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Abstract 

This paper presents a new framework for visual place recognition that 

incrementally learns models of each place and offers adaptability to dynamic 

elements in a scene. Traditional bag-of-features image-retrieval approaches to place 

recognition treat images in a holistic manner and are typically not capable of dealing 

with sub-scene dynamics, such as structural changes to a building facade or the 

rearrangement of furniture in a room. However, by treating local features as 

observations of real-world landmarks in a scene that are consistently observed, such 

dynamics can be accurately modelled at a local level, and the spatio-temporal 

properties of each landmark can be independently updated online. We propose a 

framework for place recognition that models each scene by sequentially learning 

landmarks from a set of images, and in the long term adapts the model to dynamic 

behaviour. Results on both indoor and outdoor datasets show an improvement in 

recognition performance and efficiency when compared to the traditional bag-of-

features image retrieval approach. 

1 Introduction 

The recognition of a place instance represented in an image has seen a wide range of 

applications [1, 2, 3, 4]. Typically, the approach for large-scale tasks is the image retrieval 

challenge [23] where a query image is matched to a database of candidate images. In 

recent years, efficient matching has been inspired by the Bag-Of-Features (BOF) method 

[5] where comparisons of histograms of quantised features select candidate images for 

stronger geometric verification. This has been adopted in a number of closely-related 

works [11, 15, 17, 21, 22, 23].  In this paper we present a new framework for place 

recognition that improves both the image retrieval and BOF components of traditional 

approaches. 

1.1 Image Retrieval 

Databases for image retrieval often have significant redundancy due to dynamic behaviour 

influencing an image. We define two types of dynamics: feature dynamics and scene 

dynamics. Feature dynamics arise due to the instability of a keypoint when the same real-

world point is viewed under different viewpoints or illumination conditions. Scene 

dynamics arise due to long-term structural changes in a scene, such as renovations of 

building facades or the rearrangement of furniture in a room, and short-term dynamic 

Place Recognition and Online Learning in 
Dynamic Scenes with Spatio-Temporal 
Landmarks 

Edward Johns and Guang-Zhong Yang 
ej09@imperial.ac.uk  g.z.yang@imperial.ac.uk 

The Hamlyn Centre, Imperial College London 



EDWARD JOHNS AND GUANG-ZHONG YANG: PLACE RECOGNITION AND ONLINE 

LEARNING IN DYNAMIC SCENES WITH SPATIO-TEMPORAL LANDMARKS 2 
 

bodies such as pedestrians or cars.  As a result of both these types of dynamic behaviour, 

many features exist in the database that are never matched to by features in a query image. 

We propose a model-based recognition framework that compresses database images 

into a set of scene  models, each  representing a place  of  interest, whilst maintaining the 

ability to match images from the full range of viewpoints and illumination conditions 

expressed in the image database. This is achieved by tracking features across multiple 

images to form a set of spatio-temporal landmarks, each representing a real-world point, 

and learning the distribution of descriptors across the landmark’s constituent features. 

Greater importance can then be assigned to those landmarks that are more likely to appear 

and those which are assigned to more discriminative descriptors. Similarly, sets of co-

occurring landmarks can be learned that co-occur frequently and with consistent spatial 

relationships. 

Feature dynamics are thus accounted for by eliminating those features which occur 

infrequently, and scene dynamics can be incorporated into the model online by introducing 

new landmarks into the database as they begin to appear in subsequent visits to a place, 

and assigning greater importance to the more recently-observed landmarks. This models 

the dynamics of a scene at the local level, rather than at the image level as in the case of 

traditional image retrieval, whereby the entire image must be updated. 

