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Abstract— In this paper we present a new appearance-based
mapping system that is able to deal with dynamic elements
in a scene. By independently modelling the properties of local
features observed in a scene over long periods of time, we
show that feature appearances and geometric relationships can
be learned more accurately than when representing a location
by a single image. We also present a new dataset consisting of a
6 km outdoor path traversed once per month for a period of 5
months, which contains several challenges including short-term
and long-term dynamic behaviour, lateral deviations in the path,
repetitive scene appearances and strong illumination changes.
We show superior performance of the dynamic mapping system
compared to state of the art techniques on both ours and
existing datasets.

I. INTRODUCTION

State-of-the-art appearance-based localisation techniques
typically adopt an image retrieval approach [5], [6], [2]. Here,
each location in a topological map is represented by one or
more images in a database, and the most similar database
image to a new query image returns the most likely location
of the robot. Recent developments in dictionary-based image
retrieval techniques have introduced scalable systems that
can efficiently query databases of the order of millions [7].
Images are typically compared by their distributions of visual
words [14], with a dictionary of quantised feature descriptors
enabling fast feature comparisons. Geometric constraints are
either embedded within the dictionary itself [18], [17] or
imposed subsequently [12], [15]. In small environments,
location recognition can be achieved by using the distribution
of visual words alone [5], whereas at a larger scale the
geometric verification is necessary [4].

Whilst these methods have yielded promising results in
retrieval engines, where the goal is to return all images of the
same scene from a database [3], they are perhaps less suitable
for place recognition in environments when the appearance
of each location may change over time. Typically, a large
number of database images are stored for each location to
cover all possible states of the scene [13], [19]. However, this
results in significant database redundancy due to dynamic
scene elements that were present when the database image
was captured, but will not appear again in a query image of
that same scene, even if captured from precisely the same
location. We categorise these dynamic elements into three
types:

(i) Short-term dynamics: objects that may temporarily
occlude a portion of the scene, such as pedestrians or
vechicles.

(ii) Long-term dynamics: structural elements that may ap-
pear or disappear over time, such as resulting from
building renovations or the seasonal effects on trees.

(iii) Cyclic dynamics: image features that may repeatedly
appear and disappear, such as resulting from illumina-
tion changes over the course of a day.

In this paper, we deal with all three types of dynamic
behaviour with the aim of learning the static properties of
a scene that will be repeatable even under strong dynamic
conditions.

One further issue with applying image retrieval tech-
niques to location recognition is that, given a feature in
a query image, it is necessary to predict the appearance
of a matching feature in the database. This is due to the
discrete nature of the visual dictionary, and the effect of
quantisation often requires significant geometric verification
on candidate database images to ensure a correct match
[15]. Typically, generic assumptions are made about likely
visual word distributions [12][10][7][8] based on a single
example, rather than observing the explicit behaviour of each
individual scene element over multiple examples.

In this paper, we propose a new framework for appearance-
based mapping that applies a more theoretical analysis of
both the effect of dynamics on the presence or absence of
local features in a scene, and the implicit appearance of
the features unavailable from a single feature example. By
modelling image features as representations of real-world
structural elements and learning the individual properties of
each one, unstable features due to dynamic scene elements
are filtered out, and stable features from static scene elements
are given more importance in the matching process.

Furthermore, we introduce a new long-term dataset ac-
quired along a path of 6 km traversed monthly over a
period of 5 months. The dataset exhibits dramatic dynamic
behaviour of all three types, together with significant lateral
deviations in the path and repetitive scene appearances.
Figure 1 demonstrates some sample images from the dataset
and examples of difficult cases that are addressed with our
proposed approach.

