensions and obstacles of a single room.

• Room Generator: Implements the room generation procedures described above to
randomly generate sets of rooms.

• Simulation: Stores the state of a single robot in a single room. The simulation is
advanced by repeatedly passing the robot’s next move. A simulation measures coverage
and checks if the robot ran into an obstacle or is stuck in a loop. The inputs to a
network are also calculated by the simulation object.

• Phenotype: A base class for objects which can convert a list of numbers (the genotype)
found by the genetic algorithm to a neural network (the phenotype). We implemented
a feed forward and convolutional phenotype as well as a phenotype which can grow and
take extra inputs each time the genetic algorithm converges to a local maximum.

• Graph: For each phenotype we implemented a matching graph object which calculates
the output of a network given the parameters of the network and the inputs. We
implemented graphs which run a neural network using TensorFlow and graphs using
natively implemented functions to find the fastest function.

• Fitness Single: This object calculates the fitness (i.e. the coverage) of all robots in a
generation using a single room. Instances of this object are given a list of genotypes,
for each genotype we convert to the phenotype using a phenotype object and create a
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GenerationalStatistics
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FitnessMultiple
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Simulation

Room RoomGenerator

Figure 3.5: Object composition and aggregation diagram of our implementation showing the
objects involved in an instance of the genetic algorithm. Objects drawn with a dotted border
are super classes.
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new simulation object. The simulation and graph objects are used to move the robot
around the room to determine the coverage of the robot.

• Fitness Multiple: This object calculates the average coverage over all given rooms for
all robots in a generation. This is done by using the fitness single object to calculate
the coverage per room per robot then averaging across robots to find the final fitness
for each robot.

Additionally, we have the following two convenience classes:

• Output: Handles the logic to save results to disk such as creating a new directory for
each trial and zipping and compressing directories to avoid the file count quota.

• Builder: Uses command line options to construct the objects listed above and contains
the default values for each hyperparameter.

3.4.1 Program outputs & plotting

All scripts and objects created for this project are for either data generation and running
experiments, such as the phenotype classes, or data visualisation such as the path plots. Each
experiment uses the data generation half of the project to generate results which are saved to
a new directory. These results, or older results can be read by scripts in the data visualisation
half to produce the path plots and graphs in this report.

The split between generation and visualisation causes more complexity in the code than
plotting results immediately after generation from the machine’s memory. However, this
approach allows us to plot the effect of improvements to our training method by using data
saved at the start of the project.

3.5 Optimisation

The aim of this project is not to produce a highly optimised training system, however early
versions of our implementation were prohibitively slow: the hyperparameter sweep experi-
ments carried out during the project (Section 4.6) would have taken 70 hours to complete, we
reduced this to 90 seconds.

Our simplest execution of the genetic algorithm using one room and 100 generations with
a population size of 100 took 65 seconds to complete. Hyperparameter sweeps require over
4,000 of these executions to try a range of values for each hyperparameter (e.g. 0% to 100% in
steps of 1%) and multiple trials for each value (usually 40) to reduce the effect of randomness
of genetic algorithms. For example the random initial population of the genetic algorithm
could contain an individual very close to a global optimum. We could reduce the runtime
by using larger step sizes or fewer trials, however we chose to implement basic optimisations
instead.

3.5.1 NumPy v. Tensorflow

We reduced the 65 second runtime of a single run to 45 seconds by reducing the data sent to
TensorFlow and by calculating more network outputs per graph execution. This is still much
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slower than we expected; the inefficiency seems to be caused a high overhead when switching
between Python and Tensorflow. For example, when a new generation is created the synaptic
weight matrices for each network were sent to TensorFlow one by one. This took about 9
seconds for 100 generations, so instead we now send all matrices at once which is 8 times
faster on average.

TensorFlow is designed to execute a complex graph such as a neural network with a
back propagation trainer several times, whereas we need to execute a relatively simple graph
hundreds of thousands of times. We therefore implemented neural network evaluation using
the NumPy library. This reduced the runtime of a single trial from 45 seconds to 3 seconds.

3.5.2 Parallelization

We can run a separate instances of the genetic algorithm on each CPU core, and furthermore
we can run instances on multiple machines. We use Condor, a high throughput batch process-
ing system provided by the department to run our program on idle machines. Each instance
of the genetic algorithm saves its results to disk, which are combined when all instances have
finished to be plotted. With many idle machines we can quickly perform the hyperparameter
sweeps or other experiments which involve many executions of the genetic algorithm.



Chapter 4

Single Room Case

In this chapter we present the improvements we built to train a neural network to cover a
single given room in chronological order. We decided to begin with the single room case,
usually the room in Figure 4.1, in order to build a basic working system which could be
extended in the future to handle more complex cases.

4.1 Starting Point

Our initial implementation did not include the history inputs and used two hidden layers of
10 neurons each to solve the room in Figure 4.1. We used a 2% mutation rate drawn from a
uniform distribution, 80% one point crossover rate and kept 10 elites from a population of 100.
This performed poorly, in 1,000 trials of this implementation with 100 generations an average
of 9.79 or 46.6% of empty cells were visited at least once. None of these trials succeeded
in covering the entire room. Increasing the number of generations does not improve the
performance significantly as 300 generations increases the average coverage to 52.57%, which
shows us that the genetic algorithm typically converges to a local maximum. An example of
one of these paths is shown in Figure 4.2.

Figure 4.1: The 5×5 room used for most experiments.

24
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Generation 99 training, 38.095% coverage

Figure 4.2: A typical path found by our initial training method. Any cells visited exactly once
are coloured green. Cells coloured in red are the location where the robot made a mistake
causing the end of the simulation.

Figure 4.3: A 3×3 room which requires backtracking (visiting a cell more than once) to solve
if starting from the top left.

4.2 Backtracking Problem

The major issue with this implementation is that a robot able to retrace its steps can not
be trained because the input vector only depends on the position and room state. Therefore
the robot will be caught in a loop if a position is visited for the second time. This reduces
the performance as the robot must find a path with visits every cell exactly once instead of
at least once, a harder problem. Additionally, this restriction leaves some rooms unsolvable.
The room used for training (Figure 4.1) can be solved by visiting each exactly cell once but
the room in Figure 4.3 cannot be solved without backtracking. We found two solutions to
this problem which we will describe next.

4.2.1 Simulation memory & valid move checks

Our first solution was to extend the simulation to help the network by ignoring outputs of the
network which would cause the simulation to end. This prevented the simulation termination
conditions from triggering. The challenge for the network was to solve the room in as few
moves as possible.
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Method

We modified the simulation to keep track of the actions made at each cell and ignored any
output neuron corresponding to an action previously taken in the same cell or an action which
would lead the robot into an obstacle. If all four actions have already been taken then the
memory for the cell is cleared and the valid action with the highest confidence is taken instead.
This guarantees that any action taken has not been tried before in the same cell, if such an
action exists. We also limited the number of moves which the robot can take in a simulation
as robots will run until the room has been solved. To avoid the backtracking problem in
Figure 4.3, the network must learn to ensure that the second highest output neuron will cause
the robot to retrace its steps correctly.

