Chapter 12

Autonomous Navigation for Mobile Robots with
Human-Robot Interaction

James Ballantyne, Edward Johns, Salman Valibeik, Chanéfocg, Guang-Zhong
Yang

Abstract Dynamic and complex indoor environments present a chadléogmo-
bile robot navigation. The robot must be able to simultasgomap the environ-
ment, which often has repetitive features, whilst keepktidts pose and location.
This chapter introduces some of the key considerationsforam guided naviga-
tion. Rather than letting the robot explore the environnfelty autonomously, we
consider the use of human guidance for progressively Imgldp the environment
map and establishing scene association, learning, as welhégation and plan-
ning. After the guide has taken the robot through the enwirem and indicated
the points of interest via hand gestures, the robot is thémtaluse the geometric
map and scene descriptors captured during the tour to caeaitgh-level plan for
subsequent autonomous navigation within the environnhentes related to gesture
recognition, multi-cue integration, tracking, target §uwing, scene association and
navigation planning are discussed.

12.1 Introduction

As demands for mobile robots continue to increase, so deeputsuit for intelli-

gent, autonomous navigation. Autonomous navigation reguhe robot to under-
stand the environment, whether static or dynamic, and &vaet with people seam-
lessly. In practice, there are several key components tizddie a robot to behave in-
telligently. They include localization and mapping, scassociation, human-robot
interaction, target pursuing and navigation. Localizatad mapping is a well stud-
ied topic in robotics and autonomous vehicles for dealinthwioth known and
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unknown environment whilst keeping track of the currentatimn. For purpose-
ful navigation, it also requires learning and scene assonito build progressively
the surrounding environment. For complex scenes, suchoag tncountered in a
crowded indoor setting, gesture recognition is necessegnpsure seamless human-
robot interaction so that they can follow specific commangsuosue relevant tasks.
Fig. 13.1 outlines an example configuration when these coms are required to
work together for autonomous navigation within an indooriemment.

In terms of human robot interaction, vision based appraachpresent a key
technique for establishing natural and seamless interadtor understanding hu-
man gesture or intention, static or dynamic hand gestured$aamial expression can
be used [10, 15, 24, 29, 42]. Static gesture normally reliegdentifying different
postures whereas dynamic gestures include interpretisigada of events through
different time space. In other words, static gestures amaebed by analyzing the
contextual information at each time instance, whereas ryagestures are rec-
ognized by analyzing the temporal information across ocoutsee time periods.
Effective use of human-robot interaction enables a perganitiate various tasks
for the robot to carry out. In this chapter, we will use humadgd exploration
for a robot in a novel environment as an example. The techdetails for gesture
recognition are described in Section 13.2. Key to any ssfokgesture recognition
system is the incorporation of natural, socially accegaastures similar to those
used in human-human interaction. The technical detailgésture recognition are
described in Section 13.2.

Following a guide also requires the robot to maintain anckeack of the lo-
cation of the person continuously. To this end, a trackingteay as described in
Section 13.3 is proposed. The method is based on the use tipl@wues from
two main sensor modalities based on vision and laser sogusgstems. The visual
cues from each sensor are fused to create a robust map okpeidpin the envi-
ronment. Once the location of the guide is obtained, thetrizbable to follow the
guide through the environment whilst avoiding visible elo$#s autonomously vis-
ible obstacles. The basic approaches used are also dekoriBection 13.3.Even
with human guidance, However, situations may arise whepéngon goes outside
the field-of-view of the robot. In this situation, the roba&eds to predict where the
guide may end up and autonomously navigate to the positidmexastablish visual
tracking.

In order to build a global map of the new environment througjualed tour,
qualitative localization is necessary. We have propose8eiction 13.4 a concept
called scene association, which enables the robot to fglesatiient features of dif-
ferent locations as it navigates around. This informat®thien incorporated with
the internal map generated at relevant locations. The grypscene association
framework uses visual data to learn key features of a scemiehvare distinctive
but can be consistently identified from different viewpeint

After the guide has taken the robot through the environmedtiadicated the
points of interest via hand gestures, the robot is then ahlisé¢ the geometric map
and scene descriptors captured during the tour to creatghaéiel plan for subse-
guent autonomous navigation within the environment. Ini6ed 3.5, an A* graph
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search algorithm is used to plan the route of the robot fol doacted naviga-

tion and localization. We will also discuss how learninghteiques can be used
to improve the robot’s ability for autonomous navigatiorrdughout this chap-
ter, the examples used are for indoor environments with |paopving around. So
the proposed framework is ideally suited for museum, officene-care and hospi-
tal wards. The theoretical concepts of using directed radiig to reinforce vision

based autonomous localization and mapping can also bededea other environ-
ment. To this end, human gesture recognition can be replagedher signalling

methods, but the basic concept of scene association aneédvighplanning can

remain the same.
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Fig. 12.1 A schematic illustration of the use of gesture recognition, ptirsaene association and
environment mapping for human guided navigation. Under thierseh the gesture recognition
system detects commands issued by a guide, which then activatesifecsemponent based on
the detected gesture. The pursuit component is activated offisgestures and when amtten-
tion" gesture is detected, a scene descriptor is built, which isititegrated with the environment
model.

