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Abstract—Vision-based topological maps for mobile robot 

localization traditionally consist of a set of images captured 

along a path, with a query image then compared to every 

individual map image. This paper introduces a new approach 

to topological mapping, whereby the map consists of a set of 

landmarks that are detected across multiple images, spanning 

the continuous space between nodal images. Matches are then 

made to landmarks, rather than to individual images, enabling 

a topological map of far greater density than traditionally 

possible, without sacrificing computational speed. Furthermore, 

by treating each landmark independently, a probabilistic 

approach to localization can be employed by taking into 

account the learned discriminative properties of each landmark. 

An optimization stage is then used to adjust the map according 

to speed and localization accuracy requirements. Results for 

global localization show a greater positive location 

identification rate compared to the traditional topological map, 

together with enabling a greater localization resolution in the 

denser topological map, without requiring a decrease in frame 

rate. 

 
I.  INTRODUCTION 

 

Vision-based approaches to navigation are popular within 

the mobile robotics community due to the low-cost of vision 

sensors, the large quantity of data gathered, and the close 

relationship to the human sensory system. Visual 

localization, as a major component of an overall navigation 

system, has been the subject of intense research attention for 

many years, but there remain significant challenges. These 

include dealing with dynamic environments (changes in 

illumination, long-term changes in environment structure), 

mapping strategies (robustness to localization errors, online 

map building), perceptual aliasing (similar observations at 

different locations), and computational issues (processing 

speed, memory requirements). Approaches to localization 

can generally be categorized as either metric [1][2], where 

the pose of the robot is estimated within a defined coordinate 

system, or topological [3][4], where a query image is 

compared to other images previously captured at discrete 

locations within the environment, often along a fixed path 

that the robot is expected to follow. 

If the initial location of a robot is known, then 

probabilistic localization can be carried out by use of the 

Kalman filter [5]. However, if the initial location is 

unknown, or to deal with re-localization after the “kidnapped 

robot” problem, a probability distribution can be computed 

across all possible locations, known as global localization. 

For a sensor reading z, this requires the computation of 

( | )kp z x  across all possible states x1…k. With a topological 

approach, zq represents a query image from the robot’s 

camera, and xk represents the location, or node, of the robot 

within the topology. ( | )q kp z x is then computed via a 

similarity measurement between image zq and the image zk 

which was captured during a prior map-building stage. The 

location probability distribution can then be updated from 

the currently predicted location distribution, with techniques 

such as particle filters [6]. 

As with traditional topological localization methods, this 

paper presents a technique that calculates the similarity 

between a captured image and those in the topological map, 

in order to compute ( | )q kp z x . However, one of the issues 

with traditional topological approaches is that if nodes are 

inserted at too great a separation, then the localization 

resolution may suffer. Methods exist to estimate the robot’s 

pose relative to sparsely-spaced nodes [19], but such 

methods are noisy compared to maps with a higher density 

of nodes. Inserting nodes at a greater spatial frequency can 

improve localization accuracy, but at a significant cost to 

computational speed, as every image in the map must be 

individually compared to the query image.  

The work described in this paper presents a new approach 

to topological mapping which allows for a very dense 

topology without sacrificing computational speed. From a 

sequence of images acquired by a robot, local features are 

tracked across multiple adjacent images to create a set of 

landmarks representing real-world points, spanning the 

continuous topological space between each nodal image in 

the map. During localization, features from a query image 

are matched to these landmarks, rather than to the individual 

images as in the traditional approaches. Inserting further 

nodes into the topological map does not significantly 

increase the number of landmarks, as the landmarks often 

already exist from detection in the adjacent nodes. In this 

way, the topological density can be very high without 

inducing the penalty of a large decrease in frame rate. Fig. 1 

demonstrates the key difference between the proposed 

approach and the traditional approach. 

 

 

Fig. 1.  Comparison of the traditional discrete topological map to the dense 

continuous topological map introduced in this paper. 
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Furthermore, by observing features from a number of 

different viewpoints, an understanding is learned of how 

each feature is expected to change as the robot traverses the 

environment. This allows a probabilistic approach to the 

image similarity measure, rather than the more naive voting 

scheme that is often adopted. Finally, learning each 

landmark’s independent behaviour also enables optimization 

of the map with respect to the scale of the environment and 

the required accuracy-speed trade-off.  
 