1.2 Bag-of-Features 

BOF methods have the natural drawback that spatial information is not extracted from an 

image, requiring a large number of candidate images to be passed to the geometric 

verification stage. Developments in weak geometric encoding [7, 12] have proven effective 

for classification tasks, but recognising instances of objects or places typically maintains a 

division between BOF encoding and geometric verification. More recent works have 

embedded geometric information in the BOF stage [28] or used inter-feature relationships 

to reduce the set of candidate matches prior to a RANSAC-based geometric verification 

[18, 19]. We further improve on this latter idea by using co-occurring landmarks to verify a 

feature-to-landmark match. By learning which landmarks co-occur most frequently, we 

show that it is possible to verify each feature-to-landmark match using only a single co-

occurring landmark, rather than a more complex search across the full set of candidate 

matches. 

A further issue with BOF is that two features representing the same real-world point 

can be assigned to two different visual words even under tiny variations in viewpoint or 

illumination. Whilst this has been addressed by refining visual word dictionaries [18, 19, 

20] or query expansion methods [17], the problem will always exist in BOF unless the 

distribution of each landmark is learned explicitly. In our framework, we do just this by 

accumulating visual words for each landmark from its associated features. 

1.3 Related Work 

Model-based place recognition has been successful in small indoor environments [8, 16], 

but large-scale modelling has not been addressed in this way and typically remains an 

image retrieval problem. Attempts to improve the efficiency of retrieval have included 

matching to iconic images of a scene [15], but these still require appearance-based image-

to-image matching, and as such feature redundancies remain. The work in this paper is 

related to our work in [29] whereby scene models are learned from image clusters, and we 

adapt this to demonstrate incremental learning and adaptation to dynamic scenes.  
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Existing approaches to online learning of dynamic scenes typically adopt an 

incremental approach to Support Vector Machine (SVM) classification [13, 14]. However, 

online training of SVMs remains computationally heavy and is not suitable for real-time 

applications such as robotics. Furthermore, these works are applied to small indoor training 

sets where discriminative methods are suitable, whereas for large-scale recognition this 

level of complexity is often not viable. 

Direct feature-to-feature matching approaches [26, 27] have been successful on small-

scale databases, and more recently this has been speeded up by more selective matching 

[25], but these methods still require the expensive computation of feature-to-feature 

descriptor distances. Feature tracking to extract stable features has been applied previously 

in simple frameworks [9, 24, 25]. However, none of these works learn feature descriptor 

distributions in a robust probabilistic manner, nor do they exploit the observed spatial 

relationships between features as they are tracked. 

The rest of the paper is organised as follows. Section 2 gives an overview of our scene 

models. Section 3 provides the methodology for place recognition. Section 4 outlines the 

method for online learning of dynamic environments. Section 5 demonstrates experimental 

results and comparisons to the image retrieval method. Section 6 then concludes the work. 

2 Scene Models 

2.1 Landmark generation 

The system is initialised with a training tour to define the set of database scenes. In order 

to seed the probabilistic framework, a set of 2 initial training images are captured for each 

defined scene. Local SURF features [6] are extracted, matched and tracked across the 

training images, using soft quantisation word assignments [18] to form candidate matches, 

and followed by RANSAC geometric verification [10]. We use a dictionary of 1 million 

words, structured in a vocabulary tree [11] with 3 levels and 100 branches per level, 

trained on features across the entire database. For each scene, a set pi…pI of landmarks is 

then formed. Each landmark is assigned a set of visual words g
p

k…g
p

K accumulated from 

the tracked features, representing the expected range in feature space that the landmark 

will occupy under reasonable viewpoints. 

2.2 Spatial words 

Each landmark p is then assigned a set qj…qI of co-occurring landmarks that appear at least 

once in the same scene as p, and the most frequently co-occurring landmark is denoted q*. 

