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Abstract— In this paper, we present a new technique for
social mobile robot speech recognition based on scene-associated
training models. The key contribution of the paper is a real-time
framework that reduces the effect of room reverberation and
ambient noise, a challenging problem in speech recognition. In
classical approaches, anechoic sound is used to train the model,
with the main focus on removing reverberation or noise from
the sound. Our technique differs in that we train a number
of speech recognizers directly from the reverberated sound,
by associating each recognizer with a unique visual scene,
to deal with the varying reverberation properties of different
rooms. By extracting local features from a captured image and
recognizing a scene, the robot can use the appropriate speech
recognizer that is trained for the particular structural proper-
ties of that scene. We tested our method by using a baseline
speech recognition model (HTK) across a variety of rooms and
different levels of background noise. The results show that the
association between a visual scene and a corresponding speech
recognizer greatly improves the robot’s speech recognition
accuracy, together with increasing the computational speed of
recognition, compared to competing techniques.

I. INTRODUCTION

The concept of social mobile robots has been explored for

many years, but most systems are still restricted to laboratory

use. One of the biggest challenges is the lack of a natural

human-robot communication interface. Although artificial

speech recognition technology has been well developed [4],

it has many limitations when transferred to a mobile robot.

For example, common requirements of current speech recog-

nition techniques demand a clean background and a close-

to-microphone recording. Such requirements are difficult to

satisfy when a mobile robot attempts to interpret speech at

a distance, or in a noisy room, due to the effects of room

reverberation and multiple sound sources [5]. In contrast,

humans have a much more robust system to perform speech

recognition in these complex auditory environments. The hu-

man auditory system can adapt to environment changes such

as ambient noise, room reverberation differences between

rooms, and even the specific location within a room. This

adaptive ability in humans has inspired research into new

computational auditory models to help mobile robots deal

with these challenges.

One of the most well-known phenomena related to the

reverberated sound perception of a human is the precedence

effect [21]. Here, two spatially separated sound stimuli,

with a small time delay between them, are perceived as

if from a single phantom spatial position, if the inter-

stimulus delay (ISD) is very small (less than 1 to 5ms).

Fig. 1. Mobile robot head with binaural microphones and a monocamera.

The precedence effect was explained by those neurons in

the auditory system that respond to early arriving sound,

subsequently suppressing the responses to later sound. Thus,

a human can locate and separate sound in a reverberated

environment because the reverberation arrives later than the

direct sound. It was further discovered that the precedence

effect exhibits adaptive behavior to the location of the sound

stimuli, such as build-up and break-down [14][9]. In this

case, the ISD is tuned (build-up) according to the position

of the sound source and the duration of the stimulus. When

the sound position changes or the reverberation environment

alters, the ISD is reset (break-down). However, when the

auditory scene changes back again after the ISD is reset, the

previous tuned ISD returns immediately without any build-

up time [15]. It is suggested that humans not only rely on

the bottom-up neuron suppression to deal with reverberation,

but also apply top-down memory from the cortex to change

the auditory system behavior. Based on this, Blauert [7]

proposed a precedence model to include a bottom-up, as

well as a top-down component to take into consideration

multi-model sensor inputs, such as vision. Coensel’s model

[13] simulated how listeners change their behavior according

to attention-switch over time, based on both bottom-up and

top-down cues. In addition to memory, the visual cues also

play an important role for sound perception. For example,

gaze direction can dynamically tune the auditory spatial map

maintained by the auditory midbrain [12]. Visual attention

can also override the auditory attention [30].

Based on the above biological evidence, we consider that

humans maintain multiple speech recognition models for



various auditory scenes. Such auditory scenes are then asso-

ciated with a visual scene, so that either visual or auditory

cues can recall a speech recognition model when a familiar

scene is revisited. In practice, we classify auditory scenes

according to their impulse responses (IRs) and associate each

visual scene with an auditory scene. A speech recognition

model is trained for each auditory scene using reverberated

training data, which is generated by convolving the IR of the

scene with an anechoic sound. During operation, a robot can

use vision methods to recognize a visual scene to which a

unique IR signature has already been assigned. Then, the

corresponding speech recognition model for the scene is

employed. Our model is implemented on a mobile robot with

a simple head (Figure 1) equipped with binaural microphones

and a mono camera. All the auditory scene IRs are collected

from real in-door environments.

