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Abstract

Visual place recognition with local features often uses
RANSAC to estimate a 3D transformation between images.
However, degenerate cases can exist where samples drawn
fit the model, but are geometrically unlikely. We propose to
eliminate these by ensuring that all samples agree weakly
in 2D pairwise geometry, forming a geometric clique. The
pairwise geometries also enable biasing of the sampling to
speed up RANSAC by early rejection of unlikely configura-
tions. We then show that by training over a number of im-
ages for each place, the expected pairwise geometries can
be learned individually for each place, accounting for the
underlying scene structure and range of likely viewpoints.
Experiments conducted on a new database show how our
proposal outperforms similar methods in both retrieval and
recognition performance, and computational efficiency.

1. Introduction

Visual place recognition has three key challenges when
attempting to match a query image to a database. First,
dealing with a viewpoint change between the query and
database, offering robustness to translation, rotation and
scale. Second, coping with environment changes that have
occurred between capturing the two images, such as time of
day, weather, and dynamic bodies. Third, scaling gracefully
with the size of the database and allowing for fast recogni-
tion with a practical memory footprint. In this paper, we
present a new method that allows for efficient recognition
from a wide range of viewpoints and environment condi-
tions, by computing a compact generative model of each
place, and learning the relative displacements of local fea-
tures that would be expected from a new query image.

There are two main ideologies for devising a place recog-
nition method. Given a diverse set of training images for
each place to cover its full range of viewpoints and envi-
ronment conditions, place recognition can be addressed in
an image-based approach, by creating a database of images
and attempting to match a query image to the database im-
ages [24, 21]. Alternatively, for more efficient databasing,
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or to learn repeatable or discriminative properties of each
place, a model-based approach can be used by learning over
the range of viewpoints and environment conditions in the
place’s training images, and matching a query to these mod-
els in the database [8, 12, 13]. Our proposed method is an
example of this second approach. Under changing environ-
ments, this approach is particularly effective at learning in-
variant features, such as over different times of the day [9]
or different seasons [ 1, 10]. However, if training images
covering the required range of environment conditions are
not explicitly available, then alternative approaches must be
adopted [16, 15].

Place recognition is closely related to the field of im-
age retrieval [17, 23, 3]. State-of-the-art image retrieval
methods typically involve extracting local features [14],
encoded with Bag-Of-Words (BOW) indexing for fast re-
trieval [17], followed by a more robust geometric veri-
fication stage based on a RANdom SAmple Consensus
(RANSAC) estimation of the Fundamental Matrix [6].
Whilst the RANSAC algorithm itself has been improved in
recent years for image retrieval applications [2, 4, 5, 20, 19],
it still allows for degenerate cases, whereby the best-fit
model is represented by a highly-unlikely arrangement of
local features in the physical scene, as in Figure 1.

Figure 1: Feature correspondences can form degenerate so-
lutions to a RANSAC-based estimation of the Fundamen-
tal Matrix, whereby their arrangement is geometrically un-
likely even though it satisfies the model.

We propose to use the 2D pairwise geometries of features
to ensure that any set of feature correspondence samples
drawn by RANSAC, loosely agree with each other in terms
of image distance and angle, forming a geometric clique.



Then, we require that all other correspondences forming a
consensus with this model must agree in 2D pairwise geom-
etry with the clique. Furthermore, extending the RANSAC
algorithm for model-based place recognition has received
little attention. We propose a method to learn these 2D con-
straints between features by observing the change in scene
appearance over a range of viewpoints, to create a genera-
tive model of pairwise relationships for each place.

Closely related to our work, the SCRAMSAC algorithm
[22] proposed a spatial consistency check on samples drawn
by RANSAC for model hypothesis. Here, all pairs of fea-
ture correspondences used to propose a model must have
similar image locations across the two images, otherwise
they are rejected. We extend this concept by enforcing
constraints on not just the distance, but also the angle, be-
tween features. We also show how the global geometric
consistency of each correspondence can be used to bias the
RANSAC sampling for faster convergence.

Learning 2D pairwise relationships across a range of
viewpoints has been addressed previously in [8], although
without incorporating the power of RANSAC-based 3D ge-
ometry. In [12], a RANSAC stage was forgone altogether
by embedding the pairwise geometries in an inverted index,
but performance was still limited compared to RANSAC
approaches.