12.2 Human-Robot Interaction

In this section, we will describe a robust gesture recognitiamework suitable for
human guided navigation in normal indoor environment iditig crowded scenes.
For this purpose, the method proposed in [35] is to be usetlisrapproach, vision
based dynamic hand gestures are derived for robotic guedare gestures used
include ‘hello" (wave gesture for initialization),ttrn left', “turn right", “follow
forward" and “attentiori’ (for building new scene descriptors). The overall system
structure is depicted in Fig. 13.2.
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Fig. 12.2 Key processing components for the proposed gesture recognitiesystem. Raw im-
ages taken from the vision sensor are used to extract low-leesl such as motion information
and skin colored objects. Regions of Interest (ROI) consistindyofmic skin regions are then
extracted and tracked with Kalman Filters. Finally, in thehhigvel reasoning phase, a Hidden
Markov Model (HMM) is used to extract specific gestures

Hitherto, three distinctive factors are commonly emploj@dextracting hands
for gesture recognition. These include skin color, handanadnd shape. We have
integrated the first two components, since hand shape i®hast enough for sys-
tems using wide angle cameras. In the proposed method, effimentation is first
performed to identify skin-colored objects which considages, hands or any other
skin colored regions. Subsequently, motion segmentagioséd to prune out back-
ground objects, which are mostly static. The remaining -skilored objects now
mostly consist of hands and faces.

In order to extract temporal information suitable for dynamesture recogni-
tion, a robust tracking algorithm is required. To this eneiakt Median Square Error
(LMeds) motion restoration is performed to remove outligdug to rapid illumina-
tion changes, partial motion occlusions and depth disnaities. In practice, object
deformation is also important to consider, which is morelent for tracking non-
rigid objects. In this work, hand tracking is mainly used sract dynamic hand
gestures. With the proposed framework, pose variability acclusions are also
taken into account by incorporating multiple cues to asgedhe extracted regions
of interest at each time instance to previous measurent€alimian-filter is used to
provide robust tracking across time [35].

Once the hand motion trajectories are accurately trackedhéxt step is to per-
form detailed motion analysis to evaluate if the extractajettory is similar to
pre-defined gestures. For this purpose, Hidden Markov Mo@¢MMs) are used.
HMM is particularly suitable for modeling time series. Thaimadvantage is that
it is based on a probabilistic framework and is beneficialmmeiltiple gestures are
evaluated for the same sequence.

To demonstrate the practical value of the proposed gestwa@gnition frame-
work, Fig. 13.3 demonstrates some example results wheareliff subjects are
asked to perform the aforementioned gestures for humaredudvigation. Ini-
tially, the wave gesture is used to attract the attentioh@fbbot. Subsequently, the
robot can be guided by usingibve forward, “turn left' or “turn right" commands.

In Fig. 13.3, all the tracked objects are color coded andelegnized gestures
are illustrated. After successful gesture recognitioa,rtext challenge is to identify
and maintain the commanding person within the field-of-vieva crowded envi-
ronment. This requires the robot to keep track of the pessimtation at all times
once engaged. Furthermore, the robot must be able to follevgtide through the
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Fig. 12.3 lllustration of different gestures used in the proposed systenh &etoof images shows
the sequence of motions involved for each gesture. Tracked lbaations are color coded and
each detected gesture is indicated in the last image of the segju@, (b), (c), (d) and (e) show
“wave, “follow forward', “turn "left", “turn right", and “attentiory, respectively.

environment and build a detailed map of the environmentdture navigation pur-
poses. In the next section, we will introduce the trackind parsuit system and
explain how the identified gestures are used to control thetrduring navigation.

12.3 Subject Following with Target Pursuing

In order to follow the commands given by a person in the sdbegroposed system
relies on the robot’s ability to detect and track humans thasethe sensor data. In
this section, we will use information from both vision serssand Laser Range Find-
ers (LRF) to accurately track and pursue the movement of ¢hgop. For human
guided navigation, negotiating corners can be problenaatibe guiding person can
easily move out of the field-of-view. To overcome this prabjé¢he guide can issue
a “left" or “right" signal to activate an autonomous corner manoeuvre durimghw
path planning and obstacle avoidance is performed autonsiyo
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12.3.1 Correspondence

The proposed framework relies on multiple cues from difiésensors to accurately
track the guide. However, the cues in the current setupe@sitlvo different camera
reference systems. Therefore, calibration is requiredge both sets of cues into a
common reference frame. This establishes a transformtdiabiow the projection
of a laser range point into the vision space. The systenzesilthe method defined
in [39] to establish the transformation defined as

i~K(d-P+0) (12.0)

wherei = [u,V]T, P =[x,y,Z", andK are the intrinsic parameters of the camera.

