
Chapter 12
Autonomous Navigation for Mobile Robots with
Human-Robot Interaction

James Ballantyne, Edward Johns, Salman Valibeik, CharenceWong, Guang-Zhong
Yang

Abstract Dynamic and complex indoor environments present a challenge for mo-
bile robot navigation. The robot must be able to simultaneously map the environ-
ment, which often has repetitive features, whilst keep track of its pose and location.
This chapter introduces some of the key considerations for human guided naviga-
tion. Rather than letting the robot explore the environmentfully autonomously, we
consider the use of human guidance for progressively building up the environment
map and establishing scene association, learning, as well as navigation and plan-
ning. After the guide has taken the robot through the environment and indicated
the points of interest via hand gestures, the robot is then able to use the geometric
map and scene descriptors captured during the tour to createa high-level plan for
subsequent autonomous navigation within the environment.Issues related to gesture
recognition, multi-cue integration, tracking, target pursuing, scene association and
navigation planning are discussed.

12.1 Introduction

As demands for mobile robots continue to increase, so does the pursuit for intelli-
gent, autonomous navigation. Autonomous navigation requires the robot to under-
stand the environment, whether static or dynamic, and to interact with people seam-
lessly. In practice, there are several key components that enable a robot to behave in-
telligently. They include localization and mapping, sceneassociation, human-robot
interaction, target pursuing and navigation. Localization and mapping is a well stud-
ied topic in robotics and autonomous vehicles for dealing with both known and
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unknown environment whilst keeping track of the current location. For purpose-
ful navigation, it also requires learning and scene association to build progressively
the surrounding environment. For complex scenes, such as those encountered in a
crowded indoor setting, gesture recognition is necessary to ensure seamless human-
robot interaction so that they can follow specific commands or pursue relevant tasks.
Fig. 13.1 outlines an example configuration when these components are required to
work together for autonomous navigation within an indoor environment.

In terms of human robot interaction, vision based approaches represent a key
technique for establishing natural and seamless interaction. For understanding hu-
man gesture or intention, static or dynamic hand gestures and facial expression can
be used [10, 15, 24, 29, 42]. Static gesture normally relies on identifying different
postures whereas dynamic gestures include interpreting cascade of events through
different time space. In other words, static gestures are extracted by analyzing the
contextual information at each time instance, whereas dynamic gestures are rec-
ognized by analyzing the temporal information across consecutive time periods.
Effective use of human-robot interaction enables a person to initiate various tasks
for the robot to carry out. In this chapter, we will use human guided exploration
for a robot in a novel environment as an example. The technical details for gesture
recognition are described in Section 13.2. Key to any successful gesture recognition
system is the incorporation of natural, socially acceptable gestures similar to those
used in human-human interaction. The technical details forgesture recognition are
described in Section 13.2.

Following a guide also requires the robot to maintain and keep track of the lo-
cation of the person continuously. To this end, a tracking system as described in
Section 13.3 is proposed. The method is based on the use of multiple cues from
two main sensor modalities based on vision and laser scanning systems. The visual
cues from each sensor are fused to create a robust map of people within the envi-
ronment. Once the location of the guide is obtained, the robot is able to follow the
guide through the environment whilst avoiding visible obstacles autonomously vis-
ible obstacles. The basic approaches used are also described in Section 13.3.Even
with human guidance, However, situations may arise when theperson goes outside
the field-of-view of the robot. In this situation, the robot needs to predict where the
guide may end up and autonomously navigate to the position and re-establish visual
tracking.

In order to build a global map of the new environment through aguided tour,
qualitative localization is necessary. We have proposed inSection 13.4 a concept
called scene association, which enables the robot to identify salient features of dif-
ferent locations as it navigates around. This information is then incorporated with
the internal map generated at relevant locations. The proposed scene association
framework uses visual data to learn key features of a scene, which are distinctive
but can be consistently identified from different viewpoints.

After the guide has taken the robot through the environment and indicated the
points of interest via hand gestures, the robot is then able to use the geometric map
and scene descriptors captured during the tour to create a high-level plan for subse-
quent autonomous navigation within the environment. In Section 13.5, an A* graph
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search algorithm is used to plan the route of the robot for goal directed naviga-
tion and localization. We will also discuss how learning techniques can be used
to improve the robot’s ability for autonomous navigation. Throughout this chap-
ter, the examples used are for indoor environments with people moving around. So
the proposed framework is ideally suited for museum, office,home-care and hospi-
tal wards. The theoretical concepts of using directed navigation to reinforce vision
based autonomous localization and mapping can also be extended to other environ-
ment. To this end, human gesture recognition can be replacedby other signalling
methods, but the basic concept of scene association and high-level planning can
remain the same.

Fig. 12.1 A schematic illustration of the use of gesture recognition, pursuit, scene association and
environment mapping for human guided navigation. Under this scheme, the gesture recognition
system detects commands issued by a guide, which then activates a specific component based on
the detected gesture. The pursuit component is activated on specific gestures and when an “atten-
tion" gesture is detected, a scene descriptor is built, which is thenintegrated with the environment
model.

12.2 Human-Robot Interaction

In this section, we will describe a robust gesture recognition framework suitable for
human guided navigation in normal indoor environment including crowded scenes.
For this purpose, the method proposed in [35] is to be used. Inthis approach, vision
based dynamic hand gestures are derived for robotic guidance. The gestures used
include “hello" (wave gesture for initialization), “turn left", “ turn right", “ follow
forward" and “attention" (for building new scene descriptors). The overall system
structure is depicted in Fig. 13.2.



