Imperial College
London

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Transfer Learning for Robot Control
with Generative Adversarial Networks

Author: Supervisor:
Jonathan Heng Dr. Edward Johns

Submitted in partial fulfillment of the requirements for the MSc degree in
Computing Science of Imperial College London

September 2017

Abstract

Training a robot in reality is more resource intensive as compared to training it in
a simulator. Annotations are easily available in simulators, data can be generated
much more quickly, and training speeds are faster. Hence, it would be ideal to be
able to use simulated data to train a robot and deploy it successfully in the real
world. However, even while physics simulators are improving and able to render
increasingly realistic images, there still exists a difference between real data and
simulated data. This difference is also known as the reality gap.

The reality gap is a classic transfer learning problem, where the source domain X
is simulated data and the target domain Y is real world data. To bridge this gap,
we explore the idea of using image translation to create source-target domain pairs
X-Y. The idea of image translation is to transfer the styles of a particular domain to
another and various related works have been done with use of generative adversar-
ial networks, where the aim is to learn a mapping G : X — Y. This paper presents
a novel approach of training generative adversarial networks to generate a paired
target domain G(X) to a source domain image X by minimizing the task loss of the
generated target image on the same task as its paired source image.

We then evaluate methodologies under the condition of limited source-target pairs to
train a robot arm to reach for a cube in the target domain. With the use of an image
translation model to generate a large amount X-G(X) pairs, we find significant
performance improvements ranging between 20-50% compared to just using limited
X-Y pairs in various source-target domain pairings.

Acknowledgments

I would like to acknowledge my supervisor, Dr. Edward Johns, for all his time and
patience in providing valuable advice on the thesis as well as guidance on future
pathways. I am also grateful to my family and friends for all the support throughout
the years. Finally, I would like to give special thanks to my parents, who gave me
the wonderful opportunity to be here.

Contents

1 Introduction
1.1 Motivation i e e e e e e e e e e e e e e
1.2 Objectives o e
1.3 Contributions e e e
1.4 Outline e

2 Background
2.1 Introduction to transfer learning
2.2 Neuralnetworks
2.3 Robotcontrolsystems,
2.4 Distance between distributions,
2.5 Domainshift
2.6 Domain alignment
2.7 Style transfer between image domains

3 Generating Training Data
3.1 Data sources for transfer learning
3.2 VEREP . . . e
3.3 Simulation scene set-up
3.4 V-REPremote API.
3.5 Training images« . o it e e e e e
3.6 Labellingimages
3.7 Domain transformationo

4 Control of Robot Arm from Images
4.1 Evaluation set-up and metrics
4.2 Fully supervised learning
4.2.1 Models e
422 Results. e
4.3 Learning with limiteddata
4.3.1 Models
432 Results.

5 Image Translation and Pairing across Domains

5.1 Training details and architectures
5.2 Typical GAN for image translation

iii

A DN WR -

—_
— O N0 00N Oyu1 U

—_

12
12
13
13
15
16
16

17
17
18
18
22
24
24
26

CONTENTS Table of Contents
5.3 CycleGAN e e 34
5.3.1 Modeldetails 34

532 Results. e 35

5.4 TaskGAN o oot e 38
5.4.1 Modeldetails, 39

542 Results. e 40

6 Training with Generated Source-Target Pairs 54
6.1 Training with CycleGAN images 54
6.1.1 Models 55

6.1.2 Results. e 57

6.2 Training with TaskGAN images 59
6.2.1 Modeldetails, 59

6.2.2 Results. e 60

7 Conclusions and Future Work 66

iv

Chapter 1

Introduction

1.1 Motivation

One of the key hallmarks of human intelligence is the capacity to adapt to new sit-
uations based on similar past experiences. For example, a tennis player is likely to
be able to pick up other racket sports much more easily than a person who has no
experience in racket sports. The ability to reuse knowledge learnt from solving one
task on a separate but related task is present in all humans. In other words, being
able to transfer knowledge between different task domains is a highly desirable trait
of intelligence. However, it remains extremely difficult to come up with a general
algorithm to allow a computer to effectively reuse the learnt knowledge across a
range of different yet similar tasks. The objective of transfer learning is to effectively
reuse past knowledge for new tasks. The potential benefits are far-reaching and this
paper aims to study this topic in the context of training robots in simulation and
transferring the knowledge over to a robot in the real world.