 

II.   RELATED WORK 

 

The task of finding the similarity between an image from 

the robot’s current view and all nodal images in the 

topological map, draws from standard image matching 

techniques in wider computer vision literature [7][8]. Images 

can be represented in a holistic manner by considering the 

image in its entirety [9], by extracting local features [10] 

detected at interest points, or by combining both methods in 

a hybrid approach [11]. Whilst matching many local features 

is more time consuming than matching a single global 

feature, it offers far greater robustness to occlusions and 

illuminations effects, as well as offering greater 

discriminative power. Several local features exist [12] which 

demonstrate robustness to scale, rotation and illumination, 

and small affine viewpoint changes. The method presented 

in this paper uses SIFT features [13], which describe the 

texture around a keypoint using histograms of gradient 

orientations, although the same methodology works for any 

local feature that offers some tolerance to affine viewpoint 

changes. 

Matching features between two images often involves 

computing the distance between feature descriptors, and 

classifying a match when the distance between the two 

closest feature descriptors is less than the second smallest 

distance, by some threshold [13]. Geometric constraints 

have also been developed to prune out false matches [14] by 

considering the spatial arrangements of nearby features. 

Whilst this simple technique can perform well, as the size of 

the image database increases, the number of matches that 

pass this threshold decreases, as each feature becomes less 

discriminative within the larger pool. In the method 

proposed in this paper, by tracking features across images 

and learning their expected descriptor variation, every 

feature can be matched. 

Topological approaches to localization use image 

sequences to represent a map, with matching performed 

between a query image and those images in the map, using 

one of the many image matching techniques discussed. 

Those employing local features have had success with 

simple feature voting schemes [10]. Tracking features across 

multiple images to generate landmarks, similar to the 

proposal in this paper, has also been demonstrated as an 

effective means of retaining only the most stable features 

[16][18]. Computing the distinctiveness of local features, 

again investigated in this paper, has shown to provide more 

efficient image matching using a probabilistic approach [17]. 

This paper draws from the work on feature tracking and 

probabilistic matching to propose a new technique for 

dealing with topological localization with a far greater nodal 

density. 

 

 

III.   GENERATING LANDMARKS 

 

Generation of the landmarks for the map requires a 

mobile robot to travel along a path and capture images 

sequentially. SIFT features [13] are detected in each image, 

and then tracked through adjacent images by finding 

corresponding feature matches. A potential match is found if 

the feature descriptor distance between the two features is 

less than a threshold. By requiring less than 1% false feature 

matches, the threshold was empirically set at 0.45 for the 

standard normalized 128-dimensinal SIFT descriptor.  False 

matches are then pruned out by estimating the epipolar 

geometry between the two adjacent images using the 

RANSAC method [15]. A feature which is matched is then 

tracked continually across each consecutive image, until a 

match is no longer found. 

From each feature track, a landmark is then generated and 

described by a set of properties, computed from the features 

present in the feature track. The mean descriptor, dmean, is 

computed across all features in the track, together with the 

maximum descriptor distance, dmax, between every feature in 

the track and the mean descriptor. With each landmark then 

occupying a volume in feature space, rather than a single 

point, it is expected that a large number of false positive 

matches may occur between a query feature and a landmark. 

As such, further discrimination is added to each landmark by 

including an additional neighbour landmark for geometric 

verification of a match. Thus, for each landmark, every other 

landmark that co-occurs in at least one image is assigned as 

a potential neighbour, and the minimum and maximum 

spatial distance, δmin and δmax, and angle, θmin and θmax, are 

calculated across all co-occurring images. Finally, every 

image captured along the robot’s path, representing a node 

in the topology, is assigned a set of landmarks which appear 

in the image. In summary thus far, the map is represented by 

a set of nodes, or images, x, with each image xx  

represented by a set of landmarks l, where every landmark 

l l  is described by l = {dmean, dmax, ln}, and every 

neighbour landmark nl 
n

l is described by ln = {δmin, δmax, 

θmin, θmax}. 

Fig. 2 shows an example of two landmarks that have been 

generated by three features each. The landmark representing 

the light on the ceiling will be represented by, of the two, a 

smaller descriptor range, due to the lack of background 

clutter, and also the smaller angular viewpoint change across 

the features. As will be detailed later, this landmark will 

therefore have a greater weighting in the overall image 

similarity calculation to take advantage of its greater 

discriminative power. 



 

 
 

Fig. 2.  Landmarks detected across multiple viewpoints. The landmark on 
the ceiling has a smaller descriptor range across all features in the track, due 

to its greater distance from the camera, together with its lack of background 

clutter. This landmark therefore has a greater weighting in the image 
similarity measure. 