254 Ballantyne, Johns, Valibeik, Wong and Yang

Fig. 12.2 Key processing components for the proposed gesture recognition sub-system. Raw im-
ages taken from the vision sensor are used to extract low-level cues such as motion information
and skin colored objects. Regions of Interest (ROI) consisting ofdynamic skin regions are then
extracted and tracked with Kalman Filters. Finally, in the high-level reasoning phase, a Hidden
Markov Model (HMM) is used to extract specific gestures

Hitherto, three distinctive factors are commonly employedfor extracting hands
for gesture recognition. These include skin color, hand motion and shape. We have
integrated the first two components, since hand shape is not robust enough for sys-
tems using wide angle cameras. In the proposed method, skin segmentation is first
performed to identify skin-colored objects which consist of faces, hands or any other
skin colored regions. Subsequently, motion segmentation is used to prune out back-
ground objects, which are mostly static. The remaining skin-colored objects now
mostly consist of hands and faces.

In order to extract temporal information suitable for dynamic gesture recogni-
tion, a robust tracking algorithm is required. To this end, Least Median Square Error
(LMeds) motion restoration is performed to remove outliersdue to rapid illumina-
tion changes, partial motion occlusions and depth discontinuities. In practice, object
deformation is also important to consider, which is more evident for tracking non-
rigid objects. In this work, hand tracking is mainly used to extract dynamic hand
gestures. With the proposed framework, pose variability and occlusions are also
taken into account by incorporating multiple cues to associate the extracted regions
of interest at each time instance to previous measurements.Kalman-filter is used to
provide robust tracking across time [35].

Once the hand motion trajectories are accurately tracked, the next step is to per-
form detailed motion analysis to evaluate if the extracted trajectory is similar to
pre-defined gestures. For this purpose, Hidden Markov Models (HMMs) are used.
HMM is particularly suitable for modeling time series. The main advantage is that
it is based on a probabilistic framework and is beneficial when multiple gestures are
evaluated for the same sequence.

To demonstrate the practical value of the proposed gesture recognition frame-
work, Fig. 13.3 demonstrates some example results when different subjects are
asked to perform the aforementioned gestures for human guided navigation. Ini-
tially, the wave gesture is used to attract the attention of the robot. Subsequently, the
robot can be guided by using “move forward", “ turn left" or “ turn right" commands.

In Fig. 13.3, all the tracked objects are color coded and the recognized gestures
are illustrated. After successful gesture recognition, the next challenge is to identify
and maintain the commanding person within the field-of-viewin a crowded envi-
ronment. This requires the robot to keep track of the person’s location at all times
once engaged. Furthermore, the robot must be able to follow the guide through the
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Fig. 12.3 Illustration of different gestures used in the proposed system. Each set of images shows
the sequence of motions involved for each gesture. Tracked handlocations are color coded and
each detected gesture is indicated in the last image of the sequence; (a), (b), (c), (d) and (e) show
“wave", “ follow forward", “ turn "left", “ turn right", and “attention", respectively.

environment and build a detailed map of the environment for future navigation pur-
poses. In the next section, we will introduce the tracking and pursuit system and
explain how the identified gestures are used to control the robot during navigation.

12.3 Subject Following with Target Pursuing

In order to follow the commands given by a person in the scene,the proposed system
relies on the robot’s ability to detect and track humans based on the sensor data. In
this section, we will use information from both vision sensors and Laser Range Find-
ers (LRF) to accurately track and pursue the movement of the person. For human
guided navigation, negotiating corners can be problematicas the guiding person can
easily move out of the field-of-view. To overcome this problem, the guide can issue
a “left" or “ right" signal to activate an autonomous corner manoeuvre during which
path planning and obstacle avoidance is performed autonomously.
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12.3.1 Correspondence

The proposed framework relies on multiple cues from different sensors to accurately
track the guide. However, the cues in the current setup reside in two different camera
reference systems. Therefore, calibration is required to fuse both sets of cues into a
common reference frame. This establishes a transformationto allow the projection
of a laser range point into the vision space. The system utilizes the method defined
in [39] to establish the transformation defined as

i ≈ K(Φ ·P+∇) (12.0)

wherei = [u,v]T , P = [x,y,z]T , andK are the intrinsic parameters of the camera.
To initiate the calibration procedure, a standard checkerboard calibration pat-

tern as proposed by Zhang [39, 40] is used to calibrate the vision sensor. The aim
of the procedure is to take multiple instances of the checkerboard within the view
of both vision and LRF sensors. The vision calibration provides both the intrinsic
parameters,K , and the extrinsic parameters,(Ri , ti) with respect to each checker-
board location. Furthermore, the extrinsic parameters provide the normal for each
checkerboard grid as

N =−Ri,3(RT
i,3 · ti) (12.0)

whereRi,3is the third column of the rotation matrix for theith checkerboard ob-
tained from the extrinsic parameters.

After calibration, the laser points on each checkerboard are collected. These
points fall on thexz-plane and can be represented byPf = [x,z,1]T . Therefore, a
point falling on the calibration plane with surface normal must satisfy the plane
equationN ·P =−D. From Eq. 12.3.1, we have

N ·Φ−1(Pf −∇) =−D (12.0)

This can be rewritten as

N ·HPf =−D

H = Φ−1





1 0
0 0−∆
0 1





(12.0)

For each pose of the camera, there exist several linear equations for the unknown
parameterH, which can be solved with standard linear least squares algorithms.
OnceH is determined, the relative orientation and position between the two sensors
can be calculated as

ΦR = [H1,−H1×H2,H2]
T

∆ =−[H1,−H1×H2,H2]
TH3

(12.0)

whereΦR is the Rodrigues representation of the rotation matrix. To further en-
hance the accuracy of the rotation and translation parameters, a non-linear optimiza-
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tion technique can be used [39]. It aims to minimize the Euclidean distance from the
laser points to the checkerboard grids by using the following equation:

∑
i

∑
j
(Ni · (Φ−1(Pf

i j −∆))+D)2
(12.0)

The final result provides the optimized transformation thatallows for accurate
projection of the laser data points into the image space.