A. Related work

Appearance-based mapping has seen a wide range of
applications in the mobile robotics community for loop
closure detection in a Simultaneous Localisation and Map-
ping (SLAM) framework [2]. A probabilistic approach to
appearance-based SLAM, denoted FAB-MAP, was presented



(a) Short-term Dynamics

(b) Natural Long-term Dynamics

(c) Man-made Long-term Dynamics

(d) Cyclic Illumination Dynamics

(e) Lateral deviations in Path

(f) Repeating Scenes

Fig. 1. Examples of the challenges with location recognition in our long-
term dataset. Our dynamic mapping system addresses all of these challenges
and is able to learn appearance-based models of locations that adapt to
dynamic elements in the scene.

in [5] whereby a Chow-Liu tree structure models the corre-
lations between observed visual words. Incremental creation
of the visual vocabulary was addressed in [1] to fit the
dictionary to the observed scenes rather than making prior
generic assumptions about visual word distributions. The
FAB-MAP method was improved in the PIRV-Nav frame-
work [9] whereby local features tracked between consecutive
frames enable filtering out of dynamic bodies and unstable
features.

The common theme among most appearance-based map-
ping systems is the image retrieval approach, where each
location is described by an image. In these systems, any
updating of a location to adapt to long-term dynamic scene
elements requires either the replacement of the original
image, or the accumulation of multiple images per location.

This does not address the issue of long-term dynamics, be-
cause old images representing an outdated scene appearance
may still be falsely matched to. Attempts have been made
to reduce the number of accumulated images representing
each location [16], however, only the Bag-Of-Words vector
is modelled, without any geometric information which is
necessary for large-scale environments. In this paper, we
show that by learning both feature appearances and geomet-
ric relationships over a number of training images, a greater
understanding of the expected appearance of a scene is
achieved. Note that we do not consider odometry or filtering
as in [6], [11], [5] and concentrate solely on the computer
vision problem of matching a query image to a location in
a database.

II. FRAMEWORK OVERVIEW

Our model which we apply to the world is based on
the concepts of scenes and landmarks. Scene yi represents
discrete location i in a topological map. In our experiments,
this map consists of a single path, but is extendable to any
arbitrary structure. A landmark represents a real-world point
in three-dimensional space, that causes a feature observation
in an image of the respective scene. The mth landmark in
scene yi is denoted xmi . Landmarks are formed by standard
geometric feature matching [15] across adjacent images
along a path, where a landmark is recorded in scene yi if the
respective feature is matched in either scene yi−1 or scene
yi+1. As such, the same real-world point can be represented
by several landmarks if that point is observable from many
images along the path. Each landmark is represented by a
set of visual words; every time the landmark is observed in
an image, the visual word for the associated feature is added
to this set, if it is not already present.

A. Scene similarity score

Given a query image Z , a scene similarity score is
computed for each database scene yi. This is achieved
by accumulating the probability of occurrence of each of
yi’s landmarks in the query image, and normalising by the
expected number of landmarks that are observed in yi:

s(yi,Z) =

∑
xm
i ∈Xi

p(xmi |Z)∑
xm
i ∈Xi

p(xmi |yi)
(1)

Here, Xi is the set of landmarks in yi and p(xmi |Z) is
the probability that landmark xmi is observed in the query
image Z . p(xmi |yi) is the occurrence probability of landmark
xmi in scene yi, computed by dividing the number of times
xmi is observed at yi by the number of times yi has been
visited. By relaxing the full joint distribution of landmarks
across the entire scene and simply summing probabilities
for individual landmarks, the model is flexible and tolerant
of dynamic bodies that may occlude portions of a scene.
The normalising denominator in Equation 1 enables location
recognitions at locations where features are sparse and only
few matches may be achieved.



This scene similarity score is akin to the standard image
retrieval score where the number of visual word matches
is normalised and each weighted by a tf-idf factor [14].
However, as shown in the next section, our weighting factor
is probabilistic and incorporates local geometry within the
image, whereas the tf-idf factor only relates to the feature
descriptor.