The ideal goal is the capability to train a robot completely in simulation and suc-
cessfully deploy it in the real world. The desire to achieve transfer learning in this
particular domain is due to the numerous obstacles faced when training a robot in
the real world. Firstly, there is the issue of safety. The robot can potentially go out
of control during the training stage, resulting in damage to surrounding properties,
itself, or even humans. Secondly, large amounts of time have to be put in by hu-
mans to supervise the robot and create relevant training data. Imagine the case of
training a robot to pick up a cube. To create training data of images of objects on a
table, a human has to manually set up the scene. When training the robot, a human
needs to present to supervise it due to safety concerns and to reset the scene for
the task. Furthermore, simulation environments often come with the capability of
providing annotations to the training data (e.g. joint states, object orientation/pose
etc.). These labels are expensive to obtain in reality. On the other hand, these issues
are circumvented in a simulated environment. There are no safety concerns, simu-
lation time can be sped up during training, and large amounts of annotated training
data can be generated programmatically. Hence, if a robot is able to effectively use
the knowledge learnt in a simulated environment in the real world, training in the

Chapter 1. Introduction

real world can be reduced dramatically or even rendered completely unnecessary.
This problem of transferring knowledge learned in a simulated world to the real
world is one that transfer learning aims to solve. More generally, this can be seen
as a problem of transferring knowledge from a source domain to a related target
domain.

(a) Source domain (b) Target domain

Figure 1.1: A sample source-target domain pairing created in simulation. The source
domain is a simple setup of a 3DOF arm and a cube, while the target domain adds
lighting effects, slight colour changes, and slight shape deformations to simulate typical
differences between simulation and reality.

This project studies the transfer of knowledge from a source to a target domain in a
simulated setting. Figure 1.1 shows a possible source-target domain pairing that can
be created in simulation. Since the project is motivated by the problem of training a
robot in a simulated environment on a task and successfully performing the task in
reality, the source and target domains will be designed with the respective charac-
teristics found in simulation and reality.

Chapter 1. Introduction

1.2 Objectives

Task Cost
Obtaining source examples Low
Labelling source examples Low
Obtaining target examples High
Labelling target examples High
Pairing source and target examples |High

Figure 1.2: Cost of tasks for obtaining relevant training data given a source-target do-
main pairing of simulated world-real world

Given a source-target domain pairing of simulated world-real world, the costs of ob-
taining relevant training data are described in Figure 1.2. It is desirable to minimize
the need of high cost tasks and this project aims to study the transfer of knowledge
from a source domain to a target domain with these characteristics. Reducing the
dependency on target data will be an aim of the project. The specific problem for
testing and evaluating of transfer learning methodologies is to control a 3-degree-
of-freedom (3DOF) robot arm to move towards a cube. This will be formulated as
a regression problem, where joint velocities will be predicted using an image input.
However, it remains difficult for any algorithm to learn a regression task in a fully
unsupervised fashion. On the other hand, semi-supervised learning combines unsu-
pervised and supervised methods, which suits our aim of reducing the dependence
on target domain data. For training and evaluation of methodologies, source-target
domain pairs will be created in simulation. This can be done by creating applying a
transformation to the source domain image directly, or adjusting the original source
domain scene to create a target domain scene. The objectives can be summarized as
follows:

e Setting up the simulated environment: The simulator of choice for this
project is V-REP [1]. The simulator will act as a training data generator and an
environment for the testing of models.

e Control a 3DOF robot arm in the simulated environment: Train a neural
network that is able to control the robot using the images generated from the
simulator. Design performance metrics to evaluate the performance of various
models.

e Transfer knowledge between different simulated environments: Evaluate
transfer learning methodologies from a source domain in simulation to another
target domain in simulation. Design training methodologies that reduces the
dependence of target domain training examples that are costly to obtain.

Chapter 1. Introduction

1.3 Contributions
The contributions of this paper are as follows:

e a novel dataset for the study of transfer learning for robot control which is
easily configurable to simulate various characteristics between simulation and
reality

e motivate the use of image translation using generative adversarial networks
(GANSs) to create image pairs between source and target domains in order to
easily generate more target domain data from source domain data

e analyze methodologies of supplementing limited target domain data with am-
ple source domain data to improve performances in target domain

e a novel method in training GANs for image translation by minimizing the task
loss of generated target domain images

1.4 Outline

This section gives an outline of this paper with a brief summary of each chapter.

e Chapter 2 covers background research and related work.

e Chapter 3 details the process behind generating relevant training data for the
problem at hand, including the use of the simulator V-REP and processing tech-
niques on the training data.

e Chapter 4 discusses training a neural network to perform regression for robot
control directly from images. The evaluation set-up and metrics are described.
Training and test results in conditions with full target domain data and limited
target domain data are evaluated.

e Chapter 5 explores the use of generative adversarial networks (GAN) for im-
age translation purposes. The use of CycleGAN from [2] and self-proposed
variations of GAN are tested and evaluated.

e Chapter 6 combines the models from Chapters 4 and 5 to create a transfer
learning process. Performance gains from transfer learning on several source-
target domain pairings akin to that of simulation-reality are evaluated.

e Chapter 7 concludes the work with a summary and points out possible future
directions of research.