The rest of this paper is organized as follows. Section II

proposes a system model which includes the scene-associated

speech recognition model and visual scene recognition. In

Section III, experimental results are presented to demonstrate

the feasibility and performance of the entire system. Detailed

performance comparison of our model to a classical speech

recognition system is provided. Finally, conclusions are

drawn and future work is considered in Section IV.

II. SYSTEM MODEL OF SCENE-ASSOCIATED SPEECH

RECOGNITION

The proposed system includes two main stages: training

and testing, as shown in Figure 2. In the training stage,

we divide the experimental area into a set of rooms, each

consisting of either an entire room or corridors, or a sub-

division of a room based upon significant structural divisions.

A number of impulse responses (IRs) are measured for each

room, and then rooms are classified into different auditory

scenes according to the reverberation properties of the IR.

An auditory scene can be one or multiple rooms. Then, an

anechoic utterance training data set is convolved with these

scene-IRs to generate reverberated utterance. We extract

speech features from the reverberated data and train a speech

recognition model for each auditory scene. Meanwhile, a

number of images are collected for each room and SURF

features [6] are extracted. Visual scene models are then

trained to enable subsequent scene recognition. In the test

stage, the robot first captures a query image and extracts

the query visual features. These features are then matched

to the training database to recognize the current scene.

The robot then chooses the corresponding scene-dependent

speech recognition model to aid the recognition of speech

detected in the room. In this section, we illustrate the details

of each stage.

A. Room Impulse Response

In each room, a number of binaural room impulse re-

sponses were estimated for a number of source positions

and robot locations. A mono speaker played a sweep sound

as a source, and a binaural microphone set in the robot head

(Figure 1) recorded the detected sound. In order to simulate

Fig. 2. Schematic structure of the scene dependent speech recognition
system.

a natural scenario for human-robot speech interaction, we

placed the speaker and robot in common activity areas, such

as a passage between tables. We avoided operation in areas of

unlikely activity, such as room corners. The robot is placed

at least 1 meter away from hard surfaces to avoid a local

extremum of reverberation. This arrangement can measure

the most representative room IR with only a minimal impact

from hard surface sound reflection. The distance between

the speaker and the robot was maintained between 1.5 and

6 meters, conforming to the common speech communication

range for humans.

A sine sweep method [16] was applied to determine

the room IR. A sweep sine wave which starts at angular

frequency and ends at during seconds was generated

as follows:

where . In our case, s and the sweep

wave covered 20 Hz to 20 kHz, repeating 3 times with a

5s silence between each. When the sweep signal is played

through a loudspeaker and the room response recorded

through microphones, the recorded signal is influenced

by the room reverberation, and the impulse response of the

room can then be calculated by:

where is the reverse signal of . In another words,

the convolution of with is an impulse signal ,

i.e. . The final IR was determined by

the average of the three measurements. See details in [16].

We used DSSF3 software [2] for room IR measurement. An

example of a room IR is shown in Figure 3.

For the experiments conducted in this paper, we used

physical constraints to define the IR measuring rooms. The

physical constraints included walls, structural dividers and

narrow bypasses. In each measuring room, we placed the



robot at 2 positions and loudspeakers at 3 to 6 positions

depending on the room size. The average of IRs at all

positions was assigned to the room IR. Speech Transmission

Index defined in IEC 60268-16 Third edition [18] and room

acoustics parameters defined in defined in ISO3382-1 [29]

were chosen to quantify room IRs. In total there are 48

parameters, including several parameters to measure the

room reverberation, such as early decay time (EDT) and

reverberation time T30. See details in [2]. The standardized

Euclidean distances of these 48 parameters between all IRs

were then calculated. If the parameter distance between

two rooms was shorter than a threshold, they were merged

together into an auditory scene, with the auditory scene

represented by the average of IRs for each room. The

threshold was selected with regards to an estimation of the

minimum expected speech recognition rate after the two

rooms are merged. See the experiment section for the details.

