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Abstract— This paper presents a new method for parallel-
jaw grasping of isolated objects from depth images, under
large gripper pose uncertainty. Whilst most approaches aim
to predict the single best grasp pose from an image, our
method first predicts a score for every possible grasp pose,
which we denote the grasp function. With this, it is possible
to achieve grasping robust to the gripper’s pose uncertainty,
by smoothing the grasp function with the pose uncertainty
function. Therefore, if the single best pose is adjacent to a
region of poor grasp quality, that pose will no longer be chosen,
and instead a pose will be chosen which is surrounded by a
region of high grasp quality. To learn this function, we train
a Convolutional Neural Network which takes as input a single
depth image of an object, and outputs a score for each grasp
pose across the image. Training data for this is generated by
use of physics simulation and depth image simulation with 3D
object meshes, to enable acquisition of sufficient data without
requiring exhaustive real-world experiments. We evaluate with
both synthetic and real experiments, and show that the learned
grasp score is more robust to gripper pose uncertainty than
when this uncertainty is not accounted for.

I. INTRODUCTION

Robot grasping is far from a solved problem. One chal-
lenge still being addressed is that of computing a suitable
grasp pose, given image observations of an object. However,
issuing commands to align a robot gripper with that precise
pose is highly challenging in practice, due to the uncertainty
in gripper pose which can arise from noisy measurements
from joint encoders, deformation of kinematic links, and
inaccurate calibration between the camera and the robot.

Consider attempting a grasp on the object in Figure 1a.
Given perfect control of a robot arm, the maximum grasp
quality across the object could be targeted (peak of blue
function). However, if the gripper misses its target, then in
this case it will achieve a very poor grasp; to the left, there
are unstable regions, and to the right, there is a part of the
object which would block the grasp and cause a collision.

To solve this, rather than predicting a single grasp, we
propose to learn a grasp function, which computes a grasp
quality score over all possible grasp poses, given a cer-
tain level of discretisation. Here lies our key novelty, and
this allows for the gripper’s pose uncertainty to then be
marginalised out, by smoothing the grasp function with a
function representing this uncertainty, to yield a robust grasp
function. In this way, the final grasp pose will target an area
of the object which no longer lies directly next to areas of
poor grasp quality, as shown in the right of Figure 1a.

To generate the grasp function, we train a Convolutional

Neural Network (CNN) to predict the grasp score for every
pose of a parallel-jaw gripper, with respect to an observed
depth image of an object. This is visualised in Figure
1b, whereby each line indicates a gripper pose. To satisfy
the need of CNNs for large volumes of training data, we
generate training pairs in simulation, by rendering synthetic
depth images of 3D meshes, and use a physics simulator to
predict the quality of grasps over the range of gripper poses.
Whilst this uncertainty could be incorporated directly into
the simulation, learning the grasp function enables different
arms to operate with just one set of simulations, and also
allows for incorporation of dynamic uncertainty if particular
arm configurations are known to have different uncertainties.
Furthermore, the grasp function could have broader use in the
context of grasp planning, when obstacles or arm kinematics
may prevent the achievement of some poses.
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(a) On the left, the gripper targets the pose corresponding to the
maximum of the grasp function. On the right, the grasp function is
smoothed by convolving it with the uncertainty function. By taking
the maximum of this robust grasp function, it is much less likely
that the robot will end up grasping in a region of poor grasp quality.

(b) Visualisation of the grasp function. Each line represents a
gripper pose, where the fingers start at the ends of the line and
move towards the centre of the line. The thickness of each line
indicates the grasp score for that pose.

Fig. 1: Introducing the role of the grasp function. In (a), the
grasp function is a function of horizontal displacement for
ease of visualisation, whereas the grasp function we learn
fully explores 2D space, as in (b).



II. RELATED WORK

In recent years, deep learning [4] and its computer vision
counterpart CNNs [5] have revolutionised the fields of object
recognition [27], object segmentation [28], and local feature
learning [23]. Consequently, these methods have also shown
to be successful in robotics applications. Robot localisation
is moving away from using hand-engineered features [29]
and towards deep learning features [31], active recognition
has achieved state-of-the-art performance by deep learning
camera control [2], deep reinforcement learning is enabling
end-to-end training for robot arm control [25], and even
autonomous driving has been tackled by similar learning-
based approaches [24].

