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Abstract This paper proposes a new framework for vi-

sual place recognition that incrementally learns models

of each place and offers adaptability to dynamic ele-

ments in the scene. Traditional Bag-Of-Words image-

retrieval approaches to place recognition typically treat

images in a holistic manner and are not capable of deal-

ing with sub-scene dynamics, such as structural changes

to a building façade or seasonal effects on foliage. How-

ever, by treating local features as observations of real-

world landmarks in a scene that is observed repeatedly

over a period of time, such dynamics can be modelled at

a local level, and the spatio-temporal properties of each

landmark can be independently updated incrementally.

The method proposed models each place as a set

of such landmarks and their geometric relationships. A

new Bag-Of-Words filtering stage and geometric verifi-
cation scheme are introduced to compute a similarity

score between a query image and each scene model. As

further training images are acquired for each place, the

landmark properties are updated over time and in the

long term, the model can adapt to dynamic behaviour

in the scene. Results on an outdoor dataset of images

captured along a 7km path, over a period of 5 months,

show an improvement in recognition performance when

compared to state-of-the-art image retrieval approaches

to place recognition.
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1 Introduction

The recognition of a place instance depicted in an im-

age has seen a wide range of applications including

object retrieval (Arandjelovic and Zisserman, 2012),

loop closure, topological localisation and appearance-

based Simultaneous Localisation and Mapping (SLAM)

(Johns and Yang, 2013a; Cummins and Newman, 2009),

3D reconstruction (Agarwal et al, 2009) and build-

ing recognition for tourists (Zheng et al, 2009; Johns

and Yang, 2011a). Typically, the approach to large-

scale tasks (Schindler et al, 2007; Nister and Stewenius,

2006) is based on adaptation of image retrieval meth-

ods, whereby a query image is compared to all images in

a database, each representing a distinct location, to find

the closest match. In recent years, efficient matching

has been inspired by the Bag-Of-Words (BOW) model

(Sivic and Zisserman, 2003) where comparisons of his-

tograms of quantised features select candidate images

for stronger geometric verification. In this paper, we

present a new framework for place recognition that im-

proves both the BOW filtering and geometric verifica-

tion components of traditional approaches.

Databases for image retrieval often have significant

redundancy due to dynamic behaviour influencing an

image. In this paper, we define two types of dynamics:

feature dynamics and scene dynamics. Feature dynam-

ics arise due to the instability of a keypoint when the

same real-world point is viewed under different view-

points or illumination conditions. Scene dynamics arise

due to long-term structural changes in a scene, such as

renovations of building façades or seasonal effects on

foliage, and short-term dynamic bodies such as pedes-

trians or cars. As a result of both these types of dynamic

behaviour, many features exist in the database that are

never matched to by features in a query image, causing



2 Edward Johns, Guang-Zhong Yang

March April May June July August

Fig. 1: Natural long-term dynamics due to seasonal effects on foliage. The lack of consistent local features between

the images causes problems when matching a query image directly to a database image.

March April May June July August

Fig. 2: Example man-made long-term dynamics due to building renovations. Occlusion from short-term dynamics,

such as pedestrians, and dramatic illumination dynamics, also causes problems.

significant redundancy and inefficiency in both memory

and computational time. Figures 1 and 2 demonstrate

two examples of dynamic behaviour in our dataset that

cause difficulties for image-retrieval-based recognition,

due to a lack of stable features over a period of time.

We propose a model-based recognition framework

based on (Johns and Yang, 2011c) that compresses

database images into a set of scene models, each repre-

senting a place of interest, whilst maintaining the abil-

ity to match images from the full range of viewpoints

and illumination conditions expressed in the training

images. This is achieved by tracking features across

multiple images to form a set of spatio-temporal land-

marks, each representing a real-world point, and learn-

ing the distribution of descriptors across the landmark’s

constituent features. Greater importance can then be

assigned to those landmarks that are more likely to ap-

pear and those that are assigned to more discriminative

descriptors. Similarly, sets of co-occurring landmarks

can be learned that co-occur frequently and with rigid

spatial relationships.

Feature dynamics are thus accounted for by elimi-

nating those features that occur infrequently, and scene

dynamics can be incorporated into the model incremen-

tally by introducing new landmarks into the database

as they begin to appear in subsequent visits to a place.

This models the dynamics of a scene at the sub-scene

level, rather than at the image level as in the case of

traditional image retrieval, whereby the entire image

must be updated to reflect changes in the environment.

In this paper, we also introduce a new generative

BOW filtering stage that learns distributions of visual

words rather than a fixed point estimate, and a new

probabilistic voting stage for geometric verification that

considers all candidate scenes simultaneously, verifying

the presence of landmarks in a query image by incre-

mentally incorporating further co-occurring landmarks

until a scene has been matched to with sufficient confi-

dence.

1.1 BOW Image Retrieval

Image retrieval based on the BOW model typically

involves two main stages. In the first BOW filtering

stage, a BOW vector is created for each image, stor-

ing the frequency of visual word occurrences. Vectors
are then compared typically by computing their cosine

similarity (Sivic and Zisserman, 2003), but other tech-

niques are also available, including min-hash functions

(Chum et al, 2008) and Principal Component Analy-

sis (PCA) dimensionality reduction (Jegou and Chum,

2012). Several methods have been introduced to cir-

cumvent the effect of feature quantisation (Chatfield

et al, 2011), such as soft assignment (Philbin et al,

2008), learning an explicit likely distribution of alter-

native words (Mikulk and Perdoch, 2010) and comput-

ing feature similarities with Hamming distances (Jégou

et al, 2010).

In the second geometric verification stage, the top

k images from the first stage are analysed for geomet-

ric consistency between matching features of the two

images. Successful attempts have been made to encode

weak geometric information in the BOW vectors them-

selves, by computing several vectors over different spa-

tial windows (Cao et al, 2010; Marszalek and Schmid,

2006), or by including scale and orientation information
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in the vector (Jégou et al, 2010). Stronger geometric

verification is often required for larger-scale searches,

which typically involve generating candidate feature

correspondences via a Hough-based voting stage (Lowe,

2004) followed by verifying candidates through an es-

timation of epipolar geometry (Hartley and Zisserman,

2004). Generation of candidates has been addressed by

voting for image transformations based on translation,

scale and orientation shifts between features (Philbin

et al, 2007; Zhang et al, 2011), and with additional spa-

tial weighting between voting bins (Tolias and Avrithis,

2011). Query expansion can also help to increase the

level of recall (Chum et al, 2011).

1.2 Model-Based Place Recognition

Model-based place recognition has been successfully ap-

plied to small indoor environments (Ni et al, 2009;

Pronobis and Caputo, 2007), but large-scale modelling

has not been addressed in this way. Attempts to im-

prove the efficiency of retrieval have included matching

to iconic images of a scene (Raguram et al, 2011), but

these still require direct image-to-image matching, and

as such feature redundancies remain. The work in this

paper is related to the approach in (Johns and Yang,

2011a), whereby scene models are learned from image

clusters, and we expand upon this to demonstrate in-

cremental learning and adaptation to dynamic scenes.