B. Speech Recognition Model Training

For speech recognition in reverberation environments,

most of the current technology is focused on de-reverberation

[31], i.e., the recovery of the clear sound from reverbera-

tion. The main reason for this is that the speech recogni-

tion model is traditionally trained using clear or anechoic

sound. However, such methods perform poorly in real-world

environments due to the effects of varying reverberation

properties and unpredictable ambient noise. Additionally,

de-reverberation processing requires multiple microphones.

In contrast, our method brings together the reverberation

and training data, allowing the speech recognition model to

learn directly from reverberated data rather than clear sound.

Such a method is also consistent with the human process of

natural language learning as a baby, because typically our

environments are echoic.

In the training module, ideally we would use training data
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Fig. 3. Example of a measured room IR. It is the average IRs in room
306.
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Fig. 4. The effect of room reverberation on sound recording. The recordings
in both figures show speech of “bin green at A9 again”. (a): anechoic
recording from Grid Corpus [10], file s1-bgaa9a.wav. (b) reverberated sound
after convolving with the IR of the scene 306.

recorded in a real scene as input. However, it is impractical

to collect large quantities of training utterance for each

scene. Therefore, we adopted another method to simulate

the reverberated recording by convolving the scene IR with

the recorded anechoic training sound. See Figure 4 for an

example of a clear recording and reverberated recording.

The generated reverberated sound is very similar to a real

recording with regards to the extracted reverberation time

parameters.

Once the reverberated training data is prepared, it can

be imported into any existing speech recognition training

module to obtain a scene-dependent speech recognition

model. In this paper, we used a general benchmark speech

recognizer, HTK [26], as an example to test our system.

Speech features for each training wave were extracted into

standard 39-dimensional Mel frequency cepstral coefficients

(MFCCs) [24], including 12 Mel-cepstral coefficients and the

logarithmic frame energy, plus the corresponding delta and

acceleration coefficients. Finally, all MFCC features were

used to train word-level Hidden Markov Models (HMMs)

with a left-to-right model topology, with no skips over states,

and 32 Gaussian mixtures per state with diagonal covariance

matrices [11].

C. Visual Scene Recognition

The use of visual information for mobile robot navigation

has the advantage of clear geometrical information embedded

in the scene. However, it has its own challenges when it

comes down to practical mobile robot applications. These

include illumination effects, dynamic objects in a scene, and

the variation of projection of the same object from different

viewpoints.

In order to deal with these issues, a popular approach is to

describe images by a set of local invariant features [25] that

offer improved stability over the above conditions compared

to global features. Visual scene recognition then typically



involves training a database of images of the environment,

followed by matching a query image to the database. Matches

are considered by either comparing distributions of quantized

features [3], or by employing a nearest-neighbor threshold

to ensure confident matches between specific features [22],

followed by geometric verification [17].

Such techniques have seen success for a number of

applications, including topological localization [28], loop

closing in Simultaneous Localization and Mapping (SLAM)

[27], and place recognition [20]. However, they rely on the

assumption that a query image is captured from a near-

identical location and pose to one of the database images.

Whilst this is valid for applications where the robot’s path

can be accurately modeled and predicted, it is less practical

for our case. Selecting the appropriate speech recognizer

requires recognition of the surrounding scene from any

arbitrary location or pose within a room. Capturing images

from every feasible robot state is impractical for training,

particularly in large environments, and additionally results in

a slow recognition rate due to the need to attempt a match

to every image in this large database.

We address this problem by adopting an approach sim-

ilar to [19], whereby features are tracked across multiple

training images, to form a set of landmarks with each

representing a real-world 3D point. Each landmark x X

is then assigned a mean descriptor, d , from the feature

track, together with the maximum descriptor distance to this

mean, d , computed across all features in the track. This

approach allows features in a query image to be matched to

a database of landmarks, rather than to features in a database

of images, enabling a more continuous representation of the

environment and avoiding the somewhat arbitrary division

of a room into discrete images. The number of landmarks is

orders of magnitude less than the total number of features

in the database, requiring significantly fewer feature match

attempts. Additionally, learning the expected variance of each

landmark’s descriptor enables a more probabilistic approach

to matching than the standard nearest-neighbor methods.