B. Landmark observation probability

We define the landmark evidence zmi as the set of features
in Z that support the hypothesis that xmi exists in the query
image. A feature in the query image is added to zmi if its
visual word is in the set of visual words already represented
by xmi from the training images. Given this evidence, the
probability that this feature does indeed represent xmi , is
computed as follows:

p(xmi |zmi ) =
p(zmi |xmi )p(xmi |yi)p(yi)∑

yj

∑
xm
j ∈Xj

p(zmj |xj)p(xj |yj)p(yj)
(2)

The numerator in Equation 2 is the likelihood that land-
mark xmi is observed in the image, and the denominator is
the summation of these likelihoods over all landmarks, to
yield a probability. Each landmark xmi is therefore evaluated
not only by its own evidence, zmi , but also by the evidences
for all other landmarks.

C. Feature evidence likelihood

We now consider the computation of p(zmi |xmi ). This is
achieved by considering the geometric relationships between
zmi and the other landmarks in the scene. These relationships
are defined by the relative location of features within a
regular grid of square cells overlayed on the image. We use
a grid of 100-by-75 cells for 640-by-480 pixel images.

The feature evidence likelihood is then computed by
considering a simple Bayesian network, with a parent node
representing the presence or absence of landmark xmi in the
query image, and child nodes representing the presence or
absence of xmi ’s neighbouring landmarks xni ∈ X̄m

i in scene
yi, where X̄m

i is the set of all other landmarks in the scene.
Given the parent node, we relax the structure into a naive
Bayesian network by assuming neighbouring landmarks to be
independent, to avoid over-fitting of the network parameters.
In this way, for each landmark xmi , we only consider co-
occurrence statistics between xmi and xni , and not those
between each xni .

For a feature that is a candidate match to landmark xmi
based on visual words, the visual word assigned to the feature
is denoted φmi , and similarly φni for a feature putatively
matching a neighbouring landmark. The spatial relationship
between these two features is then denoted as spatial word
δxn

i x
m
i

.
The likelihood of the feature evidence is now computed

as follows:

p(zmi |xmi ) =

p(φmi |xmi )
∏

xn
i ∈X̄m

i

p(φni |xni )p(δxm
i xn

i
|xni , xmi )p(xni |xmi ) (3)

Here, p(xni |xmi ) is the probability that landmark xni is
observed in an image given that xmi is observed, i.e. the
co-occurrence rate of these two landmarks in the training
images. The values of p(φni |xni ) and p(δxm

i xn
i
|xni , xmi ) are

simply drawn from the normalised frequencies of visual word
assignments to xmi and spatial word assignments to the pair
xmi , x

n
i .

All parameters are learned from the training images rep-
resenting a landmark. The quantisation of images in both
feature space and image space thus allows parameters to be
stored in a file index relating probabilities for different com-
binations of visual and spatial words, for rapid calculation
of Equation 3.

The value of p(φ|x) is only stored for a given landmark
and visual word combination if it is greater than 0.01,
otherwise it is assumed to be zero. In this way, a more
efficient inverted file index is employed by linking each
visual word to a set of landmarks containing only those
landmarks which are likely to be assigned to visual word
φ. Similarly, spatial words are only linked to landmark co-
occurrences if the value of p(δ|x1, x2) is greater than 0.01.

D. Recognition process

The contents of the neighbouring landmark set X̄m
i could

feasibly incorporate all landmarks in scene yi other than
landmark xi. Whilst this provides the maximum evidence
from which to compute p(xmi |Z) and is likely to achieve
greatest recognition performance, it would be an unnecessary
use of computational time if a confident location recognition
can be performed with a smaller set. As such, the recog-
nition process proceeds iteratively, starting with only one
neighbouring landmark in the set, and increasing the set by
one after each iteration. The process stops when a database
location has been found with sufficiently high confidence.

First, we extract peaks in the distribution of scene scores
s(y,Z) by use of non-maximal suppression. Scene yi is re-
tained if, and only if, its score is greater than those for scenes
yi−1 and yi+1. This is to reduce the effect of perceptual
aliasing whereby adjacent scenes along a path appear similar.
Eliminating non-maximal locations allows computation of
a confidence level that the query image depicts scene y;
without non-maximal suppression, this confidence may never
converge to a sufficient level due to a wide distribution of
high scores centred on y.