Existing approaches to learning of dynamic scenes

typically adopt an incremental approach to Support

Vector Machine (SVM) classification (F. Orabona and

Caputo, 2010; Luo et al, 2007). However, online training

of SVMs remains computationally expensive and is not

suitable for real-time applications such as robotics. Fur-

thermore, these approaches are applied to small indoor

training sets where discriminative methods are suitable,

whereas for large-scale recognition this level of complex-

ity is often not viable.

Direct feature-to-feature matching approaches (Se

et al, 2001; Lik and Kosecka, 2006) have been success-

ful on small-scale databases, and more recently this has

been speeded up by considering the order of feature

matching (Li et al, 2010), but these methods still re-

quire expensive computation of feature-to-feature de-

scriptor distances. Feature tracking to extract stable

features has been applied previously in simple frame-

works (E. Arnaud and Verri, 2006; Li et al, 2010). How-

ever, none of these methods can learn feature descriptor

distributions in a robust probabilistic manner, nor do

they exploit the observed spatial relationships between

features as they are tracked.

1.3 Key Contributions

In this paper, we present three key technical contribu-

tions within our place recognition system. They include:

• a new generative BOW filtering stage based on the

mean and variance of elements in the BOW vector

learned over several training images;

• a new probabilistic voting system for geometric ver-

ification of features based on quantisation in both

feature and image space;

• the ability to adapt to dynamic environments where

objects are moving into or out of the scene.

2 The Scene Model

In this section, we introduce the model used to describe

each location in a map of the environment. We provide

definitions for key components of this model, and then

describe how the models are learned from a set of train-

ing images representing a scene.

2.1 Definitions

• A query image, q, is an input image which is to be

recognised.

• A scene, s, is a model of a place’s appearance stored

in the database or map.

• A landmark, x, is a real-world point in 3D space

that is observed in an image viewing the point.

• A neighbouring landmark, y, is another landmark

that co-occurs in at least one training image as x.

• A feature, u, is a local region in an image detected

at a corner, that is described by its scale, orienta-

tion and visual word. An observed landmark causes

a feature to appear on an image. We used Scale-

Invariant Feature Transform (SIFT) features in our

experiments (Lowe, 2004).

• A neighbouring feature, v, is another feature that

appears in the same image as u.

• A landmark co-occurrence zxy is a co-occurring pair

of landmarks, x and y.

• A feature co-occurrence wuv is a co-occurring pair

of features, u and v.

• A visual word, πu, is a quantised portion in feature

space that describes the texture in the local area

surrounding feature u, such as is used in the BOW

model (Sivic and Zisserman, 2003).

• A spatial word, δuv, is a quantised portion in im-

age space that describes the geometric relationship

of feature co-occurrence wuv, defined by the angle,

distance (to scale), orientation difference, and scale

difference, between the two features.
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Fig. 3: Notation used in this paper.

• A visual wordset, Πx, is the set of visual words as-

signed to landmark x from its observed features.

• A spatial wordset, ∆xy, is the set of spatial words

assigned to landmark co-occurrence zxy, from its ob-

served feature co-occurrences.

Figure 3 demonstrates the notation that is used in

this paper, showing parallels between components of an

image and components of a scene.

2.2 Spatial Words

To enable fast recognition with low memory require-

ments and a tractable probabilistic model, the geomet-

ric relationship between two features is quantised into

discrete spatial words. The spatial dictionary can be

considered as a regular grid of a× b squares on an im-

age, relative to a particular feature we are evaluating,

with each grid square further quantised into c scale di-

visions and d orientation divisions, to form a dictionary

of a × b × c × d spatial words. Each square represents

the relative x- and y- distances between two features,

the scale division represents the ratio of scales between

the two features, and the orientation division represents

the difference in orientation between two features.

2.3 The Scene Model

We follow the approach of (Johns and Yang, 2011c) and

represent every location by the appearance of its scene

s, with each scene in the map described by a set of land-

marks X and their geometric relationships. Each land-

mark is described by its visual wordset, the set of vi-

sual words over which the landmark has been observed

in training images. Each co-occurrence of landmarks is

described by its spatial wordset, the set of spatial words

over which the two landmarks have been observed in

training images. Given a query image, the task then

becomes to find candidate matches between query fea-

tures and scene landmarks based on their visual words,

and then verify these candidates based on their spatial

words.

2.4 Generating Landmarks

A landmark is formed by finding feature correspon-

dences across a set of training images. Those features

that are detected in at least two images are retained,

and the entire track of correspondences then forms a

landmark. This stage is performed for three reasons.

First, many features in a scene are unstable, due to

dynamic bodies in the scene or weak image gradients,

and will not be observed again in further images of the

scene. Second, locating each landmark independently is

necessary to enable geometric verification and learning

dynamic properties of landmarks if more than one fea-

ture in an image is assigned to the same visual word.

Otherwise, if only the raw statistics of visual words was

recorded, then two landmarks represented by the same

visual word will corrupt each other’s respective statis-

tics. Finally, tracking across multiple images in a dense

topology, and learning a generative model of each land-

mark, allows for unobserved locations, that exist be-

tween observed locations, to be incorporated within this

model, as shown in (Johns and Yang, 2011b).

Figure 4 demonstrates learning landmarks from

training images captured over a period of 5 months.

Whilst standard image-retrieval-based recognition en-

gines would be confused by dynamic scene elements

such as those from pedestrians and leaves in the trees,

our approach filters out these dynamics and focuses on

static elements. As can be seen in this figure, the most

likely landmarks are typically detected on the sides of
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(a) Training images for one scene captured over 5 months.

(b) The most stable landmarks for this scene, with
observation probabilities greater than 0.5.

Fig. 4: Detecting landmarks from a set of training im-

ages over a period of time enables filtering out of dy-

namic bodies and learning which landmarks are most
stable.

buildings, rather than on the foliage which changes in

appearance over time.

Several methods exist for computing the necessary

feature correspondences (Tolias and Avrithis, 2011; Li

et al, 2010; Leordeanu and Hebert, 2005), which typi-

cally involve a coarse filtering out of inconsistent fea-

tures, followed by a stricter rigid stage such as comput-

ing a homography between the images, based on the

candidate feature correspondences from the first stage.

We use the Hough Pyramid Matching method (Tolias

and Avrithis, 2011) to generate candidates, followed by

a Random Sample Consensus (RANSAC) (Hartley and

Zisserman, 2004) to compute strict inliers. Initial can-

didate matches are formed by using soft assignment in

the visual dictionary to account for the same landmark

being assigned to different words under varying illumi-

nation and viewpoint conditions. As in (Philbin et al,

2008), we therefore assign five ”soft” visual words to

each word in the dictionary and form candidate matches

to a word whenever one of its soft words is detected in

a different image.

3 Generative BOW

In this section, we present the first stage of our recog-

nition system. BOW filtering stages typically compare

images by computing the cosine similarity between their

BOW vectors (normalized vectors of word visual word

frequences) (Sivic and Zisserman, 2003). However, com-

paring explicit BOW vectors in this way is sensitive

to dynamic scenes where the vectors may change over

time. One solution is to average the BOW vector to

eliminate dynamic features (Johns and Yang, 2011c)

and compare the average BOW vector to the query.