To initiate the calibration procedure, a standard chedd calibration pat-
tern as proposed by Zhang [39, 40] is used to calibrate thenviensor. The aim
of the procedure is to take multiple instances of the chéxand within the view
of both vision and LRF sensors. The vision calibration pdesgi both the intrinsic
parameter¥ , and the extrinsic parameter®3;,t;) with respect to each checker-
board location. Furthermore, the extrinsic parametersigeothe normal for each
checkerboard grid as

N=—R3(R;-t) (12.0)

whereR, zis the third column of the rotation matrix for th'® checkerboard ob-
tained from the extrinsic parameters.

After calibration, the laser points on each checkerboaedcallected. These
points fall on thexzplane and can be represented®y= [x,z 1]7. Therefore, a
point falling on the calibration plane with surface normalishsatisfy the plane
equationN - P = —D. From Eq. 12.3.1, we have

N-o-(P'—0)=-D (12.0)

This can be rewritten as

N-HPf=-D
10

H=o1|00-a (12.0)
01

For each pose of the camera, there exist several linearieqsifdr the unknown
parameteH, which can be solved with standard linear least squaregsitigts.
OnceH is determined, the relative orientation and position betwie two sensors
can be calculated as

(DR = [Hla _Hl X H27 HZ]T
A = —[Hy, —H1 x Hp,Ho]TH3

where @R is the Rodrigues representation of the rotation matrix. ufther en-
hance the accuracy of the rotation and translation paraset@on-linear optimiza-

(12.0)
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tion technique can be used [39]. It aims to minimize the Eleen distance from the
laser points to the checkerboard grids by using the follgvéiquation:

33N (@~ Y(R] —A4))+D)>? (12.0)

The final result provides the optimized transformation #iléiws for accurate
projection of the laser data points into the image space.

12.3.2 Multi-cue Integration

One of the most common methods for identifying people inovids to locate the
head in eachimage[11,12,14,17,21,38,41]. These techsuffer from three ma-
jor issues; 1) the assumption of the availability of a primckground information;
2) the requirement of large size silhouettes; 3) the neeé foontrolled environ-
ment in terms of illumination changes. Due to the relativsifianing of the LRF,
laser scanning systems usually identify humans using leégctden schemes. One
common approach is to search for local minima [3, 9] in thensdata. This has
shown promising results for relatively simple environngertiowever, as soon as
the environment becomes cluttered, the detection resettsrbe unreliable and er-
ror prone [33]. A second common approach is to use motiorctieteto identify
humans [8, 18] as people are often the only moving objectsdstmnvironments.
These methods usually compare the current and previous scatetermine the
dynamics objects within the environment. The areas fronctireent scan, which
are not found in the previous scan, are considered as thexqnobjects. The very
nature of the algorithm means that the system is not abletéztdgtationary persons
in the environment.

To overcome these drawbacks, we propose to utilize cues éawrh sensor for
person identification. A person is identified if it is evidértm both the vision and
laser systems. The vision system uses the head detectiomeappemployed by Vi-
ola and Jones [36]. In addition, a cascade of adaptive bapstassifiers is used to
quickly prune the background and place more emphasis omtpateargets. In the
examples shown in this chapter, 32 cascades of classifeerssad to provide accu-
rate localization with minimal number of false positivesirthermore, about 1,399
heads with different orientation, poses and illuminationditions along with 800
background images have been gathered for training. By wslagtive boosting of
Haar-like features, a multi-pose head detection clasdifisrbeen created. To in-
crease sensitivity, a Kalman filter based tracking systesmigloyed. Head position
is updated using Shi-Tomasi features [30]. The method megpdy Valibeik and
Yang [35] is used to measure the correlation between newlctid regions with
the tracked ones.

The cues from the laser scanning system are formed using apemach for
human detection [4]. The system aims to identify people ardeng for three
patterns associated with the presence of a person, whidically found in laser
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scans. These patterns include split leg (LSA), forwarddstiea (FS), and two legs
together (SL) as illustrated in Fig. 13.4.

LA FS SL
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Fig. 12.4 lllustration of the three patterns used to detect human led®itaser scan data. The top
row illustrates the patterns with the three constraints usetthel proposed system, constraint (a) is
between 10cm and 40cm, constraint (b) is under 40cm, and canigtrpis also under 40cm. The
bottom row shows a real example from the laser range finder fdr g@e of pattern, where the
blue squares represent the right edges, while green squareserpleft edges.

