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Abstract. For early diagnosis of malignancies in the gastrointestinal
tract, surveillance endoscopy is increasingly used to monitor abnormal
tissue changes in serial examinations of the same patient. Despite suc-
cesses with optical biopsy for in vivo and in situ tissue characterisa-
tion, biopsy retargeting for serial examinations is challenging because
tissue may change in appearance between examinations. In this paper, we
propose an inter-examination retargeting framework for optical biopsy,
based on an image descriptor designed for matching between endoscopic
scenes over significant time intervals. Each scene is described by a hierar-
chy of regional intensity comparisons at various scales, offering tolerance
to long-term change in tissue appearance whilst remaining discrimina-
tive. Binary coding is then used to compress the descriptor via a novel
random forests approach, providing fast comparisons in Hamming space
and real-time retargeting. Extensive validation conducted on 13 in vivo

gastrointestinal videos, collected from six patients, show that our ap-
proach outperforms state-of-the-art methods.

1 Introduction

In gastrointestinal (GI) endoscopy, serial surveillance examinations are increas-
ingly used to monitor recurrence of abnormalities, and detect malignancies in the
GI tract in time for curative therapy. In addition to direct visualisation of the
mucosa, serial endoscopic examinations involve the procurement of histological
samples from suspicious regions, for diagnosis and assessment of pathologies. Re-
cent advances in imaging modalities such as confocal laser endomicroscopy and
narrow band imaging (NBI), allow for in vivo and in situ tissue characterisa-
tion with optical biopsy. Despite the advantages of optical biopsy, the required
retargeting of biopsied locations, for tissue monitoring, during intra- or inter-
examination of the same patient is challenging.

For intra-examination, retargeting techniques using local image features have
been proposed, which include feature matching [1], geometric transformations [2],
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Fig. 1. A framework overview. Grey arrows represent the training phase using diagnosis
video while black arrows represent the querying phase in the surveillance examination.

tracking [3, 4], and mapping [5]. However, when applied over successive exami-
nations, these often fail due to the long-term variation in appearance of tissue
surface, which causes difficulty in detecting the same local features. For inter-
examination, endoscopic video manifolds (EVM) [6] was proposed, with retar-
geting achieved by projecting query images into manifold space using locality
preserving projections. In [7], an external positioning sensor was used for retar-
geting, but requiring manual trajectory registration which interferes with the
clinical workflow, increasing the complexity and duration of the procedure.

In this work, we propose an inter-examination retargeting framework (see
Fig.1) for optical biopsy. This enables recognition of biopsied locations in the
surveillance (second) examination, based on targets defined in the diagnosis
(first) examination, whilst not interfering with the clinical workflow. Rather
than relying on feature detection, a global image descriptor is designed based
on regional image comparisons computed at multiple scales. At the higher scale,
this offers robustness to small variations in tissue appearance across examina-
tions, whilst at the lower scale, this offers discrimination in matching those tissue
regions which have not changed. Inspired by [8], efficient descriptor matching is
achieved by compression into binary codes, with a novel mapping function based
on random forests, allowing for fast encoding of a query image and hence real-
time retargeting. Validation was performed on 13 in vivo GI videos, obtained
from successive endoscopies of the same patient, with 6 patients in total. Ex-
tensive comparisons to state-of-the-art methods have been conducted to demon-
strate the practical clinical value of our approach.

2 Methods

2.1 A Global Image Descriptor for Endoscopic Scenes

Visual scene recognition is often addressed using keypoint-based methods such
as SIFT [9], typically made scalable with Bag-of-Words (BOW) [10]. However,
these approaches rely on consistent detection of the same keypoint on different
observations of the same scene, which is often not possible when applied to
endoscopic scenes undergoing long-term appearance changes of the tissue surface.
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Fig. 2. (a) Obtaining an integer from one location; (b) Creating the global image
descriptor from all locations using spatial pyramid pooling.

In recent years, the use of local binary patterns (LBP) [11] has proved popular
for recognition due to its fast computational speed, and robustness to image
noise and illumination variation. Here, pairs of pixels within an image patch are
compared in intensity to create a sequence of binary numbers. We propose a
novel, symmetric version of LBP which performs 4 diagonal comparisons within
a patch to yield a 4-bit string for each patch, representing an integer from 0 to
15. This comparison mask acts as a sliding window over the image, and a 16-bin
histogram is created from the full set of integers. To offer tolerance to camera
translation, we extend LBP by comparing local regions rather than individual
pixels, with each region the average of its underlying pixels, as shown in Fig.2(a).

To encode global geometry such that retargeting ensures similarity at mul-
tiple scales, we adopt the spatial pyramid pooling method [12] which divides
an image into a set of coarse-to-fine levels. As shown in Fig.2(b), we perform
pooling with three levels, where the second and third levels are divided into 2×2
and 4×4 partitions, respectively, with each partition assigned its own histogram
based on the patches it contains. For the second and third levels, further over-
lapped partitions of 1 × 1 and 3 × 3 are created to allow for deformation and
scale variance. For patches of 3×3 regions, we use patches of 24×24, 12×12 and
6×6 pixels for the first, second and third levels, respectively. The histograms for
all partitions over all levels are then concatenated to create a 496-d descriptor.