In the training stage, we extract local SURF features [6]

from each training image, and track them across other images

by computing descriptor distances as in [19], followed by

geometric verification by estimating an affine transformation

between the two images [17]. However, whilst in [19]

features are only tracked between adjacent images along a

tour, we attempt to track features across all images captured

in the same room. This is because the path of the robot

is unknown in our case, and so during training, we ensure

that images are captured from a range of robot locations in

an attempt to cover all possible viewpoints, resulting in the

same landmark possibly re-appearing multiple times across

the database. Figure 5 demonstrates landmarks tracked across

a range of viewpoints and scales.

In the recognition stage, query features are compared to

all landmarks in the environment, with a feature-landmark

match recorded when the query feature’s descriptor lies

within the maximum allowed range of the landmark, based

on d and d . This results in a set of landmarks that are

Fig. 5. SURF features detected in training images are tracked across
other images in the database to form a set of landmarks. Here, all features
representing the same landmark are assigned the same color.

potentially present in the query image, but which may also

have arisen due to false positive matches.

Whilst classic approaches to scene recognition match

a query image directly to database images, our database

consists of landmarks independent of their original images,

and so we proceed by “embedding” the query image within

the pool of landmarks, as shown in Figure 6. We attempt

to find the most likely location for the embedded image,

by using the feature-landmark matches to assign votes to

each candidate embedded location, l L. Given the infinite

number of possible embedded locations in the continuous

environment, we assign each database landmark to the center

of a new candidate location, l, denoting this landmark as the

location’s embedded landmark, xl.

We then assign a score to each candidate location, as

follows. During training, for each embedded landmark xl
representing embedded location l, a set Cl of co-occurring

landmarks are assigned, that co-occurred in at least one

image during the training stage. Then, during testing, a set of

matched landmarks Ml is assigned to xl, that were actually

matched to a feature in the query image. The score S(l)

for candidate location l is then calculated by dividing the

summation of the matched landmarks by the summation of

the co-occurring landmarks, with each weighted by w and

w to reflect the co-occurrence probability and landmark

match probability of the landmark, respectively. As such, the

score will be equal to 1 if all the landmarks that are expected

to be present in candidate location l are also present in the

query image.

S l
M

w w

C
w w

Weight w represents the co-occurrence probability be-

tween the matched or co-occurring landmark in Ml or Cl,

and the embedded landmark xl, given that the embedded

landmark is present. This is equal to the total number of

training images containing both landmarks, divided by the

total number of training images containing the embedded

landmark. In this way, a matched/co-occurring landmark

assigns a larger vote to those candidate locations whose

embedded landmark co-occurs more frequently.

Weight w takes into account the discriminative power of

the matched or co-occurring landmark in Ml or Cl. Those

landmarks with large values of d are more likely to

encourage false positive feature matches, due to the greater

descriptor space in which a feature can fall for a match. Thus,



Query Image Embedding image in database

Fig. 6. Matching a set of query features to the database of landmarks
requires estimating an embedding of the query image in the environment.
Features in the query image on the left are matched to landmarks in the
database on the right. False positive or false negative matches may occur,
such as the purple star and green square, respectively, but these are filtered
out by the voting strategy.

for each matched or co-occurring landmark, w is assigned

to the probability of a false positive feature-landmark match,

computed by considering the proportion of features in the

training images that are falsely matched to the landmark

when comparing descriptors.

Finally, the candidate location with largest score is de-

termined, and the room corresponding to this location is

fed into the speech recognition module. Scene recognition

was computed in a global sense, without prior knowledge

of the robot’s path. This was to ensure that the worst-

case situation was dealt with, when the robot’s location is

highly ambiguous, such as is common in crowded social

environments, or at initial start-up.

III. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed system, we

employed a Pioneer mobile robot [1] equipped with a set

of binaural microphones. A pair of external ear models

were made by simulating the structure of human ears. Two

cardioid microphones (Core Sound) were placed inside the

ears, with 2.8 cm ear canals corresponding to the average

canal length of adults [23]. One mono-camera was mounted

between the two ears, with the ability to pan and tilt using

build-in motors. See Figure 1 for the robot head profile. A

directional mono-speaker was used as a sound source.