Results

Using the same settings as in Section 4.1 we achieve much higher fitness. On average, 18.84 or
89.7% of empty cells are visited at least once after 100 generations of training. Additionally
17.5% of trials ended with the algorithm solving the room.

4.2.2 History inputs

Our second solution was to add simulation state inputs to the network and leave the simulation
unmodified.

Method

We added the history inputs described in Section 3.1.3 to the network. This solves the
backtracking problem of the room in Figure 4.3 by giving the network a different input on
the second pass over a cell, allowing the possibility to take a different action.

Results

We performed an independent samples t-test to compare the best fitness found for the room in
Figure 4.1 with and without the history inputs. There was a significant difference in coverage
when including the history input (mean = 12.22, SD = 2.5) and when excluding the history
input (mean = 9.79, SD = 2.16); unequal variances t(390) = -10.0, p < 0.05 when comparing
cells covered over 200 trials. The room in Figure 4.1 can be solved without backtracking and
therefore without the history inputs, the test shows that including the history inputs can
improve performance as well as solving the backtracking problem. The expected fitness is
lower when excluding the history inputs because the robot will not visit any new cells after
visiting a cell for the second time, therefore the robot must find a path which visits each cell
once. A path found using history inputs is shown in Figure 4.5.

4.2.3 Evaluation

The simulation memory with valid move checking performs far better than the history inputs,
however we decided to move forward with the history input solution and remove the memory
and the move checks for the remainder of the project.
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Generation 299 training, 94.737% coverage

Figure 4.4: A solution to a 15×15 room found by the genetic algorithm using simulation
memory and valid move checks. The robot begins in the top left corner and travels in the
direction indicated by the arrow. Any cells visited exactly once are coloured green and cells
visited more than once are coloured yellow. Cells coloured in red are the location where the
robot made a mistake causing the end of the simulation.
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Generation 31 training, 71.429% coverage

Figure 4.5: A typical path using history inputs. The robot begins in the top left corner and
travels in the direction indicated by the arrow. Any cells visited exactly once are coloured
green and cells visited more than once are coloured yellow. Cells coloured in red are the
location where the robot made a mistake causing the end of the simulation.

When using the memory and move checks, the networks consistently evolved the behaviour
seen in Figure 4.4, where the robot spent much of the time retracing its path instead of moving
on to new cells. For almost all cells in the bottom left quadrant of Figure 4.4 the order of the
network’s outputs from highest to lowest correspond to east, west then south. The simulation
memory causes the robot to choose these actions in turn. Choosing the same order of actions
in so many cells simplifies the problem significantly and shows that the networks rely heavily
on the simulation memory. This behaviour is very effective in covering the room but requires
too many steps, and ideally the networks should not need help from an extra system.

4.3 Optimising Network Topology

4.3.1 Method

Next we searched for the optimal feed forward topology. Our fitness function is fast enough
that we can find the optimal topology by a brute force search, as each trial runs for less than
10 seconds on a single CPU core. We will find the optimum number of hidden neurons for
a network with one and two hidden layers. Then we can compare the performance of the
optimal network with one hidden layer, two hidden layers and no hidden layers to find our
final topology.

Genetic algorithms are randomised so to ensure that any difference in performance is not
caused by chance we ran each topology 40 times for 100 generations with different random
seeds and recorded the maximum coverage for each trial. We averaged the 40 maximum
coverages for each network topology to calculate the final coverage for that topology.
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(b) Using two hidden layers.

Figure 4.6: A brute force search for the optimal topology by comparing the average coverage
after 100 generations. There is no significant difference between one and two hidden layers.

4.3.2 Results

Using no hidden layers we achieved an average coverage of 74.5%. With one hidden layer we
find there is no advantage of using more than four hidden neurons, which gives an average
coverage of 72.5% (Figure 4.6a). With two hidden layers (Figure 4.6b) the maximum average
coverage is 72.6% by using five hidden neurons in each layer, more hidden layers does not
improve the coverage.

4.3.3 Evaluation

There is no significant difference between no hidden layers, the optimum one layer and two
hidden layer topologies. We chose the simplest topology with no hidden layers. We could
have continued and tried a network with three hidden layers but this would have been time
consuming with so many configurations and there is no evidence that more hidden layers will
increase the coverage.

This was a surprising result as we expected some change in coverage when using none,
one and two hidden layers because network topology is an important consideration for other
applications. After applying the next improvement (Section 4.4) and repeating this experi-
ment, we find that no hidden layers provides a significant increase in coverage compared to
other topologies. We discuss this in Section 4.4.3.

4.4 Room Input

At this point in the project, the inputs to the network consisted of the room, position and
history inputs. The position and history inputs vary as the robot moves around the room,
however the room inputs never change because the room is static. The constant room inputs
reduces the effect of the weights between the room inputs and the output neurons to a bias
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Figure 4.7: Comparison of average coverage per generation with room input enabled and
disabled.

on each output neuron, instead of encoding useful behaviour. We tried removing the room
inputs to see if these biases provided any value.

4.4.1 Method

We ran our program with and without the room inputs. As before we run 40 trials for each
version with different random seeds to reduce any randomness in the result. We record the
maximum coverage of each generation for all trials to plot the average maximum coverage per
generation with and without room inputs.

4.4.2 Results

Figure 4.7 shows the average maximum coverage per generation with room inputs included
and excluded. Excluding the room inputs improves the average performance from 76.7% to
89.4%. We ran all trials for 200 generations instead of 100 to show that the room input
performance converges to a lower coverage and does not have a slower start due to the higher
number of parameters. An example of a path created without room inputs is shown in Figure
4.8. With this change, for the first time in the project, a small number of trials (approximately
17%) achieve 100% coverage within 200 generations.
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Generation 58 training, 85.714% coverage

Figure 4.8: A typical path found within 100 generations with room inputs disabled. The
robot begins in the top left corner and travels in the direction indicated by the arrow. Any
cells visited exactly once are coloured green and cells visited more than once are coloured
yellow. Cells coloured in red are the location where the robot made a mistake causing the
end of the simulation.

4.4.3 Evaluation

The connections between the position inputs and output neurons form a lookup table where
the weight of a connection is the confidence that the action of the output neuron should be
taken when the robot is in the cell of the position neuron. As an example, all position input
neurons are connected to each of the four output neurons and at the start of the simulation
all position neurons are set to zero except the neuron of the starting cell which is set to one.
Therefore at the start of the simulation the value of each output neuron is equal to the weight
of the connection between the starting position neuron and the output neuron.

