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Abstract. Endoscopic surveillance is a widely used method for moni-
toring abnormal changes in the gastrointestinal tract such as Barrett’s
esophagus. Direct visual assessment, however, is both time consuming
and error prone, as it involves manual labelling of abnormalities on a
large set of images. To assist surveillance, this paper proposes an online
scene association scheme to summarise an endoscopic video into scenes,
on-the-fly. This provides scene clustering based on visual contents, and
also facilitates topological localisation during navigation. The proposed
method is based on tracking and detection of visual landmarks on the
tissue surface. A generative model is proposed for online learning of pair-
wise geometrical relationships between landmarks. This enables robust
detection of landmarks and scene association under tissue deformation.
Detailed experimental comparison and validation have been conducted
on in vivo endoscopic videos to demonstrate the practical value of our
approach.

1 Introduction

Gastrointestinal (GI) endoscopy is widely used for screening abnormal changes
in the digestive tract. One of the major diseases in the digestive tract is Barrett’s
Esophagus (BE), which refers to metaplasia on the esophageal mucosa resulting
from chronic gastroesophagel reflux, which has been regarded as a strong factor
of esophageal adenocarcinoma. To monitor abnormal changes in BE, surveillance
endoscopy has been a popular method. This involves post-processing of the en-
doscopic videos by expert pathologists, followed by serial examinations of the
same patient. However, surveillance endoscopy can be complicated, as the post-
processing stage often involves manual assessment and labelling of abnormalities
on a large number of images, which is both time consuming and error prone. In
cases when online retargeting is required for optical biopsy, the procedure be-
comes technically even more challenging [1].

In this work, we address the above issues by using endoscopic scene asso-
ciation, which refers to associating an endoscopic image to previously viewed
scenes. In computer vision, scene association is the task of learning the visual
information of a scene from a set of training data, followed by recognising a query
image from candidate scenes. In endoscopic procedures, such as GI endoscopy,
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Fig. 1. (a) Pairwise relationships between two feature observations; Example distri-
butions of (b) Scale-Invariant Distance (SID) and (c) Rotation-Invariant Angle (RIA)
between two landmarks.

scene association can enable users to topologically localise the endoscopic camera
position. This is particularly useful, for example, during probe-based confocal
laser endomicroscopic (pCLE) procedures to facilitate retargeting of pathologi-
cal sites. In addition, the derived scene clusters can be used to assist surveillance
in follow-up examinations.

To achieve endoscopic scene association, dimensionality-reduction based on
manifold learning [2] and semantic encoding [3] have been proposed. Feature-
based methods such as Bag-of-Words (BoW) have been used to provide an atlas
for confocal image retrieval [4]. These methods can learn the visual properties
of particular scenes, but mostly are based on offline processing.

In this paper, we propose an online approach for endoscopic scene associa-
tion based on robust visual tracking and detection. The goal of our approach is
to summarise an endoscopic video into scenes, on-the-fly. Inspired by landmark-
based recognition of [5,6], our approach samples visual landmarks on the tissue
surface by analysing the stability of local features. To associate the current image
to previously viewed scenes, an appearance-based cascaded classification scheme
is adopted, together with matching to generative models of pairwise landmark
geometries. These local pairwise relationships enable robustness to tissue de-
formation, which is not available in standard image-to-image matching. Our
approach has been compared with commonly used image matching methods on
in vivo GI studies, and results demonstrate the clinical value of our method.

2 Methods

2.1 Feature Tracking for Landmark Sampling

The proposed framework for scene association is based on the tracking of SIFT
features [7] to sample landmarks on the tissue surface. We define landmarks as
physical locations on the tissue surface, and features as the observations of land-
marks. A landmark is represented by its set of features detected over an image
sequence. Landmark geometry is then described as a distribution learned from
the individual feature geometries.
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Fig. 2. (a) The flow chart of landmark sampling; (b) The overall framework diagram
of the proposed scene association approach.

