
Abstract—Accurate, efficient and robust location recognition 

is a fundamental task for any mobile robot. This paper presents 

a new approach using visual features to efficiently represent a 

series of locations along a path in an indoor environment. In 

the training stage, local features which are detected across 

multiple images from a single tour are combined to represent a 

real-world landmark, modelled by the expected variance of its 

descriptor. Those landmarks which represent the scene in the 

most efficient and discriminative manner are then retained, 

and this selection is optimized with respect to the scale of the 

environment. In the recognition stage, features detected in an 

image are matched to the landmarks in memory, based upon a 

novel similarity measure drawing from feature co-occurrence 

statistics. 

 
I.   INTRODUCTION 

 

Accurate location recognition forms an integral part of 

any mobile robot system, whether it is for interaction with 

the local environment or as a component in a navigation 

strategy. Visual methods have proved to be popular due to 

the quantity of information captured from a single image, the 

low cost of image sensors and the close relation to the 

human sensory system. The challenge is generally addressed 

by one of two approaches [1]. First, model-based techniques 

[2] compute a 3D reconstruction of the environment, by 

matching visual features in an image to those in the model. 

Second, appearance-based methods [3] compare the robot’s 

current view with a database of images in memory, each 

forming a node in a topological map. 

Within the field of appearance-based location recognition, 

there have again been two main approaches adopted. First, 

an image can be considered in a holistic manner by 

extracting global properties, such as colour histograms [4] or 

image gradients [5]. Matches are then made either by direct 

matching to an image database [6], or in a more qualitative 

sense by employing supervised learning [7]. Second, an 

image can be considered as an arrangement of local features, 

each describing the visual content in a local region [8]. 

Many examples of such local features exist, which are 

immune to variations such as illumination, scale and affine 

viewpoint [9][10]. Images are then matched either by 

quantizing features and comparing feature histograms [11], 

or by finding matches between each individual feature [12].  

One of the benefits of using local features for location 

recognition is their relative robustness to occlusion 

compared to more global approaches. This is particularly 

apparent for indoor environments where small changes in 

viewpoint within a room can reveal or occlude large portions 

of a scene. Additionally, it is an advantage to be able to 

relate features in an image to specific objects in the 

environment, to facilitate a more semantic understanding of 

the environment and greater contextual awareness. 

Of the many local features that have been developed, 

SIFT features [13] are a popular choice for image matching 

due to their tolerance of illumination, scale, rotation and 

small affine viewpoint variations, whilst remaining highly 

discriminative. Many approaches to location recognition 

using local features involve finding matches between every 

feature in a test image, and all features from all images in 

memory [14]. The standard method for determining a match 

between two features, the nearest-neighbour approach, 

applies a threshold to the ratio of the closest two matches 

[15], to ensure a high level of confidence in the match. 

Whilst this technique is powerful for features which are 

highly discriminative, such as in object recognition, or for 

location recognition in local environments, it is not well 

suited to large-scale location recognition. As the number of 

features stored in memory increases, the fraction of matches 

that exceed the threshold may decrease, as each feature 

becomes less distinct within the larger database. 

Furthermore, a feature match will be true simply if it is the 

closest match by some threshold, even if is still somewhat 

dissimilar to the feature it is being matched to.  

In order to eliminate these false positive matches, a 

number of verification steps have been developed, including 

utilising the geometric and spatial arrangements of features 

[16][17], reducing the feature set to a subset representing 

each image in a more discriminative manner [18], and 

estimating the epipolar geometry between images [19]. 

Whilst the use of epipolar geometry can help to eliminate 

false matches, its performance again decreases as the size of 

the environment increases, because the algorithm requires at 

least seven true positive matches, and both the number of 

matches, and the proportion of true positive matches, 

decreases with scale.  

As an alternative to the treatment of every extracted 

feature as an independent feature, this paper presents an 

approach which links together the same feature detected 

across multiple images. The linked features are then 

associated with landmarks in the real-world scene, rather 

than merely features from a single image. In the localisation 

stage, scene association then links features in the current 

view back to these real-world landmarks. The method is 

more suited to practical location recognition than standard 

techniques matching individual features, for the following 

four reasons. First, an understanding can be generated of 

how a feature’s appearance varies across multiple
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viewpoints; as such, the threshold of [15] is not required 

because it is now known where a feature should lie in 

descriptor space, for it to be considered a true match. Second, 

eliminating features which are only found in single images, 

and combining features detected across several images into 

one unified feature, reduces both the matching processing 

time and memory requirements of the system. Third, 

retaining only the most frequently-occurring features 

increases the likelihood of generating good feature matches 

when revisiting the scene. Finally, features that are 

recognized from multiple viewpoints often form part of the 

background of a scene, hence introducing greater robustness 

to dynamic objects in the foreground.  