12.3.2 Multi-cue Integration

One of the most common methods for identifying people in vision is to locate the
head in each image [11,12,14,17,21,38,41]. These techniques suffer from three ma-
jor issues; 1) the assumption of the availability of a prioribackground information;
2) the requirement of large size silhouettes; 3) the need fora controlled environ-
ment in terms of illumination changes. Due to the relative positioning of the LRF,
laser scanning systems usually identify humans using leg detection schemes. One
common approach is to search for local minima [3, 9] in the scan data. This has
shown promising results for relatively simple environments. However, as soon as
the environment becomes cluttered, the detection results become unreliable and er-
ror prone [33]. A second common approach is to use motion detection to identify
humans [8, 18] as people are often the only moving objects in most environments.
These methods usually compare the current and previous scans to determine the
dynamics objects within the environment. The areas from thecurrent scan, which
are not found in the previous scan, are considered as the moving objects. The very
nature of the algorithm means that the system is not able to detect stationary persons
in the environment.

To overcome these drawbacks, we propose to utilize cues fromeach sensor for
person identification. A person is identified if it is evidentfrom both the vision and
laser systems. The vision system uses the head detection approach employed by Vi-
ola and Jones [36]. In addition, a cascade of adaptive boosting classifiers is used to
quickly prune the background and place more emphasis on potential targets. In the
examples shown in this chapter, 32 cascades of classifiers are used to provide accu-
rate localization with minimal number of false positives. Furthermore, about 1,399
heads with different orientation, poses and illumination conditions along with 800
background images have been gathered for training. By usingadaptive boosting of
Haar-like features, a multi-pose head detection classifierhas been created. To in-
crease sensitivity, a Kalman filter based tracking system isemployed. Head position
is updated using Shi-Tomasi features [30]. The method proposed by Valibeik and
Yang [35] is used to measure the correlation between newly detected regions with
the tracked ones.

The cues from the laser scanning system are formed using a newapproach for
human detection [4]. The system aims to identify people by searching for three
patterns associated with the presence of a person, which aretypically found in laser
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scans. These patterns include split leg (LSA), forward straddle (FS), and two legs
together (SL) as illustrated in Fig. 13.4.

Fig. 12.4 Illustration of the three patterns used to detect human legs in the laser scan data. The top
row illustrates the patterns with the three constraints used. In the proposed system, constraint (a) is
between 10cm and 40cm, constraint (b) is under 40cm, and constraint (c) is also under 40cm. The
bottom row shows a real example from the laser range finder for each type of pattern, where the
blue squares represent the right edges, while green squares represent left edges.

The patterns are detected by finding the correct left and right edge sequences
where an edge is defined as a segment between two points{xi ,xi+1} such that the
distance between them is greater than a predefined threshold. An edge is defined as
a left edge ifxi > xi+1 and a right edge ifxi < xi+1.The edges are generated and
stored in a list∑ = {e1,e2, · · · ,en}. The aim of the algorithm is to find a subset of
the edges that follow one of the three patterns with constraints on the size between
each segment. The patterns are defined as:

1. LA pattern with quadruplet{L,R,L,R}.
2. FS pattern with triplet{L,L,R} or {L,R,R}
3. SL pattern with doublet{L,R}

A single edge from the list can only belong to a single patternand is thus removed
from further consideration. Furthermore, each pattern is searched sequentially,i.e.,
the edge list is initially search for LA patterns, then for FSpatterns, and finally for
SL patterns. This is to help reduce the number of false positives.

In order to reduce the number of false positives from each sensor individually,
the system fuses both sets of candidates into a single list. To this end, all people de-
tected in the laser scan data are projected into image space using the transformation
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found in Eq. 12.3.1. Only those candidates that fall into thehorizontal view of the
camera are considered. The remaining candidates are then matched with the head
detected in the vision system using a nearest-neighbor approach. Therefore, the final
list consists of matched pairs from each sensor.

12.3.3 Robust Tracking

The previous section provides a way of identifying humans inthe environment based
on cues from both vision and LRF sensors. To maintain a continuous estimate of the
location of the commanding person, a temporal tracking system is used. Traditional
systems have used cues from multiple sensors to identify targets [2, 13, 19]. The
proposed system attempts to handle the tracking problem in asimilar fashion by
using cues from the two sensor modalities,i.e., vision and laser. As mentioned in
Section 13.2, the system is activated when a “hello" command is received from a
person in the environment. Upon receiving the gesture, the robot identifies the most
likely candidate from the observation data set by choosing the head most likely to be
part of the arm giving the gesture. This observation is used to initialize the tracking
system. For tracking, an Interacting Multiple Model (IMM) [28] filter equipped with
three motion models is used to deal with unpredictable movement of people. The
IMM filter has been shown to provide more accurate tracking results than using
a Kalman filter on its own [28]. The three motion models used assume constant
acceleration, constant velocity, or a stationary motion model. The system tracks
the location of the guide on thexz-plane with a weighted model to provide the
most likely estimate of the location of the guide. The key component for ensuring
accurate tracking is data association. Potential observations come from the fused
information obtained from the two sensors as described in Section 12.3.2. To help
limit the number of potential observations, the minimum gate of the three motion
models [7] is used which is defined using a distance metric:

d =
√

(ym−zi)T ∑−1
m (ym−zi) (12.0)

where(ym−zi) is the measurement residual vector and∑−1
m is the measurement

residual covariance matrix. Finally, only observations that fall in theχ2 distribution
with a probability of 99% of the gate are considered. The tracking system ensures
that there is always an estimate of the location of the guide,enabling the robot to
follow the guide through the environment when requested.
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12.3.4 Pursuing

The tracking system provides the robot with the necessary information to follow
the commanding person through the environment. In the example presented in this
chapter, the robot uses the given position to ensure:

1. Robot is required to face the guide at all times;
2. Robot is required to maintain a distance of roughly 1.5m tothe guide;
3. Movements can only be performed if all objects are avoided.

Fig. 12.5 Illustration of the pursuit strategy employed by the robot for following the guide through
an indoor scene. The system chooses the best set of velocities that will allow the robot to approach
the guide without colliding with any of the objects in the environment. In the above example, the
central path is chosen, which is highlighted in red. This pathallows the robot to arrive at the desired
location at about 1.5m from the guide.