In practice, long-term tissue tracking is challenging in endoscopic navigation,
due to tissue deformation, fast camera motion, and lighting variations. We pro-
pose a keyframe-based approach for feature tracking using optical flow enhanced
with Forward-Backward (FB) error detection [8]. When a new keyframe is added
(see Section 2.4), features are then tracked over an episode of one second (typ-
ically 25 frames), rejecting unstable features with low local intensity contrast.
At the end of the episode, a new scene is created, with each stable feature track
forming one landmark in that scene. In order to achieve long-term landmark
recognition, a cascaded appearance classification scheme [9] has been adopted,
which includes Random Ferns (RF) [10] and a nearest neighbour (NN) classi-
fier. To detect a landmark in a query image, multi-scale windows are sampled
at feature locations, which are then classified using RF. Candidates passing this
stage are then classified by calculating Normalised Cross Correlation (NCC) and
finding the NN to all previous features for this landmark. The initialisation and
online updating process of RF and the NN classifier is similar to [1, 9].

With this online learning scheme, the method is able to re-identify landmarks
when they re-enter the field-of-view (FOV) even if optical flow fails. However,
the main limitation of these classifiers is that they fail to distinguish landmarks
with similar appearance which can lead to tracking false positives, and updating
the classifiers with incorrect samples.

2.2 Learning Pairwise Relationships

To deal with the limitation of appearance-only learners, we include a third classi-
fication component that incorporates scene geometry. Due to the deformable and
non-affine nature of endoscopic environments, standard 3D image matching tech-
niques such as estimating the fundamental matrix or homography [11] are not
suitable. Rather than calculating a global scene alignment, we therefore focus
on modelling pairwise relationships between landmarks, allowing for deforma-
tions and non-affine properties to be learned independently and locally. These
relationships are defined as the Scale-Invariant Distance (SID) and Rotation-
Invariant Angle (RIA). Each landmark pair has a distribution over these two
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geometries, learned from the tracked features for those landmarks.
As shown in Fig. 1 (a), features u and v have orientations θu and θv, and

sizes σu and σv. The distance in pixels between u and v in the image is denoted
d. We then define SID from u to v as δuv = d

σu
, and define RIA ψuv from u to

v as the angle from the feature orientation axis of v to the line connecting the
feature locations. Similarly, the SID and RIA from v to u are δvu = d

σv
and ψvu.

These two measures have been used effectively in [6] and learned in an offline
framework, however, we formulate this in an online model. With a set of images
that contain both landmarks x and y, we can now obtain distributions of SID
and RIA for the pair which we model as histograms in discrete space. Example
distributions are shown in Fig. 1 (b) and (c).

2.3 Landmark Recognition

During recognition, given a feature u which has been assigned to landmark x
from the appearance classifier, let us consider the likelihood that this is a true
observation of x, by incorporating geometry. This likelihood is evaluated as a
score A(x), by taking all neighbouring landmarks y ∈ Y in the same scene as
x, and averaging over the likelihoods from each of the pairs (x, y). If au denotes
the appearance of u, and guv denotes the pairwise geometry of u and v, where
v has been assigned to y from the appearance classifier, we define this score as:

A (x) =
1

|Y|
∑
y∈Y

p (x|au, guv) , (1)

where the likelihood from each pair is evaluated using Bayes’ rule:

p (x|au, guv) =
p(guv|x)p(x|au)

p(guv|x)p(x|au) + p(guv|x̄)p(x̄|au)
. (2)

Here, p (x|au) is the confidence score from the appearance classifier, and p (x̄|au)
is the score of a false positive appearance classification, set to 1− p (x|au).

Let us now denote δab and ψab as the SID and RIA respectively from a
to b. In the case where a and b are features, δab and ψab are the observed
geometries in the current image, and in the case of landmarks, they are the
learned distributions over geometries from training. The observation likelihood
of the pairwise geometry of u and v is then defined as:

p(guv|x) = p (δuv|δxy) p (ψuv|ψxy) p (y|x) , (3)

where p (y|x) is the observation rate of y in images containing x, and p (δuv|δxy)
and p (ψuv|ψxy) are taken from the associated SID and RIA distributions for the
landmark pair, respectively.