At each loop of the iterative recognition process, we take
the highest and second-highest scores across all locations
that are locally maximal, denoted s1 and s2 respectively. The
level of confidence that the scene scoring s1 is the correct
match, is then defined as:

c =
s1

s2
(4)



If this confidence is less than threshold cmin, then a
further neighbouring landmark is included in each set X̄m

i

for all landmarks, and the process repeats until a sufficient
confidence is achieved. Due to the probabilistic nature of
Equation 2, if s1 relates to the true location, then both s1

will increase and s2 will decrease as further neighbours are
incorporated, allowing for rapid convergence. Neighbouring
landmarks are accumulated in X̄m

i in order of their co-
occurrence rate p(xni |xmi ), such that those neighbouring
landmarks that are more likely to verify the presence of xi
are considered first.

Determining the value of cmin is a compromise between
efficiency and recognition accuracy. We choose a value of
25 for our experiments, which typically results in between
one and five neighbouring landmarks being included in the
set X̄m

i . Increasing cmin any further yields little recognition
improvement but increases computational time dramatically.

III. EXPERIMENTS

A. Long-term dataset

In order to test our system’s performance against long-term
dynamic effects, we introduce a new dataset consisting of
GPS-tagged images captured along a 6 km path. Images were
manually captured with a standard camera whilst walking
along the path, at intervals of around 3 metres. One tour was
completed per month over a period of five months to give a
total of 6 image sequences. Tours were completed at varying
times of day and under varying weather conditions. The
route is divided into two sections of roughly equal length,
with the first half through a park to assess seasonal effects
on the trees and vegetation, and the second half through
an urban centre that was undergoing significant structural
changes and subject to high short-term dynamic activity from
pedestrians and cars. Tours of the path diverge laterally from
one another by up to 3 metres. Figure 1 demonstrates some
of the dynamic behaviour exhibited by the dataset.

Learning of the parameters in Equation 3 is achieved firstly
by detecting tracked landmarks across sequential images in
the first tour of the training set. Incremental learning is then
subsequently guided by the ground-truth GPS locations of
training images, with features from further training tours
matched to those from the first tour, to update the landmark
properties accordingly. Any new landmarks, which have
been detected in later training tours but were previously not
detected, are introduced into the map. We do not eliminate
landmarks from our map if they do not appear for several
training tours. Instead, the value of p(x|y) in Equation 2
is reduced appropriately to reflect a lower likelihood of
observing landmark x in scene y.

As an example of how our dynamic system system adapts
to dynamic scene elements, Figure 2 shows the same location
observed over five months, and the observation likelihoods
of landmarks in the as computed after those five months.
As each image of the location is captured, the landmarks
representing static scene elements dominate and those rep-
resenting dynamic elements are gradually filtered out.

(a) March (b) April

(c) May (d) August

(e) Prior likelihood of landmark observation after 5
months (6 training tours)

Fig. 2. The likelihood of a landmark being observed in a scene is
calculated across all available training tours. Dynamic landmarks, such as
those caused by moving bodies or tree growth, have a low likelihood,
whereas strong structural landmarks, such as those caused by windows,
have a high likelihood.

B. Single training tour

We first evaluated the localisation performance of our
system from a single training tour without any incremental
learning. Two existing datasets were used together with our
own dataset. The New College dataset [5] consists of a 1.9
km path with 2146 images, which several large areas with
strong visual repetition. The City Centre dataset [5] consists
of a 2 km path with 2474 images, which includes a large
number of short-term dynamic bodies such as pedestrians
and vechicles

Figure 3 shows the precision-recall performance of our
technique (labelled ”Dynamic”) on all three datasets com-
pared to two competing techniques: FAB-MAP 2.0 [4] and
PIRF-Nav[9]. The FAB-MAP system uses the standard Bag-
Of-Words model together with a Chow-Liu tree structure to
learn co-occurrence statistics of visual words, followed by
geometric verification using epipolar geometry. PIRF-Nav
adopts a similar approach but also employs local tracking of
features to eliminate those which are unstable and likely to
be due to dynamic bodies. We use only the image matching
stages of FAB-MAP and PIRF-Nav for a fair test, without
the filtering component. As such, these experiments address
the global localisation problem. However, such a filtering
system is simple to append by adjusting the value of p(y) in
Equation 2 accordingly.

