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Abstract—The prevalence of obesity worldwide presents a great
challenge to existing healthcare systems. There is a general need
for pervasive monitoring of the dietary behaviour of those who
are at risk of co-morbidities. Currently, however, there is no
accurate method of assessing the nutritional intake of people in
their home environment. Traditional methods require subjects
to manually respond to questionnaires for analysis, which is
subjective, prone to errors, and difficult to ensure consistency and
compliance. In this paper, we present a wearable sensor platform
that autonomously provides detailed information regarding a
subject’s dietary habits. The sensor consists of a microphone
and a camera and is worn discretely on the ear. Sound features
are extracted in real-time and if a chewing activity is classified,
the camera captures a video sequence for further analysis. From
this sequence, a number of keyframes are extracted to represent
important episodes during the course of a meal. Results show a
high classification rate of chewing activities, and the visual log
demonstrates a detailed overview of the subject’s food intake that
is difficult to quantify from manually-acquired food records.

I. INTRODUCTION

Obesity has become one of the main challenges facing the
western healthcare systems and global economies. In 20009,
the proportion of obese people in the USA adult population
was 26.8% for women and 27.6% for men [18]. In the United
Kingdom, 23.9% of women and 22% of men were recorded
as being obese in the years 2008 to 2009 [8]. Globally,
an estimated 500 million people are now classed as obese.
Obesity is linked to many chronic diseases including diabetes,
heart disease and cancer. Controlling this problem is an urgent
yet challenging problem for the western countries, as well as
some of the developing countries such as China and India.
The cornerstone of modern public health policy is now to
encourage a change in dietary behaviour.

Understanding an individual’s dietary behaviour, including
food preference and consumption patterns, is one of the main
steps in tackling the causes of obesity. Traditional methods
for dietary assessments [19] require subjects to manually
respond to information questionnaires. This relies on the users’
recall of their food-intake history and daily activities. The
scope of questionnaires could span from 24 hours to several
months, making accurate recall difficult. The method is time
consuming, inaccurate and suffers from poor compliance. In
a recent study, around 70% of users abandoned the long
questionnaires before completion [6]. Furthermore, inaccurate
reporting increases with body weight [15].

In addition to questionnaires and surveys, consumer elec-
tronic devices, such as PDAs and mobile phones, have been
used to allow users to make immediate food-intake annota-
tions. Bespoke devices such as wrist-worn bite counters are
also used, where accelerometers are used to count how many
bites that the user takes [16]. The number of bites is then used
to estimate the caloric consumption. However, such estimation
is highly dependent on the food and in many cases there is no
information regarding the actual amount of food eaten. Some
fitness monitoring devices such as Fitbit [7] can also track
user activities and food consumption. However, users are still
required to input the food information via online question-
naires. For these reasons, researchers are looking for more
accurate methods requiring less user-involvement to assess
general food-intake. Amft [1], for example, applied an ear-pad
microphone to detect the chewing sound during food-intake
and classify the sound from different types of food. However,
the experiments show that it was hard to rely solely on
acoustic properties to classify food in detail, although it works
sufficiently well within a restricted set of food types. In real
life situations, the accuracy of such methods is hampered by
the background noise and other simultaneous sound sources.
A solution to that could be the use of Electromyography
sensors to detect the swallowing action [3]. However, such a
method would require the user to wear a sensor collar around
the neck, which is not convenient for daily monitoring. The
above methods have several disadvantages and are difficult to
apply to studies of large populations. Both paper-based and
digital dietary questionnaires are dependent on user motiva-
tion, literacy, and self-awareness. Current automatic dietary
monitoring system using accelerometers and microphones can
reduce user involvement. However, such systems still cannot
give a complete assessment of food-intake history. In this
paper, we propose an intelligent food-intake monitoring system
that can automatically detect eating activities. We combine
an in-ear microphone with a miniature camera in a light-
weight wearable headset. The sound from the microphones
is classified in real-time into different eating activities and
the camera takes snapshots of the food if a chewing activity is
detected. The key images of food are then selected sequentially
and a dietary assessment log is generated to reflect a user’s
dietary behaviour.