Returning to Eq. 2, the likelihood of observing the pairwise geometry given
a false positive appearance classification of x, is defined as:

p (guv|x̄) = p (δuv) p (ψuv) , (4)

where p (δuv) and p (ψuv) are the priors of randomly observing these geometries
taken over the full distribution across all landmark pairs in the sequence.
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2.4 Online Learning and Scene Association

Each scene is initialised using an episode of images to track robust features, build
the landmarks, and learn the initial pairwise landmark geometry distributions. If
a landmark detected in a query image satisfies A(x) > Tl, it is then tracked over
subsequent frames using FB tracking on square regions centred at the landmark
(similar to the feature tracking in Section 2.1). These tracked features update
the landmark appearance, p(y|x), and the SID and RIA distributions.

We define a score for assigning the query image to existing scene S, with its
landmark set X , as

B (S) =

∑
x∈X A (x)∑
x∈X p (x)

, (5)

where p (x) is the observation rate of x in the scene and normalises for scenes
with varying numbers of landmarks. The scene label S∗ of a query image is the
scene with the greatest score, and we accept the assignment when B(S∗) > Ts.

For online learning, we introduce a new scene when the endoscope has moved
sufficiently, based on the following criteria (see Fig. 2 (a)): given image It, the im-
ages over the last second are checked [It−25...It−1], and It is added as a keyframe
only when none of these images was assigned to a previously viewed scene; after
the keyframe is added, landmark sampling is performed from It to It+25, how-
ever, it is terminated whenever the successfully tracked features are below 5% of
the total number of features detected in the keyframe. The advantages of these
criteria are twofold. Firstly, the overlap area between two scenes is minimised;
secondly, the uninformative images caused by motion blur or other artefacts are
filtered out. Fig. 2 (b) shows the overall framework of the proposed online scene
association approach.

Parameter Smoothing. If we record only the observed, explicit distributions
of SIDs and RIAs, overfitting can cause false negative landmark detections. Ini-
tially, little is known about these distributions, causing this likely overfitting;
however, once several observations of a landmark pair are acquired, the distri-
butions converge to a stable state. With this in mind, we draw on the approach
proposed in [6] and complement the observed distribution θo with a prior distri-
bution θp to estimate the true distribution θt:

θt = knθo + (1− kn)θp. (6)

Here, kn is a weighting term which acts to blend the prior and observed
distributions, and is a function of n, the number of observations of the landmark
pair so far. We assume a Gaussian prior with mean equal to the mean of the
observed distribution after n observations. The standard deviation is learned
independently for each of the SID and RIA distributions, on a separate training
sequence, and set at the 95th percentile of the standard deviations for all tracked
landmark pairs in this sequence (obtained as 17.0 and 14.0 for SID and RIA,
respectively). The initial value of kn in Eq. 6 is set to 0.5, and it is updated as
kn = 0.5 + 0.003n (until kn = 1), where blending rate 0.003 between the prior
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Fig. 3. (a,d,g) Keyframes for landmark sampling. Red features represent unstable fea-
tures. Green features are the tracked features that are sampled landmarks (yellow
squares) in (b,e,h). Purple squares are false positives; (c,f,i) Scene association exam-
ples. Green squares are detected landmarks in the query image, and green dots are the
corresponding landmarks in the scene. See supplementary videos for details1.

and observed distributions was obtained by observing the stability of distribution
entropies in the separate training sequence as further observations are made.

3 Experiments and Results

Before conducting in vivo experiments, the parameters of our approach need
to be specified. The initial region sizes of landmarks are defined as 70 × 70 (in
pixels). The bin sizes of SID or RIA distributions are discretised at one pixel
and one degree, respectively. The x-axis range of SID distribution is [0, 440] (in
pixels), which is obtained by finding the maximum distance between landmarks
and the minimum feature size. The x-axis range of RIA distribution is [0, 359] (in
degrees). In this paper, the minimum acceptable scores for landmark recognition
Tl and scene association Ts are set to 0.5 and 0.25, respectively.