This paper presents three key contributions. First, an 

understanding of the expected variance of real-world 

landmarks is demonstrated. Second, a novel graph matching 

approach is presented, based upon the co-occurrence 

statistics of detected features. Third, an optimization 

algorithm is introduced, showing that the selection of 

features can be optimized with respect to the scale of the 

environment.  

For the remainder of the paper, local features detected in a 

single image are denoted features, whilst features which are 

consistently detected across multiple viewpoints and 

represent a real-world point, are denoted landmarks. The 

features employed in this work use the SIFT descriptor 

previously discussed, which consists of a spatial 

arrangement of histograms surrounding the feature centre, 

each representing orientations of image gradients. Both 

features and landmarks use the SIFT descriptor. 

 

II.   GENERATING LANDMARKS 

 

A.  Detecting Landmarks  

 

The first stage in computing the landmarks is the 

detection of features that are found in multiple adjacent 

images in an image sequence. This image sequence is 

generated by a robot during a tour of the environment, 

capturing images at discrete intervals, with each image 

representing a distinct location along the tour. Features are 

initially extracted from all images, I = {I1, …, IN}, 

representing all previously visited N locations. For each 

image Ii, features are tracked sequentially across adjacent 

images in the sequence, Ii+1, …, IN, using a feature descriptor 

distance threshold, t. If the descriptor distance between 

features is less than t, then a potential match is found. For 

experiments in this paper, t = 0.6 is employed for normalized 

descriptors. Matches are then verified by use of epipolar 

geometry [19]. A feature track terminates once there is no 

match between the currently tracked feature and all features 

in the next image in the sequence. Each feature track then 

represents a landmark in real-world space, which has been 

detected in a series of adjacent images. This is demonstrated 

in Fig. 1. 

 

Image Sequence, iI  I  

         I1                I2                 I3                 I4                 I5 

 

                              

 

                                  

                                Landmark 

 
Fig. 1.  Detecting consistent features across multiple sequential images. In 

this example, a feature is found to occur across images I1 … I4, and each 

instance of this feature then contributes towards a landmark. 

 

As an example of the overall concept of the paper’s 

contribution, Fig. 2 shows the evolution of features into 

landmarks, and their subsequent optimization to a reduced 

set (discussed in section IV). 

 

 
 

 

 

 
 

 

 

Fig. 2.  Demonstrating the generation and optimization of landmarks. 

Images in the top row consist of a large number of SIFT features. Those 

which are detected across multiple consecutive images are combined to 

form landmarks, as shown in the images of the middle row. The bottom row 

shows the selection of landmarks which has been optimized to represent the 

scene in the most efficient manner. Each colour represents a single 

landmark. 

 

B.  Computing Landmark Descriptors  

 

Once features have been tracked across a sequence of 

images, a landmark is generated by fusing these features. 

The nature of the SIFT descriptor allows for the same 

feature, viewed across small affine viewpoint changes, to 

have similar descriptors. However, the extent of this 

similarity is ambiguous when only one feature is used to 

learn the descriptor. The use of multiple features to learn a 
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range of descriptors for each landmark, allows a greater 

understanding of how the descriptor is expected to vary from 

differing viewpoints.  

One approach to learning this variance would be to 

specify upper and lower limits for each dimension of the 

descriptor (representing each orientation bin of each 

histogram). However, with some landmarks built from only 

two or three features, there is often insufficient information 

to reliably predict the variability of each individual 

dimension. Therefore, instead of generating an expectation 

of the values for each bin in the SIFT descriptor, an 

expectation of each overall histogram is considered. This is 

appropriate because the variance within each histogram of 

the SIFT descriptor differs due to each histogram’s unique 

locations relative to the landmark centre. Some locations 

will retain their structure across different viewpoints 

(consider a vertical line on a wall as a camera moves 

horizontally) whilst others will vary by greater extents (such 

as locations near the edge of the descriptor, which are more 

sensitive to external textures crossing over the feature 

boundary). As an example, consider a landmark detected at 

the corner of a computer monitor, in the middle of a room. 

The histograms representing the body of the monitor will 

exhibit only a small variance across different views of the 

monitor, whereas the histograms representing the 

background surrounding the monitor may exhibit a large 

variance, due to the inclusion of background clutter into the 

histogram. The system can therefore learn which histograms 

are expected to vary, and which are expected to remain 

constant as the camera’s location changes.  