The novelty of our method can be summarised as: (i)
developing a noise-resilient sound activity detection method
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Fig. 1: Left: a subject wearing the food-intake sensor during
lunch. Right: the profile of the sensor.

suitable for daily use;, (ii) introducing food images into the
dietary assessment to improve the assessment accuracy; (iii)
selecting key images automatically to minimise the size of the
food-intake assessment log.

In the remainder of the paper, we will introduce the system
structure in Section II, together with presenting the sound
activity detection and key image selection methods. Prelim-
inary experimental results are shown in Section III, where our
method shows feasibility in realistic situations and robustness
to environmental noise. Conclusions are given in Section IV.

II. SYSTEM MODEL OF FOOD-INTAKE MONITORING
SYSTEM

In general, food-intake includes four sub-activities: (i) food
preparation and ingestion, such as cutting food on a plate; (ii)
food breakdown in the mouth (chewing); (iii) bolus transport
(swallowing and oesophageal movement); and (iv) gastric
activity (stomach movement). In this paper, we will only focus
on the monitoring of the first two activities using a wearable
sensor. The food-intake monitoring sensor shown in figure 1
was designed to have a miniature camera (standard mobile
phone camera) and a microphone (Sony ECM TL3). Sound is
recorded at a sample rate of 44.1 kHz, and images are captured
at a resolution of 640 by 480 at 30 frames per second.

The sensor is wireless and light-weight making it easy
to monitor long-term daily activities with comfort akin to
that of a hearing aid. When a subject wears the sensor, the
camera is directed towards the table to take images of the
food container. The microphone is placed just outside the ear
canal to measure sound propagation. The reason for using the
ear as a location for the sensor is threefold: (i) because of
its stability despite motion, and the possibility of integrating
accelerometers which can enable accurate detection of activity
and energy expenditure [4]; (ii) acoustic information from
chewing is less susceptible to environment noise because the
chewing sound wave is transmitted through the skull [2]; (iii)
the camera has a similar viewing angle to the subject’s eyes
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Fig. 2: Schematic system structure.

therefore it enables the capture of more realistic images of the
food.

Figure 2 shows the schematic structure of the proposed
system. It mainly includes two processes: (i) the process of
detection of chewing activity from sound, and (ii) the process
of “keyframe” detection from images for the visual log.
Chewing activity detection runs continuously and keyframe
detection is only activated once triggered by a successful
detection of chewing activity. For chewing detection, the sound
stream from the microphone is analysed using overlapping
time windows and features are extracted from the sound.
A neural network classifier using extreme learning machines
[12] is then applied to classify the sound into one of four
basic activities: speech, chewing, drinking and others. It is
worth noting that chewing activity is recognised from both the
chewing sound and that of preparation such as cutting using a
knife. The details of the chewing activity detection method are
explained further in section II-A. As soon as a chewing activity
is detected, the keyframe detection algorithm is triggered and
continues until the chewing activity is not detected for a
prolonged period of time. Due to the highly deformable nature
of food and the cluttered background, it is very difficult to
recognise food from images directly. Instead, we assume that
the food is contained in a circular container such as a plate
which is relatively easier to recognise. Therefore, if a container
is detected, we can assume there is food in the container
because the visual processing is triggered only when a chewing
activity is detected. Consequentially, a new food-intake log is
written to a file (see Figure 3) which includes a series of food
snapshots and time-stamps to outline the consumption history.
The description of the image processing is given in Section
1I-B.

A. Sound Feature Extraction and Recognition

Sound in real life could result from a variety of sources such
as speech and ambient noise. One typical recording is shown
in Figure 4. It is evident that it is difficult to identify chewing
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Fig. 3: An example of food intake log

activities from this and impossible to determine the identity
of the food type from the sound alone. In Amft’s work [1],
food types were grouped into three clusters: wet loud, dry loud
and soft quiet. However, the experiments were conducted in a
quiet, controlled environment rather than real life scenarios. In
our research, we introduce vision on a single wearable sensor
which allows for a simplified sound processing system. We
use sound to classify only four activity types: speech, eating,
drinking and others in order to ensure a robust classifier.