For determining object grasp poses from images, use
of hand-engineered features still performs well in complex
cases such as dense clutter [30] or multi-fingered grasping
[17]. However, in simpler cases, grasp pose detection via
CNNs has achieved state-of-the-art solutions. One approach
to this has been to train on manually-labelled datasets, where
human labellers have determined the location of a suitable
grasp point on an image of an object. The Cornell grasping
dataset [7] for example, consists of RGB and depth images
with a parallel-jaw gripper pose defined in image coordinates.
In [6], a CNN is trained on this dataset by combining both
RGB and depth data into a single network, and predicting
the probability that a particular pose will be graspable, by
passing the corresponding image patch through the network.
This method was speeded up in [8] by passing the entire
image through the network rather than individual patches,
eliminating the time-consuming need to process multiple
patches for each frame.

One challenge with deep learning is the need for a very
large volume of training data, and the use of manually-
labelled images is therefore not suitable for larger-scale
training. One alternative approach, which we also adopt, has
been to generate training data in simulation, and attempt
to minimise the gap between synthetic data and real data.
A popular example is the GraspIt! simulator [3], which
processes 3D meshes of objects and computes the stability
of a grasp based upon the grasp wrench space. Whilst
these methods do not incorporate dynamic effects which
are typically involved in real grasping, prediction of static
grasps can be achieved to a high accuracy by close analysis
of the object shape. In [9], this simulation was used to
predict the suitability of a RGBD patch for finger locations
in multi-fingered grasping, together with the suitability of
each type of hand configuration. The work of [10] used
a similar static grasp metric and considered uncertainty in
gripper pose, object pose, and frictional coefficients. In [32],
grasping in clutter was achieved by using a static stability
heuristic, based on a partial reconstruction of the objects.

Static metrics for generating training data have their
limitations though, due to the ignorance of motion as the
object is lifted from the surface. In [11], [15], [16], it
has been shown that dynamic physics simulations offer a
more accurate prediction of grasp quality than the standard

static metrics. Furthermore, [11] illustrated how good-quality
grasps predicted by physics simulations are highly correlated
with those predicted by human labellers.

One final approach to generating training data for deep
learning is to do so with real-world experiments on a real
robot. It was shown in [12] that a reinforcement learning
approach can achieve effective results by testing grasps on a
real platform, although training time was several weeks and
thus the scalability is of great limitation. [22] then scaled
this up from weeks to months, and also used multiple robots
in parallel to learn a form of visual servoing, to predict
when a moving gripper is in a suitable pose to grasp the
object currently between the gripper’s jaws. We avoid these
approaches due to their lack of scalability and flexibility to
challenges more complex than simple parallel-jaw grasping,
and investigate how well a simulation can model real-world
behaviour.

For parallel-jaw grasping as in our work, all the prior solu-
tions fall into one of three categories: regressing the optimum
grasp from an entire image, regressing the optimum grasp
from a patch, or assigning a grasp quality score to patch. In
this paper, we present the first work, to our knowledge, which
effectively follows the third approach, but does so directly
from a single image without processing individual patches,
and hence achieving real-time grasping. This prediction of
grasp quality scores over the entire image then allows us to
incorporate gripper pose uncertainty during online operation,
by smoothing the grasp quality score distribution with this
uncertainty.

III. DEFINING A TARGET POSE

The task is to grasp a single isolated object with a parallel-
jaw gripper, by observing a depth image of the object from a
single view and computing an optimum pose for the gripper
to be sent to, as depicted in Figure 2. We follow the trend in
this setup [6], [8], [12], [22] by constraining the gripper to a
perpendicular orientation with respect to a flat table surface
upon which the object is resting. Grasps are then executed at
a constant height such that the gripper’s tips are 1mm above
the surface at the lowest point in the grasp. The remaining
parameters to be learned which define the grasp pose, are
therefore the translational position on the surface, and the
rotation of the gripper with respect to the surface’s normal.