As in [29], we then model the spatial relationship between p and each q as a set of spatial 

words h
pq

l...h
pq

L
 
to encompass the expected range of spatial distances, spatial angles and 

orientation differences between the two landmarks when viewed on an image.  Rather than 

computing the absolute values, these are quantised into a dictionary of spatial words to 

reduce the effect of overfitting spatial distributions from only a small number of training 

images, allowing for small inter-landmark displacements that may arise from previously-

unobserved viewpoints. Furthermore, when updating landmark properties after recognition, 

should a false positive feature-to-landmark match occur, then the rate of occurrence of this 

incorrect spatial word will be small as the scene model is updated from several images, and 

will thus have less weight in the recognition stage. Spatial distances are quantised into bins 

with a separation of 10 pixels. Spatial angles and orientation differences are quantised into 
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discrete bins with 10˚ separation. The spatial dictionary is thus of size (400 / 10)  (360  

10)  51840, where 400 is the diagonal length in pixels of the 320 240 

images used in our experiments. 

3 Recognition 

In order to deal with noisy and dynamic environments, and to sequentially improve the 

model over time, the system continually updates the scene models as further images are 

required. This involves a two-stage process, with the recognition stage first performing an 

image-to-scene match, and then returning its result to the online learning stage. Here, new 

landmarks that have entered a scene are acquired, and properties of the existing landmarks 

are updated. 

3.1 BOF Filtering 

Given a query image, we wish to compute the most likely scene from the database. As in 

standard BOF image retrieval [5], we first compute the cosine similarity of the word 

frequency vector between the image and each scene. In our method, the inverse document 

frequency (idf), representing the rate of word occurrence across the entire database, is as 

standard. However, the term-frequency (tf) for the scene vector is computed as an average 

of occurrences across images previously matched to the scene. In this way, feature 

dynamics are dampened and those words that occur consistently in the scene have a greater 

impact. The top k scenes returned from this stage are then passed on for geometric 

verification. 

3.2 Geometric Verification 

A score ux is now computed for each candidate scene x by considering geometrically-

verified feature-to-landmark matches, in a similar manner to [29]. An inverted file system 

is employed similar to traditional BOF [5], which accumulates tentative matches based 

upon a visual word match between an image feature and a scene landmark. Each match is 

then verified by considering feature-to-landmark matches for the most frequently co-

occurring landmark. Based on this verification, for each landmark pi in the scene, the 

likelihood that the landmark has been found in the image is computed as vi. Finally, ux is 

then computed as a weighted sum over all landmarks: 

 

 

          (1) 

 

 

The term ri in the denominator is the rate of occurrence of landmark pi in scene x and exists 

to normalise the scene score. 

Each vi is computed by considering the likelihood of landmark pi conditional on three 

elements. First, the visual word assigned to the feature tentatively matching the landmark. 

Second, the visual word assigned to the feature tentatively matching the co-occurring 

landmark. Third, the spatial word assigned to the geometric relationship between these two 

features. In this way, vi can be computed by considering how frequently and 
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discriminatively these visual words are actually assigned to the respective landmarks, 

based on all previous instances of the landmarks, and how frequently and discriminatively 

they are aligned in the manner defined by the spatial word. 

 Let us define the Boolean variables P and Q* to represent the presence, 1, or absence, 

0, of landmarks p and q* in the image, respectively. As before, q* is the landmark that co-

occurs most frequently with landmark p. If a tentative feature-to-landmark match exists to 

both p and q*, then v is computed for p, otherwise it is set to zero. This is achieved by 

considering the visual words, g
p
 and

 
g

q*
, assigned to the tentative feature-to-landmark 

matches to p and q*, respectively, together with the spatial word h
pq*

 assigned to the 

geometric relationship between the two tentative features. v is then computed via a 

Bayesian calculation as follows: 

 

(2) 

 

Here, p(P = 1) is set to rp, occurrence rate of landmark p in the scene, and hence p(P = 0) is 

set to 1 – rp. 

 Given that landmark p is present, and to account for the fact that p and q* do not 

always co-occur, we marginalise over Q* the probabilities that visual word g
q*

 and spatial 

word h
pq*

 occur together in an image sporadically: 

 

(3) 

 

These probabilities are all computed statistically by considering the visual word 

distributions of p and q*, and the spatial word distributions between p and q*. 