To adhere to these three goals, the robot follows the pursuitmovement as defined
in [25]. The steering behavior for each frame determines thenecessary velocity
vector (rotation and translation) that the robot should follow to adhere to Rules (1)
and (2). The velocity vector is determined by the current predicated location of the
guide and the robot’s current velocities.

vdesired= norm(posr − post) ·vmax

vactual = vdesired−vcurrent
(12.0)
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Upon arriving at the actual velocity to use, the robot must ensure that Rule (3) is
preserved. To this end, the robot selects a series of velocities within a window of
vactual and generates the curves that the robot would follow at the selected velocities.
The robot then chooses the velocity that allows the robot to arrive at the desired
location, 1.5m from the guide while avoiding all obstacles.Fig. 13.5 illustrates the
potential paths that the robot could take to approach the guide marked with a blue
square. In this example, the red, dotted path is chosen because it brings the robot
closest to the desired position of 1.5m in front of the guide.

The secondary pursuit goal is to handle situations when the guide leaves the
field-of-view of the robot. This situation arises when the guide either goes around a
corner or enters into a room through a doorway. To circumventthese problems, the
guide is able to direct the robot either with a “left" or “ right" signal depending on
the traveling direction. When the robot receives one of the two gestures, it predicts
the future location of the guide around the corner in the desired direction. To do
this, the robot projects the current location of the guide tothe left or right of the
field-of-view.

When the projected location has been found, the robot plans a path to the location
that avoids all obstacles. An example situation is shown in Fig. 13.6 when the user
is leaving a room and moving to the right and down the hallway.The robot chooses
a position about 1m to the right of the latest predicted location of the guide, creating
a path through the doorway to the goal location shown in red.

Fig. 12.6 Illustration of the method used by the robot to turn around a corner. The left image
presents a guide standing in a hallway, while the robot is still in the room. After the guide has
issued a “turn right" gesture, the robot assumes the guide will leave the field-of-view and begins
to perform a corner maneuver autonomously. The right image illustrates the path in red, generated
to allow the robot to arrive at the projected future locationof the guide.
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12.3.5 Mapping

During a guided tour of an environment, the robot has the ability to use the laser
data to build a geometric estimate of the environment. To this end, an occupancy
grid is constructed, while the location of the robot in the environment is tracked
using a scan-matching system. In the proposed framework, animplementation based
on the “vasco" scan-matching system, which is part of the Carnegie MellonRobot
Navigation Toolkit [23], is used. A sample map generated forour lab at Imperial
College London is shown in Fig. 12.7.

Fig. 12.7 A sample occupancy grid generated during a tour of our lab at Imperial College London.
The red square illustrates the current location of the robot inthe environment.

The map generated during the tour of the environment provides only a geometric
perspective of the environment. This introduces ambiguities as locally, many of the
architecture features are very similar across a building. The robot can easily become
confused to its actual location. To address this limitation, a vision based scene de-
scriptor is used to build a global perspective based on appearance. These descriptors
are generated after receiving a “signal" gesture from the guide during the tour.
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12.4 Qualitative Localization

The laser mapping system presented so far is capable of calculating the quantita-
tive location of the robot in a defined coordinate system. In practice, however, its
robustness is far from perfect, and it is important to provide complementary loca-
tion information. To this end, our proposed system relies onvisual information to
qualitatively identify the scene that the robot is currently in view of, working in-
dependently of the mapping system, and ultimately with bothsystems reinforcing
each other.

For indoor scenes, rooms are often geometrically similar, and this can cause prob-
lems with the proposed mapping system when only building a rough geometrical
view of the environment. Visually, however, these rooms areoften very distinctive.
Features of a room, such as pictures on the wall or lights on the ceiling, present in-
formation that a laser system is unresponsive to. Visual information can help reveal
the room and significantly reduce the search space for localizing the robot.

The ability of the robot to understand in which room it is located also adds to
the pervasive nature of the system. For example, should the robot be required to
relay its location for repair, simply stating the name of theroom to the engineer
is more meaningful than providing a series of numbers representing its location.
In addition, visual representations of a scene lend contextual information that laser
systems cannot provide. This is of great benefit when the robot is required to interact
with its environment.

It is also worth noting that no navigation system should relyentirely upon one
type of sensor. Combining visual and laser sensing providesboth depth and con-
tent information, which presents a sound framework upon which to build a robust
navigation system. This overcomes the malfunctioning of a sensor and/or an envi-
ronment poorly suited to a single sensor.

The compliment to the laser mapping system in the proposed framework is based
on scene recognition. Scene recognition for robotic applications is a field that can
often be considered as a special case of image matching. Finding the image in a
database most similar to a candidate image has been widely addressed in literature.
Many approaches represent images by a distribution of features such as SIFT [20],
with matches between features based upon similarity in feature descriptors, as well
as the spatial relationships of features [26, 27, 31]. The transfer of these techniques
to robot localization must deal with the problems associated with indoor scenes.
Such scenes often have a lower presence of discriminating features, and instead
contain a large number of uniform regions representing commonly-occurring bod-
ies such as walls, floors and ceilings. This results in imagesnot only having fewer
features to match, but those features found are often present in other similar rooms.
A further issue is that viewpoint changes in indoor environments are often large
relative to images of outdoor scenes, which is generally thefocus of the above tech-
niques. As such, most approaches for indoor scenes use more advanced methods
such as supervised learning [34], probabilistic matching [16], feature grouping [1],
or a combination of both global and local features [37].
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12.4.1 Scene Association

The ability to recognize specific features of a scene is important for a robot to in-
teract with and navigate within a scene. For this purpose, our method of scene as-
sociation allows a scene to be recognized from a number of viewpoints, whilst still
identifying specific features. We propose that we call features that are viewpoint-
invariant and are consistently detected across different viewpoints asassociation
features.