Given that the target gripper pose is computed through
image observations, we first define these free parameters
of the target pose in terms of image coordinates. In our
experiments, we rigidly mount a depth camera onto the wrist
of the robot arm, although this could instead be achieved by
additional apparatus as in [8], [12]. The camera is positioned
at a fixed height from the surface, and with viewing direction
parallel to the surface’s normal. By calibrating this camera
with respect to the robot, a target pose in the robot frame
can therefore be computed and executed. In these image
coordinates, we denote the target pose as p = {u, v, θ},
where u and v are the horizontal and vertical translations of
the gripper’s centroid relative to the centre of the image, and
θ is the rotation of the gripper about the image’s z-axis, as
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Fig. 2: The gripper’s target pose is defined in image coor-
dinates, with a depth camera mounted on the robot’s wrist.
This pose is then transformed into the robot’s frame via a
calibration between the camera and the gripper.

shown in Figure 2. Given the static transformation between
the camera frame and the gripper frame, we can transform
a target pose in image coordinates to a target pose in the
robot’s frame by a sequence of transformations:

TRP = TRG TGC TCI p, (1)

where TRP is the target gripper pose in the robot frame,
TRG is the transformation between the robot frame and the
starting gripper frame (when the image was captured), TGC
is the calibrated transformation between the gripper frame
and the camera frame, and TCI is the transformation between
2D image coordinates and the 3D camera frame.

To make training and inference tractable, the space of
gripper poses defined by p is now discretised into space Q,
such that each element q ∈ Q represents a unique gripper
pose (one line in Figure 4c). Choice in the granularity of
this discretisation is a compromise between precision in
target pose prediction, and tractability of training. We chose
a discretisation of 1cm in translation on the table surface,
corresponding to a 14 pixels in the 640 × 480 images, and
30◦ in rotation. The task now becomes to predict, from an
observed depth image, a single grasp quality score for each
of these 8712 possible grasp poses in Q, to yield the overall
grasp function f(q).

IV. GENERATING TRAINING DATA

Prediction of these grasp quality scores is achieved by
training a CNN to take as input a single depth image, and

to output a score for each grasp pose. CNNs require a huge
amount of training data to fully exploit their capacity to learn
complex functions, whilst avoiding overfitting. As such, real-
world experiments are not scalable enough to generate the
required extent of data to learn the grasp function. Instead,
we generate all our training data in simulation, by rendering
depth images using OpenGL’s depth buffer, and using a
physics engine to simulate grasps. We capitalise on the recent
ModelNet dataset [1], a large-scale collection of 3D mesh
models representing a range of common objects which has
been collated specifically for deep learning experimentation.
The use of mesh models is particularly suitable for our
application, for two reasons. First, synthetic depth images
can be easily rendered from meshes, which are much more
realistic than synthetic RGB images, as these often struggle
to model illumination and texture with sufficient realism.
Second, mesh models allow us to directly attempt grasps
over the entirety of the model using physics simulation.

A. Physics Simulation

We use the Dynamic Animation and Robotics Toolkit
(DART) [26] for physics simulation. DART was chosen
over other static simulators such as with GraspIt! [3], due
to the importance of dynamics modelling in predicting
the behaviour of real-world grasps, which typically involve
movement after a grasp is executed. DART was also chosen
because of its suitability for robotics applications from its
hard constraints imposed on the resolving of forces, its sup-
port of mesh models for collision detection, and its intuitive
use of generalised coordinates for kinematics modelling.
Whilst DART is slower than physics engines more suited
to computer graphics, such as Bullet, its greater accuracy
in modelling precise, real-world behaviour is imperative for
an application such as grasp simulation. However, a range
of alternative physics simulators also exist which could be
interchangeable for the physics simulation [18].

Using DART, we constructed a simple parallel-jaw gripper,
consisting of a ”hand” which is free to move kinematically,
and two ”fingers” which are controlled dynamically by
torque control on a revolute joint. We then constructed a
flat surface, upon which each object mesh is placed. To
execute a grasp, the hand is positioned in a specified pose
on the surface, after which a constant force is applied to
the finger joints for a fixed time. Subsequently, the hand is
raised upwards by 20 cm at a constant speed of 0.1 m/s.
The dimensions of the gripper were matched to that of our
Kinova MICO arm, with a fixed distance of 10cm between
fingers. Figure 3 demonstrates the simulation world for a
executing a single grasp attempt.