2.2 Compressing the Descriptor into a Compact Binary Code

Recent advances in large-scale image retrieval propose compressing image de-
scriptors into compact binary codes (known as Hashing [8, 13–15]), to allow for
efficient descriptor matching in Hamming space. To enable real-time retarget-
ing, and hence application without affecting the existing clinical workflow, we
similarly compress our descriptor via a novel random forests hash. Furthermore,
we propose to learn the hash function with a loss function, which maps to a
new space where images from the same scene have a smaller descriptor distance,
compared with the original descriptor.

Let us consider a set of training image descriptors {xi}
n

i=1 from the diagnosis
sequence, each assigned to a scene label representing its topological location,
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where each scene is formed of a cluster of adjacent images. We now aim to
infer a binary code of m bits for each descriptor, by encouraging the Hamming
distance between the codes of two images to be small for images of the same
scene, and large for images of different scenes, as in [8]. Let us now denote Y as
an affinity matrix, where yij = 1 if images xi and xj have the same scene label,
and yij = 0 if not. We now sequentially optimise each bit in the code, such that
for r-th bit optimisation, we have the objective function:

min
b(r)

n
∑

i=1

n
∑

j=1

lr (br,i, br,j; yij) , s.t. b(r) ∈ {0, 1}
n
. (1)

Here, br,i is the r-th bit of image xi, b(r) is a vector of the r-th bits for all
n images, and lr (·) is the loss function for the assignment of bits br,i and br,j
given the image affinity yij . As proved in [8], this objective can be optimised by
formulating a quadratic hinge loss function as follows:

lr (br,i, br,j; yij) =

{

[

0−D
(

br
i ,b

r
j

)]2
, if yij = 1

[

max
(

0.5m−D
(

br
i ,b

r
j

)

, 0
)]2

, if yij = 0
(2)

Here, D
(

br
i ,b

r
j

)

denotes the Hamming distance between bi and bj for the
first r bits. Note that during binary code inference, the optimisation of each bit
uses the results of the optimisation of the previous bits, and hence this is a series
of local optimisations due to the intractability of global optimisation.

2.3 Learning Encoding Functions with Random Forests

With each training image descriptor assigned a compact binary code, we now
propose a novel method for mapping {xi}

n

i=1 to {bi}
n

i=1, such that the binary
code for a new query image may be computed. We denote this function Φ (x),
and represent it as a set of independent hashing functions {φi (x)}

m

i=1, one for
each bit. To learn the hashing function φi of the ith bit in b, we treat this as a
binary classifier which is trained on input data {xi}

n

i=1 with labels b(i).
Rather than using boosted trees as in [8], we employ random forests [16],

which are faster for training and less susceptible to overfitting. Our approach
allows for fast hashing which enables encoding to be achieved without slowing
down the clinical workflow. We create a set of random forests, one for each
hashing function {φi (x)}

m

i=1. Each tree in one forest is independently trained
with a random subset of {xi}

n

i=1, and comparisons of random pairs of descriptor
elements as the split functions. We grow each binary decision tree by maximising
the information gain to optimally split the data X into left XL and right XR

subsets at each node. This information gain I is defined as:

I = π (X)−
1

|X |

∑

k∈{L,R}

|Xk|π (Xk) (3)

where π (X) is the Shannon entropy: π (X) = −
∑

y∈{0,1} py log (py). Here, py is
the fraction of data in X assigned to label y. Tree growth terminates when the
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Table 1. Mean average precision for recognition, both for the descriptor and the entire
framework. Note that the results of hashing-based methods are at 64-bit.

Descriptor Framework

Methods BOW GIST SPACT Ours EVM AGH ITQ KSH Fasthash Ours

Pat.1 0.227 0.387 0.411 0.488 0.238 0.340 0.145 0.686 0.802 0.920

Pat.2 0.307 0.636 0.477 0.722 0.304 0.579 0.408 0.921 0.925 0.956

Pat.3 0.321 0.576 0.595 0.705 0.248 0.501 0.567 0.903 0.911 0.969

Pat.4 0.331 0.495 0.412 0.573 0.274 0.388 0.289 0.889 0.923 0.957

Pat.5 0.341 0.415 0.389 0.556 0.396 0.435 0.342 0.883 0.896 0.952

Pat.6 0.201 0.345 0.315 0.547 0.273 0.393 0.298 0.669 0.812 0.895

tree reaches a defined maximum depth, or I is below a certain threshold (e−10).
With T trained trees, each returning a value αt (x) between 0 and 1, the hashing
function for the ith bit then averages the responses from all trees and rounds
this accordingly to either 0 or 1:

φi (x) =

{

0 if 1
T

∑T

t=1 αt (x) < 0.5

1 otherwise
(4)

Finally, to generate the m-bit binary code, the mapping function Φ (x) con-
catenates the output bits from all hashing functions {φi (x)}

m

i=1 into a single
binary string. Therefore, to achieve retargeting, the binary string assigned to a
query image from the surveillance sequence is compared, via Hamming distance,
to the binary strings of scenes captured in a previous diagnosis sequence.