 For the case when landmark p is not present, we marginalise over Q* the probability 

that visual word g
q*

 occurs sporadically: 

 

(4) 

 

For a given landmark, the probability that visual word g
p
 occurs sporadically in an image is 

computed by considering its statistical rate of occurrence across the entire database,    ,  

and the average number of features that occur in an image, n: 

(5) 

 

In a similar manner, we compute the statistical rate of occurrence,       , of spatial word 

h
pq*

, as the inverse of the total number of spatial words in the dictionary, leading to: 

 

(6) 

For the co-occurring landmark q
*
, we compute as                     the sporadic assignment 

probability of word g*, conditional on the presence of landmark p, leading to: 

 

(7) 

With v computed for each landmark in Eq. 2, we then return to Eq. 1 to compute the score 

for each scene. The top scene is then returned as the matched scene, and is passed on to the 

online learning stage. 
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4 Online Learning 

After the recognition stage has output the most likely scene, training then proceeds to 

update the distribution of landmarks in this scene. First, the visual word distributions and 

co-occurrence statistics of existing landmarks are updated. Whilst the landmark matching 

in Section 3.2 is typically precise enough to allow for effective scene recognition, there 

typically remain some false positive feature-to-landmark matches and a more robust, if less 

efficient method, is necessary to reliably update the landmark properties. Furthermore, 

false negative matches are particularly frequent, yet it is important to update these 

landmarks too. 

 We therefore use the method described in Section 2.1 and match features in the new 

image to features in a defined history of images, consisting of those that have previously 

been matched to the scene. During this process, new landmarks that have not been 

accounted for are then added to the scene. These can be landmarks that were previously 

occluded, or those that have unstable keypoints. In our experiments, because each scene 

was only visited a small number of times, this history is defined as all of the images 

accumulated thus far. However, in practice, it would be limited depending on available 

resources. It should be noted that the “online” is in reference to a sequentially updated 

model of each scene, but this could also be computed offline, or on a parallel thread. The 

scene recognition time is dependent upon the number of scenes in the database, whereas 

the online learning time is dependent upon the number of landmarks in a scene. Thus, for 

very small databases, online learning may be more time consuming than recognition. 

Together with updating visual word distributions and acquiring new landmarks, the 

expected occurrence rates of landmarks can also be updated after every scene match, based 

upon temporal data. This is to account for long-term scene dynamics that may introduce 

landmarks to, or withdraw them from, a scene. Landmarks that are observed more recently 

are more likely to appear again in the next acquired image, should have a greater impact in 

both the BOF filtering stage and the geometric verification stage. Those landmarks that 

have not been observed for a period of time should be gradually filtered out of the system. 

The occurrence rate, r, of landmark p in a scene, is continually updated to reflect the likely 

presence of the landmark the next time the scene is observed. 

We define tT as the time period prior to current time t0 over which a landmark’s 

occurrence rate is evaluated.      , the rate at time t0, is determined as a weighted average of 

the rates across images acquired during time t0...tT, with exponential weighting giving more 

importance those more recently-acquired images: 

 

(8) 

 

 

Here, rt is the occurrence rate at time t, and  is set such that the exponential weighting 

at time tT is 0.01. Determining a suitable value for tT is important in ensuring that the 

occurrence probability of the landmark is updated appropriately. Assigning tT to be too 

small may cause any unusual absences or presences of the landmark in very recent images 

to have an undesired effect on the occurrence rate. Assigning a value that is too large will 

include too much historical behaviour and not enough from the more recent images. As 

such, we compute tT by ensuring that the standard deviation of the occurrence rate across 

all images captured within time t0…tT  is within an acceptable level:  
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(9) 

 

where rave is the average rate across all images within the timeframe t0…tT. σmax was set at 

0.4 and determined heuristically for best results. We require T to be greater than 3 so that 

there is sufficient data from which to compute a reliable standard deviation. 