A more advanced approach is to consider variances

and co-occurrence statistics of visual words rather than

a simple point estimate. Discriminative BOW models

have demonstrated this in object classification (Csurka

et al, 2004) and image retrieval (Arandjelovic and

Zisserman, 2012). However, the BOW filtering stage

should not discriminatively classify query images before

any geometric verification has taken place; it exists to

efficiently generate a smaller set of candidate scenes.

We propose that if several training images are avail-

able for a scene, then a generative model can be learned

from the visual word distributions across these images,

which both filters out dynamic features and allows for

a deeper representation of visual word statistics. First,

in the BOW vector for a scene, we include visual word

counts only from those features that have been tracked

across two or more training images. Contributions from

other features are assumed to be from noisy or dynamic

bodies, and as such are much less likely to be repre-

sented in another BOW vector of the scene. A further

bonus from this is that comparison of BOW vectors is

far more efficient, as we only compare a very small num-

ber of elements which correspond to the landmarks in

the scene. Second, we consider the variance in the BOW

vector, rather than taking a point estimate at the mean,

or considering point estimates from all training images

independently. By building a generative model that in-

corporates both the mean and variance, we are able to

predict more accurately the likelihood that a scene may

produce the observed BOW vector in a query image.

Consider the example in Figure 5, where circles rep-

resent BOW vectors for images of two different scenes,

and the square is our query image. Using the stan-

dard cosine similarity measure, the query would be as-

signed to the blue scene - whether we use the nearest-
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Word 2

Scene 1 data point

Scene 1 mean

Scene 2 data point

Scene 2 mean

Query data point

Scene 1 variance

Scene 2 variance

Distance to closest mean
Distance to closest

data point

Fig. 5: Our generative BOW similarity score takes into

account the variance of visual word frequencies in an

image, rather than just a point estimate. The query

data point is most appropriately matched to the green

scene when the variance is considered, whereas it is

assigned to the blue scene when the variance is over-

looked.

neighbour individual image or the scene average. How-

ever, it is clear that due to the blue scene’s low vari-

ance in the ‘Word 1’ direction, the query image is in
fact much more likely to be representative of the green

scene. Our method considers this variance and correctly

assigns the query to the green scene due to its wider

variance in the respective direction.

Let aq represent the standard normalised (L2-norm)

BOW vector for query image q, with tf-idf weighting

(Sivic and Zisserman, 2003). Then, let bs be the gen-

erative BOW vector for scene s, which expresses both

the mean and variance in the vector, in a normally-

distributed manner, across all training images for the

scene. The BOW score, Sbow(q, s), is computed by con-

sidering how likely aq is to be generated from scene s,

compared with all other scenes:

Sbow(q, s) :=p(q 7→ s|aq,bs) (1)

=
p(aq|q 7→ s,bs)∑

s∈S
p(aq|q 7→ s,bs)

(2)

where q 7→ s indicates that q is an observation of s, and

we assume that all scenes have equal probability (the

global localisation application).

The likelihood of observing aq given that q repre-

sents s is then computed by considering the probability

density function of scene s’s normally-distributed BOW

vector:

p(aq|q 7→ s,bs) =
exp

(
− 1

2 (aq − µs)
TΣ−1s (aq − µs)

)
(2π)

n
2 |Σs|

1
2

(3)

where µs and Σs are the mean vector and covari-

ance matrix components of bs, and n is the number of

visual words in the dictionary. Ideally, we would like

to be able to store the full covariance matrix, but this

is not possible due to the vast memory and computa-

tional requirements. For a 100K visual dictionary, each

scene would require ∼20 gigabytes of memory, which

is clearly impractical. One solution would be to store

only the largest set of covariances for each word and

compute Equation 3 based on these. However, this suf-

fers from overfitting as co-occurrence rates are typically

much lower than occurrence rates of individual land-

marks. Furthermore, it is not so important to model

the co-occurrence statistics at the BOW filtering stage,

as these are then brought into play in the later geo-

metric verification stage. For these reasons, we store

only the diagonal elements of Σs and forego the covari-

ances, and calculate the probability of each element in

aq based only on its own variance in scene s.

4 Probabilistic Landmark Voting

In this section, we present the second stage of our recog-

nition system: geometric verification by probabilistic

landmark voting. For each candidate scene s that passes

through the Generative BOW filter, a geometric score

is computed, Scoregeo(q, s). This score reflects the geo-

metric consistency between features Uq in query image

q and landmarks Xs in scene s.

We define the geometric score as the normalised

sum, over all landmarks in the scene, of the landmark

observation probability, p(u 7→ x|E), which is condi-

tional on landmark evidence, E. This is the probability

that landmark x has been observed in q as feature u,

and we take the maximum of this probability over all

features in the query image:

Scoregeo(q, s) :=

∑
x∈Xs

max
u∈Uq

p(u 7→ x|E)

η
(4)
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The normalising term η is the average number of

landmark observations in s’s training images. The score

is similar to the standard method in image retrieval of

counting inlier feature correspondences, but in our case

we weight each count with a score relating to the prob-

ability that the feature-to-landmark correspondence is

correct, and the normalisation ensures that scenes with

fewer stable landmarks are not penalised in the score.

4.1 Landmark Evidence

For each query feature u, an inverted index is used

to form a set of candidate landmarks Xc whose vi-

sual wordsets contain the query feature’s visual word.

For each query feature u that forms candidate land-

marks, the landmark evidence E represents all features

in the query image that are used to calculate the land-

mark observation probability in Equation 4. It is bro-

ken down into two components: ex, the evidence pro-

vided by feature u, and the set EY , the evidence pro-

vided by neighbouring features V which are candidate

matches to neighbouring landmarks Yx. EY in turn is

broken down into one component, ey, for each neigh-

bouring landmark. y. If a neighbouring feature v’s vi-

sual word matches y’s visual wordset, and feature co-

occurrence wuv’s spatial word matches landmark co-

occurrence zxy’s spatial wordset, then evidence ey is

set to this feature v. If there are no features matching

y, then ey is set to Ø, indicating that the landmark

co-occurrence zxy has not been observed.

As an example, consider Figure 6. Feature u and

landmark x form a candidate correspondence based on

consistency of visual words. Evidence ex is therefore

defined by feature u. Now, x’s neighbouring landmarks

y1 and y2 form candidate matches with u’s neighbour-

ing features v1 and v2 respectively, based on consis-

tency of visual words. Further, the geometric relation-

ship between u and v1 matches the geometric relation-

ship between x and y1, based on spatial words; there-

fore, ey1 is set to feature v1 as a candidate match to

co-occurrence zxy1 . However, the geometric relationship

between u and v2 does not match the geometric rela-

tionship between x and y2. Therefore, ey2 is set to Ø,

and the co-occurrence zxy2 is defined as absent. In this

way, when calculating the observation likelihood of a

landmark, geometric matching is localised and all ge-

ometric constraints are relative to that landmark. As

such, only the relative geometry is of importance - not

the absolute position in the image - and this allows for

viewpoint-invariant recognition.

u

query image

q

δD

πA
v1

x

y1

scene

s

πB

πC

δE δF
v2 y2

word 

assignments

Fig. 6: Feature u forms a candidate match to landmark

x based on visual word consistency. Additionally, neigh-

bouring features v1 and v2 form candidate matches to

neighbouring landmarks y1 and y2. In terms of spatial

words, v1 is consistent with y1, whereas v2 is not con-

sistent with y2. Therefore, evidence ey1 is set to feature

v1 as a candidate match to zxy1 , whilst evidence ey2 is

set to Ø.