1) Sound Feature and Feature selection: From continuous
sound, we calculate three types of sound features for every
three second sound interval x(¢). These features include (i)
energy features, such as energy entropy EF(i), and short
time energy ST E(i); (ii) spectral features, such as spectral
roll-off SRO(%), spectral centroid SC(3), spectral flux SF(i)
and spectral average of sub-bands SA(i, j); and (iii) temporal
features, e.g. zero crossing rate ZC R(7) and peak gap between
two neighboured local maximal energy peaks PG(i), where i
is the time index and j is the frequency sub-band index. Both
energy features and spectral features are calculated on every
500 ms non-overlapped time windows within z(t). Statistical
factors are calculated over all three types of features such
as maximum max(-), minimum min(-), standard derivation
std(-) and mean value mean(-) etc. There are in total 76
features for every 500 ms and 456 feature over a typical
3s x(t). In order to speed up the processing for real-time
situations, we applied the following three approaches:

« Selective processing on local energy peaks. As the chew-
ing sound is accompanied by a biting sound between
teeth, which is typically manifested as a peak with

short time energy ST E (7). Therefore, we can selectively
calculate the feature around the local peaks to reduce the
calculation time.

« Salient feature selection to reduce the number of features.
In this work, we followed the approach in [4] and
compared three types of feature selection algorithms.
These were: Relief, Simba (margin based feature se-
lection) [10] and mRMR [14]. More information on
these algorithms is included in [4]. The three algorithms
were used to compare feature saliency and the following
features showed to be the most discriminant between
classes: mean(EE(i)), max(ZCR(7)), mean(ZCR(7)),
mean(SC(7)), min(SF(i)), max(SF(7)), std(SF(i)),
mean(SF(i)), max(STE(i)), mean(SA(i,j)) and
std(SA(i,7)). The total number of 'features is reduced

from 76 to 27.

o Extreme Learning Machines for quick learning and
classification. An Extreme Learning Machines (ELM)
randomly generates all the hidden-node parameters
of generalized Single-hidden Layer Feed-forward Net-
works (SLFNs) and analytically determines the output
weights of SLFNs [11]. Compared to the popular Back-
Propagation (BP) Algorithm and Support Vector Machine
(SVM) / Least Square SVM (LS-SVM) classifiers, ELM
has several advantages, such as faster learning and greater
generalization. We will briefly present the application of
ELM in the following section.

2) Extreme Learning Machine for classification: For
N arbitrary distinct samples (x;,t;), where x; =
(i1, Tiny - mm]T € R" is the input, the sound feature vector
in our case, and t; = [t;1, 2, - ,tim]T € R™ is the desired
output, the targeted sound type (m=4) in our case, the output
of a single layer ELM with N hidden neurons and a non-linear
kernel function g(x) is modeled as:

N
Zﬁig(wi'xj'i_bi):Ojajz]-w--»N» (l)

i=1

where w; = [w;1, w1, - ,wﬂ]T is the weight vector con-
necting the ith hidden neuron and the input xj, §8; =
[,Bil,ﬂiQ,"',Biyn]T is the weight vector between the ith
hidden neuron and the output neurons. b; is the bias of the
¢th hidden neuron. - indicates the dot product. The main
advantage of the ELM over classical artificial neural networks
is that w; and b; are randomly generated rather than iteratively
learned. Therefore, the training time is greatly deduced. Given
a set of input x; and the corresponding desired output t;,
the training target is now to find /; in Equation 1 such that
Z;Vﬂ lloj —t;]| — 0. According to the work in [11], the
unique smallest norm least-squares solution is:

B=H'T )
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Fig. 4: An example of 15s-long input signals.

where HT is the Moore-Penrose generalized inverse of hidden
layer output matrix H [17].
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, where C' is customizable regularisaitonA factor and Iy is IV
by IV identity matrix. Once we calculate 5, a classifier is ready
for use by replacing 3 in Equation 1 with .