5 Results 

In order to demonstrate the performance of the system across a wide range of scene 

types, experiments were conducted on both an indoor and an outdoor database. For the 

outdoor scenes, the first set of training images were captured at discrete locations along a 

path through a busy town centre, to encapsulate short-term dynamic behaviour of 

pedestrians and cars, together with longer-term behaviour such as building works and 

parked cars. The total length of the tour was 1.6 km, encompassing 1000 discrete places. 

Subsequent tours then followed a similar path and captured ~1000 images per tour, during 

which recognition and online learning was performed. A total of 8 tours were recorded 

over a period of a week, with the first 2 defining the initial training set in order to 

instantiate a set of landmarks for each place. 

The indoor dataset was of shorter length, but was generated with the aim of testing the 

system to more dramatic long-term dynamic behaviour. 200 discrete places were captured 

over a path length of 200m, with subsequent tours capturing ~200 images per tour. A total 

of 12 tours were recorded, however, after 3 tours and again after 8 tours, significant 

structural rearrangements were made to all scenes where possible. Such rearrangements 

included moving furniture and objects, and opening or closing doors and blinds. See 

Figure 1 (c) and (d) for examples. 

 

 

 

 

 

 

 

                

 

                                       (a)                  (b)                  (c)                   (d) 

Figure 1: Images representing places of interest along a tour of the environment. (a) and 

(b) are outdoor scenes influenced by dynamics such as pedestrians, cars and weather 

conditions. (c) and (d) are indoor scenes influenced by manually-induced dynamics such as 

the rearrangement of furniture. These rearrangements took place after the 3
rd

 and 8
th

 tour.  

5.1 Recognition 

We evaluated our method against recent work in BOF image retrieval [18]. Here, visual 

word assignments vote for adjacent words in feature space, to reduce the effect of 
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quantisation. Candidate images from a database are retrieved by computing the similarity 

between word distribution vectors, and geometric verification prunes out false positive 

matches. We implemented two applications of this method. In Application A, a single 

image is stored to represent each scene in the database, as standard. In Application B, 

matched images are retained in the pool of images representing the scene, and each image 

is considered in the image matching. This is the “online learning” equivalent for image 

retrieval, as features that are introduced into the scene are remembered in the new image. 

For all the methods, we use a value of k = 10 to define the number of images returned from 

the BOF similarity measure that are passed on for geometric verification. Figure 2 

compares the mean precision for our method and the image retrieval method, for both the 

outdoor and indoor datasets. After the first two tours of the path, which were used to build 

the scene models, the mean precision was computed for each subsequent tour. Each scene 

match was then used to update the respective scene model, or add an image to the scene’s 

image pool in Application B of [18]. 

For the outdoor dataset in Figure 2 (a), our proposed method initially performs poorly 

compared to the image retrieval approach. This is due to basing the scene models only on a 

training set of two images per scene. However, as further images are acquired and the 

model better reflects the landmark occurrence rates and the distributions of visual words 

and spatial words, our method outperforms the image retrieval method. Application B of 

[18] initially performs well, but as images from false positive scene matches are added to 

the scene’s image pool, the performance drops dramatically because of the introduction of 

an entire false positive image. This is not an issue with our method, because updating 

landmarks based upon false positive scene matches only marginally modifies the expected 

occurrence rate of landmarks or their visual words and spatial words. As more true positive 

matches are acquired, the effect of these earlier false positives then becomes negligible. 

The performance of our technique under dramatic structural changes can be seen in the 

results for the indoor dataset in Figure 2 (b).  After each restructuring of the environment, 

 

 

 

 

 

 

 

 

 

 

 

                                       (a)                                                                     (b) 

Figure 2: Comparison of the recognition precision of our technique with that of the image 

retrieval method in (a) outdoor scenes and (b) indoor scenes. Structural changes are 

manually made to the indoor scenes after 3 images are acquired, and again after 8. 

the performance naturally drops across all methods. Application A of [18] continues to 

drop in performance with each structural change. Because in Application B the system has 

a recently updated image to represent the scene, its performance does not drop as 

dramatically after each structural change, but nonetheless its performance drops 
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sequentially as with the outdoor dataset. However, whilst our method again starts with the 

poorest performance, it is able to improve its precision after each structural change, 

resulting in the best performing method in the long term. 