Due to imperfections in the physics simulator, physical
values including the applied finger torque, the coefficients of
friction, and the object density, were all manually tweaked
to yield an acceptable level of grasping realism over a range
of objects. Whilst this would be an obvious flaw if these
properties were being modelled, in our case the important
output is the relative grasp quality over different poses – not
the absolute magnitude of torque required.



Fig. 3: We use physics simulation to execute parallel-jaw
grasps upon a 3D object mesh. The above shows a successful
grasp, whereby the object is lifted off the surface by 20cm.
Simulated grasps are attempted on the object over all gripper
poses.

B. Image Simulation

To simulate a depth image of the object model, images
were rendered using OpenGL’s depth buffer. A noise model,
inspired by [19], was then applied to simulate a true image
from the Primesense Carmine 1.09 camera used in our
experiments. This noise model consists of two Gaussian
components: random shifting of pixels in a local region to
simulate noise in the localisation of each depth measurement,
and further random noise to simulate noise in the depth mea-
surements themselves. For a ground truth depth of z(u, v) at
pixel location (u, v), the depth after applying the model is
defined as:

ẑ(u, v) = z(u+N (0, σ2
p), v +N (0, σ2

p)) +N (0, σ2
d), (2)

where σp is the standard deviation of noise in pixel
localisation (set to 1 pixel in our experiments), and σd is
the standard deviation of noise in depth estimation (set to
1.5mm in our experiments). This noisy image is then used
as input for training the CNN. Figure 4b illustrates the effect
of applying this noise model to a synthetic depth image.

C. Grasp Synthesis

A ground truth grasp function is then calculated for every
training object, by computing the grasp quality score f(q) for
every discrete pose q. Each object was placed at a position
in the centre of the camera image, and grasp attempts were
executed for each pose. If the object was successfully lifted
fully off the surface to a height of 20cm, then that attempt
was labelled with a score of 1. Each pose was assigned five
grasp attempts, with each defined by a uniformly random
draw from the continuous space of poses encompassing that
discrete pose. The overall score for the pose was then the
average over all five attempts. Adding this small random
noise allows a more informative score to be assigned to the

pose from a range of 0 to 1 in 0.2 intervals, rather than a
less informative score of either 0 or 1. Figure 4c presents a
visualisation of these scores across all poses for one training
object. As can be seen, higher scores are assigned to those
areas of the image corresponding to stable areas for grasping.

Objects were selected from the ModelNet database [1] for
training, covering a range of shapes such as airplane, chair,
dish and hammer. For each model, rather than placing it
upright in its standard pose, a random orientation was chosen.
This is because rather than learning about object identity or
semantics, pure grasping is more concerned with learning
an understanding of object shape, and enriching the training
images with observations from a wide range of unusual
shapes is much more important than learning pose-specific
grasps. Furthermore, we randomly scaled each object model
to within a range of appropriate dimensions for graspable
objects, with the maximum dimension constrained to being
between 5cm and 20cm.

V. LEARNING THE GRASP FUNCTION

To learn a mapping between a depth image and the
predicted grasp score f(q̂), we train a CNN to output
a score for every pose q̂ ∈ Q over the image. Recent
developments in deep learning now allow for networks which
can learn very complex functions with high-dimensional
outputs. We exploit this to enable prediction of a grasp
score as a distribution over poses, rather than, for example,
just predicting the single pose with the maximum score, as
is typical with traditional learning-based grasping solutions.
However, whilst deep networks can be trained for direct
regression [20], their performance is superior when trained
for classification, and so we form the training problem as
one of classifying each pose in terms of its score.

We retain the discretisation of scores already existing due
to attempting five grasps per pose, and train the network
to predict which of the six possible scores 0, 0.2, 0.4, 0.6,
0.8, 1.0, the pose should be assigned to. To achieve this, a
network structure similar to that of AlexNet [5] is adopted,
with five convolutional layers adjoined by max pooling, and
two fully-connected layers. The network takes as input a
depth image, and then outputs a single value for each of the
six scores. Figure 5 illustrates the structure of the network,
and how the output corresponds to the learned grasp function.