2. Pairwise feature geometries

Correspondences in our framework are based on the vi-
sual word assignments of features. However, computa-
tion of pairwise geometries grows quadratically in the num-
ber of correspondences, which can be several hunderd per
image pair. We therefore initially eliminate most corre-
spondences by considering a fast, yet weak, Hough-voting
method based on [23] and similar to [18]. The top 100 cor-
respondences are then retained for further processing.

We now consider how pairwise feature geometries can
be used to eliminate correspondences that may conform to
the RANSAC 3D model, but are in fact highly unlikely due
to 2D constraints within the image. By computing the dis-
tances and angles between all features of correspondences
in the first image, and comparing these values to those re-
spective values in the second image, we can learn which
pairs of correspondences agree with each other based on
the 2D geometry. This not only allows for detection of false
positive correspondences that are apparently inliers accord-
ing to the estimated 3D model, but also allows for a faster
estimation of this model during the RANSAC algorithm, by
pre-emptively terminating a candidate model if the sample
correspondences do not agree in 2D geometry.

For two images ¢; and t», let us define m; as a correspon-
dence with features u; and uy in the two images, and m,; as
a second correspondence with features v; and vy, as in Fig-
ure 2. We also define d,,,,, and ,,,, as the distance and
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Figure 2: Notation for pairwise feature geometries. These
are used to check the 2D geometric consistency of corre-
spondences across two images.

angle between the two features in the first image, and simi-
larly 0., and v,,,,, for the second image. These are then
made scale-invariant and orientation-invariant, by dividing
0w, v, DY the scale of uy and subtracting the orientation of u;
from 1y, ., , respectively, and similarly for features u and
v9. Then, we compute the difference between the distance
and angle of two correspondences m; and m;, and assign
these to d(Smimj and dipy,;m; respectively.

2.1. Adjacency Matrix for Sample Rejection

For a set of n correspondences, let us now define a bi-
nary adjacency matrix A of size n x n. Each element A;;
is set to either O or 1, defining whether or not the pair of
correspondences m;, m; is geometrically consistent. This
consistency is determined by whether the distance and an-
gle differences both lie within specified thresholds dd, and
dy; respectively:

{

In this way, matrix element A; j 1s set to 1 if and only if
the correspondences m; and m; agree in both distance and
angle to an acceptable level. The values of dd; and d); are
free parameters and can be adjusted empirically, in reflec-
tion of both the range of expected viewpoints and the scene
structure. If viewpoints are narrow and the scene is close to
planar, then the allowable differences can be restricted by
much smaller thresholds whilst still accepting all true cor-
respondences.

The modified RANSAC algorithm based on the binary
adjacency matrix then proceeds as follows. On each itera-
tion, sets of sample correspondences are randomly selected,
as usual, for the 8-point algorithm [7]. In this case however,
after each sample is selected for a given set, the sample is
compared against all correspondences currently existing in
the set. If the sample is not consistent with any of these,
then the whole set is discarded, and a new random set is
selected. The reasoning behind this is that if any two cor-
respondences do not agree based on pairwise geometries,

1 if ddm,m; < doy N dbm,m; < dipy
0 otherwise

Aij = ey



then the subsequent estimated model will likely be degener-
ate in 2D image space even though it fits the 3D model. In
this way, only those sets of samples which form a geomet-
ric clique are actually processed to completion, offering an
additional boost in speed.

During model consensus, when the full set of correspon-
dences are verified against the estimated model, we again
ensure that each correspondence is consistent with the sam-
ple correspondences based on A. We experimented with
requiring that all inlier correspondences must be consistent
with each other, not just the sample correspondences, but
this required large thresholds of dd; and di, which in turn
tended to introduce false positive correspondences.

2.2. Biased Sampling

Thus far in the RANSAC algorithm, samples for model
estimation are chosen at random from the set of corre-
spondences, until an acceptable model estimation has been
achieved. However, if we can bias the sampling towards
those correspondences which we know in advance are more
likely to satisfy this final model, then the algorithm will con-
verge much faster because the best set of sample correspon-
dences will be chosen earlier. As such, we propose to use
the pairwise geometries to weight each correspondence in
this way, and bias the sampling accordingly.