The patterns are detected by finding the correct left and edige sequences
where an edge is defined as a segment between two deints;1} such that the
distance between them is greater than a predefined thregtroktige is defined as
a left edge ifx, > x+1 and a right edge ik < x+1.The edges are generated and
stored in a listy = {e1,e,---,&,}. The aim of the algorithm is to find a subset of
the edges that follow one of the three patterns with conggain the size between
each segment. The patterns are defined as:

1. LA pattern with quadruplefL,R,L,R}.
2. FS pattern with triplefL,L,R} or {L,R R}
3. SL pattern with doublefL, R}

A single edge from the list can only belong to a single pattewhis thus removed
from further consideration. Furthermore, each pattere@ched sequentialliie.,
the edge list is initially search for LA patterns, then for p&terns, and finally for
SL patterns. This is to help reduce the number of false pesiti

In order to reduce the number of false positives from eackaendividually,
the system fuses both sets of candidates into a single éighi3 end, all people de-
tected in the laser scan data are projected into image sgawpthe transformation



12 Human-Robot Interaction 259

found in Eq. 12.3.1. Only those candidates that fall intottbgzontal view of the

camera are considered. The remaining candidates are thehedawith the head
detected in the vision system using a nearest-neighbooappr Therefore, the final
list consists of matched pairs from each sensor.

12.3.3 Robust Tracking

The previous section provides a way of identifying humarteérenvironment based
on cues from both vision and LRF sensors. To maintain a cootis estimate of the
location of the commanding person, a temporal trackingesyss used. Traditional
systems have used cues from multiple sensors to identifetaf2, 13, 19]. The
proposed system attempts to handle the tracking problemsimiar fashion by
using cues from the two sensor modalities,, vision and laser. As mentioned in
Section 13.2, the system is activated wherhallft" command is received from a
person in the environment. Upon receiving the gesture dhetridentifies the most
likely candidate from the observation data set by choodirdiead most likely to be
part of the arm giving the gesture. This observation is usexitialize the tracking
system. For tracking, an Interacting Multiple Model (IMM24] filter equipped with
three motion models is used to deal with unpredictable meverof people. The
IMM filter has been shown to provide more accurate trackirgylte than using
a Kalman filter on its own [28]. The three motion models usesliage constant
acceleration, constant velocity, or a stationary motiordeioThe system tracks
the location of the guide on thezplane with a weighted model to provide the
most likely estimate of the location of the guide. The key poment for ensuring
accurate tracking is data association. Potential obsensatome from the fused
information obtained from the two sensors as described ati®e12.3.2. To help
limit the number of potential observations, the minimumeget the three motion
models [7] is used which is defined using a distance metric:

d=1/On—2)7 St m—2) (12.0)

where(ym — z) is the measurement residual vector @# is the measurement
residual covariance matrix. Finally, only observatiorat fiall in the x2 distribution
with a probability of 99% of the gate are considered. Thekirag system ensures
that there is always an estimate of the location of the gwédapling the robot to
follow the guide through the environment when requested.
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12.3.4 Pursuing

The tracking system provides the robot with the necessdoynration to follow
the commanding person through the environment. In the eleaprpsented in this
chapter, the robot uses the given position to ensure:

1. Robot is required to face the guide at all times;
2. Robot is required to maintain a distance of roughly 1.5théoguide;
3. Movements can only be performed if all objects are avaided

=

Fig. 12.5 lllustration of the pursuit strategy employed by the robot fdliofeing the guide through
an indoor scene. The system chooses the best set of velocitieslttalow the robot to approach
the guide without colliding with any of the objects in the gomment. In the above example, the
central path is chosen, which is highlighted in red. This pdittws the robot to arrive at the desired
location at about 1.5m from the guide.

To adhere to these three goals, the robot follows the pursmiement as defined
in [25]. The steering behavior for each frame determinesnigessary velocity
vector (rotation and translation) that the robot shoultbfelto adhere to Rules (1)
and (2). The velocity vector is determined by the currentijmaged location of the
guide and the robot’s current velocities.

Vdesired= NOrM(POS — POS ) - Vmax (12.0)

Vactual = Vdesired— Veurrent
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Upon arriving at the actual velocity to use, the robot mustiuea that Rule (3) is
preserved. To this end, the robot selects a series of viggaitithin a window of
Vactual @Nd generates the curves that the robot would follow at tleetsel velocities.
The robot then chooses the velocity that allows the robotrtiveaat the desired
location, 1.5m from the guide while avoiding all obstacleig. 13.5 illustrates the
potential paths that the robot could take to approach th@eguoiarked with a blue
square. In this example, the red, dotted path is chosen bedahbrings the robot
closest to the desired position of 1.5m in front of the guide.

The secondary pursuit goal is to handle situations when théegeaves the
field-of-view of the robot. This situation arises when thédgueither goes around a
corner or enters into a room through a doorway. To circumtiegge problems, the
guide is able to direct the robot either with left" or “right" signal depending on
the traveling direction. When the robot receives one of thedestures, it predicts
the future location of the guide around the corner in therddsilirection. To do
this, the robot projects the current location of the guidéhi left or right of the
field-of-view.

When the projected location has been found, the robot plaathagthe location
that avoids all obstacles. An example situation is shownign £3.6 when the user
is leaving a room and moving to the right and down the hall\Wéne robot chooses
a position about 1m to the right of the latest predicted locatbf the guide, creating
a path through the doorway to the goal location shown in red.