4.2 Landmark observation probability

Consider that u may be a visual word match to several

candidate landmarks in difference scenes, and it is nec-

essary to find which candidate landmark is most likely

to have been observed. The prior match probability,

p(u 7→ x), and the evidence likelihood, p(E|u 7→ x), are

therefore calculated for each of these candidate land-

marks to form a probabilistic score. Furthermore, it is

necessary to consider the probability p(E|u 7→ Ø) that

the evidence is observed when u is in fact not a true

match to any of the candidate landmarks. The land-

mark observation probability can then be expressed as:

p(u 7→ x|E)

=
p(E|u 7→ x)p(u 7→ x)( ∑

x∈Xc

p(E|u 7→ x)p(u 7→ x)

)
+ p(E|u 7→ Ø)p(u 7→ Ø)

(5)

4.3 Prior Match Probability

The prior probability that a random feature in the

query image is a true match to landmark x takes into

account three factors. First, the landmark observation

likelihood p(x|s), which is the likelihood that the land-

mark will be observed in an image representing scene

s, reflecting the stability of the landmark. Second, the

number of features in the query image, |Uq|. The fewer

features in the image, the more likely that a random fea-

ture is the one representing the landmark. Third, the

prior probability of observing the scene, p(s), which we

assume to be equal across all scenes in S for a global
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localisation application. Combining these three compo-

nents together then yields the prior match probability:

p(u 7→ x) = p(x|s) 1

|Uq|
1

|S|
(6)

4.4 Evidence Likelihood

For a fully probabilistic calculation of Equation 5, the

evidence E = {ex, EY } for each candidate landmark

must contain the same features, such that the evalua-

tion of p(u 7→ x|E) is based upon the same data. Now,

ex is already set to the same feature u that is a candi-

date match to each landmark in Xc. Then, for each

candidate landmark x, we divide EY into two com-

ponents: EYx , the candidate features matching to x’s

neighbouring landmarks, which we call the neighbour-

hood evidence for x, and EYx′ , the neighbourhood ev-

idence for all other candidate landmarks x′, which we

call the competing landmarks. Finally, the evidence like-

lihood for a given candidate landmark can be expressed

as:

p(E|u 7→ x) = p(ex|u 7→ x)× p(EYx
|u 7→ x)

×
∏

x′∈Xc,x′ 6=x

p(EYx′ |u 7→ x) (7)

where the evidence likelihood of ex is based upon

the visual words assigned to u:

p(ex|u 7→ x) = p(πu|Πx) (8)

4.4.1 Neighbourhood evidence for x

To calculate the likelihood of x’s neighbourhood evi-

dence, EYx , we adopt a naive Bayes model and assume

independence between each neighbouring landmark of

x, y ∈ Yx, given that x is present. If there are multiple

candidate features that match to any y with both visual

and spatial words, then the feature is taken whose vi-

sual and spatial words are the most likely to have been

observed in a feature representing y:

p(EYx
|u 7→ x) =

∏
y∈Yx

max
v

p(ey|v 7→ y, u 7→ x) (9)

For each neighbouring landmark y, we can now de-

fine that likelihood of observing its evidence. The likeli-

hood of not observing any feature matches for y is equal

to the probability that y does not co-occur with x in the

scene. The likelihood of observing a feature that does

match to y is equal to the product of the likelihood of

the visual word assigned to v, and the likelihood of the

spatial word assigned to wuv, multiplied by the prior

probability of co-occurrence of x and y. In summary:

p(ey|v 7→ y, u 7→ x)

=

{
1− p(y|x) if ey = Ø

p(πv|Πy)p(δuv|∆xy)p(y|x) otherwise
(10)

where p(y|x) is the co-occurrence rate of x and y

in images containing x, and p(πv|Πy) and p(δuv|∆xy)

are likelihoods of visual word πv and spatial word δuv
in the respective wordsets of landmark y and landmark

co-occurrence zxy.

4.4.2 Neighbourhood evidence for competing landmarks

x′

To calculate the likelihood of the neighbourhood ev-

idence for all competing landmarks, we consider the

likelihood that these features have occurred randomly

in the image and do not represent any landmarks. For

each neighbouring landmark of competing landmark x′,

if the neighbouring landmark for x′ has zero evidence

(ey′ = Ø), then we model the likelihood of not observ-

ing the neighbouring landmark as 1. This is because,

given the large size of both visual and spatial dictio-

naries, the probability of observing any combination of

visual and spatial words is negligible, and so the prob-

ability of not observing them is approximately 1. How-

ever, if a feature matching the neighbouring landmark

has been observed, we model the likelihood as the joint

probability of randomly observing the respective visual

word, p(πv), and spatial word, p(δuv), combination. In

summary:

p(ey′ |v 7→ y, u 7→ x) =

{
1 if ey′ = Ø

p(πv)p(δuv) otherwise
(11)

4.4.3 Evidence for no true landmark matches

Finally, we now consider the evidence likelihood when

u is, in fact, not a true match to any of the candidate

landmarks, p(E|u 7→ Ø). This is the joint probability,

over all features in E, of randomly observing the re-

spective visual words and spatial words in any given

image:

p(E|u 7→ Ø) = p(πu)
∏
x∈XC

∏
y∈Yx

p(ey) (12)
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Here, p(ey) is the probability of randomly observ-

ing the evidence for neighbouring landmark y, and is

defined in a similar manner to Equation 11:

p(ey) =

{
1 if ey = Ø

p(πv)p(δuv) otherwise
(13)

Finally, we calculate the prior likelihood that u is

not a true match to any landmark, by computing the

joint probability over all landmarks that each is not a

true match to u:

p(u 7→ Ø) =
∏
s∈S

∏
x∈Xs

(1− p(u 7→ x)) (14)

5 Simultaneous Place Recognition

In this section, we show how the geometric score in

Equation 4 is calculated for each scene simultaneously,

rather than computing a score for each scene indepen-

dently before moving onto the next. Consider the neigh-

bourhood evidence likelihood p(EYx
|u 7→ x) in Equa-

tion 9, where, for each candidate landmark x, a joint

distribution is considered across landmark x’s neigh-

bouring landmarks y ∈ Yx. Now, the contents of the

neighbouring set could feasibly incorporate all land-

marks in the scene other than landmark x. Whilst this

would provide the most powerful geometric constraints

and the maximum evidence from which to compute

p(u 7→ x|E), it would be an unnecessary use of com-

putational time if a confident place recognition can be

achieved with a smaller set. As such, we design the
recognition engine to proceed iteratively, with each iter-

ation concluding with a score Scoregeo(q, s) computed

for each scene as in Equation 4. In the first iteration, ev-

ery landmark in every scene starts with only one neigh-

bouring landmark in Yx, and after each iteration, one

further neighbouring landmark is added. The score for

each scene is computed after each iteration, and the

process stops when a scene has been recognised with

sufficiently high confidence. In this way, scene scores

are calculated simultaneously, with the iteration con-

verging on the most likely scene and stopping much

more quickly than if each scene was considered inde-

pendently.