In order to extract the association features from a scene, several images of the
scene are captured from varying viewpoints, and features which occur across all
images are retained. In this work, SIFT features are used. During the training phase,
a match is tested between each feature in an image, and all features in the other
images of the scene. Those features which are found in all images are retained as
association features. In our equations,fa represents an association feature andfc
represents a candidate feature which we are attempting to match to an association
feature. To determine whether a match is made, three steps are taken, and steps with
the least computational expense and most likely to eliminate the greatest number of
false matches, are handled first.

In the examples shown in this chapter, it is assumed that the robot maintains an
upright position, such that the features will only vary by small amounts due to affine
viewpoint changes and not absolute camera rotations. Thus acandidate feature is
firstly discarded if its orientation differs to that of an association feature by more
than a threshold,tθ :

abs( fa(θ)− fc(θ)) > tθ (12.0)

Then, for any candidate feature that is not eliminated by (9), the difference in de-
scriptors betweenfa and fc is calculated, by summing the dimension-by-dimension
differences between the SIFT descriptors,d1 · · ·d128. The feature is discarded if this
difference is more thantsi f t:

128
∑

i=1
abs( fa(di)− fc(di)) > tsi f t (12.0)

For those candidate features not eliminated by (10), elementary graph theory is then
used to eliminate matches that are not verified by the local neighborhood. The neigh-
borhood of a feature is defined as the 10 spatially-closest features captured in the

same image, as proposed in [26]. Then, a featuref (n)
c in the neighbor-hood offc is

considered a neighborhood match, if there exists a featuref (m)
a in the neighborhood

of fa, which has a similar orientation and descriptor tofc(n), as defined in Eqs. (9)

and (10). Additionally, the angle betweenfc and f (n)
c must differ to the angle be-

tween fa and f (m)
a by no more thantϕ . Then the candidate featurefc is discarded if

the number of neighborhood matches to isfa less thanN:
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10
∑

n=1
NumMatches( f (n)

c , fa) < N (12.0)

where

NumMatches( f (n)
c , fa) =







1 i f
10
∑

m=1
IsMatch( f (n)

c , f (m)
a )≥ 1

0 otherwise
(12.0)

where

IsMatch( f (n)
c , f (m)

a ) =



























1 i f abs( f (n)
c (θ)− f (m)

a (θ)) < tθ

and
128
∑

i=1
abs( f (n)

c (di)− f (m)
a (di)) < tsi f t

and abs(ϕ( f (n)
c , fc)−ϕ( f (m)

a , fa)) < tϕ
0 otherwise

(12.0)

In the above equation,ϕ( f1, f2) represents the orientation of the line connecting
featuresf1 and f2. If a candidate feature satisfies all these criteria, then itis con-
sidered a match between the two images. It is then passed on tothe next image of
the scene to determine whether the same feature is found again. Once an associa-
tion feature is found across all images, its descriptor is calculated by computing the
dimension-by-dimension average of the descriptors of all the features contributing
to this association feature.

In the example shown below in Fig. 13.9, three images of each scene are used,
and an association feature is recorded if it is present in allthree images. Using more
images can significantly reduce the number of detected association features, thus
affecting its ability to perform scene association on a captured image in later stages.
The top row shows all the originally detected features, and the bottom row showing
only the association features, which were found in all threeof the top row images.

In Fig. 13.9, it is worth noting that the association features all form part of the
background of the images, and all features on foreground objects are eliminated.
There are two reasons for this. First, a background feature across all three images
has a similar incident viewpoint than foreground features,and hence the feature de-
scriptor varies less between the viewpoints. Second, background features which lie
against a wall have no background clutter to confuse the feature descriptor, whereas
the descriptor for foreground features varies as differentelements of the background
come into view behind the feature.
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Fig. 12.8 Example of the training phase during which association featuresare detected for a scene.
Images (a) - (c) are taken from different viewpoints of the same scene. SIFT features are then
detected in the images and highlighted. Those features that are found in all three images (a) - (c)
are memorized as association features and highlighted in images (d) - (f).

12.4.2 Scene Recognition

With association features learnt for each room, the next task is to match features
from a captured image as the robot navigates through the environment, to those
association features stored in the robot’s memory. This is done in a similar manner
as during the training phase. First, candidate SIFT features, fc, are extracted from
the latest captured image. Then, for every association feature, fa , in each scene in
memory, a match is attempted to every candidate feature,fc. A match is classified
as positive if it is similar in orientation tofc, has a similar descriptor tofc, and is
verified by the local neighborhood offc. This is identical to the process of learning
association features in 4.1, except that we now use a smallervalue for tsi f t. This
adjustment is necessary because in the training phase, features are only compared
to those from a small number of images of the same scene. However, during the
recognition stage, features are compared to features from all scenes in the database,
and so descriptors are required to be closer to have sufficient confidence of a match.

Choosing the actual values oftsi f t in the two phases is a compromise between
feature discrimination, and viewpoint invariance. In our example results, we found
that for the training phase,tsi f t = 25 was an optimum value, generating a large num-
ber of positive matches and leaving only 10% false positive matches, which were
then all eliminated during neighborhood verification. For the recognition phase,tsi f t

can be tweaked in accordance with the number of rooms in the environment and
for the examples shown in this chapter,tsi f t = 45 . With a smaller value, the same
feature detected across large viewpoints was often eliminated, and with a larger
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value, too many false positive matches were found that couldnot be eliminated by
neighborhood verification.

If a match between an association feature and a candidate feature is positive, the
algorithm attempts to find a match to the next association feature. For each scene, the
percentage of association features which have been matchedthen enters the scene
into a ranking system, where the scene with the highest percentage of association
feature matches is output as the scene within which the robotis located.

Fig. 13.10 demonstrates a typical arrangement within the boundaries of a room
where the proposed scene association is used. At each location, the robot captures
a series of 8 images at 45◦ intervals to form a panoramic sequence, and computes
SIFT features for each image. Fig. 13.11 shows the panoramicimages with all de-
tected features highlighted. An image matched which match to an association fea-
ture in memory increases the likelihood of it being associated that scene.