B Sl

jou ) [T

Fig. 12.6 lllustration of the method used by the robot to turn around aewrfhe left image
presents a guide standing in a hallway, while the robot is stithe room. After the guide has
issued a turn right" gesture, the robot assumes the guide will leave the field-of-aied begins
to perform a corner maneuver autonomously. The right imageréites the path in red, generated
to allow the robot to arrive at the projected future locatidihe guide.
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12.3.5 Mapping

During a guided tour of an environment, the robot has thatahd use the laser
data to build a geometric estimate of the environment. T® éinid, an occupancy
grid is constructed, while the location of the robot in theinment is tracked
using a scan-matching system. In the proposed framewory@ementation based
on the ‘vascd scan-matching system, which is part of the Carnegie MdRobot
Navigation Toolkit [23], is used. A sample map generateddiar lab at Imperial
College London is shown in Fig. 12.7.

Fig. 12.7 A sample occupancy grid generated during a tour of our lab atriiadg@ollege London.
The red square illustrates the current location of the robtitéerenvironment.

The map generated during the tour of the environment prevadéy a geometric
perspective of the environment. This introduces ambigsiiéis locally, many of the
architecture features are very similar across a buildihg. fbbot can easily become
confused to its actual location. To address this limitagteonision based scene de-
scriptor is used to build a global perspective based on appea. These descriptors
are generated after receivingsignal' gesture from the guide during the tour.
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12.4 Qualitative Localization

The laser mapping system presented so far is capable oflatihguthe quantita-
tive location of the robot in a defined coordinate system.racpice, however, its
robustness is far from perfect, and it is important to prevd@mplementary loca-
tion information. To this end, our proposed system relievignal information to
qualitatively identify the scene that the robot is currenitl view of, working in-
dependently of the mapping system, and ultimately with sytems reinforcing
each other.

Forindoor scenes, rooms are often geometrically simitat this can cause prob-
lems with the proposed mapping system when only buildingugimogeometrical
view of the environment. Visually, however, these roomsaten very distinctive.
Features of a room, such as pictures on the wall or lights ercéfling, present in-
formation that a laser system is unresponsive to. Visuarinétion can help reveal
the room and significantly reduce the search space for glthe robot.

The ability of the robot to understand in which room it is ltemhalso adds to
the pervasive nature of the system. For example, shouldothat be required to
relay its location for repair, simply stating the name of tbem to the engineer
is more meaningful than providing a series of numbers remtayy its location.
In addition, visual representations of a scene lend coméiformation that laser
systems cannot provide. This is of great benefit when thetisibequired to interact
with its environment.

It is also worth noting that no navigation system should esiyirely upon one
type of sensor. Combining visual and laser sensing providgls depth and con-
tent information, which presents a sound framework uporcivid build a robust
navigation system. This overcomes the malfunctioning afreser and/or an envi-
ronment poorly suited to a single sensor.

The compliment to the laser mapping system in the proposeaddwork is based
on scene recognition. Scene recognition for robotic appbos is a field that can
often be considered as a special case of image matchingngitite image in a
database most similar to a candidate image has been widdlgssdd in literature.
Many approaches represent images by a distribution of femuch as SIFT [20],
with matches between features based upon similarity inifeatescriptors, as well
as the spatial relationships of features [26, 27, 31]. Taestfier of these techniques
to robot localization must deal with the problems assodiatéh indoor scenes.
Such scenes often have a lower presence of discriminatetgrés, and instead
contain a large number of uniform regions representing contyroccurring bod-
ies such as walls, floors and ceilings. This results in image®nly having fewer
features to match, but those features found are often grasether similar rooms.
A further issue is that viewpoint changes in indoor envirenis are often large
relative to images of outdoor scenes, which is generallydbes of the above tech-
niques. As such, most approaches for indoor scenes use mheaaced methods
such as supervised learning [34], probabilistic matchir&],[feature grouping [1],
or a combination of both global and local features [37].
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12.4.1 Scene Association

The ability to recognize specific features of a scene is ingpoifor a robot to in-
teract with and navigate within a scene. For this purposepmthod of scene as-
sociation allows a scene to be recognized from a number afpdts, whilst still
identifying specific features. We propose that we call fezduthat are viewpoint-
invariant and are consistently detected across differewwpoints asassociation
features

In order to extract the association features from a sceneyaeimages of the
scene are captured from varying viewpoints, and featurashatccur across all
images are retained. In this work, SIFT features are usedn®the training phase,
a match is tested between each feature in an image, and tltdsan the other
images of the scene. Those features which are found in ajesare retained as
association features. In our equatiofig,represents an association feature dgnd
represents a candidate feature which we are attempting tchrt@an association
feature. To determine whether a match is made, three stepala@n, and steps with
the least computational expense and most likely to elirgitiz¢ greatest number of
false matches, are handled first.