A score «; is assigned to correspondence m;, by sum-
ming the elements in row ¢ of A, indicating the number of
correspondences which agree in pairwise geometry:

n
o = E Aij
j=1

Now, the value of « considers all correspondences inde-
pendently when computing the summation and inferring a
correspondence’s global geometric compatibility. However,
a more robust score would be gained from giving more im-
portance to those correspondences which themselves have
global compatibility. In this way, a false positive correspon-
dence, which happens to agree with only one other corre-
spondence, will not increase that correspondence’s score as
much as a true positive correspondence which agrees with
many other correspondences. As such, we define a second
correspondence score  as the summation over the row of
B as before, but with each element weighted by its own «
score:

2)

n
51 = Z aiAij 3)
j=1
Figure 3 shows the difference in using scores based on
a and . The strengths of « shown in 3a are in general
roughly reflective of the correspondences global geometric
compatibility, but some obvious inliers are assigned to a low
score, and similarly outliers to a high score. The strengths
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of 3 in 3b are a much better reflection, and create a very
strong division between inliers and outliers.

The weighted RANSAC algorithm then proceeds as fol-
lows. Correspondences are first ranked in order of their
score 3. Then, samples are drawn from a biased distribu-
tion, such that each correspondence has a probability of se-
lection related to its ranking. The biased distribution is cre-
ated by adding {n + 1 — [;} copies of correspondence m;,
where [; is the ranking of that correspondence, such that
each correspondence has one more copy in the pool of cor-
respondences than the next highest-ranked correspondence.
The remainder of the algorithm proceeds as before using B
to reject inconsistent samples.

If two images are of similar viewpoint as in Figure 3,
it would be acceptable to simply sample the top correspon-
dences based on their scores, without any random sampling.
However, this strategy rapidly degrades in performance as
the imaging conditions differ and the ratio of inliers-to-
outliers decreases. We also investigated weighting each cor-
respondence by its score rather than its ranking, but this
similarly placed too much emphasis on the top correspon-
dences and offered poor flexibility.

(b) Correspondence scores based on 3

Figure 3: Correspondence scores based on global compati-
bility with all other correspondences, where green indicates
a high score. The correspondence scores defined by 3 are a
much better reflection of global geometric consistency than
those defined by a.. Correspondences with higher scores are
then given more bias in the RANSAC sampling.

3. Generative Place Models

We now propose to build a generative model of a place’s
appearance to explicitly learn pairwise geometries individ-
ually for each scene, without having to decide on the pa-
rameters dd; and dip, empirically as before. If all images
captured of a place were superimposed on each other about
a common point, then the range of distances and angles be-
tween feature pairs represent the expected ranges if a further



image was captured of the place from anywhere within that
range of viewpoints. Thus, we can learn dé; and di; for that
particular place by simply observing the relative geometries
of feature pairs in the training images. However, if the set
of viewpoints in these images is too great, then dd; and d);
will be too large to offer discriminative capacity, and so the
first step is to decompose each place into smaller clusters of
images representing similar viewpoints.

3.1. Subscenes and Compound Images

Let us first define a database R of places, with each place
r € R assigned a set of training images ¢t € 7,. For each
place 7, a set of subscenes S, are established, with each sub-
scene s € S, assigned a subset of training images 75 C T;..
Each subscene s is then associated with a compound image
ts, which is a “synthetic” image formed as a composition
of the subscene’s training images. Each place is thus repre-
sented by several such compound images, one for each sub-
scene, and each of which is responsible for a distinct combi-
nation of viewpoint and illumination conditions as defined
by the subset’s training images.

Each compound image itself is based upon one of the
subscene’s training images denoted the central image, t,.
Then, for each subscene s, a set of landmarks X5 are gener-
ated by tracking features across the subscene’s training im-
ages, with each landmark representing the same real-world
point observed along the feature track, similar to [8, 12].
Each landmark is defined as either an internal or external
landmark, and embedded in the compound image accord-
ingly. Internal landmarks are those whose feature track con-
tains a feature in the central image, otherwise the landmarks
are classed as external. For the internal landmarks, the es-
timated location is simply the original location of the cen-
tral image’s feature from the landmark’s feature track. For
the external landmarks, we estimate an affine transforma-
tion between all images along the landmark’s feature track,
and the central image. The landmark’s position in the cen-
tral image is then taken as the median of all these trans-
formations. Note that these positions are not directly used
for our place recognition method, but are necessary for the
baselines to which we compare, and for subscene visualisa-
tion. For our method, the landmark positions are in fact a
range rather than a single point, the computation of which
will be discussed in Section 3.3.