This creates a fixed path which can be modified only by the history inputs but not by any
obstacles in the room. Therefore the robot cannot learn to clean an arbitrary room. If the
robot’s first move is to go south and the robot is set in a room with an obstacle immediately
below the starting position, the robot will run into this obstacle and will only clean the
starting cell. However, learning behaviour to solve an arbitrary room will require training on
multiple rooms and testing on unseen rooms which was beyond the scope of this part of the
project. Instead, we focus on improving single room performance, so we disabled the room
inputs.

If we repeat the topology experiments in Section 4.3 we find there is now a significant
coverage increase between no hidden layers (mean = 0.85, SD = 0.078) and the optimal
single hidden layer topology (mean = 0.8, SD = 0.094); unequal variances t(76.0) = 2.3, p
= 0.0235. There is a greater increase between no hidden layers and the optimal two hidden
layer topology (mean = 0.77, SD = 0.11); unequal variances t(72.0) = 3.6, p = 0.000662.
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4.5 CoSyNE Algorithm

Our next idea was to use a more powerful genetic algorithm which could find better weights
on average than our implementation of the canonical genetic algorithm. Cooperative Synapse
Neuroevolution (CoSyNE) [16] evolves each synapse in the network as a separate species. This
sustains diversity in the population which allows the algorithm to avoid local maximums. The
paper introducing CoSyNE shows the algorithm outperforming several other methods to train
a neural network, included algorithms which evolve the network topology in parallel with the
network weights and the single species approach which we use.

4.5.1 Method

We implemented the CoSyNE algorithm as described in [16]. An implementation of this
algorithm exists but we found it easier to modify our genetic algorithm than to work the
C++ implementation into our program.

We used the same genetic operators (roulette selection, uniform additive mutation and
one point crossover) and the same hyperparameters in our CoSyNE implementation as in
the genetic algorithm used in the previous sections (we now call this the canonical genetic
algorithm). As before, we ran each algorithm several times to measure the average coverage
across all generations.

4.5.2 Results

CoSyNE performed significantly better than the canonical genetic algorithm. Figure 4.9 shows
the maximum fitness per generation averaged across all trials. Both algorithms begin from
a random population so as expected there is no difference in initial coverage but CoSyNE
achieves a higher coverage in generation 50 than the canonical genetic algorithm does at
generation 500.

The difference in the algorithms becomes more pronounced when we compare the likelihood
of reaching 100% coverage in the room at each generation (Figure 4.10) by calculating the
proportion of trials with maximum coverage per generation for each algorithm. We ran both
algorithms for more generations than in previous experiments to show the coverage beginning
to converge. A path which achieves 100% coverage is shown in Figure 4.11.

4.5.3 Evaluation

CoSyNE gave better results without increasing the runtime of the program or the complexity
of the code so we used this algorithm for the remainder of the project.

4.6 Hyperparameter tuning

As discussed in Section 2.4.6, a disadvantage of genetic algorithms is the large number of
hyperparameters to set. Throughout the project we performed many hyperparamter sweeps
for the CoSyNE algorithm and canonical genetic algorithm to find the optimal values. Here
we show the result of a sweep after implementing the improvements presented above.
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Figure 4.9: Comparison of coverage per generation using the canonical genetic algorithm (GA)
and the CoSyNE algorithm.
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Figure 4.10: Comparison of the proportion of trials which reach 100% coverage (the success
rate) per generation for the canonical genetic algorithm (GA) and the CoSyNE algorithm.
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Generation 42 training, 100.000% coverage

Figure 4.11: A solution found using the CoSyNE algorithm. The robot begins in the top left
corner and travels in the direction indicated by the arrow. Any cells visited exactly once are
coloured green and cells visited more than once are coloured yellow.

4.6.1 Method

We search for the optimal value for each hyperparameter by sweeping over the range of all
possible values as this is the simplest approach and the program is fast enough for this method
(all sweeps were performed in under two minutes by running across multiple machines). All
tests were performed in the room in Figure 4.1 and measure the maximum coverage achieved
within 20 generations averaged over 40 trials. We reran all tests below each time a parameter
was changed to check if another parameter has been affected.

4.6.2 Results

The result of each sweep and the value chosen for each hyperparameter is shown in Figure
4.12.

4.6.3 Evaluation

These experiments show that although there more hyperparameters than other optimisation
methods, genetic algorithms are not particularly sensitive to their hyperparameters. None of
the values found are unexpected so choosing reasonable values for each would have resulted
in similar performance.

4.7 Improved Genetic Operators

So far we have relied on standard genetic operators namely one point crossover and uni-
form mutation to create new candidate solutions. By using including knowledge about the
application in our genetic operators we can further improve the performance.
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(b) Maximum mutation magnitudes greater than
0.5 does not affect performance. We use 1.0 mag-
nitude.
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(c) Child proportion is the proportion of geno-
types which are replaced by newly generated
genotypes. We replace 90% each generation.
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(d) There is no significant difference between
crossover rate of 0 and 1, p = 0.0626. We use
0% crossover rate.
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Figure 4.12: Example of a hyperparameter sweep with different values against coverage. We
try 100 different values for each hyperparameter.
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4.7.1 Method

We create two new genetic operators. Our new mutation operator, input permutation begins
by randomly choosing some (or none) of the cells in the room then permuting the weights
between the position and history inputs for these cells and all outputs. An example of this is
shown below:

Weight matrix :


p1,1 p1,2 p1,3 p1,4 h1,1 h1,2 h1,3 h1,4
p2,1 p2,2 p2,3 p2,4 h2,1 h2,2 h2,3 h2,4
p3,1 p3,2 p3,3 p3,4 h3,1 h3,2 h3,3 h3,4
p4,1 p4,2 p4,3 p4,4 h4,1 h4,2 h4,3 h4,4

 (4.1)

After input permutation :


p1,1 p3,2 p1,3 p1,4 h1,1 h3,2 h1,3 h1,4
p2,1 p2,2 p2,3 p2,4 h2,1 h2,2 h2,3 h2,4
p3,1 p4,2 p3,3 p3,4 h3,1 h4,2 h3,3 h3,4
p4,1 p1,2 p4,3 p4,4 h4,1 h1,2 h4,3 h4,4

 (4.2)

Here input permutation has selected the second cell in a weight matrix for a 2×2 room (4.1),
so weights from the position and history inputs of that cell (px,2 and hy,2) are permuted to
give the matrix in (4.2).

Our new crossover operator works similarly, several cells of the room are picked and all
weights associated with these cells are swapped between the two parents to create two children.

As usual, we run several trials to compare the difference in performance. As we are
close to optimal performance we compare success rates per generation instead of coverage per
generation.

4.7.2 Results

Each operator when used individually increases the performance, the effect of both operators
is shown in Figure 4.13. We also use uniform mutation to randomly introduce new genes in
the population, as otherwise we would only swap genes created with the initial population
and never create new genes in subsequent generations.

These operators work well enough to guarantee a solution with 100% coverage within 300
generations but are likely to find a solution within 100 generations.