The network is trained by attempting to reduce the differ-
ence, across all images and all poses, between the ground
truth score class y (y ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}), and the
score class predicted by the network ŷ = max(ŷ). This is
achieved by minimising the following loss function:

L =

B∑
i

M∑
j

N∑
k

δ(k, yij) · softmax(ŷij)
k. (3)

Here, B is the number of training images in a mini-
batch, M is the number of poses output by the network
(= |Q| = 8712), and N is the number of possible scores
which the pose can be classified as (= 6). yij therefore
represents the ground truth score value for the ith image



(a) Simulated depth image (b) Simulated depth image after
adding the noise model

(c) Visualisation of the grasp
function

(d) Visualisation of the grasp
function at a coarser scale

Fig. 4: Illustrating the grasp function during training. (a) shows the ground-truth synthetic depth image, and (b) shows a
zoomed-in image after applying the noise model. (c) then visualises the grasp function overlayed on the (zoomed-in) depth
image which was computed by the physics simulation. Each line represents a grasp position and direction, and the line
thickness indicates the score for that pose. (d) then shows a similar visualisation to (c), but with a coarser distribution of
poses, although the discretisation in (c) is the true level of granularity used in our work.

image resolution        240x240                  56x56   14x14   14x14 14x14 7x7                   512x1    512x1

number of channels 1                           64        128       128       128      256

kernel size 5x5                         3x3       3x3 3x3 3x3

Input Image                    Convolutional Layers               Fully-Connected          Output Grasp                  Grasp Score Visualisation in Image

low score                  high score

Layers                      Score

max

max

max
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Fig. 5: The structure of our CNN used for predicting the grasp function. Each input image is mapped onto a set poses,
where each pose is represented by 6 nodes, one for each level of score (0, 0.2, 0.4, 0.6, 0.8, 1.0). The visualisation on the
right shows the strength of each pose, by taking the maximum of these six score levels.

and the jth gripper pose, and ŷij is a length-N vector
corresponding to the output from the CNN for this pose.
The indicator function δ(k, yij) is equal to 1 iff the score
yij is equal to k, and equal to 0 otherwise. As is standard
in neural network classification, the softmax function is used
here rather than the L1 or L2 norm, because only the relative
values of the scores are important, not their absolute values.
This is defined by:

softmax(ŷij)
k =

eŷ
k
ij∑N

l e
ŷlij
, (4)

Training was done with gradient descent on mini-batches,
using the TensorFlow library [21].

VI. GRASP EXECUTION
During grasp execution on a real robot, the depth image is

first preprocessed to remove pixels which have zero values,
as a consequence of imperfect sensing. This is achieved by
replacing those pixels with the nearest non-zero pixel, or if
there are several within a given radius, the average of these.
Figure 6 illustrates this effect.

The network then takes this processed depth image, and
outputs a grasp function, predicting the quality of each
gripper pose if a grasp was attempted thereby. Now, we
assume that after attempting to send the gripper to a target

(a) Observed real depth image (b) After replacement of “zero”
pixels with an estimate of the
surrounding depth.

Fig. 6: During inference, each captured depth image is
preprocessed by filling in the “zero” pixels, which are a result
of depth shadows, and bodies which do not reflect infra-red
light well.

pose q, the actual pose achieved q̂ is defined probabilistically
by a covariance matrix Σ representing the gripper’s pose
uncertainty, such that q̂ ∼ N (q,Σ). This uncertainty is
defined within the (u, v) plane over which the grasp function
is computed. During grasp planning, the pose uncertainty is
then marginalised out by convolving the grasp function with
the probability density function of the achieved true gripper
pose given this uncertainty. Effectively, this is performed by



σθ=10 20 30 40

Method σuv=5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Centroid 0.767 0.732 0.689 0.638 0.742 0.716 0.669 0.620 0.730 0.698 0.654 0.61 0.703 0.639 0.648 0.587
Best Grasp 0.832 0.789 0.720 0.612 0.813 0.772 0.699 0.587 0.800 0.767 0.697 0.555 0.753 0.740 0.655 0.548

Robust Best Grasp 0.838 0.813 0.780 0.756 0.828 0.801 0.763 0.697 0.801 0.779 0.754 0.688 0.767 0.768 0.731 0.656