Chapter 2

Background

2.1 Introduction to transfer learning

We now consider the below definitions following from a survey on transfer learning

[3].

Definition 2.1 (Transfer Learning). Given a source domain Dg and learning task T,
a target domain D7 and learning task 77, transfer learning aims to help improve the
learning of the target predictive function f7(-) in Dy using the knowledge in Dg and
Ts, where Dg # Dr, or Ts # Tr.

Definition 2.2 (Domain). A domain is a pair D = {X, P(X)} where X is a feature
space and P(X) is a marginal probability distribution.

Definition 2.3 (Task). A task is a pair " = {Y, P(Y|X)} where Y is a label space
and P(Y|X) is an objective predictive function.

Particular to this project, we will be dealing with the case of transferring knowledge
for controlling a robot in a simulated environment to the real world. This is char-
acterized as a case of different source and target domains and different source and
target tasks. The source and target domains share the same feature space, X, which
are pixel values in an image, but do not share the marginal distribution, P(X). Sim-
ilarly, the source and target tasks share the same label space, Y, which are the joint
velocities, but do not share the same predictive function, P(Y|X).

According to the survey [3], transfer learning problems can be further categorized
into three distinct settings: inductive, transductive, and unsupervised. In the inductive
setting, source and target labels are available. In the transductive setting, source
labels are available while target labels are unavailable. For the scope of this project,
both inductive and transductive settings are most relevant and will be investigated in
greater detail.

Chapter 2. Background

2.2 Neural networks

In recent years, the applications of neural networks have grown explosively. Neural
networks achieved state-of-the-art performances in various domains including visual
recognition [4], video game playing [5], and natural language processing [6]. Neu-
ral networks have proven to be a powerful learning model that is able to learn a
wide range of tasks.

Works on transfer learning have been done with the use of neural networks as the
model. In [7], a neural network is trained in simulation and fine-tuned with a small
number of real-world images to perform a planar reaching task. This was done by
setting up a simulated environment to train a robot arm in and approaching it as
a reinforcement learning problem. The robot arm’s state includes its end-effector
position and the joint configuration. Control of robot is done by taking an action
from a finite set of actions, which is quantified by a combination of decrease or in-
crease in the joint angles or leaving them unchanged. Instead of directly obtaining
the Q-values from the neural network trained on raw pixel inputs as in [5], the au-
thors separated the neural network into two distinct components, one for perception
and the other for control. This allowed the networks to be trained in parallel. The
perception network will learn to predict the state of the robot arm from raw input
pixels while the control network will learn to predict the Q-values from the state of
the robot arm as input. Furthermore, instead of utilizing the e-Greedy method for
policy search, which is a form of random exploration, a kinematics-based controller
is introduced to guide the policy search. Experiments show that training a prediction
network from scratch in simulation and fine-tuning a network with a good ratio of
images (found to be 75% real and 25% simulated images in the paper) is able to
outperform a network trained from scratch using only real-world images. This work
shows that a neural network trained in simulation can provide an effective starting
point to further fine-tune with a much smaller amount of real-world data. One pos-
sible limitation of the above work is lack of generality of the chosen search policy.
Since it is designed specifically for a kinematics problem, it is not widely applicable
to other problems.

Another interesting approach is to design a neural network architecture that can
utilize past knowledge learnt. [8] tackles the transfer learning problem through in-
novative construction of an architecture, termed progressive networks, that grows as
new tasks are added. A network column is first trained for a particular task. Instead
of re-weighting the neural network when being trained on a new task, old weights
are frozen and additional network columns are added in parallel to the previous net-
work columns. The old network columns are linked to the new network columns to
enable the reuse of previously learnt features. Freezing the weights would also mean
that it ensures previously learnt features are not lost when being trained for a dif-
ferent task or on a separate data source. The new network columns are then free to
learn new features and combine them with previously learnt features. Experiments
compared the stability and performances of fine-tuning versus progressive network
approaches and found progressive networks to be more robust and better perform-

6

Chapter 2. Background

ing. A possible downside to progressive networks is the need to expand the network.
While the paper explores branching out to a couple of new tasks successfully, if there
are a large number of new tasks, computational costs will rise significantly.