For the results on our long-term dataset, the first tour



was used as the database tour and subsequent tours of 1
month and 5 months later were used for testing. A correct
localisation was recorded if the highest scoring location in
Equation 1 was within 10m of the location of the query
image.

These results show the benefit of our system in its base
form, without any incremental learning, using only the prob-
abilistic framework and scene similarity score to query the
database. Even with minimal training data, the incorporation
of a discriminative probabilistic model in our system proves
to be more powerful than the weaker methods of FAB-MAP
and PIRF-Nav which are based on image-to-image matching,
rather than matching to learned scene models as in our
system.
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(c) Long-term Dataset after 1 month
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(d) Long-term Dataset after 5 months

Fig. 3. Recognition performance of our system compared with FAB-
MAP 2.0 [4] and PIRF-Nav [9], on three datasets. (c) and (d) show the
performance on our long-term dataset using the first tour as the reference
tour, and tours after 1 and 5 months respectively as the testing tours.

C. Incremental Learning and Dynamic scenes

The final experiments were carried out to incorporate the
learning of parameters in Equations 2 and 3, as dynamic
elements affect the appearance of the dataset over time.
Figure 4 (a) shows the performance of our framework
with and without the incremental parameter learning. The
full system with incremental learning far outperforms the
competing methods in Figure 4 (b). Here, we include an
additional competing method in [9] whereby the latest image
of each scene is stored rather than the image from the first
tour, and we denote this methodd ”PIRF-Nav + update”.
This is the image retrieval approach to dealing with long-
term dynamics without having to store multiple images per
location, but as can be seen from the results, the ability of
our system to deal with each landmark’s individual landmark
properties still yields superior results.

Our overall system takes, on average, 237 ms to per-
form a localisation, which is comparable to the competing

techniques despite our system having a much deeper model
representing each location. The efficiency comes from the
discretisation of image space, allowing for an inverted index
to address co-occurring landmark pairs of a particular spatial
geometry, and also from only evaluating small subsets of
neighbouring landmarks in Section IIB, rather than com-
puting expensive geometric transformations over the entire
image, as is required in [4].

(a) Effect of incremental learning over a pe-
riod of 5 months

(b) Comparison with competing methods

Fig. 4. Precision-recall performance for (a) two implementations of our
system and (b) a comparison with competing methods.

Figure 5 shows sample localisation attempts with two
different challenges. In a), our system trained over time filters
out long-term dynamic elements in the scene, such as veg-
etation, and enables a successful recognition, whereas FAB-
MAP is confused by dynamic features that have changed
over time. In b), our system localises much more accurately
whereas FAB-MAP returns a location much further along
the path. This demonstrates how discriminative probabilistic
models of feature appearances and geometric distributions
can help to make fine distinctions between locations of
similar appearance.

Finally, figure 6 demonstrates the effect of incremental
learning and adaptation to dynamic environments by con-
sidering the distribution of successful localisations over a
period of time. Due to the lack of rigid structural bodies,
the park section of the route suffers from poor recognition
performance with only 1 month of learning (1 training tour
of the route). However, after 5 months the system is able
to give greater importance to more reliable landmarks and
achieve many more successful location recognitions.

IV. CONCLUSIONS

In this paper we have presented a new framework for
appearance-based place recognition and localisation with the
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(a) Loop closure with long-term dynamics

Query 

Dynamic 

FAB-MAP 

(b) Loop closure with repeating scene appearance

Fig. 5. Sample location recognition attempts with a query image captured
5 months after the training image

application of long-term learning of a topological map. We
have showed that by learning individual landmark properties,
rather than learning entire image properties, a greater under-
standing of feature appearances can be gained. Furthermore,
allowing each landmark to exhibit independent dynamic
behaviour allows our system to adapt to long-term dynamic
effects in the environment.
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