5.1 The Iterative Algorithm

At each iteration, we compute the confidence that the

currently best matching scene is a true match. First, we

extract peaks in the distribution of scene scores by use

of non-maximal suppression. Scene si is retained if, and

only if, its score is greater than those for scenes si−1 and

si+1. This is to reduce the effect of perceptual aliasing

whereby adjacent scenes along a path appear similar.

Eliminating non-maximal locations allows computation

of a confidence level that the query image depicts scene

si; without non-maximal suppression, this confidence

may never converge to a sufficient level due to a wide

distribution of high scores around si.

At each loop of the iteration, we take the highest

and second-highest scores across all locations that are

locally maximal, denoted smax1 and smax2 respectively.

The level of confidence that the scene scoring smax1 is

the correct match, is then defined as:

c =
smax1

smax2
(15)

If this confidence is less than threshold cmin, then

a further neighbouring landmark is added to each set

Yx for all landmarks, and the process repeats until a

sufficient confidence is achieved. Determining the value

of cmin is a compromise between efficiency and recog-

nition accuracy. We chose a value of 25 for our experi-

ments, which typically results in one to four neighbour-

ing landmarks being included in each set Yx, depending

on the difficulty in recognising the query image. Increas-

ing cmin any further yields little recognition improve-

ment but increases computational time dramatically.

Figure 7 shows three query images, each requiring

a different number of neighbouring landmarks before a

confident scene match was achieved. The image in 7a is

easy to recognise due to the abundance of stable, static

features in the scene. However, the image in 7c has few

stable features due to the dynamic appearance of the

foliage, and so requires a more rigorous evaluation of

the geometry of co-occurrences before the correct scene

can be found.

5.2 Entropy-guided Neighbouring Landmark Choice

We now consider the order in which the neighbour-

ing landmarks are added to Yx, such that those which

are most informative about the presence of x in the

query image, are added first. A neighbouring landmark

y could be informative for several reasons. First, it could

have a high co-occurrence rate with x. Second, it could

have a rigid and hence discriminative geometric rela-

tionship with x. Third, it could have a discriminative

set of observed visual words. In fact, the most informa-

tive neighbouring landmarks will most likely exhibit all

three properties.
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(a) |Yx| = 1

(b) |Yx| = 2

(c) |Yx| = 4

Fig. 7: The number of required neighbouring landmarks

in Yx increases as the query image becomes more diffi-

cult to recognise.

To evaluate the suitability of y for inclusion in

Yx, we consider to what extent making an observa-

tion about y reduces our uncertainty on the presence

of x. First, we define X as a binary variable indicating

whether x has been observed in a query image. Then, we

define Ey as a binary variable indicating whether evi-

dence has been observed for y, i.e. a query feature with

the necessary visual word and spatial word combina-

tion. The reduction in uncertainty of X when attempt-

ing to find a feature matching y can now be represented

by the conditional entropy of X on Ey:

H(X|Ey) =
∑

X∈{0,1}

∑
Ey∈{0,1}

p(X,Ey) log
p(Ey)

p(X,Ey)

(16)

5.3 Calculating the Conditional Entropy

To calculate this conditional entropy, it is necessary

to compute the probabilities of each of the four bi-

nary combinations of {X,Ey} in Equation 16. This is

achieved by summing the individual contributions from

each scene in the database:

p(X,Ey) =
∑
s∈S

p(X,Ey|s)p(s) (17)

For any given scene, the probability of a combina-

tion of {X,Ey} occurring is calculated by considering

how likely it is that a feature in the scene causes X’s

given value, together with a neighbouring feature in the

scene causing Ey’s given value. By assuming that all

stable features in a scene represent landmarks, we there-

fore marginalise over all landmarks X ′s in the scene, and

the respective neighbouring landmarks Y ′x′ :

p(X,Ey|s) =
∑
x′∈X′

s

∑
y′∈Y ′

x′

p(X|x′)p(Ey|y′)p(x′|s)p(y′|x′)

(18)

For any given scene, p(X = 1|x′) is only non-zero if

s is the scene containing x, and x′ is equivalent to x, in

which case the value is 1. p(Ey = 1|y′) is computed by

considering the likelihood of observing the visual word

and spatial word combination in y’s wordsets given the

combinations in y′’s wordsets. p(X = 0|x′) and p(Ey =

0|y′) are then one minus their respective complements.

The calculation of Equation 18 is therefore carried

out by simulating all pairs of features in all the training

images that form landmarks, and calculating how likely

it is that the pair’s visual and spatial words match the

co-occurrence of x and y. Similar calculations are per-

formed to compute p(Ey) in Equation 16. Those neigh-

bouring landmarks whose wordsets have more matches

from the original feature tracks of y, and fewer matches

from tracks of other landmarks, provide the most evi-

dence for the presence of x, and hence result in a lower

conditional entropy H(X|Ey).

In this way, the entropy of x conditional on y is de-

pendent on not only how likely x and y are to co-occur
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Fig. 8: Each image depicts a landmark (green) and

the three neighbouring landmarks (red) with the lowest

conditional entropy in Equation 16.

in the same image in a rigid manner, but also how likely

it is that this same visual word and spatial word com-

bination will appear when one of the other scenes in

the map is observed. Landmarks are then added to x’s

neighbouring landmark set Yx in order of lowest con-

ditional entropy first, such that those that are most

informative about the presence or absence of x are con-

sidered first. Figure 8 shows examples of landmarks and

their neighbouring landmarks which resulted in the low-

est values of this conditional entropy.

6 Parameter Learning

In this section, we explain how all necessary probabilis-

tic parameters referenced in Sections 3, 4 and 5 are

learned. This is done directly from the training images

for a scene, with some smoothing applied to avoid unre-

alistic probabilities given that the training set for each

scene is small. As further training images are then in-

corporated over time, the dynamic elements in the scene

can be reflected by updating the relevant parameters.

We divide parameters into two types: static and dy-

namic. Static scene parameters are those probabilities

whose true underlying values do not change over time,

although their learned values may change as further

training images improve the estimation. For example,

the spatial relationship between two points on a build-

ing will not change from one day to the next, but the

learned relationship between the associated landmarks

may change as we make more observations of the ge-

ometry of the two landmarks. Dynamic scene parame-

ters are those probabilities whose true underlying val-

ues may change with time. For example, the probability

that a landmark is observed in an image will change if

the landmark is removed from the scene due to building

renovations.