A. Auditory Scene Grouping

We tested our system in an environment containing a

total of 15 rooms and corridors. See Figure 7. In order

to find an appropriate threshold for merging rooms into

auditory scenes, we conducted a preliminary test to inves-

tigate how the standardized Euclidean distance between a

room’s recorded IR parameters, and those IR parameters

used in a training model for a different room, affect the

speech recognition rate. We first randomly chose 7 rooms

to represent 7 separate auditory scenes. Then we trained

each room’s speech recognition model and evaluated the

model using the testing data (without background noise) of

each of the other 6 rooms. The relationship between the

standardized Euclidean distance of the IR parameters of two

rooms, and the corresponding speech recognition results, is

shown in Figure 8. First-order curving fitting was applied

to find the correlation between distance and recognition rate

(the solid line in Figure 8 shows the result). We then chose a

standardized Euclidean distance threshold of 7 for grouping

two rooms, resulting in an expected average recognition rate

Fig. 7. Experimental room planning. CR306 and CR302 are corridors.
308CR and 311 CR are corridors in lecture rooms. All others are lecture
rooms, laboratories, a kitchen and offices.
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Fig. 8. The relationship between two room’s IR distance and the speech
recognition rate using each other’s model.

of 87%. This threshold can be adjusted based upon the

specific requirements of the application, with a threshold

corresponding to a higher recognition rate resulting in a

larger number of auditory scenes, and hence a more time-

consuming training stage.

Using this threshold as the maximum IR distance among

one auditory scene, 15 rooms were grouped into 6 auditory

scenes. This was achieved by recursively computing the

two closest rooms, or groups of rooms, in parameter space,

grouping them together if the distance threshold was satis-

fied, and updating the auditory parameters for the group as

the average of the two rooms. See Figure 9 for the grouping

results, where the rooms with the same scene ID are grouped

into the same scene. Three IRs were recorded for each room.

We found that the intra-room IR parameter distances were far

smaller than the inter-room distances, and hence we naturally

represented different locations within one room by the same

auditory scene. Figure 7 shows the room grouping, with the

same color indicating rooms are assigned to the same group,

or auditory scene.
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For speech recognition training, we adapted the Grid

corpus [10] for clear training sound in Figure 2. The Grid

corpus consists of utterances of 34 human speakers recorded

in an anechoic room. Each utterance is a sentence with a

syntax of

(1)

Each speaker is assigned a set of words in the syntax to be

read out loud. For example, Figure 4 shows an utterance

of “bin green at A 9 again”. We randomly selected 500

sentences from the full set of 1000 sentences for each

speaker, to train each scene’s speech recognizer. The re-

maining 500 sentences were used for evaluation. These clear

sentences were convolved with each scene’s IR, creating

17,000 training sentences for each scene. For comparison

purposes, we also trained an anechoic speech recognition

model which directly took the clear sentences as training

data. The HTK model training code was partly adapted from

the CHiME challenge [8].

B. Visual Scene Recognition

For the visual scene recognizer training, a number of im-

ages were captured in each room from a range of viewpoints,

with the number of images per room ranging from 100 to

400 depending on the room size. For images corresponding

to the same room, features were tracked across the images

to generate a set of room-specific landmarks. During scene

recognition, the robot captured a single image and computed

the room corresponding to the image embedding with the

greatest score. We tested the scene recognition performance

with 50 test images per room, captured under a range of robot

viewpoints. A correct match was recorded if the identified

room is in the same auditory scene group as the actual room.

Whilst the majority of matches arose from positive room

recognition, a small number were due to a false positive

match to a room that was nonetheless assigned to the same

auditory scene. Figure 10 shows the recognition performance

across all auditory scenes, with recognition rates ranging

from 84% to 94%, at an average frame rate of 4 fps.
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Fig. 10. The visual scene recognition results.