Fig. 12.9 Arrangement of robot locations within a room during trainingand recognition phases.
During the training phase, scenes are captured at three pointsof the triangle, whereas during the
recognition phase, scenes are captured randomly within the circle tangential to the triangle. At each
location, the robot rotates to capture multiple images to forma panoramic sequence.

During the training phase, the robot is initially instructed by hand gestures to
capture panoramic images in 7 rooms of the building. In each room, the robot learns
the association features by capturing images at each of the three locations in Fig.
13.10.

During the recognition stage, the robot captures one set of panoramic views and
calculates the percentage of matches to association features for each scene. In this
experiment, 93% of the test scenes were identified with the correct room, by consid-



268 Ballantyne, Johns, Valibeik, Wong and Yang

(
a
)
 (
d
)
(
c
)
(
b
)


(
e
)
 (
h
)
(
g
)
(
f
)


Fig. 12.10 Panoramic images with SIFT features highlighted for scene association. Images (a) -
(h) are captured at 45◦ intervals as the robot rotates within a room. This is performedin both the
training and recognition phases.

ering the highest percentage features matches across all scenes in the database. Table
12.1 shows the recognition performance across the seven rooms visited, showing the
average results across multiple recognition attempts for each room. The numbers in
bold represent the percentage of association features recognized in the correct room
(true positives), whilst the non-bold numbers represent the percentage of association
features recognized in all the other incorrect rooms (falsepositives).

Table 12.1 Recognition accuracy by using the scene association method proposed for a laboratory
scene consists of 7 rooms. Bold numbers are percentage of true positive feature matches, non-bold
numbers are the percentage of false positive feature matches. Parameters used in equations (9) -
(11): tθ = 20, tϕ = 45,N = 1, tsi f t = 45 for training phase, 25 for recognition phase.

% Feature matches in each room

Room number 1 2 3 4 5 6 7
1 60 4 17 1 9 17 29
2 2 48 2 1 0 0 4
3 13 11 82 16 27 16 1
4 2 45 0 55 42 17 3
5 8 7 6 37 72 25 1
6 7 18 3 14 31 36 0
7 0 10 7 4 7 3 63

It is evident that some rooms have generated a higher confidence in their correct
identification. For example, Rooms 1, 2, 3, 5 and 7 have large differences between
the most likely and second most likely rooms, whereas with Rooms 4 and 6, the
system is less confidence that the most likely room was indeedidentified correctly.
This is largely due to the presence of similar objects in different rooms, such as
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television screens, whose features are similar across different scenes, and who also
have similar features in the local neighborhood, drawn fromthe same object.

Nonetheless, with a 93% positive scene identification, thisvision system is well
equipped to work in tandem with the laser mapping system, andintegrates appro-
priately with the gesture-recognition task. The final challenge is then to incorporate
both the qualitative and quantitative localization data, into a system that is able to
autonomously navigate between rooms, as instructed by the user.

12.5 Planning and Navigation

As the robot is guided around the environment, laser data is collected in order to
build a geometric map of its surroundings. As mentioned earlier, the guide indicates
points of interest within the environment by performing an “attention" gesture. The
tour is to enable the robot to map the environment using quantitative and qualitative
localization techniques; incorporating scene association improves localization and
also the high-level planning used for navigation.

After mapping and localization, in order to autonomously navigate towards a
goal, there needs to be a plan. A plan can be described as a sequence of moves or re-
actions which lead towards the goal [22]. Formulating a planwhen the environment
map is discrete is simpler since classical graph-searchingalgorithms such as A* and
Dijkstra can be used [22]. The two main approaches for discetizing the environment
is to either store it as a grid, grid-based (metric) paradigm, or as a graph, topological
paradigm [5]. By using the laser mapping system and scene association descriptors,
we can integrate both grid-based and topological paradigmsto allow for fast path
planning on the easy to construct occupancy map, utilizing the advantages of each
representation, as mentioned by Thrun and Bücken [5].

During a guided tour, the robot constructs the occupancy mapof its environment
and, when gestured by the user, records a scene descriptor for its current location,
which is mapped onto the occupancy map as shown in Fig. 13.12.In addition to the
scene descriptors created, a key location is also indicated. It would also be useful, for
navigation purposes, if descriptors are captured automatically through-out the tour
as waypoints, since this will allow the topology of the environment to be captured
more accurately.

Scene descriptors are periodically captured during the tour, allowing the graph-
based map to also contain information about the path taken bythe guide, and not
just the points of interest; we captured these waypoints when turns greater than 5ąã
were made to ensure the robot would be able to later retrace the path taken during
automated runs as shown in Fig. 13.13.

Once the robot localizes itself on the occupancy map, we can plan a route to the
target locations using the topological map, starting from the current nearest node.
This high level planning procedure is done by using the A* graph-search algorithm.
The system uses cues from the LRF and camera to recognize whenit reaches way-
points or the goal location.
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Fig. 12.11 A topological map of the environment storing scene descriptors atthe key locations
indicated by the user during the tour.

In autonomous systems, learning can potentially provide the flexibility the sys-
tem needs to adapt to dynamic environments [6]. Consider, for example, that a new
optimal path is discovered between two locations, it would be desirable for the robot
to update its internal model to reflect this discovery. Basedon Thrun’s idea of sen-
sor interpretation [32], a learning method which interprets readings from different
sensors, such as the laser range finder and color camera, could be utilized for coping
with varying environments. For example, in repetitive scenes, such as the corridor
shown in Fig. 13.14, the ability for accurate localization using scene recognition
would decline dramatically. In such scenarios, it would perhaps be more beneficial
if the robot could learn to rely more on other sensory information.

Other factors, besides a changing environment, would benefit from updates to
the robot’s internal model. Graph searching can be a computationally demanding,
especially in complex environments. Our focus is to capturescenes to store as a
node on the graph-based map automatically when a significantrotational motion
is executed or if a large distance has been covered since the last recorded node.
Although the topological map allows for faster planning, when compared to the grid-
based occupancy map, the robot should seek to further simplify its representation of
the environment as shown Fig. 12.14.