4.7.3 Evaluation

One point crossover and uniform mutation are general and can be applied to any application
when genotypes are a list of numbers, however in our case these operators do not make any
meaningful changes to the neural network. Our new operators build on the observation in
Section 4.4.3 that the weights form a table of decisions and swap these entries in the hope of
finding a better path.

4.8 Summary

We have shown how single room coverage has been improved from 46% after 100 generations
to 98.6%. The probability of a single instance of the genetic algorithm finding a solution with
complete coverage has increased from 0% after 1,000 generations to 77% after 50 generations
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Figure 4.13: Comparison of the proportion of trials which reach 100% coverage (the success
rate) per generation when using both new operators.

and 100% probability within 300 generations. We accomplished this by improving our genetic
operators, the genetic algorithm and simplifying our model.

It may have been possible to improve the performance in the single room case further,
but we could now solve our room reliably within several seconds so we decided to use the
remaining time of the project on a more complex problem (Chapter 5).



Chapter 5

Multiple Room Case

During the experiments in Chapter 4 we built a system which could learn a path through
a single room, in this chapter we extend this system to learn behaviour which can solve an
arbitrary room.

5.1 Single to Multiple Room Modifications

We modified the system to create two disjoint sets of equal sized rooms before the genetic
algorithm is run: a small set of training rooms and a much larger set of testing rooms. The
fitness of a robot is found by simulating the robot in each training room and taking the average
coverage. After training is finished the robot with the highest fitness is run in each testing
room. The average coverage in the testing set is a measure of how well the robot’s behaviour
generalises to unseen rooms. We used the same parameters for the CoSyNE algorithm as
before and re-enabled the room inputs.

5.2 Starting Point

We decided to begin with a few small training rooms and increase the difficulty of the training
set as the performance increases. We initially used 9 4×4 training rooms and ran the algorithm
100 times with different training rooms and random seeds. We use the complete set of 4×4
rooms as the testing set.

This first test showed that our system could not learn any intelligent path finding behaviour
room from its poor performance. In the testing set the average coverage was 30.0%. On the
training set the performance dropped significantly compared to the single room case averaging
at 69.3% after 100 generations. The paths taken by one of these robots in shown in Figure
5.1.

We also looked at the effect of varying the number of training rooms (Figure 5.2). As
expected, increasing the number of training rooms decreases the training performance while
increasing the testing performance. Increasing the number of training rooms past 50 gives di-
minishing returns in testing performance. We tried using all 5,293 4×4 rooms as the training
set to check the maximum testing performance. In the multiple room case, testing perfor-
mance or average coverage in the testing rooms, is more interesting information than the

38
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Room 4 Room 5 Room 6
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Generation 78 training, 65.118% coverage

(a) Paths taken by the robot through the 9 ran-
domly generated training rooms.

Room 4 Room 18 Room 751 Room 1347Room 1435

Room 1768Room 1915Room 2302Room 2392Room 2894

Room 2927Room 3243Room 3249Room 3276Room 3387

Room 4104Room 4198Room 4254Room 4364Room 4730

Room 4791Room 4909Room 5030Room 5185Room 5212

Testing after 100 generations, 31.680% coverage

(b) A random sample of 25 of the testing rooms.

Figure 5.1: Paths taken by the best performing robot found within 100 generations. The
robot begins in the top left corner and travels in the direction indicated by the arrow. Any
cells visited exactly once are coloured green and cells visited more than once are coloured
yellow. Cells coloured in red are the location where the robot made a mistake causing the
end of the simulation.

training performance as this measures the ability to generalise. We calculate the testing per-
formance per generation by picking the individual with the highest training room coverage
and measuring the individual’s average coverage in the testing set. Testing performance is
not used to calculate fitness, fitness is found using only the training set.

5.3 Convolutional Phenotype

The feed forward phenotype used so far does not use the topology of the inputs to improve
the quality of the outputs. For example, inputs from cells close to the robot’s position are
not treated different to cells far away, however an obstacle next to the robot is much more
important than an obstacle on the other side of the room. Convolutional neural networks are
used extensively in image processing to address this problem by detecting local features and by
exploiting the topology of the inputs. These networks have the additional benefit of reducing
the number of weights in the network through the parameter sharing of the convolutional
layer.
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Figure 5.2: Coverage per generation when varying the number of training rooms. Solid lines
show coverage in the training set. The dashed lines show the coverage in the testing set (all
4×4 rooms). Training with all 5,293 4×4 rooms took 5.5 hours, training with 9 rooms took 8
minutes.
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Filter shape Stride
Depth

1 2 3 4

2×2
1 0.291± 0.031 0.311± 0.035 0.318± 0.033 0.326± 0.035
2 0.283± 0.034 0.295± 0.037 0.300± 0.030 0.314± 0.031

3×3 1 0.303± 0.034 0.307± 0.031 0.304± 0.035 0.314± 0.032

Table 5.1: Testing performance after training for 100 generations on 9 4×4 rooms using a
convolutional phenotype.

5.3.1 Method

We implemented a neural network with one convolutional layer followed by a fully connected
layer. We varied the stride, filter shape, output depth and padding. We used zero-padding
for the history and position inputs as the robot will never be in a cell outside of the room,
and one-padding for the room input to mark cells outside of the boundaries of the room as
obstacles. All experiments are averaged across 40 trials as before. We initially implemented a
convolutional neural network manually to reduce CPU time but we switched to the TensorFlow
implementation of convolutional nets to ensure that the results of this experiment were correct.

5.3.2 Results

The results of this experiment are in Table 5.1. The best convolution topology is a network
with a 2×2 filter shape, stride of one and output depth of four. The increase in performance is
statistically significant compared to the feed forward topology with a mean coverage of 0.304
and a standard deviation of 0.028 at 0.01 level of significance.

5.3.3 Evaluation

By a simple search through possible topologies we can improve the average coverage. With
more experience we may have been able to find these, or better, convolutional hyperparameters
without such a search. Instead of continuing to work with convolutional networks, we found
that a different phenotype (described below) gave much better coverage performance so we
continued the project with this new phenotype instead.

5.4 Localised Phenotype

After our experiments with the convolutional phenotype we decided to remove the final fully
connected layer and only apply the convolutional kernel to the inputs around the robot’s
current position. We remove the position inputs as the robot will always be in the center of
this kernel and this input would never change. If we use a filter shape of 3×3 then only the
room and history inputs of the cell containing the robot and the cells adjacent to the robot
will be passed to the network. As in the convolutional phenotype we use zero-padding for the
history inputs and one-padding for the room inputs.
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Phenotype
Condition

Room completed Hit obstacle Loop

Localised 3.45% 19.38% 77.17%
Full input 0% 99.3% 0.7%

Table 5.2: Conditions causing the end of a simulation. Averaged over 20 trials of a localised
network with a radius of one in 1,000 8×8 testing rooms.