To determine the scale and orientation of each land-
mark, the features in the feature track are first scaled and
rotated according to the image scale ratio and orientation
difference between the image containing the feature, and
the central image, and then the median is taken over the
track. The landmark scale and orientation is then taken as
the median across these adjusted features. Finally, each
landmark = € X is assigned an observation probability
p(z|s), reflecting the stability of the landmark across the
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(a) Internal landmarks (green) and external landmarks (red) are all
combined into a single compound image for each subscene. The
background image is the subscene’s central image, where the fea-
ture tracks of the internal landmarks all contain a feature within the
central image. External landmarks are embedded in the compound
image via an affine transformation.

p(xls)

(b) Each landmark is assigned an observation probability p(z|s),
reflecting the landmark’s stability across the subscene.

Figure 4: A typical compound image for a subscene, reflect-
ing landmark positions and observation probabilities.

subscene, defined as the number of images containing the
landmark’s feature track, divided by the total number of im-
ages in the subscene. This is then used to add further bias
to the RANSAC sampling stage, by giving more weight
to those feature-to-landmark correspondences who’s asso-
ciated landmarks are stable and hence likely to be true pos-
itive correspondences. To achieve this, we weighted each
correspondence’s ( score in Equation 3 by p(x|s) for that
landmark. Figure 4 shows the content of a subscene, with all
internal and external landmarks embedded in the compound
image, each with an associated observation probability.

3.2. Image Clustering

To cluster each place’s training images into a set of sub-
scenes, several methods exist including k-means clustering
[21], agglomerative clustering [24], and kernel vector quan-
tization [13]. Our framework is a special case for clustering
in that all training images representing a compound image
must have a valid affine transformation specifically with re-
spect to the central image, such that the positions of the
external landmarks can be determined. Furthermore, if we
want the generative pairwise geometries to cover the full
range of viewpoints in the training dataset, then every im-
age that has formed at least one affine transformation with



another image must be included, otherwise the particular
viewpoint for that image may be excluded from the model.
However, there is no optimum solution that will generate
clusters satisfying this constraint without including overlap
between clusters.

The proposed solution to achieving this particular struc-
ture aims to minimise this cluster overlap in a graph-cut
procedure, by pruning out large sets of similar images first
and repeatedly subdividing the scene until all images are a
member of at least one subscene. To do this, every image
is designated a score according to the number of images
with which it has formed an affine transformation, where
the number of feature correspondences between the two im-
ages is at least 15. To speed up the clustering stage, a weak
affine transformation was first estimated by the 4 DOFs
represented by each single correspondence, as proposed in
[18]. Then, the RANSAC stage with pairwise geometries
was run by sampling from inliers from the estimated affine
transformation. Once scores have been assigned to all im-
ages, the algorithm recursively chooses the image with the
highest score, and designates it as the central image for a
new subscene, which is then composed of this central im-
age and all images with which it forms an affine transforma-
tion. Every image in that subscene is then removed from the
list of available central images, because the particular view-
point of that image has now been included in the model.
The algorithm continues in this way until all images in the
dataset have been included in at least one subscene.

3.3. Pairwise landmark geometries

If we make the assumption that the query image falls
within the range of viewpoints represented by the sub-
scene’s training images, then the expected range of pairwise
landmark positions can be directly observed by overlaying
the training images on the subscene’s central image, and
noting all the positions of each pair of landmarks. Now,
for a subscene with n landmarks, explicitly learning the
pairwise distances and angles for every pair would result
in memory requirements of the order O(n?), and so this is
not a scalable solution. Instead, we propose to calculate the
ranges in x —y image space, rather than polar distance-angle
image space as before, and store these ranges as fixed image
positions on the central image, rather than storing ranges for
each landmark pair. In this way, pairwise geometry ranges
for landmarks are calculated at runtime by comparing the
extents of these = — y ranges, eliminating the large memory
footprint that would be required to store them offline.