Neural networks have also proven to be a highly effective feature extractors. In [9],
features learnt from a convolutional neural network trained on ImageNet are used to
train a SVM to perform classification tasks in different datasets and achieves leading
results. This shows the reusability and generality of the features that are learnt by
neural networks. In [10], extensive experiments are done to investigate the degree
of specificity of features learnt in neural networks. It is found that later layers learn
more specific features and more interestingly, transferring part of a network learnt
in a separate domain leads to an overall better performance than just training in a
single domain. From these results, transfer learning when applied appropriately can
even be used to give a boost to performance.

2.3 Robot control systems

Traditional approaches to controlling a robot [11] relies on designing multiple mod-
ules such as perception, planning, and motor control that processes input sensor
signals and outputs a value to actuators. However, such approaches tend to require
a significant amount of manually designed components to obtain a low-dimensional
feature representation of the information at each step. Ideally, we would like to avoid
using hand-crafted features as information tends to be lost. Intuitively, a model that
is able to directly utilize input information and output an action can possibly per-
form better since all information is built and retained by the model.

In [12], the authors present a method of training robot control policies that predicts
an action directly from visual observations by using deep convolutional neural net-
works. This falls in line with the ideology of having a single end-to-end model that
trains all modules of the robot control system jointly. While the overall methodology
covered in the [12] is largely reinforcement learning centric, it shares similarities
with this paper in that supervised learning samples are used to guide the policy
search. In Chapter 4, we will cover the use of a physics simulator to provide su-
pervised learning samples of a trajectory. The difference is that the problem in this
paper is formulated as a regression task instead of a reinforcement learning problem.

Chapter 2. Background

2.4 Distance between distributions

In the case of different source and target domains, either Xg # Xr or P(Xg) #
P(Xr). Consider the latter case. Clearly it is not a trivial task to train a model
to recognize data generated from separate probability distributions. One approach
is to incorporate statistical measures of distances between probabilities during the
training of the model. This was done in [13] by minimizing the Maximum Mean
Discrepancy (MMD) as part of the loss function when training a neural network to
perform object recognition and detection tasks. In this case, the statistical distance
that the neural network is trying to minimize is between the features extracted from
the source images and target images. The authors were also utilizing a two stream
architecture, with one network being trained on the source domain and the other
being trained on the target domain. This loss function encourages both networks to
learn to recognize a similar set of features. In other words, these learnt features can
be seen as domain invariant since they are effective in both domains.

The MMD has many properties that make it a good choice for a probability metric
and we shall consider its empirical estimate as taken from [14].

Definition 2.4 (Maximum Mean Discrepancy). Let p and ¢ be distributions defined
on a domain Z. Let the observations X := {x1,...,x,,} and Y := {y;, ..., y, } be drawn
independently and identically distributed (i.i.d.) from p and ¢ respectively. Then we
define the maximum mean discrepancy’s empirical estimate as

Nl=

n n n

MMDI[X,Y] = %ZZ]* (z;, ;) %ZZIQ(%%H%ZZM%%) (2.1)

i=1 j=1 =1 j=1 =1 j=1

where, k(-, -) is a kernel function. Ideal choices for the kernels are the Gaussian and
Laplace kernels for their universal property as further discussed in [15].

Computation time of the above empirical estimate costs O((m + n)?) time. More
efficient approximations of the MMD can be found in [16]. There are other proba-
bility metrics that exists and can be considered, such as Kullback-Leibler divergence,
Kolmogorov metric, and x? distance. A comprehensive study of these metrics can be
found in [17].

Chapter 2. Background

2.5 Domain shift

One of the major problems that transfer learning attempts to solve is domain shift.
For example, a robot arm can be trained to pick up a red cube. However, the
learned model will often break down when the environment changes such as when
the colour of the cube is different or when the lighting effects are different. A simple
2-dimensional dataset can be used to illustrate this effect. In Figure 2.1, domain 1
is generated by a 2-dimensional Gaussian variable with mean 0 and variance 1. Do-
main 2 is generated by the datapoints in domain 1 with a shift in the y-axis by a value
of 10. In this case, the x-dimension represents a domain invariant feature. Imagine
trying to learn a function for these datapoints. Being able to identify the x-dimension
in this case would be much more helpful in solving the problem since it provides
the same information for both domains, whereas the y-dimension is not helpful for
learning a single function mapping for both domains simultaneously. Identifying this
feature that describes data from separate domains is far from a trivial task and we
will discuss some works in the next paragraphs. Other terms in literature describing
a similar phenomenon include domain adaptation and covariate shift.