TABLE I: Simulation results for the three methods over a range of gripper pose uncertainties. Numbers represent the
percentage of objects which were successfully grasped. Uncertainties σθ is in degrees, whilst σuv is in mm.

smoothing the grasp function in 3-dimensions (u, v, θ), with
a kernel corresponding to a Gaussian distribution, whose co-
variance matrix is that given by the gripper pose uncertainty.
Finally, trilinear interpolation is performed over pose space
(u, v, θ) to achieve precision beyond the pose discretisation
level, and the maximum of this final distribution is the pose
to which the gripper is sent.

VII. EXPERIMENTS

To train the network, 1000 objects were randomly selected
from the ModelNet dataset of 3D object meshes [1] and
processed by the simulator. This generation of training data
took roughly one week to complete, at an average time
per object of about 10 minutes. Whilst the object models
were all placed directly beneath the gripper during physics
simulation, we augmented the training data to allow for
robustness to camera orientation. To achieve this, for each
training image, we randomly rotated about θ and randomly
shifted about (u, v) to achieve 1000 new augmented images
per original image. The associated grasp score for each
augmented image can be easily calculated by transforming in
the same way. To train the CNN, we pre-trained the weights
for classification of the ModelNet40 datasest [1] before
tuning the network towards learning the grasp function.

For validation of our approach, we conducted experiments
in both simulation with synthetic data, and with real-world
grasping on a robot platform. Whilst the real-world experi-
ments investigate how well our synthetic training adapts to
real data, the simulation experiments evaluate our method
on both a much larger dataset, and over a much larger
range of parameters, than could be achieved with real-world
experiments.

A. Simulation

Experiments in simulation were carried out by using a sim-
ilar setup as during data collection. 1000 further objects were
randomly selected from the ModelNet dataset for testing. We
then tested the trained network on its ability to predict good
grasps for each of the test models, over a range of pose
uncertainties. For each test model, the object was placed
on the surface at a random position and orientation within
the camera’s field of view. The synthetically-rendered depth
image, after applying the noise model, was then processed
by the CNN to yield a grasp score for every pose, which
was then convolved with the gripper’s pose uncertainty to
yield a robust grasp score for every pose. The gripper was
then sent to the pose corresponding to the maximum over
these scores, and a grasp was attempted. As with training,

the grasp was scored as successful if the object remained
within the gripper after it had moved to a height of 20cm
from the surface.

We compared our method to two baselines. First, Cen-
troids, whereby the target gripper pose is that of the centroid
of the image, with the gripper orientated perpendicular to
the dominant direction, calculated via a PCA decomposition.
Second, Best Grasp, whereby the target pose is that of the
maximum from our learned grasp function. Then, our method
Robust Best Grasp, corresponds to the maximum of the
smoothed grasp function, which takes into account the pose
uncertainty of the gripper by convolving the two functions.
We experimented with varying levels of uncertainty in the
gripper pose, by defining a diagonal covariance matrix, and
setting the standard deviations in (u, v) and θ to σuv and σθ
respectively. Based on this uncertainty and the target pose, a
random pose was sampled for the true pose to be achieved
by the gripper.
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Fig. 7: Plotting the data in Table I for an orientation
uncertainty σθ of 10 degrees.

Table I shows the results for all three methods over a
range of pose uncertainty parameters. We see that as the
uncertainty increases, both in terms of (u, v) and θ, the
performance of each method degrades, as expected. Our
method consistently outperforms the other methods, and
the difference is particularly prominent at high levels of
uncertainty. Figure 7 shows the grasp success rate at a fixed
orientation uncertainty of 10 degrees, whilst the uncertainty
in (u, v) is varied. We see that our Robust Best Grasp method
performs similarly to the Best Grasp method at a low level
of uncertainty, but as the uncertainty increases, Best Grasp
begins to result in poor grasps when only the maximum of the
score function is taken without consideration of uncertainty.



Fig. 8: Our experimental setup for real-world grasping val-
idation. The Kinova MICO arm has a Carmine 1.09 depth
camera rigidly mounted to its wrist. The objects are then
placed beneath the arm, within the field-of-view of the
camera.