We learn these geometry ranges by aligning each sub-
scene training image with the central image, and calculat-
ing the disparity between the two images in the distance and
angle between each landmark pair. First, we roughly scale
and rotate each training image with respect to the central
image, by taking the median of the scale ratios and orien-
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Figure 5: In order to learn the generative pairwise geome-
tries for a subscene, all training images must be aligned with
the subscene’s central image. This is achieved by first scal-
ing and rotating the training images accordingly, and then
“pivoting” the resulting image with respect to one of the
features in the central image, denoted the pivot feature. (a)
shows the central image, and (b), (c) and (d) demonstrate
the alignment process. In (b) and (c), the pivot feature is the
red feature, whereas in (d), the training image does not con-
tain this feature, and thus pivoting is via the blue feature.
In (e), the resulting range of landmark positions are shown
based on these alignments.

tations across all correspondences between the two images.
Then, we denote a pivot feature as a feature from the central
image’s set of features which has formed a correspondence
with a feature in the training image, i.e. the two features
share a feature track. The training image is then aligned
with the central image by translating and rotating all fea-
tures, such that the pivot feature and its correspondence are
located at the same position in the central image. Figure 5
illustrates this concept.

The choice of pivot feature is an important one in ensur-
ing a good image alignment. The first consideration is that
it is unlikely that a single feature in the central image will
form a correspondence with all of the subscene’s other train-
ing images. But a pivot feature must be available for each of
these images, such that every image in the subscene can be
aligned with the central image. The second consideration
is that we want to minimise the z — y ranges to help dis-
criminate between subscenes, whilst still accurately fitting
the generative model. If the subscene is perfectly planar and
we make an affine assumption about the camera projection



properties, then the © — y ranges would all be the same, re-
gardless of which pivot feature we choose. However, if the
subscene is planar except for one feature, and that feature is
chosen as the pivot feature, then the  — y ranges would be
much larger than if a planar feature was chosen as the pivot
feature.

In essence, we want to maximise the overall “planarity”
between the pivot feature and all other features to be
aligned. If we assume that a subscene is represented by
a dominant plane, with all landmarks spatially located at
some distance to that plane, we want the pivot feature to
be representative of a landmark that lies on this plane. To
achieve this, we rank features in the central image in order
of the number of correspondences which the feature forms
with the other images in the subscene. The rationale be-
hind this is that landmarks lying on a dominant plane are
much more likely to form correspondences across two im-
ages, due to the smaller discrepancy in relative image po-
sitions. After ranking features in this way, every training
image in the subscene is assigned the highest-ranked fea-
ture which forms a correspondence with that image, and the
image is aligned with the central image via this pivot fea-
ture.

3.4. Regularisation

One of the goals of learning generative pairwise land-
mark geometries in this way, is for every subscene to cover
the full range of viewpoints represented by its training im-
ages. However, this is only satisfied if every landmark is
tracked across each training image; otherwise, the partic-
ular viewpoint for that image is not represented when the
landmark’s position on the central image is estimated. This
may be acceptable when the estimated position is within the
landmark’s x — y range as determined by the other features
in the track, and hence the image’s viewpoint is already cov-
ered, but when the image represents a more unusual view-
point then it is not truly represented in a landmark unless
the landmark is tracked from that particular image.

We therefore propose to expand each landmark’s z — y
range on the central image to include those viewpoints
which have not been represented. First, let us consider the
landmark with the greatest number of features in its track,
and denote this the “dominant” landmark. We can make a
rough assumption that this landmark is represented by the
greatest range of viewpoints. If we now assume that all
landmarks lie on an affine plane, then the size of the z — y
range for each landmark should be the same if each land-
mark is represented by the same viewpoints. Therefore, we
can estimate the true x — y range of a landmark by scaling
it to the size of the dominant landmark’s range. In this way,
all landmarks cover roughly the same range of viewpoints
in the central image, regardless of how many viewpoints
are actually represented in the landmark’s feature track. If
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(b) The ranges adjusted with
respect to the dominant land-
mark

(c) The ranges adjusted with
respect to a scaling factor of
k=2

Figure 6: Generative pairwise landmark geometries are rep-
resented by x — y ranges in the compound image. The orig-
inal ranges in (a) are adjusted in (b) to account for land-
marks not being observed in all the subscene’s training im-
ages, and adjusted in (c) to allow for recognition outside the
range of viewpoints in these images. The most commonly-
used pivot feature is highlighted in blue in (a). Note that as
the landmarks move further from the pivot, the z — y ranges
increase due to non-planarity and perspective effects.

a landmark’s x — y range is already greater than that of the
dominant landmark, despite it having fewer features in its
track, then it can be assumed that this landmark is signif-
icantly out-of-plane with respect to the scene’s dominant
plane, which causes the large range of expected positions
on the central image. As such, we retain the original x — y
range for these landmarks as they are already greater than
the theoretical range if the scene was perfectly planar.