C. Scene-Associated Speech Recognition

Once the robot has attempted to recognize the current

scene, it calls upon the corresponding speech recognizer to

recognize the sound recorded in the scene. We played the

utterance from the Grid corpus through the speaker to test the

recognizer, generating some promising preliminary results

in recognizing the spoken word. In order to evaluate our

model in a systematic controlled environment, we simulated

the reverberated sound in the same way as with the training

data, but using a different set of clear utterances. Two sets

of data were generated: i) reverberated sound without noise,

and ii) reverberated sound with background noise. The first

data set was obtained by convolving the clear utterances with

room IRs. It was designed to evaluate our model with regards

to reverberation only. However, such purely reverberated

sound is rare in the practical operation of social robots

because it is almost impossible to avoid background noise.

As such, we generated the second testing data set by adding

the reverberated sound to background noise from real-world

recordings, across a range of signal-to-noise-ratios (SNRs).

Here, we define the SNR as:

where is the signal and is the noise. The subscript

of and indicate the left and right sound channel. We

choose 7 SNR values, -6, -3, 0, 3, 6, 9 dB. The background

noise was taken from a stereo recording in a hospital, which

includes various ambient noises such as a door shutting and

a baby crying.

Four speech recognition models were evaluated to com-

pare their performance. i) The anechoic model that was

trained using clear utterance only. Such a training method is

applied in most of the existing speech recognition algorithms.

ii) A reverb training only model, whereby the IR for the

detected scene is taken as the average across all scenes.

This simulates the case when the visual scene recognition is



incorrect. iii) Our scene-dependent model, whereby the rec-

ognizer is chosen based upon the visual scene recognition in

our experiments. iv) Our scene-dependent model in the ideal

case, whereby we assume that the visual scene recognition

is always perfect. The recognition rate of each model was

calculated based on the correct recognition of both the letter

and the number in the utterance sentence (see syntax 1).

Recognition of only one of the two words was classified as

unsuccessful.

Figure 11 shows the speech recognition results for rever-

berated sound using the four models. The anechoic model has

the lowest recognition rate at an average of 15%. The three

models with reverberation training significantly outperform

the anechoic model, with the combined reverberation training

and scene recognition model achieving 88%. Whilst our

model performs better with the added scene recognition, us-

ing the reverberation training alone outperforms the anechoic

model by over 60%.

Figure 12 illustrates the results when background noise

was added at a SNR of 9 dB, showing a reduction in speech

recognition performance across all techniques. Figure 13

shows the results of the average recognition rate over all

scenes across the full range of SNR values. As can be seen,

our system has a relative increase in performance as the

SNR decreases, compared to the anechoic system, due to

the incorporation of reverberation in the training data in our

method.

The computational speed of recognition was then investi-

gated, by averaging the times taken for recognition across all

tests. This resulted in an average processing time of 1s per 3s

of speech based on an Intel Core 2 Duo 2.13 GHz processor.

As such, when combined with the visual scene recognition

operating at 4 fps, our technique presents a framework that

can run at real-time rates for practical mobile robots.
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Fig. 11. Recognition results of reverberated sound without background
noise.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have described the design and implemen-

tation of a scene-associated speech recognition method that
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Fig. 12. Recognition results of reverberated sound with background noise.
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Fig. 13. Average recognition rate regarding to SNR.

is aimed at solving the human-robot speech interaction prob-

lem. The proposed model can deal with environments where

varying reverberation behavior and multiple simultaneous

sound sources can cause significant problems for classical

speech recognition techniques. Our main contribution is a

new system that incorporates reverberation into the training,

instead of removing it, such that scene-dependent speech

recognition models can be computed. A new visual scene

recognition method is combined to recognize the robot’s

current scene from a range of viewpoints and poses, allowing

the robot to use the corresponding speech recognition model

that is context specific. The preliminary results shown in the

paper indicate that our system can effectively deal with re-

verberated sound among background noise, when compared

to traditional anechoic training methods.

In future work, we plan to extend our model by automating

the auditory scene classification procedure, such that the

robot can measure the IR of a new scene and add it to the

existing set of auditory scenes. Additionally, we plan to in-

vestigate refining the auditory scene classification to provide



regions with more discriminative reverberation properties,

based upon a more theoretical analysis of a wider range of

auditory parameters.
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