The simplified representation of the environment allows therobot to carry out
future tasks in an autonomous fashion. Furthermore, the simplified map provides
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Fig. 12.12 An example topological map built during a guided tour. Capturing scene descriptors
periodically during the guided tour allows the robot to build a more detailed topological map of
the environment, better recording the path taken by the user.

a user-friendly interface for control of the robot. This type of interface allows the
proposed system to work in a variety of environments including museums, offices,
home-care and hospital wards. Not only is the robot able to identify different rooms
in the environment, whether it be to carry out a task or alert an engineer for repair,
but also does the proposed system allow the robot to interactwith people in the
environment, whilst avoiding all obstacles.

12.6 Conclusion

Mobile robots present many opportunities to carry out mundane tasks in everyday
life. Before robots are able to perform such tasks, basic intelligence must be devel-
oped. In this chapter, we have addressed several key challenges related to robotic
navigation and the value of using HRI for environment mapping and scene associa-
tion. Effective use of HRI allows the user to naturally interact with a mobile robot via
gestures, which can be detected using a vision based system.We have demonstrated
the practical use of the proposed gesture recognition system for guided exploration
in a novel environment. These gestures help the robot in difficult situations and
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Fig. 12.13 Localization within a scene with repetitive visual features. Scenes (a) and (b) are cap-
tured from different locations in the environment, however,many features in both images indicate
a match; scene association is not useful in all situations as most of the matches shown are incorrect.

build scene descriptors. Upon being informed to follow, theproposed system used a
multi-cue tracking system to maintain an estimate of the location of the guide at all
times.

During a guided tour, the robot uses the laser data to create an occupancy map of
the environment. However, there are scenarios where localization using this quan-
titative approach can be improved by using qualitative data. To this end, a vision
based scene association is used to complement the occupancymap by capturing
descriptors of particular scenes on the map. These descriptors are built at salient
locations of the environment. The visual descriptors consist of distributions of SIFT
features, which the robot has learned to memorize as they occur consistently across
multiple viewpoints of a scene.

To autonomously navigate within the recorded environment,the robot uses both
the geometric occupancy map and topological map of the scenedescriptors. Quan-
titative and qualitative localization techniques are complementary with each other,
providing accurate localization in geometrically similarenvironments. To accurately
retrace the path taken by the guide, scene information is captured periodically by the
robot during the guided tour. High level path planning is carried out by performing
A* search on the topological map from the current scene to thegoal destination.
In this chapter, we have described our considerations on howautonomous naviga-
tion can be improved by incorporating mechanisms that will allow it to cope with
a changing environment and uncertainty from sensor readings. We demonstrated
how visually similar scenes can potentially cause confusion for scene association
and suggest how the robot could adapt its interpretation of sensor data under these
conditions.

While the proposed system attempts to handle many of the issues related au-
tonomous navigation, future work will aim to improve the robustness of the system.
More sensor modalities could be used to further help the robot understand the en-
vironment. For example, 3D time-of-flight cameras could be used to accompany
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Fig. 12.14 Topological simplification for route planning. A simplified topological map of the en-
vironment, in comparison to Fig. 13.13, brings performance benefits for route planning and ease
of visualization.

the 2D laser scanner to provide a more detailed view of the environment. This could
help the robot identify the exact location of objects in the environment. Furthermore,
a more detailed tracking system could help the robot to maintain the motion of all
moving objects in the environment for improved planning andobstacle avoidance.

References

1. Ascani, A., Frontoni, E., Mancini, A., Zingaretti, P.: Feature group matching for appearance-
based localization. In: IEEE/RSJ International Conferenceon Intelligent Robots and Systems,
IROS, pp. 3933–3938 (2008)

2. Bauer, A., Klasing, K., Lidoris, G., Mühlbauer, Q., Rohrmüller, F., Sosnowski, S., Xu, T.,
Kühnlenz, K., Wollherr, D., Buss, M.: The autonomous city explorer: Towards natural human-
robot interaction in urban environments. International Journal of Social Robotics1(2), 127–
140 (2009)

3. Bellotto, N., Hu, H.: Multisensor integration for human-robot interaction. The IEEE Journal
of Intelligent Cybernetic Systems1 (2005)

4. Bellotto, N., Hu, H.: Multisensor-Based Human Detection and Tracking for Mobile Service
Robots. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics39(1),
167–181 (2009)

5. Bücken, S.: Learning Maps for Indoor Mobile Robot Navigation 99, 21–71 (2008)



274 Ballantyne, Johns, Valibeik, Wong and Yang

6. Buhmann, J., Burgard, W., Cremers, A., Fox, D., Hofmann, T., Schneider, F., Strikos, J.,
Thrun, S.: The mobile robot Rhino. AI Magazine16(2), 31 (1995)

7. Busch, M., Blackman, S.: Evaluation of IMM filtering for an air defense system application.
In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 2561,
pp. 435–447 (1995)

8. Chakravarty, P., Jarvis, R.: Panoramic vision and laser range finder fusion for multiple person
tracking. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp.
2949–2954 (2006)

9. Fritsch, J., Kleinehagenbrock, M., Lang, S., Plötz, T., Fink, G., Sagerer, G.: Multi-modal
anchoring for human–robot interaction. Robotics and Autonomous Systems43(2-3), 133–
147 (2003)

10. Hasanuzzaman, M., Ampornaramveth, V., Zhang, T., Bhuiyan, M., Shirai, Y., Ueno, H.: Real-
time vision-based gesture recognition for human robot interaction. In: IEEE International
Conference on Robotics and Biomimetics, ROBIO, pp. 413–418 (2004)

11. Ishii, Y., Hongo, H., Yamamoto, K., Niwa, Y.: Real-time face and head detection using four
directional features. In: Sixth IEEE International Conference on Automatic Face and Gesture
Recognition, Proceedings, pp. 403–408 (2004)

12. Jin, Y., Mokhtarian, F.: Towards robust head tracking by particles. In: IEEE International
Conference on Image Processing, ICIP, vol. 3, pp. 864–867 (2005)