Whilst each subscene can then be considered represen-
tative of the viewpoints of its training images, the entire
set of subscenes in the database may still not represent all
viewpoints that could be encountered. If a query image is
captured from a viewpoint not represented by those in the
training images, then its landmarks will be observed at po-
sitions outside those reflected in the subscenes. Therefore,
we introduce a scaling factor k, which scales the x — y im-
age range for each landmark, relative to the adjusted range
we have just discussed. k acts as a free variable, the effects
of which are presented in Section 4.

Finally, when matching a query image to a compound
image, to compute compatibility between a query feature
pair and landmark pair, the relative displacement in the



query image must be within the relative displacement in the
compound image. Figure 6 illustrates these x — y displace-
ment ranges of a set of landmarks for a typical subscene.

4. Experiments

We evaluated our proposed method in terms of both the
image retrieval (Section 2) and place recognition (Section
3) applications. Our own dataset was compiled due to the
need for representation of a large number of distinct places,
together with a large number of training images per place,
necessary for building the generative scene models. Most
existing datasets consist of only a small number of images
per place, and are more suited to retrieval rather than recog-
nition applications. For our dataset, we used Flickr [1] to
acquire images of 50 well-known buildings, such as the Eif-
fel Tower and the Tower of London, with 500 images taken
per building. 10 of these images were than taken per build-
ing as query images for testing, with all other images for
training. Some of the images obtained from Flickr were
poor representations of the place of interest, such as being
severely occluded, or simply irrelevant, and it was ensured
that these images were not used as queries. All images had
the largest dimension set to 1000 pixels.

For the image retrieval application, we extracted SIFT
features [14] and used a BOW framework with 10k visual
words and soft assignment [17]. Based on the cosine sim-
ilarity score with tf-idf weighting, the top 100 databse im-
ages per query were passed on to geometric verification. For
the place recognition application, all database compound
images were considered for geometric verification, due to
the smaller number of images stored per place. For each
query image, database images were then ranked in order
of the number of inliers found to generate precision-recall
curves. In the place recognition application, only the com-
pound image with the top-ranked score across all of that
place’s compound images, was included in the precision-
recall scores. In this way, the precision at 100% recall is
the effective recognition rate across all places. Unless oth-
erwise specified, implementations of our method included
both the biased sampling and geometric clique check.

4.1. Baselines

We compared our geometric cliques method to two base-
lines for RANSAC-based geometric verification in the im-
age retrieval application. First, the Locally-Optimized
RANSAC (LO-RANSAC) method [2], and second, a
method inspired by the SCRAMSAC algorithm [22], which
we call the Spatial Consistency Check (SCC). In LO-
RANSAC, a second stage of sampling is conducted from
the inliers of a first stage of sampling, in increase toler-
ance to image noise. In SCC, a compatibility test is done
on correspondence pairs, similar to our method, except that
only pairwise distance is computed, ignoring angular in-
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formation. Both the two baselines use uniform sampling
rather than our proposed biased-sampling algorithm. Both
our method and SCC additionally use LO-RANSAC in their
pipeline, with all RANSAC implementations terminating at
an inlier probability threshold of 0.99.

For place recognition, we compared against two base-
lines for learning scene models from a set of training im-
ages. First, inspired by the method [21] (Iconic Images),
we retained the set of central images for each subscene and
matched directly to these. Second, inspired by the method
of [13] (Localised Landmarks), we matched directly to the
compound images for each subscene using the landmark po-
sitions as computed in Section 3.1. Both the place recogni-
tion baselines used our geometric cliques method for image-
to-image matching using the best empirically-gauged pa-
rameters for compatible pairwise geometries.