6.1 Static Scene Parameters

6.1.1 Maximum Likelihood Estimation

For many of the probabilities to be learned, the Maxi-

mum Likelihood Estimation (MLE) is a suitable tech-

nique. The scene BOW vector πs and covariance matrix

Σs in Equation 3 are learned in this way, by averaging

the individual BOW vectors of the training images and

learning the variance for each visual word. Smoothing

is not appropriate because a prior on the likelihood of

a visual word occurrence will reduce the discriminative

power of the vector, and poor estimation of one element

in the BOW vector will not affect the BOW score sig-

nificantly, due to the high-dimensionality of the vector.

Further parameters that can be learned with MLE

are the visual word and spatial word likelihoods as-

signed to landmarks and co-occurrences respectively,

such as p(πu|Πx) in Equation 8 and p(δuv|∆xy) in Equa-

tion 10. Priors on these likelihoods could be smoothed

by soft assignment of visual words (Philbin et al, 2008).

However, as long as the dictionaries are not too fine,

the quantisation of both feature space and image space

offers a natural smoothing that allows for small varia-

tions in these spaces, and so further smoothing was not

considered necessary.

Finally, the probability of a landmark being ob-

served in a scene, p(x|s) as in Equation 6, is estimated

with MLE by dividing the number of observations of

x by the number of training images for s. Given that

Equation 4 sums the contributions of each landmark in-

dividually rather than computing a joint distribution,

unrealistic values of p(x|s) will not affect the geomet-

ric score significantly and so smoothing was not called

upon.
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6.1.2 Smoothing With Priors

However, when the probabilistic model is evaluated fur-

ther, it becomes apparent that smoothing with priors is

necessary for estimation of the landmark co-occurrence

probabilities, p(y|x), as in Equation 10. Due to the

probabilistic nature of Equation 9, any of these param-

eters being equal to 0 or 1 could cause an unrealistic

score of zero when the product is computed across the

joint distribution. For example, suppose that landmark

x and its neighbouring landmark y always co-occur in

the training images. Then if, in a query image, x is ob-

served but y is not, for example due to an occlusion,

the score in Equation 9 will be zero because it will in-

clude a factor of p(y|x) = 0. It is therefore necessary to

smooth the co-occurrence probabilities to ensure that

this does not happen.

Smoothing techniques for parameter estimation

range from simple linear interpolation between two

distributions to multivariate Dirichlet priors (Zhai

and Lafferty, 2001). Linear interpolation was used in

learning visual word likelihoods for place recognition

in (Cummins and Newman, 2008) by combining the

explicitly-learned likelihood with a prior likelihood on

the visual word (Cummins and Newman, 2009). How-

ever, this prior is a point estimate that does not con-

sider the full range of possible probability distributions

in a true Bayesian manner. We adopt a more sophisti-

cated method to estimate the co-occurrence probabil-

ities by considering a prior over distributions, rather

than a fixed-point prior, and evaluating the likelihood

of each distribution given the observations.

Let θ denote the parameter we are estimating (in

this case, p(y|x)), and let D denote the observed data

(the co-occurrence statistics of landmarks x and y). The

probability distribution over all possible values of θ,

conditional on these observations, is:

p(θ|D) =
p(D|θ)p(θ)
p(D)

(19)

Now, consider that the observations D are repre-

sented by k, the number of observations of landmark x

in a training image, and n, the number of observations

of both landmarks x and y in the same image. For a

given value of θ, the probability that n co-occurrences

are observed out of a total possible k can be computed

using the binomial distribution:

p(D|θ) =

(
n

k

)
θk(1− θ)n−k (20)

Figure 9 illustrates example distributions for p(D|θ)
over different values of n and k.
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Fig. 9: The likelihood of observing co-occurrence dataD

given a prior on the co-occurrence probability θ, where

D describes n co-occurrence observations of both x and

y, out of k total observations of x.

We now consider this prior on θ, which determines

the level of smoothing applied in the parameter estima-

tion. Given that θ represents a one-dimensional distri-

bution between 0 and 1, we choose the beta distribution

as a suitable representation of the prior, which itself is

parameterised by α and β:

p(θ) ∼ Beta(α, β) :=
θα−1(1− θ)β−1

B(α, β)
(21)

The distribution can be learned by computing mean

and variance statistics and using the method of mo-

ments (Bowman and Shenton, 2007) to determine α and

β. We achieved this by computing the relevant statistics

across a separate training database of manually-labelled

feature correspondences, through which the presence or

absence of landmark co-occurrences was recorded. Fig-

ure 10 illustrates this learned prior on θ as a continuous

distribution.

Finally, we compute p(y|x)∗, our estimation of the

co-occurrence probability, as the expected value of θ by

integrating over the full range of possible values of θ:

p(y|x)∗ = E[p(θ|D)] (22)

Due to the smooth and simple nature of the function

p(θ|D), this integration was achieved computationally

by sampling the function at regular intervals between

θ = 0 and θ = 1 and computing a summation over lin-

ear interpolating functions at each sample point. The

sampling density was iteratively increased until the dif-

ference in the summation between iterations was less

than 0.001. Figure 11 shows the posterior probability
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Fig. 10: The prior distribution over co-occurrence prob-

abilities, modelled as a beta distribution, and computed

by considering a separate training set and counting

landmark co-occurrence rates.
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Fig. 11: The posterior co-occurrence probability θ given
the observation D, where D describes n co-occurrence

observations of both x and y, out of k total observations

of x.

of θ given different values of evidence D. The expected

value of θ is then the integration of the relevant curve.

6.2 Dynamic Scene Parameters

As time passes and the appearance of each scene

changes, the scene models begin to reflect these appear-

ances less accurately. For example, the true probability

of observing a landmark drops to zero if that landmark

is removed from the scene, for example due to building

renovations or seasonal changes to trees. (We do not

consider cyclic dynamics with features that continually

appear and disappear, such as from doors opening and

closing.) As a consequence, the probability of observing

the co-occurrences associated with that landmark will

also drop to zero. Furthermore, landmarks that were

not present in the original set of training images can

enter the scene at a later date.

In order to account for these dynamic effects, more

recent training images need to be acquired to update

the respective scene models in an incremental fashion.

Given a new training image, feature correspondences

with all existing training images are detected as in Sec-

tion 2.4. Then, the static scene parameters for land-

marks and landmark co-occurrences are updated based

on the observations of landmarks in the new image. Fi-

nally, any new landmarks that have recently appeared

in the scene are added to the scene model.

Given a set of T training images that have been ac-

quired in chronological order, we now wish to compute

p(x|s)T , the landmark occurrence probability at time

T (the time of the most recent training image). Com-

puting this is not trivial however, because landmarks

are naturally imperfectly observable, and the absence

of a landmark observation could arise both from failure

of the feature detector and from the elimination of the

landmark from the scene.