Interestingly, at very high levels of uncertainty, the Best
Grasp method actually performs worse than the Centroid
baseline, suggesting that when the gripper pose is highly
unreliable, grasping the centroid of an object is a better
strategy than attempting to pin point an optimum grasp.

B. Real-World Grasping

To test how well our synthetic training data adapts to real-
world robotics, both in terms of the synthetic depth images
and the physics simulation, we conducted experiments on
our Kinove MICO arm, as shown in Figure 8. We collated a
set of 20 everyday objects, covering a broad range of sizes,
shapes, and frictional coefficients, as displayed in Figure 9.
Experiments were then conducted by placing each object at
five random positions and orientations within a graspable
area of the table upon which the robot was mounted. After
processing the depth image with the network, kinematic
controls were sent for the targeted grasp pose. As before,
a grasp was counted as successful if it was lifted off the
table to a height of 20cm.

We also experimented with varying the gripper pose un-
certainty, First, we measured the true uncertainty of our arm,
by sending commands to a variety of poses and recording the
range of achieved poses. In practice, this could be achieved
by a more thorough evaluation of the joint angle encoders
to yield a more informative covariance matrix rather than
simply a diagonal one. The uncertainty of our arm was
measured to be σuv = 6.2 pixels after transforming back into
image space, and σθ = 4.7 degrees. Then, we increased the
uncertainty to σuv = 20 and σθ = 15 for further experiments.

Table II shows the results for the real-world experi-
ments. We see that our robust method outperforms the two
competing methods at the true pose uncertainty, and after
increasing this uncertainty the relative performance of our
method increases even further, as we saw during the synthetic

Fig. 9: The set of 20 everyday objects used to evaluate our
method on real-world grasping with a robot arm.

Method σuv=6.2, σθ=4.7 σuv=20, σθ=15

Centroid 0.752 0.648
Best Grasp 0.780 0.624

Robust Best Grasp 0.803 0.701

TABLE II: Real-world grasp success rates for the three
implemented methods, for two different sets of pose uncer-
tainties. Uncertainties σθ is in degrees, whilst σuv is in mm.

experiments. Again, when pose uncertainty is very high, we
see that the Centroid method performs better than simply
taking the maximum across the grasp function.

Figure 10 then shows how increasing the uncertainty of
the gripper pose affects the targeted grasp pose based on
our robust method. With low uncertainty, the best pose is
often at a stable grasp position as close to the centre of the
object as possible. Then, as the uncertainty increases, the best
pose tends to be repelled by regions of high object mass, to
avoid any collisions with the object which might arise due
to imprecise arm control. With very large uncertainty, the
optimum grasp pose is often simply directly in the middle
of a long, thin part of the object, regardless of whether this
is close to the object’s centre of mass. Finally, Figure 11
shows some example grasps executed by our method using
the measured uncertainty of the robot.

VIII. CONCLUSIONS

In this work, we have developed a method for predicting
a grasp quality score over all grasp poses, which we call the
grasp function. We investigated generating synthetic training
data using physics simulation and depth image simulation,
and using a CNN to map a depth image onto this grasp func-
tion. After convolving this grasp function with the gripper’s
pose uncertainty, we have shown that the pose corresponding
to the maximum of this smoothed function is superior to the
maximum of the original grasp function, both in synthetic
and real-world experiments.
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Fig. 10: Demonstrating the effect of increasing gripper pose
uncertainty. The image on the left shows an RGB observation
of the object, with the three images towards the right
showing the depth image. Each column represents a distinct
gripper pose uncertainty which is assumed by the method,
and used to smooth the predicted grasp function. The red
line then shows the pose corresponding to the maximum
of this smoothed grasp function, after performing trilinear
interpolation.

Fig. 11: Examples of stable grasps achieved by our method.

The use of physics simulators and synthetic depth images
has great capacity for extending this work to more complex
tasks which also require large training datasets. For example,
increasing the number of degrees of freedom in gripper
pose, to incorporate height and angle-of-attack, would enable
a greater range of grasps to be executed. However, with
data generation already taking a week to complete, this
would require a more refined selection of which simulations
to process, and future work will investigate using active
learning methods to enable the required scalability.
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