5.4.1 Method

We define the local radius of a network as the maximum distance between a cell included in
the inputs and the current position of the robot. For example, a local radius of 1 gives a 3×3
block centred around the robot and local radius of 2 gives a 5×5 centred around the robot.
We tried different local radii averaged across multiple trials. We also ran the old feed forward
phenotype in the to see the difference in performance.

5.4.2 Results

Localised networks perform better than the feed forward or the convolutional phenotype. In
Figure 5.3 we show the results of using the localised phenotype in 8×8 rooms with localised
networks covering much more cells than the testing set. We ran all trials for more generations
than usual to show the testing performance of a local radius of two network converge to a
lower value than with a local radius of one. An example of paths taken with this network is
shown in Figure 5.4.

5.4.3 Evaluation

The localised networks need fewer weights in general than full input networks. With a local
radius of 2, a network will contain 200 weights while a full input network in an 8×8 room
contains 768. The increased performance may be partly due fewer weights creating a simpler
problem. However this cannot be the only explanation as a local radius of 5 requires 968
connections, more than the full input network with significantly worse performance.

Instead, the performance gain is likely due to the fact that obstacle avoidance is easier to
learn if the inputs are presented in this manner. For example, to avoid hitting an obstacle
east of the robot the weight between the room input neuron immediately east of the robot
position and the east output neuron must be a large negative number. In full input networks
this behaviour is not as easily encoded. We can show this by comparing how simulations end
using localised robots (with local radius of one) and the old full input robots in 8×8 testing
sets (Table 5.2) to find that robots with a localised network are 5 times less likely to end a
simulation by colliding with an obstacle.

The testing performance decreases with increasing local radius. This is a problem because
the low local radius prevents the robot from making decisions which will benefit the robot in
the long term. The extra information gained from a higher radius does not offset the cost of
the quadratically increasing number of weights. We address this problem in the next section.
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Figure 5.3: Comparison of average coverage per generation using 50 8×8 training rooms
and 1,000 8×8 testing rooms. Solid lines are training performance, dashed lines are testing
performance. lr is short for local radius.
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Generation 60 training, 94.666% coverage

(a) Paths taken by the robot through the 9 ran-
domly generated 4×4 training rooms.

Room 306 Room 908 Room 2048

Room 2338 Room 2421 Room 2794

Room 3211 Room 4413 Room 5221

Testing after 100 generations, 78.697% coverage

(b) Paths taken through a random sample of 9 of
the complete set of 4×4 testing rooms.

Room 2 Room 8 Room 12

Room 14 Room 27 Room 35
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Generation 98 training, 85.080% coverage

(c) Paths taken through a random sample of 9 of
the 50 8×8 training rooms.

Room 1081 Room 2326 Room 3100

Room 4154 Room 5748 Room 7775

Room 8529 Room 8998 Room 9778

Testing after 100 generations, 70.194% coverage

(d) Paths taken through a random sample of 9 of
the 10,000 8×8 testing rooms.

Figure 5.4: Examples of paths taken by the best performing robot found within 100 genera-
tions in samples of the training and testing sets. We use the localised phenotype with a radius
of one through 4×4 rooms (top) and 8×8 rooms (bottom). The robot begins in the top left
corner and travels in the direction indicated by the arrow. Any cells visited exactly once are
coloured green and cells visited more than once are coloured yellow. Cells coloured in red are
the location where the robot made a mistake causing the end of the simulation.
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Figure 5.5: An example of a 3×3 localised network, we show only the weights between two
input and output neurons (a and b) and the robot is at the centre of the input neurons.

5.5 Reduced Localised Phenotype

In the localised networks there is redundancy in the weights leading to the output neurons.
An example of this is in Figure 5.5 where a and b must take a negative value to ensure that
the robot will not go east or west if there is an obstacle in these cells as this would end the
simulation. Different weights must be learnt for both cases but the logic for each output
neuron is the same: do not activate if there is an obstacle in the proposed cell. From this
example we realised that we can simplify the network by removing all but one output neuron
and rotating the inputs to calculate the value of other three directions (e.g. if we keep the
north output then the output of the network after rotating the inputs by 180◦ is the value of
going south).

5.5.1 Method

We implemented this idea by adding constraints to the network such that the weights between
a related input/output neuron pair are shared. In Figure 5.5 this means that a = b. This
removes the need to rotate inputs and allows us to calculate network outputs as before.
Applied to all input and output neurons this constraint reduces the size of the genotype by
75%.

5.5.2 Results

We compare the performance of the reduced phenotypes using several different local radii to
our best localised phenotypes from the previous section (local radius of 1) in Figure 5.6. As
before, we use 8×8 rooms and average across multiple trials.

5.5.3 Evaluation

The testing performance of the reduced localised networks increases as the local radius is
increased up to four. A local radius of five or higher performs worse than the localised
networks of the previous section. A local radius of four creates a 9×9 kernel which is large
enough to take inputs from the majority of cells in an 8×8 room. The increase in performance
up to a radius of four shows that the network is able make better informed decisions, instead
of the blind obstacle avoidance behaviour of the robots in the previous section with a local
radius of one.
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Figure 5.6: Comparison reduced localised networks and the localised networks of the previ-
ous section. We compare the average coverage per generation using 50 8×8 training rooms
and 1,000 8×8 testing rooms. Solid lines are training performance, dashed lines are testing
performance. lr is short for local radius.
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5.6 Using a Subset of Training Rooms

Like most other genetic algorithm implementations our program spends the majority of the
runtime in the fitness function, in our case room simulations account for 88% of the runtime.
We had already improved the runtime by running the fitness function across different CPU
cores and using third party natively implemented functions to reduce the time spent in a single
simulation. To improve the runtime further we tried to reduce the number of simulations per
generation without sacrificing performance on the testing set.

5.6.1 Method

Each generation, we pick a random subset of a predetermined size from the training set. The
fitness of all individuals of the current population is found using this subset instead of the
entire training set. Since a different subset is used in each generation, large enough subsets
will ensure that the fitness function measures the general behaviour and not room specific
paths.

Usually we stop the genetic algorithm before the maximum number of generations when
one genotype with maximum fitness has been found because there is nothing more we can
learn from the training set. When using a training subset we always run for the maximum
number of generations as maximum fitness may be achieved by poor subset choice and the
training subset of the next generation may show much worse performance.

5.6.2 Results

In Figure 5.7 we can see the increase in testing performance as the size of the training subset
is increased. We used 8×8 rooms with a training size of 50, so the rightmost point on this
graph is the testing performance achieved without using training subsets. After a subset size
greater than or equal to six (mean = 0.73, SD = 0.041) the testing performance does not
increase further compared to using the full training set (mean = 0.74, SD = 0.037); unequal
variances t(77) = -0.94, p = 0.3486. When using a subset size of six the genetic search runs
on average 5 times faster.

5.6.3 Evaluation

We did not use training subsets to generate any of the data used in this report, but the
decreased runtime was very useful for testing new ideas.

5.7 Mutation Operator

As in the previous chapter we experimented with different mutation operators to improve the
performance further.