As such, we decompose the observability of a land-

mark into two components: the landmark presence αT ,

the probability that the real-world point representing

the landmark is still present in the scene at time T ,

and the landmark stability β, the probability that the

landmark will be observed as a feature, given that the

landmark is actually present in the scene. Whilst α may

drop to zero if the landmark is removed from the scene,

we assume β to be constant and not dependent on when

the landmark is observed. Multiplying these together

yields the overall observation probability at time T :

p(x|s)T = αT × β (23)

The landmark stability β is computed by dividing

the number of observations of the landmark by the

number of training images, for the sequence of images

over which the landmark is present in the environment

(but not necessarily observed). If the landmark was first

observed at time t0, and observed n times between t0
and tT , the landmark stability is calculated as:

β =
n

T
(24)

The landmark presence α is now addressed. We im-

pose a Markov blanket on α such that αt is only depen-

dent on αt−1 and the observations at t−1. Let us define

the binary output function f(x, t) indicating whether or

not landmark x was detected in the training image at
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time t. If the landmark was detected in a training im-

age at time t, then we assume that it is still present

in the scene at time t + 1, and so set the presence at

t+1 to 1. However, if the landmark was not detected at

time t, then there are two explanations. First, the land-

mark has a stability of less than 1 and does not always

cause a feature to be observed. Second, the landmark

has been eliminated from the environment and so will

no longer be observed. Now, the probability that the

landmark still remains in the environment, but has not

been observed for n adjacent images, is equal to (1−β)n.

Therefore, the landmark presence can be summarised

as:

αT =

{
1 if f(x, t− 1) = 1

(1− β)n otherwise
(25)

7 Experiments

In this section, we describe our experimental proce-

dure and evaluation of the Spatio-Temporal Landmarks

framework on our new long-term dataset, together with

comparisons to state-of-the-art place recognition using

other image retrieval methods.

7.1 Dataset

Our new dataset consists of GPS-tagged images cap-

tured from a standard camera whilst walking along

a 7km outdoor path. Each tour of the path contains

around 2300 images, each roughly 3 metres apart, and 6

tours were completed over a period of 5 months (March

to August). Half the path traverses a park containing

trees, foliage and grassland that undergoes significant

appearance variations over the seasons, and the other

half follows a road through a busy urban area under-

going structural changes due to building renovations

and roadworks. As such, the dataset contains significant

long-term dynamic elements, together with short-term

dynamics from moving bodies, illumination variations,

and lateral deviations along the path. Figures 1 and 2

highlight the challenges within our dataset over the two

halves of the path.

7.2 Dictionaries

Each visual word represents a discretised portion of

128-dimension feature space (SIFT features from Lowe

(2004)). The visual dictionary was generated with k-

means clustering (Sivic and Zisserman, 2003) using a

separate set of training images to those used for train-

ing the scene models. Building and searching the vi-

sual dictionary was achieved by approximate nearest-

neighbours using random forests (Philbin et al, 2007).

The size of the visual dictionary is a compromise

between precision and recall of landmarks. Given a dic-

tionary with a very fine structure, the same landmark

may be assigned to different visual words when ob-

served under slightly different illumination or viewpoint

conditions. However, if the dictionary has a coarse di-

vision, then many landmarks will all be assigned to the

same visual word, which can cause confusion. Choosing

an appropriate dictionary size is therefore a compro-

mise between precision and recall, and requires consid-

eration of the likely variation of landmark appearance

over the expected range of conditions. In object clas-

sification tasks, the large intra-class variation requires

small dictionaries of hundreds or thousands of visual

words (Winn et al, 2005) to enable a feature repre-

senting the same part of an object to be assigned to

the same visual word. For recognition of near-duplicate

planar images that vary little in appearance, such as

book covers or logos, larger dictionaries with millions

of visual words are often used (Nister and Stewenius,

2006) because features representing the same part of

the object are almost identical. We use a visual dictio-

nary of medium size 100K in our experiments to allow

for small shifts in image appearance from viewpoint and

illumination effects, whilst still maintaining discrimina-

tive visual words.

Similarly, the spatial dictionary is again a compro-

mise between precision and recall. By observing from

our dataset that most inter-feature relationships do not

vary by much more than 10 pixels in location, a factor

of 1.1 in scale ratio, and 30 degrees in orientation, we

used a spatial dictionary of 64 divisions in x- image

space, 48 divisions in y- image space, 100 divisions in

scale ratio, and 10 divisions in orientation, to give a dic-

tionary of 64× 48× 100× 10 = 3 million spatial words

in our experiments, for 640× 480 pixel images.

7.3 Experimental Procedure

For each tour of our dataset, we used three adjacent im-

ages to describe one location. This was in order to seed

our system with feature tracks and sufficient statistics

to compute the necessary parameters in the probabilis-

tic model. Each tour was therefore divided into 770 lo-

cations. The initial set of locations was defined by the

images in the first tour (March). For testing the recog-

nition performance at the ith month, all of the images

in tour i were used as queries, and tours 0 to i − 1
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were used as training images. A recognition was con-

sidered correct if the returned dataset image location

was within a distance of 5 scenes (∼ 15 metres) of the

query image location.

We evaluated our method against state-of-the art

approaches to image retrieval. For the BOW filtering

stage, we compare against the cosine similarity of tf-

idf -weighted BOW vectors (Sivic and Zisserman, 2003)

using soft quantisation (Philbin et al, 2008). For the

geometric verification stage, we compare against the

Hough-pyramid matching scheme (Tolias and Avrithis,

2011). Here, the Hough-pyramid proposes likely feature

correspondences based on consistent geometric shifts

across the two images, and these are then narrowed

down with epipolar constraints following a RANSAC-

based estimation of the fundamental matrix. We denote

this comparison method as the baseline method. For

the competing methods, when more than one training

tour was available, all training images for each loca-

tion formed candidates to which the query image was

compared to. This is the image retrieval equivalent of

incremental learning; in our system however, individual

landmark properties are updated, whereas in the com-

peting method, the entire image has to be updated.

Whilst non-maximal suppression is used in our method

to speed up the simultaneous place recognition algo-

rithm, the baseline method does not employ this com-

ponent because it adds no benefit when places are con-

sidered independently.

For all the methods, we use a value of k = 50 to

define the number of images or scenes returned from

the BOW similarity measure that are passed on for ge-

ometric verification. Precision-recall curves were gen-

erated by finding the location with the top score, and

varying the threshold on this score as to whether it is

considered a match. Experiments on both ours and the

baseline geometric verification stage were carried out

on the same 50 locations returned from the generative

BOW filtering stage.

7.4 Quantitative Results

7.4.1 Precision-Recall

Figure 12 compares the precision-recall performance of

our generative BOW method with the cosine similarity

measure. In 12a, only the first tour was used to train

each location, and the sixth tour was used for query

images. In 12b, all of the first five tours were used to

train each location. The precision-recall performance is

similar when only one tour was used for training, but

the performance of our system is significantly greater

when several training tours are incorporated. Whilst
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Fig. 12: Precision-recall curves for the BOW filtering

stage.

the cosine similarity measure considers point estimates

of the BOW vector for each image, our generative model

is able to capitalise on the variance in visual words and

determine a match in a more probabilistic manner, so

long as sufficient training data is available.