5.2 Efficiency 

The average processing time required for the matching stage was recorded for the 

outdoor dataset in the final tour, after the first 7 tours had been processed. Figure 3(a) 

compares the required processing time of our technique to that of [18], showing a superior 

efficiency for our framework. Typically, only a small proportion of features in an image 

are matched across other images of the same scene, and hence our method requires a 

smaller number of landmarks to be matched to than the number of features in image 

retrieval methods. Furthermore, geometrically verifying each landmark by only one co-

occurring landmark is far more efficient than processing RANSAC-based affine 

transformation verification as in [18]. 

We also investigated the redundancy in our database compared with that of the image 

retrieval approach. Redundancy is an important concept for memory efficiency and is a 

measure of how much “waste” the database contains. We define the redundancy of a 

scene’s representation in a database as: 

(10) 
For the computation of scene redundancy above, we substitute the word “features” for 

“landmarks” to transfer the meaning to our scene models. We account for the storage of 

landmarks that consist of more than one visual word by incrementing the number of 

database landmarks accordingly. 

Figure 3 (a) shows the database redundancy as the number of tours increases. 

Naturally, databases for image retreival methods exhibit significant redundancy because 

most local features are inherently unstable. However, since our framework only stores 

those features which i) represent static objects or structures and ii) represent the most 

stable features, the average scene redundancy can be significantly reduced. As further 

images are acquired, our redundancy increases slightly in our method, but levels out as the 

acquisition rate of new landmarks reduces. By the time 8 tours of the environment are 

conducted, most stable features have already been extracted as landmarks, and the 

remaining landmarks are acquired largely from dynamic objects. We could reduce this 

redundancy even further by eliminating those landmarks from the database that have not 

occurred for a period of time, and hence are unlikely to be matched to again, or by limiting 

the number of stored landmarks to those which have an occurrence rate above a threshold. 

Figure 3 (b) shows the mean processing time per recognition, excluding the feature 

extraction and visual word indexing, and the mean memory requirement per scene, again 

after 8 tours have been processed. Whilst the BOF filtering stage is typically very similar 

across all techniques, the geometric verification is significantly more efficient in our 

method due to the avoidance of an expensive RANSAC-based algorithm. By learning 

which landmarks co-occur together most frequently, geometric verification of each 

tentative landmark match can be done with a single co-occuring landmark. An image 

retrieval approach has no knowledge of co-occurrence rates and has to verify each feature 

using a number of other occuring features. Application B of [18] has a particularly high 

redundancy due to false positive scene matches accumulating images in the scene’s image 

pool, which are subsequently never again matched to. 

number of unmatched database features stored for scene
scene redundancy

total number of database features stored for scene

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(a)                                                                   (b) 

Figure 3: Comparison of (a) the database redundancy and (b) the computational 

requirements of recognition for our technique with that of the traditional image-retrieval 

approach, for the outdoor database, after 8 tours. The processing time excludes feature 

extraction and visual word assignment, which is consistent across all techniques. 

6 Conclusions 

In this paper we have presented a new framework for place recognition and online learning 

of dynamic changes to scenes. Modelling a place as a distribution of real-world landmarks 

enables a more robust understanding of the expected distribution of local features in an 

image, both in terms of descriptors and spatial relationships. By learning which landmarks 

co-occur most frequently, each landmark can be efficiently geometrically verified by using 

only a single co-occurring landmark. Furthermore, dynamic elements in a scene can be 

incorporated online by introducing new landmarks into a scene and filtering out old 

landmarks. Results show improvements in the long-term recognition precision and 

efficiency over image-retrieval techniques. Additionally, by storing only stable landmarks 

in our database, the redundancy in the database, and hence memory requirements, can be 

dramatically reduced. 
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