5.7.1 Method

We implemented several different mutation operators and searched for the best hyperparam-
eters for each operator.
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Figure 5.7: Testing performance as training subset size is varied. The average testing perfor-
mance without subsets is shown as the horizontal line.

5.7.2 Results

The effect of our best operator, scale mutation is shown in Figure 5.8. This operator multiplies
a gene by a random number between 0.5 and 1.5. We found that applying this operator to
each gene (i.e. 100% mutation rate for this operator) gave the best results. The evolution on
a path found using scale mutation can be seen in Figure 5.9.

5.8 Summary

We have extended the training method to handle multiple rooms and improved the perfor-
mance of the system built in the previous phase (Chapter 4) from 10% to 79.7% in 8×8 testing
rooms not present during training.
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Figure 5.8: Solid lines are training performance in 50 8×8 rooms and dashing lines are testing
performance in 1,000 8×8 testing rooms.
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Room 1 Room 2 Room 3

Room 4 Room 5 Room 6

Room 7 Room 8 Room 9

Generation 0 training, 16.358% coverage

Room 1 Room 2 Room 3

Room 4 Room 5 Room 6

Room 7 Room 8 Room 9

Generation 4 training, 57.168% coverage

Room 1 Room 2 Room 3

Room 4 Room 5 Room 6

Room 7 Room 8 Room 9

Generation 51 training, 98.698% coverage

Room 1 Room 2 Room 3

Room 4 Room 5 Room 6

Room 7 Room 8 Room 9

Generation 14 training, 93.586% coverage

Figure 5.9: Path evolution in 9 7×7 training rooms. Clockwise from the top right we can see
the improvement in the quality of the training paths. Good performance is quickly achieved
(e.g. generation 14) but increasing the coverage further is slower. The robot begins in the
top left corner and travels in the direction indicated by the arrow. Any cells visited exactly
once are coloured green and cells visited more than once are coloured yellow. Cells coloured
in red are the location where the robot made a mistake causing the end of the simulation.



Chapter 6

Evaluation

In Chapters 4 and 5 we compared our performance to older versions of our training method
for every improvement. In this chapter we will evaluate our training method by comparing
the performance of the trained robots to robots with different navigation strategies.

6.1 Evaluation Robots

We implemented several alternative navigation strategies to compare against robots trained
by our genetic algorithm.

6.1.1 TSP Bot

This robot converts a given room into a travelling salesman problem (TSP) and uses an
existing solver to find an approximate solution which is converted back into a path through
the room. The TSP solver used is an approximate solver to reduce runtime, therefore the
robot will visit all cells but may take more simulation steps than necessary to so. We discuss
this robot further in Section 6.2.

6.1.2 Random Bot

This robot picks a random direction at each simulation step until 100% coverage is reached.
For this robot the simulation setup was modified such that a simulation will not end if the
robot picks an invalid move (i.e. the robot bumps into the edge of the room or an obstacle).
Instead, invalid moves will be ignored and the robot will not be moved from its current
position during the simulation step. This is similar to randomised robots currently on the
market such as the Roomba.

Random choice is the simplest navigation strategy which can, if given enough time, clean
any room. The performance of this robot will provide a baseline which any robot should
match.

6.1.3 Heuristic Bot

Implements a simple heuristic to navigate. If there is a cell next to the robot which has not
been visited, the robot will go to that cell. Otherwise the robot will pick a random valid
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direction. This is repeated until 100% coverage is reached.

This heuristic is extremely simple to implement and will perform better than the random
bot. Therefore the performance of this robot will provide a better baseline which other
navigation strategies should be able to beat.

6.2 TSP Bot Method

6.2.1 Conversion to TSP

The robot’s task is a variant of the travelling salesman problem where the start node is given,
each node must be visited at least once and the end node is not required to be the start node.
We convert this problem to a standard travelling salesman problem so we can compare our
solution to an existing solver.

Step 1

We can express a room as an instance of this variant by creating a undirected graph with
a node for each empty cell and connecting adjacent nodes with equal weighted edges. An
example of this conversion is shown in Figure 6.1.

1 2 3

4

5 6 7

11

1

1
1 1

Figure 6.1: First step in TSP conversion. The room to convert is shown on the left and the
initial graph on the right. We create one node per empty cell and connect adjacent nodes.

Step 2

We apply two transformations to the graph to create a TSP. First we add the requirement
that each node must be visited exactly once. We convert the graph to a complete directed
graph by adding the missing edges and setting the new weights to the cost of the shortest
path between the nodes [20] (Figure 6.2). We also save the shortest path between all pairs of
nodes, this is used when we convert the TSP solution to a path.

We initially used a fast implementation of the Floyd-Warshall algorithm from the scipy

library to calculate the shortest paths with a time complexity of O(V 3) for V nodes in the
graph. The graphs we create are sparse as no node has more than four edges (average degree
before conversion to a complete graph is 3.25), therefore we run Dijkstra’s algorithm from
each node in the graph for the lower time complexity of O(V 2 log V + V E), for V nodes and
E < 4V edges. This reduced the runtime of the shortest path calculation by 15%.
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1 2 3
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5 6 7

3, node
5

3, node
4

1, node 5

1, node 6

1, node 7

1, node 6

Figure 6.2: Second step in TSP conversion. We calculate the shortest distance (the first
number on each edge) and which node to go to next (after the comma on each edge) for all
pairs of nodes. We only include edges between node 6 and nodes 1, 5 and 7 for clarity.

Step 3

We now have a shortest Hamilton path problem. To complete the conversion to a travelling
salesman problem, we remove the restriction on the start node and search for a cycle instead
of a path. This is done by setting the weight of all edges leading to the start node to zero [20]
(Figure 6.3).

1 2 3

4

5 6 7

0, node
5

3, node
4

1, node 5

1, node 6

1, node 7

1, node 6

Figure 6.3: Third and final step in TSP conversion. The weights of all edges leading to the
start node (node 1) are set to zero. As before, we only include a subset of the edges for clarity.

6.2.2 Solving

After the conversion each problem is saved as a TSPLIB [21] data file. This file is read by our
chosen solver, LKH-2 [22] an implementation of the Lin-Kernighan heuristic [8]. Although
this is an approximate solver the author has claimed to have reproduced optimal solutions
for all solved problems he could find with this program [10]. This method should therefore
provide a good estimate of the optimal path in all rooms.

6.2.3 Conversion to path

The output of the solver is the order in which the nodes of the graph should be visited. We
convert this list to a path so we can compare the performance of this robot to other robots.
Not all cells in node list are adjacent so we use the saved shortest paths to fill any gaps in the
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path, then we translate the node list into a list of (x, y) coordinates. The last node in this list
is the starting cell as TSP solutions must be a cycle, but we can ignore this since any move
to the starting cell is free by the construction of the problem.