In the examples shown in this chapter, it is assumed thatoihet maintains an
upright position, such that the features will only vary byasiramounts due to affine
viewpoint changes and not absolute camera rotations. Tliandidate feature is
firstly discarded if its orientation differs to that of an asgtion feature by more
than a thresholdg:

abg( f4(0) — c(8)) > tg (12.0)

Then, for any candidate feature that is not eliminated by {8 difference in de-
scriptors betweetf, and f. is calculated, by summing the dimension-by-dimension
differences between the SIFT descriptals,- - di2g. The feature is discarded if this
difference is more thatys::

128
zlabs( fa(di) — fe(di)) > tsift (12.0)

For those candidate features not eliminated by (10), eleanggraph theory is then
used to eliminate matches that are not verified by the loéghberhood. The neigh-
borhood of a feature is defined as the 10 spatially-closestifes captured in the

same image, as proposed in [26]. Then, a featél%in the neighbor-hood of; is

considered a neighborhood match, if there exists a feziéﬂ})e'n the neighborhood
of fa, which has a similar orientation and descriptorf¢tn), as defined in Egs. (9)

and (10). Additionally, the angle betwedgpand (" must differ to the angle be-

tweenf, and fém) by no more tharty. Then the candidate featufgis discarded if
the number of neighborhood matches tdjdess thar\:
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10
3 NumMatchesf”, f.) < N (12.0)
n=1
where
1if 3 IsMatch(i™ (™) > 1
NumMatchesf(", f.) = 2 chfa’)2 (12.0)
0 otherwise
where
1if  abs(f"(0)— 1™ (0)) <tg
and lzgabs(f(“)(d-) — ™ (dh) <t
IsMatch( £, fi™) = 2 absle () —Ta 7(a)) <t (15 g

and abgg (1", fo) — (™, fa)) <ty
0 otherwise

In the above equatio( f1, f2) represents the orientation of the line connecting
featuresf; and f,. If a candidate feature satisfies all these criteria, thes ¢on-
sidered a match between the two images. It is then passedtha text image of
the scene to determine whether the same feature is found. &ace an associa-
tion feature is found across all images, its descriptor lisutated by computing the
dimension-by-dimension average of the descriptors othallfeatures contributing
to this association feature.

In the example shown below in Fig. 13.9, three images of eeehesare used,
and an association feature is recorded if it is present ithede images. Using more
images can significantly reduce the number of detected asgocfeatures, thus
affecting its ability to perform scene association on acagt image in later stages.
The top row shows all the originally detected features, &edibttom row showing
only the association features, which were found in all tlufethe top row images.

In Fig. 13.9, it is worth noting that the association feasuadl form part of the
background of the images, and all features on foregrounelctdbpre eliminated.
There are two reasons for this. First, a background feattnesa all three images
has a similar incident viewpoint than foreground featuaesi hence the feature de-
scriptor varies less between the viewpoints. Second, lvaakg features which lie
against a wall have no background clutter to confuse thefeatescriptor, whereas
the descriptor for foreground features varies as diffeeégrnents of the background
come into view behind the feature.
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Fig. 12.8 Example of the training phase during which association feaanedetected for a scene.
Images (a) - (c) are taken from different viewpoints of the sanemecSIFT features are then
detected in the images and highlighted. Those features thdband in all three images (a) - (c)
are memorized as association features and highlighted in imdpe§).

12.4.2 Scene Recognition

With association features learnt for each room, the nekt im$o match features
from a captured image as the robot navigates through thecsmaent, to those
association features stored in the robot's memory. Thisredn a similar manner
as during the training phase. First, candidate SIFT featdgeare extracted from
the latest captured image. Then, for every associationrfedt, , in each scene in
memory, a match is attempted to every candidate feafyré match is classified
as positive if it is similar in orientation td, has a similar descriptor t&, and is
verified by the local neighborhood &. This is identical to the process of learning
association features in 4.1, except that we now use a snallee fortsjs;. This
adjustment is necessary because in the training phasardsare only compared
to those from a small number of images of the same scene. Howewring the
recognition stage, features are compared to features ficdoemes in the database,
and so descriptors are required to be closer to have suffmefidence of a match.
Choosing the actual values tf;; in the two phases is a compromise between
feature discrimination, and viewpoint invariance. In oxample results, we found
that for the training phasgsi;; = 25 was an optimum value, generating a large num-
ber of positive matches and leaving only 10% false positietcimes, which were
then all eliminated during neighborhood verification. Hoe tecognition phasér¢
can be tweaked in accordance with the number of rooms in thieoement and
for the examples shown in this chaptiy;; = 45 . With a smaller value, the same
feature detected across large viewpoints was often elmdhand with a larger
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value, too many false positive matches were found that coolde eliminated by
neighborhood verification.

If a match between an association feature and a candiddtedes positive, the
algorithm attempts to find a match to the next associatiaimifeaFor each scene, the
percentage of association features which have been maticednters the scene
into a ranking system, where the scene with the highest p&ge of association
feature matches is output as the scene within which the islbotated.

Fig. 13.10 demonstrates a typical arrangement within thedaries of a room
where the proposed scene association is used. At eacholoctite robot captures
a series of 8 images at 4ttervals to form a panoramic sequence, and computes
SIFT features for each image. Fig. 13.11 shows the panoramaiges with all de-
tected features highlighted. An image matched which mai@mtassociation fea-
ture in memory increases the likelihood of it being assedidhat scene.