Each histogram for the landmark is then described by a 

mean vector, μ, computed by averaging the histogram across 

all constituent features. For a SIFT descriptor with m 

histograms, each containing n bins, the mean representing 

the entire landmark is then an m-by-n matrix. Each 

histogram is also described by a single variance of σ2, 

representing the variance in Euclidean distance to the 

histogram mean, across all constituent features. A value of 

dmax is then computed for each histogram, representing the 

greatest distance to the histogram mean, across all 

constituent features. For this paper, the descriptor parameters 

recommended in [15] are used, such that m = 16 (for a 4x4 

window) and n = 8.  

In order to fully utilize the power of the understanding 

that has been gained of the landmark’s variance, a wider 

descriptor, computed at twice the scale of the feature and 

represented by this histogram variance, is incorporated into 

the landmark. This is the context descriptor, whereas the 

standard SIFT descriptor is the local descriptor, which does 

not include histogram variance as this is minimal at the local 

scale. Instead, the local descriptor simply has a mean and 

variance of the overall descriptor. The context descriptor 

adds a powerful awareness of the contextual variance 

surrounding the landmark, and by combining the local and 

context descriptors, a more discriminative overall descriptor 

is achieved. This compensates for the reduction in 

discriminative power induced by allowing landmark 

descriptors to operate within a certain variance. 

 

III.   MATCHING TO LANDMARKS 

 

A. Computing Descriptor Similarities 

 

Once landmarks representing the robot’s environment 

have been generated and stored in memory, matches can 

then be made to features detected in a new image captured 

by the robot. The first stage of matching a feature from a 

captured image, to a landmark in memory, is to compare the 

respective descriptors. A descriptor similarity measurement 

between a feature and a landmark is computed by 

considering the expected variance of the landmark’s 

descriptor. The expected descriptor distribution for features 

constituting a landmark is modelled by a Gaussian function, 

with a mean of μ and variance of σ2 for each histogram 

(context descriptor) or overall descriptor (local descriptor). 

The descriptor similarity SD is computed as follows: 

 

 

             (1) 

 

 

where  

 

Here,        is the Euclidean distance between the mean 

descriptor value of the landmark, and the descriptor value of 

the feature. The value of κ  is set such that a feature 

descriptor which lies at the point exactly dmax away from the 

landmark mean descriptor is given a similarity of 1, and a 

distance less than dmax is given a similarity of 1. For all other 

distances, the similarity falls away as the distance from the 

mean increases, at a rate dictated by the Gaussian model. 

This is demonstrated in Fig. 3. 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 3.  Modelling the expected descriptor variation of features that 

constitute a landmark. For descriptor distances less than dmax, the similarity 

is 1. Otherwise, the similarity is based upon the expected descriptor 

variance. 

 

The similarity for the entire context descriptor is 

computed by averaging the similarities for each histogram. 

The similarity for the local descriptor is computed by 

considering the overall descriptor mean and variance. The 
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overall descriptor similarity between a feature and a 

landmark is then computed by multiplying the similarities of 

the local and context descriptors. In this way, a feature and a 

landmark are only similar if they share both a similar local 

and similar contextual appearance, adding a high level of 

discriminative power to each landmark. 

In order to speed up the rest of the matching process, and 

to eliminate improbable feature matches of low similarity, a 

minimum value of Smin was introduced. Potential feature 

matches with descriptor similarities below this value are 

discarded. For experiments in this paper, Smin = 0.3. 

 

B. Computing Neighbourhood Similarities 

 

Whilst the combination of local and context descriptors 

adds a high level of discrimination to features, false positive 

matches may still occur in large environments. As such, it is 

necessary to prune out the false positives by considering a 

more spatially-aware understanding of each landmark. 

Existing techniques for addressing this often take the 

spatially k-closest features to represent a feature’s 

neighbourhood [20], or those which lie within a certain 

spatial distance from the feature [16]. One problem with 

these methods is that neighbouring features may become 

occluded across small viewpoint changes. Another problem 

is that features near the edge of an image will automatically 

have a large number of neighbouring features missing. To 

address these, a novel method is proposed, which computes 

the maximum neighbourhood similarity with respect to 

distance from the central feature. In this way, should 

occlusions occur near the central feature, then their impact 

on the overall neighbourhood match will be reduced as the 

distance from the central feature increases.  