For example, the solution to the travelling salesman problem in Figure 6.1 is the list of
nodes beginning with [1, 3, 2, 4, ...]. Using the saved shortest paths we expand these to [1,
2, 3, 2, 1, 4, ...] and the coordinates [(0, 0), (0, 1), (0, 2), ...]. This is a path which can be
followed by the robot without breaking the rules of our simulation by moving more than one
cell per step, this is shown in Figure 6.4.

1 3 2

4

5 6 7

Figure 6.4: Path after TSP conversion. The solution to the TSP (left) is the order in which
to visit nodes, this is shown outside of each node. The resulting path (right) is created by
following the shortest paths to each node in the order specified by the TSP solution. In this
example the TSP robot has found the optimal path.

Examples of the TSP bot solving large rooms is shown in Figure 6.5.

6.3 Experiment Setup

We trained our robots with 200 training rooms for 300 generations. We used 5×5 rooms with
local radius of 2, 8×8 rooms with local radius of 4 and 15×15 rooms with local radius of 5.
We then picked the robot with the highest coverage on the training set for each room size and
ran this robot on 10,000 testing rooms of the same size, recording the path taken through
each room. We also ran each of the evaluation robots described above in Section 6.1 through
the same testing rooms, again recording all paths taken. From these paths we can calculate
the average coverage over the testing set at each simulation step for each robot and for each
room size. We stop calculating the average coverage when all simulations for a robot have
ended, which will vary for each robot. We trained 10 robots for each room size and ran on
different testing sets then averaged to results to reduce the randomness in the results. 10
trials is more than enough as every trial gave a line close to what is shown in Figure 6.5 and
each trial would have led to the same conclusions.

We also recorded the average time spent in a room for the TSP solver and our trained
robots for room sizes between 5×5 and 17×17.
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Figure 6.5: Paths through four 15×15 rooms found by the TSP bot. The robot begins in the
top left corner and travels in the direction indicated by the arrow. Any cells visited exactly
once are coloured green and cells visited more than once are coloured yellow.
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6.4 Results

6.4.1 Coverage per step experiment

The results of this experiment are shown in Figure 6.5. We record how many steps each of
the evaluation robots needed to achieve the maximum coverage of the robot trained with the
genetic algorithm (Table 6.1). We refer to our trained robot as GA/NN in the graphs.

The randomised evaluation robots (Heuristic Bot and Random bot) will eventually cover
any room by chance. The TSP robot is guaranteed to cover the room by design, as an
approximate TSP solver will reach all nodes in the graph but may not find the optimal order
in which to visit nodes. Only the robot trained with the genetic algorithm may become stuck
in a loop or stop running after hitting an obstacle and is therefore the only robot which fails
to reach 100% coverage in these tests. We can see this by the last data point on each graph,
the TSP, Heuristic and Random bots end only when all rooms have been solved, we do not
include end of the randomised robots as the x scale would hide the interesting comparisons
between our robot and the TSP bot which happen within the first 100 steps. All robots begin
on an empty cell so the coverage at the start of the simulation (step 0) is greater than 0%,
this causes the non zero y intercept on each graph in Figure 6.5.

6.4.2 Runtime comparison

The result of the runtime comparison are shown in Figure 6.8. Here we can clearly see the
quadratic time complexity of the LKH-2 solver (O(n2.2)). We increased the localised radius
with the room size for a fair comparison which doubled the runtime of robots, from 0.48
milliseconds in 5×5 rooms to 1.9 milliseconds in 17×17 rooms. This difference in performance
is not due to differences in the quality of the implementation. LKH-2 is written in C and
has been optimised and improved over several years by an experienced programmer. Our
neural networks are run with an optimised third party matrix multiplication function but
the simulation (robot movement, network input calculation and valid move checks) which is
included in the GA/NN runtime is written in Python and has not been optimised beyond
running on more cores and more machines, both of which were disabled for this experiment.
The difference is not caused by the conversion from and to the TSP representation either, the
LKH-2 solver accounts for 99.4% of the time spent solving a 17×17 rooms. The remaining
0.6% is mainly due to IO latency from reading and writing the large problem files required to
communicate with LKH-2.

6.4.3 Mostly empty rooms

During this experiment we noticed our robot performed much better in empty rooms. To
investigate this we modified our room generator to place obstacles in each cell with a prob-
ability of 1% instead of sampling from the entire range of valid rooms. In 15×15 rooms this
creates 2.25 obstacles per room on average. We trained and ran all robots through a set of
10,000 of these rooms to repeat these rooms. The average coverage per step is show in Figure
6.6.

The path taken by the robots is shown in Figure 6.7. The spiralling behaviour is not
unique to this robot or these rooms, all robots we trained learnt to spiral inwards in empty
rooms.
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Figure 6.5: Average coverage per simulation step for different navigation strategies and room
sizes.

Room Size
Max GA/NN Steps to match max GA/NN coverage (% of GA/NN)

Coverage GA/NN Random Bot Heuristic Bot TSP Bot

5×5 97.57% 39 831 (2077.50%) 475 (1187.50%) 21 (52.50%)
8×8 87.45% 81 749 (860.92%) 141 (162.07%) 48 (55.17%)

15×15 58.00% 276 1232 (440.00%) 243 (86.79%) 110 (39.29%)

Empty 15×15 98.49% 448 3180 (672.30%) 1020 (215.64%) 219 (46.3%)

Table 6.1: Steps taken to match GA/NN coverage.
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Figure 6.6: Average coverage per simulation step with 1% obstacle probability in 15×15
rooms, or an average of 2.25 obstacles per room.
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Room 499 Room 1508 Room 2163

Room 4981 Room 6328 Room 6345

Room 6450 Room 6580 Room 7798

Testing after 100 generations, 99.506% coverage

Figure 6.7: Path taken by our trained robot through a random sample of nine of the 10,000
empty 15×15 testing rooms. The robot begins in the top left corner and travels in the direction
indicated by the arrow. Any cells visited exactly once are coloured green and cells visited
more than once are coloured yellow. Cells coloured in red are the location where the robot
made a mistake causing the end of the simulation.
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Figure 6.8: Change in runtime as room size is increased for the neural network and TSP bot.
Averaged over 100 rooms for each room size. GA/NN times include the room simulation
time, not just the time to run the neural network. GA/NN runtime doubles between 5×5 and
17×17.
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6.5 Discussion

In large 15×15 rooms the effect of room size on the GA/NN robot is clearly visible and
our robot can only outperform the Random robot. In these large rooms we are unable to
train a robot which can use the large number of inputs effectively, despite using the reduced
phenotype. To solve this, more work must be done on combining obstacle avoidance, which we
can do well with the localised networks, with a network which can create a high level plan of
the path to take, which we do not have. In these large rooms the robot often manages to clean
some part of the room well but fails to move on to new areas causing low coverage (Figure
6.9). What is missing is another network or signal which can detect large empty areas of the
room and guide the robot toward these areas. Another issue with large rooms, also visible
in Figure 6.9 rooms 2,663 and 8,494 is the scattering of uncovered cells, a better planning
method than the one implemented by our localised networks will systematically cover the
room instead of constantly ignoring close by uncovered cells.