 

 

IV.   MATCHING FEATURES TO LANDMARKS 

 

With the map having been generated and the robot now in 

the localization phase, features are extracted from a query 

image and a match is attempted between each feature f in the 

image, and each landmark l from the map. For each feature, 

the descriptor df is computed, together with the descriptor, dn, 

of every neighbouring feature, fn, in the same image. The 

spatial distance δn and angle θn between feature f and 

neighbouring feature fn are also computed. Fig. 3 shows the 

Bayesian network used to compute the probability of a 

landmark match given these measurements from a query 

image. 

 

 
 

Fig. 3.  Bayesian network used to compute the probability of a landmark 

match, given observations from a query image. 

 

In the Bayesian network of Fig. 3, L, N and S represent 

beliefs about the presence of a landmark, l, the presence of a 

neighbour landmark, ln, and the spatial arrangement of the 

two, respectively, for every attempted match with a query 

feature f. L represents the belief that feature f is a true 

positive match to landmark l, and N represents the belief that 

there exists a neighbour feature fn, out of all possible 

neighbour features, which is a true positive match to 

neighbour landmark ln. S then represents the belief that f and 

fn lie within the expected spatial limits. 

DL, DN, S, ΔN and ΘN represent the actual measurements to 

be taken from features f and fn. DL indicates whether the 

descriptor, df, of feature f, lies within the descriptor range of 

landmark l. As previously discussed, a landmark is described 

by l = {dmean, dmax, ln}. Thus, DL is equal to 1 iff 

max| |   f meand d d   , and 0 otherwise. In a similar manner, 

DN indicates whether the descriptor, dn, of a neighbour 

feature fn, lies within the descriptor range of the neighbour 

landmark ln. ΘN and ΔN indicate whether the neighbour 

feature lies within the correct angular and distance ranges, 

respectively. As before, a neighbour landmark is described 

by ln = {δmin, δmax, θmin, θmax}. Thus, ΔN is equal to 1 iff 

minn  and 
maxn  , and 0 otherwise. Similarly, ΘN is 

equal to 1 iff 
minn  and

maxn  , and 0 otherwise. Finally, 

S, is the belief that the neighbour feature fn lies within the 

correct overall spatial arrangement relative to feature f, is 

equal to 1 iff ΘN = 1and ΔN = 1, and 0 otherwise. 

The Bayesian network described provides the core to the 

probabilistic landmark matching. For a query feature f 

giving observations DL = 1, DN = 1, ΔN = 1 and ΘN = 1, the 

probability of a true positive match to a landmark l can then 

be calculated with Equation (1). If any of the measurements 

are not equal to 1, then the probability of a match is zero. 

Equation (1) is computed for every query feature f, and the 

maximum value across all query features is taken as the 

probability that there exists, in the query image, a true 

positive match to landmark l.  
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Here, EL represents the combined evidence of DL, DN, and 

SN, and is equal to 1 iff these three measurements are equal 

to 1. The denominator in Equation (1) represents the overall 

value of ( 1, 1, 1)L Np D D S    and is marginalized over L, 

to include the possibility of false positive matches from the 

given observations. For global localization, ( ) /p L a b , 

where a is the number of features in the feature track from 

which landmark l was originally built, and b is the total 

number of features detected in the original map-building 

tour. The value of ( 1| 1)Lp E L  is 1 because the ranges of 

DL, DN and S were originally computed directly from true 

landmarks. However, the probability of these observations 

given that, in fact, the landmark is not present, requires 

marginalizing over the states of N, as in Equation (2). 

 

(2) 

 

 

 

 

Computing the probability ( 1| 0)Lp D L  of a 

descriptor match between feature f and landmark l, given 

that it is a false positive match, requires computing the 

probability of a random feature falling within the descriptor 

range of l. This is estimated by considering all features 

generated from the original tour, and finding the fraction 

which fall within the descriptor range of l, whilst in fact not 

belonging to the corresponding feature track. 
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The probability ( 1| 0)p S N   that a random neighbour 

feature fn will fall within the spatial arrangement range of a 

neighbour landmark ln, can be computed by dividing the area 

occupied by this spatial range by the total possible area 

within which a neighbour feature can be found.  

For an image of dimensions w h , 
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Finally, computing ( | 0)p N L  requires marginalizing 

over all locations in the topology. For a location i in which 

neighbour landmark ln is present, ( 1| 0) 1/ | |ip N L   f , 

where | |if represents the total number of features present in 

the image representing location i. This is because only one 

feature out of the set | |if corresponds to the correct 

neighbour landmark, regardless of whether landmark l is 

correctly matched. For a location j in which neighbour 

landmark ln is not present, ( 1| 0) 0p N L   , because a 

true positive neighbour match is not possible without the 

presence of ln in the image. Therefore, for global localization 

with equal prior probabilities for each location, 
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Here, | x |  represents to total number of nodes in the 

topology, and 'x  represents all locations whose images 

contain landmark l. 