. Robot locations during training phase.

Robot locations during recognition phase.

~
-~
-

-
-
-
e

l" “--
l' l'
Room 1 H Room 2 i Room 3

Corridor

Fig. 12.9 Arrangement of robot locations within a room during trainamgd recognition phases.
During the training phase, scenes are captured at three médithe triangle, whereas during the
recognition phase, scenes are captured randomly within ttle tangential to the triangle. At each
location, the robot rotates to capture multiple images to faganoramic sequence.

During the training phase, the robot is initially instrudttey hand gestures to
capture panoramic images in 7 rooms of the building. In eaomt the robot learns
the association features by capturing images at each ohtke tocations in Fig.
13.10.

During the recognition stage, the robot captures one seamdamic views and
calculates the percentage of matches to association ésdfr each scene. In this
experiment, 93% of the test scenes were identified with thecbroom, by consid-
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Fig. 12.10 Panoramic images with SIFT features highlighted for scene adgwti Images (a) -
(h) are captured at 45ntervals as the robot rotates within a room. This is perforineabth the
training and recognition phases.

ering the highest percentage features matches acrossrdéisin the database. Table
12.1 shows the recognition performance across the sevamsraisited, showing the
average results across multiple recognition attemptsgon @om. The numbers in
bold represent the percentage of association featuregnmizeal in the correct room
(true positives), whilst the non-bold numbers represemptircentage of association
features recognized in all the other incorrect rooms (fptsstives).

Table 12.1 Recognition accuracy by using the scene association methodsaofar a laboratory
scene consists of 7 rooms. Bold numbers are percentage of true@ésiiure matches, non-bold
numbers are the percentage of false positive feature matchesnétars used in equations (9) -
(11):tg = 20,ty = 45,N = 1,tsjy = 45 for training phase, 25 for recognition phase.

| % Feature matches in each room

Room number| 1 2 3 4 5 6 |7
1 60 | 4 17 1 9 17 (29
2 2 | 48| 2 1 0 0 |4
3 13|11 (82| 16| 27| 16 |1
4 2 451 0 55| 42| 17 |3
5 8 7 6 | 3772|251
6 7 | 18| 3 | 1431|360
7 0 |10 7 4 7 3 [63

It is evident that some rooms have generated a higher coegdartheir correct
identification. For example, Rooms 1, 2, 3, 5 and 7 have laiffereinces between
the most likely and second most likely rooms, whereas witbrR® 4 and 6, the
system is less confidence that the most likely room was indbmdified correctly.
This is largely due to the presence of similar objects inedé&ht rooms, such as
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television screens, whose features are similar acrosselift scenes, and who also
have similar features in the local neighborhood, drawn ftbensame object.

Nonetheless, with a 93% positive scene identification,\tisi®n system is well
equipped to work in tandem with the laser mapping system,itedrates appro-
priately with the gesture-recognition task. The final ofsadje is then to incorporate
both the qualitative and quantitative localization datdg ia system that is able to
autonomously navigate between rooms, as instructed bystre u

12.5 Planning and Navigation

As the robot is guided around the environment, laser datalisated in order to
build a geometric map of its surroundings. As mentionederathe guide indicates
points of interest within the environment by performing atténtiort gesture. The
tour is to enable the robot to map the environment using dfasine and qualitative
localization techniques; incorporating scene associdtigproves localization and
also the high-level planning used for navigation.

After mapping and localization, in order to autonomouslyigate towards a
goal, there needs to be a plan. A plan can be described asenseqf moves or re-
actions which lead towards the goal [22]. Formulating a pl&ien the environment
map is discrete is simpler since classical graph-searaigayithms such as A* and
Dijkstra can be used [22]. The two main approaches for ddngtthe environment
is to either store it as a grid, grid-based (metric) paradignas a graph, topological
paradigm [5]. By using the laser mapping system and sceeiassn descriptors,
we can integrate both grid-based and topological paradignaiow for fast path
planning on the easy to construct occupancy map, utiliziegaidvantages of each
representation, as mentioned by Thrun and Bicken [5].

During a guided tour, the robot constructs the occupancy@hép environment
and, when gestured by the user, records a scene descripits toirrent location,
which is mapped onto the occupancy map as shown in Fig. 1B B2ldition to the
scene descriptors created, a key location is also indickteduld also be useful, for
navigation purposes, if descriptors are captured autcalbtithrough-out the tour
as waypoints, since this will allow the topology of the enviment to be captured
more accurately.

Scene descriptors are periodically captured during the &dlowing the graph-
based map to also contain information about the path takethdoguide, and not
just the points of interest; we captured these waypointawthins greater than 5aé
were made to ensure the robot would be able to later retr&cpath taken during
automated runs as shown in Fig. 13.13.