13. Koenig, N.: Toward real-time human detection and trackingin diverse environments. In:
IEEE 6th International Conference on Development and Learning, ICDL, pp. 94–98 (2007)

14. Krotosky, S., Cheng, S., Trivedi, M.: Real-time stereo-based head detection using size, shape
and disparity constraints. In: IEEE Intelligent Vehicles Symposium, Proceedings, pp. 550–
556 (2005)

15. Lee, H., Kim, J.: An HMM-based threshold model approach for gesture recognition. IEEE
Transactions on pattern analysis and machine intelligence21(10), 961–973 (1999)

16. Li, F., Kosecka, J.: Probabilistic location recognition using reduced feature set. In: IEEE
International Conference on Robotics and Automation, pp. 3405–3410. Citeseer (2006)

17. Li, Y., Ai, H., Huang, C., Lao, S.: Robust head tracking based on a multi-state particle filter.
In: Automatic Face and Gesture Recognition, 7th International Conference on, pp. 335–340
(2006)

18. Lindstrom, M., Eklundh, J.: Detecting and tracking moving objects from a mobile platform
usinga laser range scanner. In: 2001 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Proceedings, vol. 3, pp. 1364–1369 (2001)

19. Loper, M., Koenig, N., Chernova, S., Jones, C., Jenkins, O.: Mobile human-robot teaming
with environmental tolerance. In: Proceedings of the 4th ACM/IEEE international conference
on Human robot interaction, pp. 157–164. ACM (2009)

20. Lowe, D.: Distinctive image features from scale-invariantkeypoints. International journal of
computer vision60(2), 91–110 (2004)

21. Luo, J., Savakis, A., Singhal, A.: A Bayesian network-based framework for semantic image
understanding. Pattern Recognition38(6), 919–934 (2005)

22. Meyer, J., Filliat, D.: Map-based navigation in mobile robots: II. A review of map-learning
and path-planning strategies. Cognitive Systems Research4(4), 283–317 (2003)

23. Montemerlo, M., Roy, N., Thrun, S.: Perspectives on standardization in mobile robot pro-
gramming: The Carnegie Mellon navigation (CARMEN) toolkit. In: Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Systems, pp. 2436–2441. Citeseer (2003)

24. Nickel, K., Stiefelhagen, R.: Real-Time Person Tracking and Pointing Gesture Recognition
for Human-Robot Interaction. In: Computer vision in human-computer interaction: ECCV
2004 Workshop on HCI, Prague, Czech Republic, proceedings, p.28. Springer-Verlag New
York Inc (2004)

25. Reynolds, C.: Steering behaviors for autonomous characters. In: Game Developers Confer-
ence. http://www. red3d. com/cwr/steer/gdc99. Citeseer (1999)

26. Schaffalitzky, F., Zisserman, A.: Automated scene matching inmovies. Lecture notes in
computer science pp. 186–197 (2002)



12 Human-Robot Interaction 275

27. Schmid, C., Mohr, R.: Local grayvalue invariants for imageretrieval. IEEE Transactions on
Pattern Analysis and Machine Intelligence19(5), 530–535 (1997)

28. Shalom, Y., Blair, W.: Multitarget-Multisensor Tracking:Applications and Advances. Boston:
Artech House3 (2000)

29. Shan, C., Wei, Y., Tan, T., Ojardias, F.: Real time hand tracking by combining particle filtering
and mean shift. In: Sixth IEEE International Conference on Automatic Face and Gesture
Recognition, pp. 669–674. Citeseer (2004)

30. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 593–600 (1994)

31. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos.
In: Proc. ICCV, vol. 2, pp. 1470–1477. Citeseer (2003)

32. Thrun, S.: Exploration and model building in mobile robot domains. In: Proceedings of the
IEEE International Conference on Neural Networks, vol. 1, pp. 175–180. Citeseer (1993)

33. Topp, E., Christensen, H.: Tracking for following and passing persons. In: Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 70–76. Citeseer
(2005)

34. Ullah, M., Pronobis, A., Caputo, B., Luo, J., Jensfelt, P., Christensen, H.: Towards robust place
recognition for robot localization. In: Proc. IEEE IntŠl Conf. Robotics and Automation, pp.
530–537. Citeseer (2008)

35. Valibeik, S., Yang, G.: Segmentation and Tracking for Vision Based Human Robot Interac-
tion. In: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intel-
ligence and Intelligent Agent Technology-Volume 03, pp. 471–476. IEEE Computer Society
Washington, DC, USA (2008)

36. Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision
57(2), 137–154 (2004)

37. Wimpey, B., Drucker, E., Martin, M., Potter, W.: A Multilayered Approach to Location
Recognition. Proc. SoutheastCon pp. 1–7

38. Won, W., Kim, M., Son, J.: DriverŠs Head Detection Model in Color Image for DriverŠs Sta-
tus Monitoring. In: Intelligent Transportation Systems, 11th International IEEE Conference
on, pp. 1161–1166 (2008)

39. Zhang, Q., Pless, R.: Extrinsic calibration of a camera and laser range finder (improves camera
calibration). In: 2004 IEEE/RSJ International Conferenceon Intelligent Robots and Systems,
Proceedings, vol. 3, pp. 2301–2306 (2004)

40. Zhang, Z.: Flexible camera calibration by viewing a planefrom unknown orientations. In:
International Conference on Computer Vision, vol. 1, pp. 666–673 (1999)

41. Zhang, Z., Gunes, H., Piccardi, M.: An accurate algorithmfor head detection based on XYZ
and HSV hair and skin color models. In: 15th IEEE International Conference on Image
Processing, ICIP, pp. 1644–1647 (2008)

42. Zhu, Y., Ren, H., Xu, G., Lin, X.: Toward real-time human-computer interaction with con-
tinuous dynamic hand gestures. In: Proc. Fourth Int. Conf. Autom. Face Gesture Recogn.,
Grenoble, France, IEEE Comput. Soc, pp. 544–549 (2000)