In order to find the neighbourhood similarity between a 

feature            in the current image, and a landmark            in 

memory, all other landmarks, g ′n, which co-occur in the 

same image as gj, are re-ordered with respect to their 

distance from the central landmark gj. This is done by 

considering the average location over each landmark’s 

constituent features. Then, moving outwards from gj across 

the image, the overall neighbourhood similarity is calculated 

by including all landmarks g1 … gk which lie inside the 

current neighbourhood size, k, and finding the best match 

between each neighbourhood landmark, g ′n, and each 

neighbourhood feature,              . The maximum value of this 

similarity, with respect to k, is then stored as the overall 

neighbourhood similarity between fi and gj. This is 

demonstrated in Fig. 4, where the maximum will occur at     

k = 3. At k = 1, the similarity is zero because the triangle is 

only detected in the landmarks, and not in the features;        

at k = 3, the similarity has increased because the diamond 

and square are detected in both the landmarks and features; 

at k = 4, the similarity drops again, as the hexagon is found 

only in the landmarks. 

 

 

  Features                                   Landmarks 

                            (a)                                                          (b) 

Fig. 4.  Computing neighbourhood similarities between feature fi and 

landmark gj. (a) represents the features found in an image captured by the 

robot. (b) represents the landmarks generated during a training tour. The 

maximum neighbourhood similarity between feature fi and landmark gj 

occurs at k = 3. 

 

The co-occurrence statistics of landmarks are also taken 

into account, in order to weight the contributions of each 

neighbouring landmark to the neighbourhood similarity, by 

how often these landmarks actually occur in the same image. 

The conditional probability,
 
            , of a neighbouring 

landmark g ′n occurring in the same image as the central 

landmark, gj, is calculated by dividing the number of images 

containing both landmarks, by the total number of images 

containing gj. The overall neighbourhood similarity SN, 

between feature fi and landmark gj, is then calculated by 

dividing the maximum neighbourhood similarity by the 

hypothetical maximum neighbourhood similarity if all 

neighbouring features and landmarks were a perfect match. 
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  where  

 

Here,                        represents the similarity between a 

neighbouring feature f   ′m and landmark g  ′n, in terms of both 

their   descriptor   similarity,                   , and   their  

arrangement    similarity,                    ,  relative   to   their 

respective central feature fi, and landmark gj. During the 

initial generation of a landmark, each co-occurring landmark 

is recorded, and the mean and variance for both spatial 

distances and angles between the two landmarks are 

recorded. Then, the spatial distance similarity and angle 

similarity between a neighbourhood feature and a 

neighbourhood landmark, are calculated in a similar manner 

to equation (1), with differences in spatial distance and angle 

replacing the differences in descriptor values. The angular 

and spatial distance similarities are multiplied to give the 

arrangement similarity, SA, which is then itself multiplied by 

the descriptor similarity between the neighbourhood feature 

and neighbourhood landmark, to generate the overall 

neighbour similarity, SDA. With the maximum 

neighbourhood similarity computed, the overall similarity 

between a landmark and a feature is then equal to the 

product of the descriptor similarity and the neighbourhood 

similarity,                                                    ,                            .  
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C. Computing Location Likelihoods 

 

Once similarities have been calculated between every 

feature in a captured image, and every landmark in memory, 

the likelihood for each location can be computed, by 

considering the overall similarity to the images captured 

during the robot’s tour. For a robot to be located at location l, 

it is expected that all landmarks present at this location 

during the tour, will also be present at any other time the 

robot is at l. Hence, the overall likelihood L of each location 

l is computed as follows: 

 

  

      (3) 

 

Here,          are the features in the image currently viewed 

by the robot,           are the landmarks which occur in the 

tour image at location L, and | |lG represents the total 

number of landmarks in the set Gl. The most likely location 

of the robot is then of course determined by the tour image 

with the highest likelihood. 

 

IV.   OPTIMIZING LANDMARK SELECTION 

 
The set of generated landmarks represents scenes from a 

number of viewpoints, but it is not yet optimized to 

represent the scenes in the most efficient manner. This is 

because:   

i) Many of the landmarks will have large variances, or 

may be close to a large number of features not classified 

by this landmark, and hence will introduce a large 

number of false positive matches. A good landmark will 

therefore have small similarities to all those features not 

classified by this landmark. 

ii) Many landmarks will be similar to each other and will 

not be highly discriminative when classifying a feature. 

A good landmark will therefore be highly dissimilar to 

all other landmarks. 