Empty rooms do not require high level planning as the spiralling behaviour is done by
driving along the edge of obstacles or cells which have already been visited, this will visit all
areas of a room uniformly.

In the small rooms (5×5 or less) there is no need for high level planning, as these rooms are
too simple. The GA/NN robot performs well and reaches the majority of cells but the TSP
robot achieves the same coverage almost twice as quickly (52.5% of the steps). However the
GA/NN robot does not need information about the entire room, only the surrounding area. If
applied to a real robot, this would allow the GA/NN robot to function without requiring any
prior knowledge of the room, which usually created and stored by the robot during operation
increasing the complexity of the development of the robot. Real rooms are unlikely to stay
static and the GA/NN robot can adapt to changes in the room.

In the medium 8×8 rooms the maximum coverage of the GA/NN robot has dropped
enough to leave large areas of the room uncovered. The Heuristic robot may be a better choice
than the GA/NN robot for rooms of this size as it will eventually achieve high coverage, and
requires only 1.6 times as many steps as the GA/NN robot to reach the maximum coverage of
GA/NN (compared to 11 times as many steps in the 5×5 case). The Heuristic robot has the
same advantages over the TSP robot as the GA/NN robot (i.e. no prior knowledge required
and is not affected by changes in the room during operation).
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Room 2026 Room 2663 Room 3303

Room 4025 Room 5180 Room 8490

Room 8494 Room 8613 Room 9592

Testing after 300 generations, 50.027% coverage

Figure 6.9: Typical example of cleaning through 15×15 testing rooms. The robot begins in
the top left corner and travels in the direction indicated by the arrow. Any cells visited exactly
once are coloured green and cells visited more than once are coloured yellow. Cells coloured
in red are the location where the robot made a mistake causing the end of the simulation.
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6.6 Summary

The main advantages of using a genetic algorithm to train an neural network to solve our
navigation problem are:

• Achieves coverage performance comparable to the optimal (as approximated by the TSP
bot) in small rooms and empty rooms.

• Good runtime performance which scales linearly with room size after training. As
discussed earlier we only optimised when our experiments slowed down our work, opti-
misation was never a goal of this project. So there is potential for better performance
if required.

While the main disadvantages are:

• Poor performance in large complex rooms.

• Never achieves perfect coverage in these testing sets.
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Conclusion

We have shown that, for our application, genetic algorithms can be used to train a neural
network with close to optimal performance in certain rooms. In small rooms (i.e. 5×5 rooms)
robots created with our method find a path close to the optimum, although these rooms were
not present during training and the robot does not receive information about the entire room.
The robots can be trained on 50 5×5 rooms and achieve 95% coverage on 100,000 different
5×5 rooms. These robots can be trained in under a minute on a conventional multi core CPU
and are fast to run once trained. The average proportion of the room covered by the robot
drops sharply as the size of the room is increased. The exception is large empty rooms where
the genetic algorithm unexpectedly evolves an inward spiralling behaviour which, although
not optimal, is effective at cleaning these rooms.

An oft quoted disadvantage of genetic algorithms is the large number of hyperparameters
which must be set. However, despite our hyperparameter sweep experiments to find the
optimum value for each hyperparameter we gained little performance compared to picking
reasonable values for each (e.g. 1% - 5% mutation rate, 60% - 100% crossover rate). If
we repeated this project for another application we would not spend time setting up and
conducting these sweep experiments. The only possible exception is the mutation rate where,
for this application, we found a sharper peak in performance around the optimal value than
for other hyperparameters. We could therefore try several mutation rates in a small range
such as 1% - 10%. This is true for both the canonical genetic algorithm and the CoSyNE
algorithm, if using a different variant of a genetic algorithm we would consider conducting the
same parameter sweeps as these algorithms may be more sensitive to hyperparameter values.

The disconnect between the genotype (the vector optimised by the genetic algorithm) and
phenotype (the neural network built from the genotype) is an especially useful advantage as we
can easily set constraints in the network such that some weights must always be equal without
modification to the algorithm. Genetic algorithms make no assumption on the problem which
allows complete freedom in building the phenotype.

The choice of inputs is important as the genetic algorithm was not able to train a network
which can give more importance to certain inputs according to the location of the robot. In
our project we saw that the network did not base its outputs on the inputs of the cells closest
to the current position. Instead the signals from the cells near the robot were ignored due to
the far more numerous signals from all other cells in the room, this caused the robot to end
a testing simulation frequently (99.3% of cases) by colliding with an obstacle. This mistake
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should be easy to avoid as we can tell if a move is valid from a single input per position. We
achieved the single largest boost in performance by restricting network inputs to the most
important inputs to address this problem, increasing the coverage in 8×8 testing rooms from
an average of 9.5% to 68%. We would spend more time experimenting with different methods
of presenting the inputs

7.1 Future Work

Instead of continuing to improve the coverage in the multiple room case, given more time we
would take the project further with the following ideas:

• Other Applications: A limitation is the single application to test genetic algorithms
and neural networks instead of testing on a wide range of real world problems. Given
more time, we would build a single system which could train different neural networks
for each problem.

• Recurrent Neural Network: An interesting idea to explore is to try recurrent neural
networks to store the state of the robot instead of providing the state as additional
inputs to the network. This would further highlight the advantage of the disconnect
between the genotype and phenotype as we can train an arbitrary complex network
with no modification to the genetic algorithm.

• Dynamic Rooms: As discussed in the evaluation, assuming rooms are static during
operation is unrealistic as people and pets may move around the room during operation.
We would create obstacles which have some probability of moving at each simulation
step and occasionally create and remove obstacles to test whether our robots could
adapt to dynamic environments.

• Supervised Learning: We would train a network to mimic the paths taken by the
travelling salesman robot (TSP robot). During training we present the network with
inputs describing the state of the room and use the output of the TSP robot as the
expected result. Backpropagation or another supervised learning algorithm could be
used for training. This may give better performance on large rooms than the our rein-
forcement learning approach and if successful we would have combined the performance
of the TSP robot with the adaptability of our neural network.

• Connected Rooms: We would generate grids which are more similar to the rooms
in a house with several different rectangular rooms connected together and obstacles
randomly strewn throughout.

• Continuous Rooms: The discretized rooms used throughout this project are a conve-
nient representation but lack realism. Grid rooms can represent any room to arbitrary
precision by increasing the width and height of the room, however the area under the
robot which is cleaned during operation becomes unrealistically small. Furthermore,
we restricted the robot to four directions. A future project could address these issues
with a continuous room representation in which obstacles and the area cleaned under
the robot are polygons. The inputs to the network could come from simulating a laser
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distance sensor spinning on the top of the robot similar to the Neato, which continually
measures the distance to the nearest obstacles at all angles around the robot.
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