Once the robot localizes itself on the occupancy map, we tzangroute to the
target locations using the topological map, starting frbw ¢urrent nearest node.
This high level planning procedure is done by using the Apgraearch algorithm.
The system uses cues from the LRF and camera to recognizeitvieaches way-
points or the goal location.
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Fig. 12.11 A topological map of the environment storing scene descriptotBeakey locations
indicated by the user during the tour.

In autonomous systems, learning can potentially provigdigxibility the sys-
tem needs to adapt to dynamic environments [6]. Consideexample, that a new
optimal path is discovered between two locations, it woddlesirable for the robot
to update its internal model to reflect this discovery. Based hrun’s idea of sen-
sor interpretation [32], a learning method which interpnetadings from different
sensors, such as the laser range finder and color camerd beoutilized for coping
with varying environments. For example, in repetitive sersuch as the corridor
shown in Fig. 13.14, the ability for accurate localizatioging scene recognition
would decline dramatically. In such scenarios, it wouldnagas be more beneficial
if the robot could learn to rely more on other sensory infdiora

Other factors, besides a changing environment, would kefnefn updates to
the robot’s internal model. Graph searching can be a cortipotdly demanding,
especially in complex environments. Our focus is to captoenes to store as a
node on the graph-based map automatically when a significgaiional motion
is executed or if a large distance has been covered sincasheelcorded node.
Although the topological map allows for faster planning gntftompared to the grid-
based occupancy map, the robot should seek to further §jnitslrepresentation of
the environment as shown Fig. 12.14.

The simplified representation of the environment allowsrtit®t to carry out
future tasks in an autonomous fashion. Furthermore, thelgied map provides
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Fig. 12.12 An example topological map built during a guided tour. Capigiscene descriptors
periodically during the guided tour allows the robot to Hual more detailed topological map of
the environment, better recording the path taken by the user.

a user-friendly interface for control of the robot. This ¢ypf interface allows the
proposed system to work in a variety of environments ineclgdnuseums, offices,
home-care and hospital wards. Not only is the robot abledntity different rooms

in the environment, whether it be to carry out a task or alertragineer for repair,
but also does the proposed system allow the robot to intevilstpeople in the

environment, whilst avoiding all obstacles.

12.6 Conclusion

Mobile robots present many opportunities to carry out maedasks in everyday
life. Before robots are able to perform such tasks, basatligence must be devel-
oped. In this chapter, we have addressed several key chedlerlated to robotic
navigation and the value of using HRI for environment maggind scene associa-
tion. Effective use of HRI allows the user to naturally irstetrwith a mobile robot via
gestures, which can be detected using a vision based sy#tehmve demonstrated
the practical use of the proposed gesture recognitionsykieguided exploration
in a novel environment. These gestures help the robot ircdiffsituations and
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Fig. 12.13 Localization within a scene with repetitive visual featuresei®s (a) and (b) are cap-
tured from different locations in the environment, howeweany features in both images indicate
a match; scene association is not useful in all situations as mos ofdtches shown are incorrect.

build scene descriptors. Upon being informed to follow, ghgposed system used a
multi-cue tracking system to maintain an estimate of thatioo of the guide at all
times.

During a guided tour, the robot uses the laser data to create@ipancy map of
the environment. However, there are scenarios where #ataln using this quan-
titative approach can be improved by using qualitative .d&tathis end, a vision
based scene association is used to complement the occupeayy capturing
descriptors of particular scenes on the map. These demwripte built at salient
locations of the environment. The visual descriptors cirgdidistributions of SIFT
features, which the robot has learned to memorize as they coasistently across
multiple viewpoints of a scene.

To autonomously navigate within the recorded environmtietyobot uses both
the geometric occupancy map and topological map of the stesaiptors. Quan-
titative and qualitative localization techniques are ctenpentary with each other,
providing accurate localization in geometrically simigawvironments. To accurately
retrace the path taken by the guide, scene information isicegbperiodically by the
robot during the guided tour. High level path planning isieal out by performing
A* search on the topological map from the current scene tagthe destination.
In this chapter, we have described our considerations ongutanomous naviga-
tion can be improved by incorporating mechanisms that Withait to cope with
a changing environment and uncertainty from sensor readWg demonstrated
how visually similar scenes can potentially cause confustw scene association
and suggest how the robot could adapt its interpretatiorio$@r data under these
conditions.

While the proposed system attempts to handle many of thesssl&ted au-
tonomous navigation, future work will aim to improve the usiness of the system.
More sensor modalities could be used to further help thetrobderstand the en-
vironment. For example, 3D time-of-flight cameras could keduto accompany
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(a)

Fig. 12.14 Topological simplification for route planning. A simplified tdpgical map of the en-
vironment, in comparison to Fig. 13.13, brings performance fitsrfer route planning and ease
of visualization.

the 2D laser scanner to provide a more detailed view of the@mwent. This could
help the robot identify the exact location of objects in theienment. Furthermore,
a more detailed tracking system could help the robot to raairthe motion of all
moving objects in the environment for improved planning abdtacle avoidance.
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