 

A quality function, Q(gj), is now introduced, which 

determines the suitability of landmark gj for inclusion in the 

final set. The quality function is an indication of the 

expected ratio of true positive feature matches to false 

positives feature matches, based on the matching of every 

feature,              , in the training set. The descriptor similarity 

between each feature f 
t
i and landmark            is determined, 

and weighted by the probability that landmark gj is the 

classification, rather than any other landmark. This 

probability is determined by the similarity between f 
t
i and gj 

relative to all other landmarks. This then satisfies both 

requirements in i) and ii). 
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Here,          represents all the constituent features of 

landmark gj, when gj was generated from the original tour. 

The top η landmarks with the highest quality are then 

retained for each tour image. However, with each landmark 

spanning several images, it is highly unlikely that exactly η 

landmarks are assigned to each image. As such, in order to 

distribute landmarks evenly across the set of images, an 

iterative algorithm is employed, as described below. 

 

1. Find the image, Imin, with the least number of 

landmarks assigned to it, ηmin. If ηmin ≥  η, end the 

algorithm. 

2. From the set of potential landmarks that occur in 

Imin, compute the η – ηmin landmarks which have the 

highest quality value. 

3. Assign these landmarks to Imin, and update the 

number of landmarks that occur in each image 

accordingly. Jump back to 1. 

 

Due to possible errors in the feature tracking algorithm of 

section IIA, some generated landmarks would have very 

large descriptor and spatial variances, and their inclusion in 

the final set only reduced the overall matching performance. 

As such, a threshold qmin was introduced, such that a 

landmark was only added to an image if its quality was 

above qmin – even if this means that the image would have 

less than η overall landmarks. The results in this paper use a 

value of qmin = 0.01. It should also be noted that whilst the 

optimization stage is computationally heavy, it is computed 

off-line once the robot has completed its training tour. 

 

V.   EXPERIMENTAL RESULTS 

 
In order to test the method described, a robot was 

manually driven through a training tour of an indoor 

environment, capturing images at roughly 1 metre apart. 

Landmarks were then computed from this training set. A test 

set containing the same number of images was then captured, 

following a similar tour to the training tour, but introducing 

slight deviations. The training set and test set were captured 

at different times throughout the day, to verify the 

illumination-invariance of the SIFT descriptor.  

Experiments were then carried out to investigate how the 

value of η, the minimum number of landmarks per image, 

would affect the system’s performance, by varying η in the 

optimization stage. Fig. 5 shows the results of this 

experiment for a training image sequence of 150 images, 
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computed on a 2.2 GHz Intel Core i5 processor. The match 

rate is defined as the percentage of correctly identified 

locations, and a confidence measure is also introduced. This 

is the average confidence that the most likely location is, in 

fact, the correct location, and is defined as (L1 / L1 + L2), 

where L1 and L2 are the first and second highest location 

likelihoods, respectively. 

 

 
Fig. 5.  Effect of η on system performance for a training set of 150 images. 

 

There is a clear peak in the match rate, with an optimum 

number of landmarks per image. This can be explained by 

considering the optimization stage. Landmarks are added to 

their respective images in order of their quality, and hence 

with a smaller number of landmarks per image, the overall 

quality of the landmarks is large. As the number of 

landmarks increases, those with less discriminative 

properties are introduced, reducing the overall confidence of 

each matched image. However, with too few landmarks, the 

information stored representing each image is insufficient to 

generate an appropriate number of feature matches, and any 

false positive matches will have a much larger impact on the 

results. Therefore, a compromise is necessary between 

landmark discriminative power, and overall information 

quantity per image.  

Furthermore, experiments showed that the optimum value 

of η is not distinct for each environment size. As the scale of 

the environment increases, it then becomes necessary to 

attach greater information to each image in memory, in order 

to combat the increase in false positive feature matches. It 

was found that for a certain environment size consisting of a 

certain number of images in the training tour, there is an 

optimum value of η, denoted ηopt. Thus, the system can be 

optimized with respect to the size of the environment, by 

adjusting the single parameter η. As can be seen in Fig. 5, 

the processing time of the matching algorithm also increases 

rapidly with η, and hence it is also somewhat fortunate that 

indefinitely increasing η to improve the accuracy is not 

necessary. Fig. 6 shows the value of ηopt for a range of 

environment sizes, together with the match rate at this 

optimum value of η. 

The processing time of the location recognition includes 

around 180 ms for extracting the SIFT features. With 

smaller environments, the matching stage can occupy less 

than 10% of the overall processing time, relative to feature 

extraction. Even in large environments of 200 unique 

locations, employing ηopt allows matching to occur at 2 

frames per second at a match rate of 88%, which is 

promising for real-time location recognition as part of a 

wider navigation system. 

 

 
Fig. 6.  Demonstrating the optimum number of landmarks per image and 

match rate at varying environment scales. 
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