B. Keyframe Detection

Keyframe detection from image sequences has been widely
addressed in fields such as medical imaging [9], robot navi-
gation [20] and lifestyle logging [5]. Typically, local features
representing texture corners are first extracted from each im-
age. Then, an intra-image distance function based upon feature
correspondences is used to compute pairs of frames over which
there has been a significant change in appearance. Whilst
this method provides good results when the entire content
of an image is of importance, such as in robot navigation,
in our case we are only interested in the area of the image
representing the plate. Applying standard keyframe detection
to our image sequences would trigger keyframes every time
the subject looks away from the plate, due to rapid changes in
scene content from the introduction of the background scene,
rather than due to the more subtle changes from the food
consumption. Furthermore, keyframe detection using local
features is highly sensitive to the texture of the image and

(b)

Fig. 5: Method for comparing food content between images. In
(a), an ellipse is detected, representing the plate. Then in (b),
four colour histograms are computed, one for each quadrant of
the ellipse. Adjacent images are then compared by computing
histogram distances.

works best when keypoints are distributed uniformly across
the image. In our case, the highly variable appearance of
different food types, together with the deformable nature of
food over the course of a meal, result in unstable distributions
of keypoints that do not directly reflect the removal of food
from the plate.

As such, we propose an alternative solution by first locating
the plate in an image, and then using the colour content within
the plate, rather than texture, to detect the removal of food.
Given a chewing activity is detected by the wearable sensor,
a video sequence is initiated by the sensor’s camera. Each
image is first preprocessed to search for ellipses [13], and
any ellipse with dimensions that fall within a heuristically-
defined range is considered the plate of interest. Then, the
ellipse is divided into quadrants, and a normalised colour
histogram is computed for each quadrant. The C-color space
[6] is used owing to its stability over illumination changes
(shadows are often found due to interference from the subject’s
body), and 1000 bins (10 for each colour channel) are used
for the histogram. The change in colour content of two images
is then computed by summing, across all quadrants, the Eu-
clidean distance between respective colour histograms. Figure
5 demonstrates the ellipse detection and colour histogram
extraction for a sample image. For compiling a visual log of
food intake, it is necessary to specify the granularity of the
log, i.e., the amount of food consumed before a new keyframe
is extracted. In practice, this would be determined by the
particular system, and reflects a compromise between detail
and brevity of the log. One approach would be to specify a
threshold in the colour histogram distance between consecutive
images, whereby exceeding this threshold indicates sufficient
removal of food for a keyframe to be extracted. However, this
parameter would require parameter tuning for each meal based
on factors such as the food types and illumination conditions.
We propose a more generalisable approach whereby the single
parameter n is chosen, representing the number of keyframes
to be recorded in the log. This allows a consistency across
all food logs that does not require any prior knowledge about



TABLE I: Comparison between ELM and MLF

ELM MLF
N=500 N=2000 N=500 N=2000
Train Time (s) 0.26 7.97 15 105
True Positive (%)  71.6 70.5 64.7 68.1
False Positive (%) 28.4 29.5 353 31.9

conditions. We select keyframes by summing the inter-image
colour histogram distances across the entire image sequence,
and extracting images representing the (100 x ]ﬁ()th percentiles
of this summation for k = 0...n. In this way, the removal of
food from the plate is reflected equally across the full set of
keyframes, whilst also focusing on episodes when food has
been removed from or significantly disturbed upon the plate.

III. EXPERIMENTAL RESULTS

Experiments were implemented in a real world rather than
controlled environments. Six subjects were invited to wear our
device to record videos during lunch lasted for up to 30 min-
utes. The recording was taken in an university staff restaurant
with a capacity of 300 people (check exact size). The only
restriction to the current experiments is that subject uses a
circular plate or bowl to contain the food. The recordings were
annotated manually and then used to train and test an ELM
classifier. We use 60% of annotated data for training and 40%
for testing. The sound is recorded at 44100 Hz and the video
sequence is recorded by 30 frames per second.