In vivo Experiments. For validation, the proposed approach was tested on
four sequences of in vivo GI videos. These videos were collected during different

1 http://www.imperial.ac.uk/hamlyn/surgicalvision



Online Scene Association for Endoscopic Navigation 7

Fig. 4. (a-d) Precision-recall curves of landmark recognition and scene association with
four in vivo GI videos.

Table 1. Quantitative results of the average precision and maximum recall values at
100% precision.

Landmark Recognition Scene Association
Average Precision Max Recall Average Precision Max Recall

OSA Original OSA Original OSA Hom Fund OSA Hom Fund
Video 1 0.99 0.98 0.38 0.14 0.98 0.96 0.95 0.83 0.74 0.70
Video 2 0.91 0.77 0.26 0.17 0.94 0.89 0.82 0.87 0.68 0.58
Video 3 0.84 0.67 0.21 0.11 0.74 0.70 0.67 0.40 0.27 0.30
Video 4 0.94 0.77 0.38 0.01 0.99 0.94 0.95 0.84 0.52 0.65

GI procedures using an Olympus Narrow Band Imaging (NBI) endoscope. As
shown in Fig. 3, for landmark sampling, features are tracked (within episodes)
from the keyframes in Figs. 3 (a,d,g) to the images shown in Figs. 3 (b,e,h).
Once the locations of landmarks are found, they are then tracked and learned
as square regions. It can be seen from Fig. 3 (e) that our approach is able to
reject wrong landmark detections (purple squares) generated from appearance
classifiers. After creating a scene from an episode, a query image is then classi-
fied and added to the correct scene (Figs. 3 (c,f,i)). As our approach updates the
SID and RIA distributions online, it is robust to tissue deformation in Fig. 3 (c)
and fast camera motion in Fig. 3 (i). Quantitative comparison and evaluation
have also been conducted. The ground truth data of landmark detection and
scene association were obtained from expert observers. For landmark detection,
we compare the results of the proposed online scene association (OSA) with
the orignal [1] (without pairwise geometry learning). For scene association, our
approach (OSA) is compared with two standard image matching methods [11]:
homography (Hom) and fundamental matrix (Fund). Both methods perform
kNN feature matching between images and then use Random Sample Consensus
(RANSAC) to find an optimal 3D relationship between the query image and a
stored scene image (defined at the end of the scene’s episode). Here, the score is
the number of RANSAC inliers.

Precision-recall results were generated for recognition of both landmarks and
scenes, by ranking landmark or scene matches based on their respective scores
(Eqs. 1 and 5). These are shown in Figs. 4 (a-d) (Video 1-4), and the average
precision and maximum recall values (at 100% precision) are presented in Table
1. It is evident that our method outperforms all the other methods, with average
precisions [0.84, 0.99] for landmark recognition and [0.74, 0.99] for scene associa-
tion. It should be noted that, the classification overfitting mentioned in Section
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2.4 causes the recall values of our landmark detection to be slightly smaller than
the original (Fig. 4 (c)), in the precision interval [0.1, 0.3]. Nevertheless, in real-
istic clinical scenarios, the max recall values (at 100% precision) are much more
informative, as the clinicians require high levels of confidence (∼100% precision)
on the returned scene associations.

4 Conclusion

In this work, we have proposed a scene association approach for endoscopic nav-
igation. Our method samples visual landmarks on the tissue surface using a
keyframe-based tracking scheme. An appearance classification scheme has been
adopted for long-term landmark detection. To achieve online scene association,
the pairwise geometrical relationships between landmarks are learned in a gen-
erative model, which is robust to tissue deformation and fast camera motion.
Detailed experimental comparison and evaluation have been conducted on in
vivo GI videos. It has been shown that our approach effectively rejects the wrong
detections from appearance classifiers, and simultaneously achieves online scene
association, which allows the approach to be performed on-the-fly during endo-
scopic examinations.
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