4.2. Results
4.2.1 Image Retrieval

For the image retrieval application, we first evaluated the
effect of varying the parameters dd; and di)y, i.e. the thresh-
olds on allowable distance and angle difference between
two feature correspondences for a pass in compatibility.
Rather than sweep the two parameters independently, we in-
stead calculated the distance and angle differences between
10k feature correspondences from our dataset based on a
standard LO-RANSAC method, ranked these values in or-
der of size, and determined the values at various percentiles.
Figure 7 shows how the mean Average Precision (mAP)
varies as a function of this percentile, p. A peak is found
at p = 80, such that 80% of all the 10k feature correspon-
dences would have passed as compatible at these values of
dd; and dv);, which were 35 pixels and 29 degrees, respec-
tively. Smaller values placed too harsh a restriction on the
inlier set of samples, whereas larger values allowed false
positive samples which created degenerate models. As p
approaches infinity, the algorithm effectively reverts to LO-
RANSAC because the thresholds do not impose any con-
straints. The values at p = 80% were then used for the
remainder of the experiments.

Figure 8 shows the precision-recall curves for our
method and both baselines, by averaging the precision-
recall scores of all query images. We see an improvement
in performance for our method over both baselines, with
better results than SCC owing to the involvement of both
angle and distance geometry in the pairwise compatibility
check. Mean average precision, over all query images, for
LO-RANSAC, SCC and our Geometric Cliques, are 0.546,
0.572 and 0.587. As with our method, the SCC results here
represent the best over a range of thresholds on the pairwise
feature distances.

The average time for image-to-image geometric verifi-
cation for LO-RANSAC, SCC and our Geometric Cliques
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Figure 7: The effect of increasing dd; and di; on the mean
Average Precision of our method in the image retrieval ap-
plication. p is the percentile at which these values are taken
from an existing set of geometries calculated from pairs of
inlier feature correspondences.
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Figure 8: Precision-recall curves for our image retrieval
method and the two baselines, averaged over all query im-
ages.

method was 48 ms, 22 ms and 12 ms respectively, with our
method faster than SCC due to both the stronger geometric
constraints and hence greater capacity to detect and early
reject degenerate cases, and the ability to bias the sampling
based on global consistency of correspondences. Whilst our
method requires greater time to extract the pairwise rela-
tionships on the query image (22 ms vs. 14 ms with SCC),
this is a fixed time and does not scale with the database.
Given very large datasets, the query time is of far more im-
portance in judging practical efficiency. Furthermore, our
implementation could be speeded up dramatically by dis-
cretising image space and reading pairwise geometries from
a lookup table.

4.2.2 Place Recognition

For the place recognition application, we evaluated the the
scaling factor k of the x — y ranges of landmarks. Figure 9
shows the effect of varying k on the mean Average Precision
of our method, where a peak is found at £ = 3. Similarly
to when varying dd; and di; before, k is a compromise be-
tween overfitting and underfitting, and its optimum value
is dependent on the scene structure, the range of viewpoints
available in the training images, and the range of viewpoints
expected in the query images.

Figure 10 then compares two implementations of our
method (with two values of scaling factor k) to the two
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Figure 9: The effect of landmark = — y range scaling factor
k on the mean Average Precision of recognition.

place recognition baselines. We see that whilst our method
performs well without any additional scaling (k = 1), its
performance degrades when a high recall is required, be-
cause many of the query images captured from unusual
viewpoints have RANSAC samples rejected that are in fact
true positives. The Average Precision of the Iconic Images,
Localised Landmarks, Geometric Cliques (k = 1) and Geo-
metric Cliques (k = 3) implementations were 0.733, 0.769,
0.789 and 0.803, respectively. The average time for geomet-
ric verification for these four methods was 67 ms, 81 ms,
20 ms and 28 ms, respectively, with our method offering
superior speed due to both early rejection of incompatible
samples, and biased sampling.
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Figure 10: Precision-recall curives for two implementations
of our place recognition method and the two baselines, av-
eraged over all query images.

5. Conclusions

In this paper, we have presented a new method for
RANSAC-based geometric verification by considering pair-
wise relationships between feature correspondences, and
ensuring that all correspondences that fit the 3D model are
also globally consistent in 2D geometry. We name this the
method of Geometric Cligques, and show how it can be used
in both an image retrieval and place recognition applica-
tion. We introduce a new dataset that provides a significant
number of training images per place, necessary for training
model-based place recognition systems, and we show how
our method outperforms similar baseline techniques both in
retrieval and recognition performance, and computational
efficiency in geometric verification.
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