A. Classification Using Sound

We first evaluate the efficiency of ELM and compared it
to a classical multilayer feedforward neural network (MLF)
which applies Back-Propagation (BP) Algorithm to tune the
parameters in its hidden layers. We set the number of hidden
neurons N identical in both ELM and MLF to compare
the training time and recognition rate. The non-linear kernel
function g(z) in Equation 1 is set as the sigmoid function and
the value of C' in ELM’s equation 6 is arbitrarily set to 20.
(We will show later that ELM’s performance is not sensitive to
the setting of C' and N). The comparison results are shown in
Table I. The ELM out-performs the MLF on both recognition
rate and training time. It is notable that the average recognition
rate in table I is not particularly high, but this is to be explained
later.

We then compared the performance of our classifier with
and without feature selection. The feature selection procedure
reduced the number of feature to calculate from 76 to 27. The
results are shown in Table II, indicating that the computational
time of sound features is cut by over 4 times, and the
recognition rate is slightly improved after the feature selection.

To test the robustness of our method to the background
noise, we recorded a data set (6 subjects, labeled as Set A)
in a relatively quiet environment in contrast to the real life
data (labeled as Set B) in the catering restaurant. The results
are shown in Table IIl. This shows that the performance
of ELM is reduced by about 9% even though the level of

TABLE II: The time saving of feature selection

Non-Feature Selection Feature Selection

N=500 N=2000 N=500 N=2000
Feature Calc Time (ms) 542 542 122 122
Train Time (s) 0.35 6.20 0.26 7.97
True Positive (%) 66.7 68.6 71.6 70.5

TABLE III: The robustness of ELM over background noise

Background Noise  True Positive (%)

(dB) ELM MLP
Data Set A 22 304  84.0
Data Set B 51 716 64.7

background noise is increased by over 30 dB. In contrast, the
MLP method’s performance decreased by almost 20%.

In many practical applications, choosing a model’s parame-
ters is done in an empirical manner. However, the performance
of the model is likely to be sensitive to the chosen parameters.
To study the sensitivity of the ELM classifier, we tested the
model over a range of C' and N. See Figure 6. This indicates
that the ELM’s performance is very stable once the C' is larger
than 1 and N larger than 50.

To investigate the reason for the achieved recognition rate,
we studied the confusion matrix of ELM classifier among four
classes. See Table IV. It is notable that the class of drinking
has a very low recognition rate. This is because the drinking
sound is much quieter than the sound in the other classes and
is suppressed by the loud background noise.

B. Key Frame Detection and Food Intake Log

From the video captured by the wearable camera, the
method in Section II-B was then used to compute keyframes
for the food intake log. Figure 7 shows examples of the log
with two values of n, demonstrating two logs of different
granularity levels. In this example, the logs show a balanced
consumption of food across the course of the meal, but with
patients exhibiting unusual eating habits the log will provide
feedback on factors such as the order in which food types are
eaten, the rate of consumption, and the overall proportion of
a meal that is eventually consumed.

The qualitative and subjective nature of keyframe interpreta-
tion provides a challenge in evaluating our keyframe detection
method. For the most practical evaluation, sets of keyframes
would be analysed by doctors or nutrition experts to determine
the relative usefulness of different sets in analysing a patient’s
dietary habits. However, this is an intensive procedure and
remains susceptible to bias and human error unless a sig-
nificantly, perhaps prohibitively so, large set of test subjects

TABLE IV: Confusion Matrix of ELM classifier
Target (%)

Eating  Drinking Speech  Others
Eating 82.51 0 0.13 17.36
Drinking ~ 28.57 24.18 1.10 46.15
Speech 4.22 0 81.93 13.6
Others 13.07 0 1.32 85.61
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(b) n=8

Fig. 7: Keyframe detection results for two values of n. The
keyframes form a food intake log which can then be used to
monitor dietary habits of a patient.

are used. As such, we evaluate our method by investigating
the ability of our method to determine the proportion of food
consumed across the image sequence. Keyframe detection is
reliant on finding pairs of frames between which a significant
amount of food has been removed. As such, a system reliably
predicting the proportion of food removed between frames in-
dicates that the system is also suitable for keyframe detection.