The final stage in matching features to landmarks is to 

choose which neighbour landmarks n for each landmark, 

should be considered for an attempted neighbour match. 

Requiring many neighbours to be matched to increases 

discriminative power, but significantly reduces 

computational efficiently, and the problem explodes to 

become an exhaustive graph matching algorithm. As such, 

the top k neighbours which co-occur most frequently with 

the landmark are chosen as candidate neighbour matches, 

and if one of these matches if verified then the belief of 

variable N in the Bayesian network is set to 1. The frequency 

of co-occurrence is computed by dividing the number of 

nodal images in which both the landmark and its neighbour 

are present, by the total number of nodal images in which 

the landmark is present. 

 

V.   ONLINE LEARNING OF ENVIRONMENT 

 

One major benefit of extracting real-world landmarks and 

treating them independently is that the landmark properties 

can be updated over time as the robot explores its 

environment. Based upon the initial tour of the robot, for 

every nodal image that a landmark was extracted from, the 

probability that a landmark will occur if the robot is at this 

node, would be calculated as 1. However, in reality, due to 

different viewpoints and illumination conditions in 

subsequent tours, the landmarks are likely to be matched 

only a fraction of the time. Thus, a co-occurrence probability, 

( 1| 1)p L x  is computed between landmark l and node x, 

by dividing the number of times that node x is the matched 

node whilst landmark l is also matched, by the total number 

of times that node x is matched. This probability is updated 

every time node x is matched, and this is an important 

parameter in weighting landmark contributions in the image 

similarity measure, such that those landmarks which are 

expected to occur frequently are given more importance.  

VI.  COMPUTING LOCATION SIMILARITIES 

 
With the match probabilities computed for each landmark, 

a similarity can now be computed between a query image 

and every nodal image in the topological map. For every 

feature in the query image, a match is considered to every 

landmark in memory. If the landmark descriptor, together 

with a neighbour descriptor and location, are all within the 

correct ranges, a match is recorded alongside a 

corresponding probability that this is a true positive match, 

as from Equation (1). For each location x in the topology, a 

similarity can be computed between the landmarks present 

in the query image,
ql l , and those present in the map 

image, 
xl l . This similarity function ( , )q xS l l  sums all the 

probabilities of landmark matches between the two images, 

with each weighted by the co-occurrence value

( 1| )q xp L z z  , and divides this by the hypothetical value 

of the summation if all landmarks in lx were matched with a 

true positive probability of 1. η is a normalizing factor, such 

that ( | )qp xl  sums to 1 over all locations x.
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VII.  OPTIMIZATION OF LANDMARK TRACKS 

 
Currently, the landmarks generated in section III represent 

feature tracks that extend until a feature match is no longer 

found across adjacent images. However, this provides a 

suboptimal representation of the environment. Longer 

feature tracks will exhibit larger variance in their descriptor, 

together with larger variances in spatial relationships with 

neighbouring landmarks, and hence will be susceptible to 

greater false positive matches. However, the presence of 

longer feature tracks also reduces the processing time 

required, as fewer landmarks are formed to which feature 

matches are attempted. As such, it is possible to optimize the 



track lengths with respect to a required localization 

performance, whilst maintaining an acceptable frame rate.  

A ratio threshold, rx, is defined as the minimum ratio 

between the expected scene similarity of a true positive 

match between query image q and nodal image x, and the 

expected scene similarity of a false positive match between q 

and nodal image y, given that the robot location zq does in 

fact correspond to location zx in the map. 

 

(6)

 

 

 

To compute the expected similarity for a true positive 

match, landmark matches are assumed to be conditionally 

independent given the matched image, and the contribution 

of each landmark to the similarity score is thus weighted by 

the probability that the landmark evidence will occur in the 

image, ( 1| 1)p L x  . 

 

 

 

(7) 
 

To compute the expected similarity for a false positive 

match, the contributions of each landmark are weighted by 

the probability of a false positive match to that landmark, 

( 1| 0)Lp E L  . 

 

 

 

 

(8)
 

 

The variable r is now defined as the overall minimum 

value of rx across all nodal images x, and the user-defined 

variable rmin is defined as the minimum allowed value of r. 