Figure 13 then shows the precision-recall perfor-

mance of our probabilistic voting scheme compared to

the baseline geometric verification method, again over

two different training periods. As with the BOW fil-

tering stage, performance is similar when training data

is limited, but dramatically improves as training data

is introduced, for two reasons. First, the probabilis-

tic model is enriched with data from which to learn

its parameters more accurately. Second, the adaptation

to dynamic scenes allows for landmarks that have dis-

appeared from, or appeared in, the scene, to be ac-

counted for. Whilst the baseline method also updates

its database with the newer images, these images them-

selves introduce new unstable features too, whereas our
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Fig. 13: Precision-recall curves for the geometric verifi-

cation stage.

model only updates itself with those landmarks which

we know are stable and have been tracked across more

than one training image. We achieve around 35% recall

at 100% precision which is very promising considering

the challenges in the dataset, and would be suitable for

an appearance-based SLAM system.

It should be noted that neither method is able to

achieve 100% recall. This is because the database loca-

tions are ranked and the best score is returned as the

recognised place, and only a fraction of queries have the

correct place assigned to the best score. Adjusting the

minimum score (as was done to create the precision-

recall curves) defines how much confidence we need in

our belief that the scene with the highest score is a

correct match.
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Fig. 14: Mean Average Precision for both stages of the

two methods, as a function of the number of training

images.

7.4.2 Training Data Size and Mean Average Precision

Figure 14 demonstrates the Mean Average Precision

(MAP) for the BOW filtering and geometric verifica-

tion stages as a function of the number of training im-

ages available. Whilst similar performance is observed

with only a small number of training images, our sys-

tem generally improves more rapidly than the baseline.

The accumulation of newer images does provide the im-

age retrieval engine with an updated appearance of the

scene, however, there is no overall model of the scene

that draws these images together, and hence recognition

will only be as effective as the best image in the train-

ing set. With our Spatio-Temporal Landmarks method,

conversely, each image will always improve the model

because parameters are refined with each further image

acquired, hence the greater rate of increase in MAP

performance with further training data.
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7.4.3 Computational Speed

Table 1 summarises the MAP performance and recog-

nition time (excluding feature extraction) for both our

method and the baseline method. Results are shown for

each method’s BOW filtering stage, and the geometric

verification stage. We also show results for training on

only the first month (3 images per location) and for the

first five months (15 images per location).

The speed of the BOW filtering stage in our method

is significantly faster than with the standard cosine

similarity measure. Only those visual words that rep-

resent landmarks in the scene are considered in the

BOW score, rather than comparing counts for all vi-

sual words in the vector. As further training images are

acquired, the recognition time increases for our over-

all method due to both the incorporation of further

landmarks into the scene, and the updating of param-

eters to include larger sets of visual and spatial words

for each landmark and landmark co-occurrence. How-

ever, this increase is far less dramatic than that for the

baseline method, which increases roughly linearly with

the number of training images, as each must be consid-

ered independently. Even when compared to the base-

line method with only 1 month of training, our method

with 5 months of training still has a faster recognition,

with a significantly greater MAP.

Method Training MAP Recognition Time (ms)

Gen BOW 1 month 0.151 83
STL Geo 1 month 0.353 514

Gen BOW 5 months 0.248 134
STL Geo 5 months 0.614 765

Cosine BOW 1 month 0.137 276
Baseline Geo 1 month 0.341 827
Cosine BOW 5 months 0.211 1365
Baseline Geo 5 months 0.528 1879

Table 1: Summary of MAP performance and recogni-

tion time (excluding feature extraction) for our method

(Gen BOW and STL (Spatio-Temporal Landmarks)

Geo), and the competing image retrieval method (Co-

sine BOW and Baseline Geo). Results were generated

on a 2.67 GHz Intel Xeon CPU.

7.5 Qualitative Results

In this section, we show some qualitative results illus-

trating examples when our method outperforms the im-

age retrieval method, but also when our method fails.

Figure 15 shows an example of where our Spatio-

Temporal Landmarks system correctly recognises an

image that was captured 5 months previously, but the

competing image retrieval system fails. The query im-

age exhibits significant dynamic behaviour from the

trees which change in appearance over this time period.

Our method is able to filter out the dynamic features,

and focus on the static scene elements, such as the stat-

ues. In the baseline image retrieval system, however, it

is not known which features are static or dynamic, and

hence matches are attempted with dynamic features

from the trees, which no longer appear in the scene

5 months later.

Whilst filtering out dynamic scene elements is one of

the strengths of our method, the use of local features in

describing images is largely ineffective when the scene

is entirely dynamic, and there are no stable features de-

tected between different sets of training images. Figure

16 shows an example of such a case, where the scene is

covered almost entirely by foliage, which itself changes

dramatically over the course of the training period. The

only features that exist in the images are representative

of foliage, and these are largely filtered out, leaving the

scene with very few landmarks to which feature matches

can be made. This problem also exists in the image re-

trieval case, and solutions must involve divergence away

from local features towards holistic features or semantic

labelling of the scene.

8 Conclusions

In this paper, we have presented a new framework for

place recognition and incremental learning of dynamic

changes to scenes. Modelling a place as a set of real-

world landmarks enables a more robust understand-

ing of the expected distribution of local features in an

image, both in terms of descriptors and spatial rela-

tionships. A generative BOW filtering stage was intro-

duced which learns the expected variance in visual word

counts, enabling better filtering when compared to the

standard cosine similarity measure. By learning which

landmarks co-occur most frequently, each landmark can

then be efficiently yet discriminatively verified by us-

ing the geometric relationships with only a small set

of co-occurring landmarks. Furthermore, dynamic ele-

ments in a scene can be incorporated incrementally by

introducing new landmarks into a scene and filtering

out old landmarks. Results have shown improvements

in the long-term recognition performance and efficiency

over standard image-retrieval techniques.

The localisation system proposed in this paper is

one that can be incorporated within a broader robot

navigation framework that requires loop closure or

global localisation as part of a SLAM framework. An

appropriate application would be a system such as
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(a) Query input.

(b) Spatio-Temporal Landmarks output.

(c) Image Retrieval output.

Fig. 15: Example case when our method correctly recog-

nises a query image, but the baseline image retrieval

method fails. Our method is able to filter out the long-

term dynamic features on the trees, but these can con-

fuse the baseline method.

an autonomous vehicles network (Cummins and New-

man, 2009; Johns and Yang, 2013b), where GPS-tagged

training images sequences from one vehicle can be used

to train the scene models, for use by all other vehi-

cles, which do not need the GPS data themselves. Suit-

able further work would be to address the issue of map

building, self-intersecting maps, more precise quantita-

tive localisation, and issues with memory efficiency for

long-term applications. As it stands, it is necessary to

(a) Query image.

(b) Location 5 months previously.

(c) Returned location.

Fig. 16: Example case when our method fails due to the

entire scene being dynamic, with few stable local fea-

tures detected across the training images. The baseline

image retrieval method also fails with this query.

train the scene models with GPS-tagged images, but a

SLAM extension is fitting given the probabilistic nature

of the scene similarity score and the ability to update

individual landmark properties incrementally. However,

for applications where it is easy to collect GPS-tagged

images over time, such as on roads for autonomous car

navigation, this system is readily applicable in its cur-

rent form.
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