The estimation of the actually-consumed portion of food is
based on the technique in II-B, where the histogram distance
between two adjacent images is divided by the cumulative
histogram distances across all pairs of adjacent images. This
proportion of histogram distances at any given frame then

100% -t
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—Visual estimation
Auditory estimation

00:02:00
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Fig. 8: Evaluating the performance of keyframe detection in
estimating the proportion of food consumed.

gives an indication of the proportion of food consumed at that
time. The ground truth was generated by recording the frame
number at which each mouthful was consumed, and ensuring,
to the best ability of the test subject, that the mouthfuls were
of equal portions. At mouthful a out of a total of » mouthfuls,
the ground truth proportion of food consumed is then %.

We also evaluated the ability of the sound recording to
estimate the proportion of food consumed. This was done by
assuming the each detected chewing activity (i.e. every bite of
the jaw) was responsible for an equal volume of food. Thus,
at chewing activity ¢ out of a total of d chewing activities, the
auditory estimation of food consumed is then &.

Figure 8 shows the comparison of the vision-based and
auditory-based estimations to the ground truth for a sample
meal. The high correlation suggests that our methods are
reliable estimators of overall food consumption. Whilst the
auditory data perhaps gives a better estimation of the subject’s
chewing rate, the vision-based estimation is a better indicator
of the actual rate of removal, and thus consumption, of food
from the plate. The rate of intake of food available from Figure
8 is an important measure that can be acquired from wearable
body sensors, but not reliably from manually-recorded logs.

C. User Feedback

We further investigated the applicability of the sensor in
real-world scenarios by conducting a user-feedback survey. For
wearable sensors it is naturally very important to achieve high
levels of comfort and discretion if they are to be welcomed
by patients. Ten of the trial subjects were chosen and asked to
respond to a questionnaire on matters reflecting the suitability
of the sensor as a realistic alternative to manually-recorded
logs. Figure V shows the questions asked and the average
responses, together with the variances. For questions of a “yes
or no” nature, 1 indicates a “strong no” and 5 indicates a
“strong yes”.

The results show encouraging levels of satisfaction both in
ease of fixation and lightness of the device, indicating the



TABLE V: User Feedback Score

Feedback questions Mean/variance (1~5)

Does the device fit easily on the ear? 4.1/0.54
Is the device comfortable to wear? 2.9/0.99
Is the device light enough to wear? 4.5/0.28
Does the device effect your eating? 2.4/1.38

<1h (3), 1~3h(2)
3~5h (2), >5h(3)

How many hours a day would you be prepared
to wear the device?

suitability of physically combining a microphone and camera
into wearable sensor for this task. Whilst the comfort level
had only an average response, the device itself was modified
from an off-the-shelf purchase which did not focus design
around comfort. The effect of the device on eating also receive
an average response, but due to the high variance in these
responses and the fact that each subject only wore the device
for one meal, this perhaps would become less of a problem as
accustomisation prevailed. The final row of the table suggests
that many patients would be willing to wear the device for
a significant amount of time if analysis of the data could
help with dietary treatment, an encouraging response on the
device’s overall suitability.

IV. CONCLUSIONS

In this paper, we have demonstrated a novel wearable
body sensor to monitor a subject’s food intake behaviour.
We have combined an in-ear microphone with a miniature
camera to form an integrated multi-sensor wearable device.
Chewing activities are detected from the microphone which
consequentially triggers the detection of keyframes by using
the integrated miniature camera. This compiles a visual log
of the food intake to provide a doctor with a summary of
eating behaviour characteristics, such as consumption speed,
preference of certain food types and overall consumption
levels.

We target our system to work in real life scenarios where
dynamic background noise and simultaneous sounds exist.
Several efforts have been taken to improve the computational
efficiency and noise robustness of the system. For instance,
we reduced the sound features from 76 to 27 by feature
selection process to shorten the computation time. Extreme
Learning Machines was used due to the efficiency of training
and robust to the noise. The experimental results show that
three activities can be successfully detected from sound with
over 80% detection rate, but the drinking activity failed to be
detected due to its low sound level and suppression by the
background noise. Keyframes were detected by searching for
ellipses representing plates, and comparing colour histograms
between adjacent images. The visual logs demonstrate a clear
overview of the consumption of food, and we further showed
that the proportion of food consumed can be reliably estimated
using inter-image colour histogram distances. The results de-
rived demonstrate the practical value of the proposed system.
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