In order to establish r to be greater than rmin, the following 

process is carried out. r is computed for the original map 

generated by the robot’s tour. If r < rmin, each landmark in 

the nodal image x for which rmin is associated is ranked in 

order of its probability of a false positive match. The 

landmark with the highest value of this probability is split 

into two landmarks, each taking half the features in the 

feature track. r is then updated, and the process continues 

until r > rmin. In this way, as the landmarks are divided up, 

the likelihood of a false positive match between the query 

image and all nodal images is decreased to an acceptable 

level. Specifying the value of r is a compromise between 

localization accuracy and frame rate and can be adjusted to 

suit the particular needs of the system. 

 

 

 

 

VIII.  EXPERIMENTAL RESULTS 

 
Having built up the topological environment by manually 

driving a mobile robot along a path, experiments were then 

carried out to investigate the localization performance. The 

robot was driven along subsequent tours that deviated to the 

side of the original path by about 0.5 m, to test the 

robustness to slight viewpoint changes. Equation (5) was 

used to compute the most likely location within the map 

corresponding to the current image from the robot, and the 

overall percentage of correctly identified locations was 

recorded. Different path lengths of 20m, 50m and 100m 

were tested to investigate how well the proposed method 

scales with the environment. 

Figure 4 shows the effect of online learning and updating 

of the co-occurrence probabilities of landmarks and nodal 

images. For each subsequent path that the robot was driven 

along, these probabilities were adjusted as in section V, 

allowing more weight to be given to frequently occurring 

landmarks in the similarity measure. This improves the 

localization performance because infrequently occurring 

landmarks which had a false positive match would not affect 

the similarity measure significantly, as they were not 

expected to be matched in the first place. 

 

 
Fig. 4. Percentage of correctly identified rooms as the number of tours by 
the robot increases. Co-occurrence probabilities of landmarks and nodal 

images are updated with each subsequent tour, and landmark weights in the 

image similarity measure are adjusted accordingly. Each tour is 100m in 
length. 

 

The localization performance was then compared to 

results generated using the traditional topological method 

[10]. In the comparative approach, features extracted from a 

query image are matched to all features from each individual 

image along the tour, by comparing the distances of the two 

closest feature descriptors, and hence discarding matches 

that are not confident. False positive feature matches are 

then pruned by estimating the epipolar geometry between 

the two images. In the traditional approach, inserting further 

nodes into the topology will significantly increase the 

processing time required to attempt a match to the new 

features. However, with the method proposed in this paper, 

an extra node is likely to contain features that belong to the 

already existing landmarks, and so the additional 

computational overhead is far less. The map density and 
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value of rmin were adjusted, for each tour length, such that 

the frame rate of localization in this method was equal to the 

frame rate in the traditional topology, at around 3 frames per 

second. The results of this are shown in figure 5, where the 

map density is far greater in the proposed method, and 

additionally scales well with the environment. 

 
 

Fig. 5. Comparison of map density between the approach presented in this 
paper with the traditional topological approach, both operating at 3 frames 

per second. 

 

The ability to create a greater map density, without 

decreasing frame rate, is the key advantage of this method 

over competing techniques. However, the overall 

localization accuracy is also improved in this method 

compared with [10], due to the appropriate weighting of 

informative landmarks and the ability the update the map 

through multiple tours. Figure 6 compares the localization 

rate of the two methods, again with both operating at around 

3 frames per second.  
 

  
Fig. 6. Comparison of correct localization rate between the approach 
presented in this paper, and three alternative state-of-the-art approaches, at a 

frame rate of 3 frames per second. 

 
 

IX.   CONCLUSIONS 
 

In this paper, a new approach to global topological 

localization has been presented. Traditional approaches 

match a query image to independent nodal images in a map, 

such that increasing the map density requires matching to a 

larger number of images, hence significantly reducing the 

frame rate. This method matches a query image to 

independent landmarks that have been tracked across 

multiple adjacent nodal images. As such, inserting further 

nodal images does not significantly reduce the frame rate, as 

the landmarks present in the additional images are likely to 

already be present in the map. By learning each landmark 

independently, statistics can be updated online which can 

assign greater importance to landmarks that are expected to 

occur more frequently in a nodal image, allowing for a 

greater location recognition rate than methods based upon a 

single training tour of the environment. Further proposed 

work may involve extending the online learning component 

to update landmark descriptor properties and the spatial 

properties of neighbouring landmarks. Additionally, the task 

of localizing in dynamic environments will benefit from this 

approach, as landmarks that no longer appear in subsequent 

tours by the robot can be filtered out, whilst new landmarks 

that appear can be gradually introduced into the map.  
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