3 Experiments and Results

For validation, in vivo experiments were performed on 13 GI videos (≈ 17, 700
images) obtained from six patients. For each from patients 1-5, two videos were
recorded in two separate endoscopies of the same examination, resulting in ten
videos. For patient 6, three videos were collected in three serial examinations,
with each consecutive examination 3-4 months apart. All videos were collected
using standard Olympus endoscopes, with NBI-mode on for image enhancement.
The videos were captured at 720x576-pixels, and the black borders in the images
were cropped out.

We used leave-one-video-out cross validation, where one surveillance video
(O1) and one diagnosis video (O2) are selected for each experiment, for a total
of 16 experiments (two for each of patients 1-5, and six for patient 6). Intensity-
based k-means clustering was used to divide O2 into clusters, with the number of
clusters defined empirically and proportional to the video length (10–34 clusters).
To assign ground truth labels to test images, videos O1 and O2 were observed
side-by-side manually by an expert, moving simultaneously from start to end. For
each experiment, we randomly selected 50 images from O1 (testing) as queries.
Our framework has been implemented using Matlab and C++, and runs on an
HP workstation (Intel x5650 CPU).

Recognition results for our original descriptor before binary encoding were
compared to a range of standard image descriptors, including a BOW vec-
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Fig. 3. (a) Means and standard deviations of recognition rates (precisions @ 1-NN) and
(b) Precision values @ 50-NN with different binary code lengths; (c-h) Precision-recall
curves of individual experiments using 64-bit codes.

tor [10] based on SIFT features, a global descriptor GIST based on frequency
response [17], and SPACT [11], a global descriptor based on pixel comparisons.
We used the publicly-available code of GIST, and implemented a 10, 000-d BOW
descriptor and a 1, 240-d SPACT descriptor. Descriptor similarity was computed
using the L2 distance for all methods. Table 1 shows the mAP results, with our
descriptor significantly outperforming all competitors. As expected, BOW of-
fers poor results due to the inconsistency of local keypoint detection over long
time intervals. We also outperform SPACT as the latter is based on pixel-level
comparisons, while our regional comparisons are more robust to illumination
variation and camera translation. Whilst GIST typically offers good tolerance
to scene deformation, it lacks local texture encoding, whereas the multi-level
nature of our novel descriptor ensures that similar descriptors suggest image
similarity across a range of scales.

Our entire framework was compared to the EVM method [6] and hashing-
based methods, including ITQ [15], AGH [13], KSH [14] and Fasthash [8]. For the
competitors based on hashing, our descriptor was used as input. For our frame-
work, the random forest consisted of 100 trees, each with a stopping criteria of
maximum tree depth of 10, or minimum information gain of e−10. Fig.3(a) shows
the recognition rate if the best-matched image is correct (average precision at
1-nearest-neighbour(NN)). We compare across a range of binary string lengths,
with our framework consistently outperforming others and with the highest mean
recognition rate {0.87, 0.86, 0.82, 0.75}. We also show the precision values at 50-
NN in Fig.3(b). Precision-recall curves (at 64-bit length) for each patient data are
shown in Fig.3(c-h), with mAP values in Table 1. As well as surpassing the orig-
inal descriptor, our full framework outperforms all other hashing methods, with
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Fig. 4. Example top-ranked images for the proposed framework on six patients. Yellow-
border images are queries from a surveillance sequence, green- and red-border images
are the correctly and incorrectly matches from a diagnosis sequence, respectively.

the highest mAP scores and graceful fall-offs in precision-recall. Our separation
of encoding and hashing achieves strong discrimination through a powerful inde-
pendent classifier compared to the single-stage approaches of [13–15] and the less
flexible classifier of [8]. We also found that the performance of EVM is inferior to
ours (Table 1), and significantly lower than that presented in [6]. This is because
in their work, training and testing data were from the same video sequence.
In our experiments however, two different sequences were used for training and
testing, yielding a more challenging task, to fully evaluate the performance on
inter-examination retargeting. The current average querying time using 64-bit
strings (including descriptor extraction, binary encoding and Hamming distance
calculation) is around 19ms, which demonstrates its real-time capability, com-
pared to 490ms for querying with the original descriptor. Finally, images for
example retargeting attempts are provided for our framework in Fig.4.

Note that our descriptor currently does not explicitly address rotation invari-
ance. However, from the experiments, we do observe the framework allows for a
moderate degree of rotations. In addition, an effective way to achieving rotation
invariance is to generate rotated versions of images in the diagnosis video before
descriptor computation and hashing.

4 Conclusions

In this paper, we have proposed a retargeting framework for optical biopsy in
serial endoscopic examinations. A novel global image descriptor with regional
comparisons over multiple scales deals with tissue appearance variation across
examinations, whilst binary encoding with a novel random forest-based mapping
function adds discrimination and speeds up recognition. The framework can be
readily incorporated into the existing endoscopic workflow due to its capability
of real-time retargeting and no requirement of manual calibration. Validation
on in vivo videos of serial endoscopies from six patients, shows that both our
descriptor and hashing scheme are consistently state-of-the-art.
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