15.0
+ Domain 1

Domain 2

12.5 4

10.0

7.5 1

> 50 . .
Domain shift
2.5
+ + * + +
+ + #F
0.0 4 + : .t + F
+
+
+
+ + + +
—2.5‘
-5.0 T
-4 -2 2 4

X

Figure 2.1: 2-dimensional visualization of domain shift

One method of approaching the problem of discrepancies between the source and
target data distributions is to learn a feature representation which is unable to dis-
tinguish between the two domains. This is known as domain confusion. In [18],
the negative cross entropy loss is added to the loss function. In addition to training
the neural networks for the task, a domain classifier is trained to recognize which
domain the image originates from. This loss function is minimized when the domain

9

Chapter 2. Background

classifier is maximally confused. Hence, training the model with this loss function
will encourage the model to learn a feature representation that maps the data from
different domains into a similar feature space.

A different take on bridging the gap between the simulated environment and the real
world is through domain randomization [19]. This approach attempts to introduce
a large amount of variability in the simulated environment such that the real world
appears to be just another variation. In this paper, the aim is to train an object
detector on simulated images and test its effectiveness when giving a scene from
the real world. Aspects of the simulated environment that were randomized include
the number and shape of distractor objects present, position and texture of objects,
camera position and orientation, lighting, and type and amount of noise added.
Even without the need of any real-world training data, the object detector was able
to perform well. A possible explanation for the effectiveness of the method is that
the neural network model learned a set of features that are invariant to cope with
large amount of variability in training data.

2.6 Domain alignment

A recurring problem in machine learning is the difficulty in obtaining annotated real
world data. Ideally, we would like a model to be completely trained on easily gen-
erated synthetic data and perform well when thrown into the real world. Unfortu-
nately, this is far from a trivial task. One way to overcome the lack of annotated real
world data is to have some form of automatic annotation. In [18], a weak pairwise
constraint method was proposed. This method attempts to pair annotated synthetic
data with an unannotated real world counterpart by finding a nearest neighbouring
source image for each target image. The distance between images can be measured
by the Euclidean distance between the set of features extracted by a convolutional
neural network. This distance can then be added into the loss function as a pairwise
loss.

Both the domain confusion loss and pairwise loss were evaluated in [18]. It is found
that pairing unlabelled real world data with simulated data is able to outperform
just having real world labelled data.

10

Chapter 2. Background

2.7 Style transfer between image domains

The visual world is often characterized by style. What is stylistically coherent in
reality might look completely out of place in a cartoon world. Humans are able to
understand and find correspondence between similar object across visually distinct
domains. For example, while a real car and a cartoon car may possess distinct visual
styles, humans easily understand that these two objects share the same semantic
meaning. Recent works [20, 21] presented methods of transferring the visual styles
and characteristics from an image domain to other images.

Generative adversarial networks, or GANs in short, are a class of neural networks
that estimates a generative model through training a generative model and a dis-
criminative model in an adversarial process [22]. It is shown to be able to generate
MNIST-like handwritten images from a Gaussian input. This shows the viability of
utilizing GANs as a method of generating images from a desired domain. This idea
has been furthered in works [2, 23] which used generative adversarial networks to
generate source-target domain image pairs. These model uses a source domain im-
age as input and obtains a paired target domain image as output. The CycleGAN
model in [2] is of particular interest since the training process does not require ex-
plicit paired source-target domain examples. This also removes the need for labelled
target examples since labels can be transferred from the respective source examples.
The CycleGAN model will be further investigated in Chapter 5.

Figure 2.2: An image visualized in the styles of famous works of various artists. Top left
image (A) represents the original image, while the other images represent the output
after transferring the style of the associated artist’s work. Source: [20]

11

Chapter 3

Generating Training Data

The problem of interest here is to predict joint velocities for a 3DOF arm from an
input image. This can be framed as a regression problem and the corresponding
training dataset are images annotated with corresponding joint velocities. In this
chapter, we cover the use of a simulator to create a scene of a 3DOF robot arm and
a cube and utilize it to generate training data.

3.1 Data sources for transfer learning

In other studies of transfer learning between a simulated environment and the real
world, custom training data sets are created. In [19], a physics simulator is used to
generate various images of objects on a table and object positions can be obtained
within the simulator. This is then used to train on image detector and tested on
real world images with no additional training. In another work [18], synthetic im-
ages are created using the Gazebo simulator and pose annotations can be obtained
through the simulator.

3.2 V-REP

For the purposes of this project, a custom training dataset will be created. Training
and testing will be done completely in simulation. Target domains are created to
simulate typical differences between a simulated source domain and a real target
domain. A simulation environment that is able to create a training dataset of images
with corresponding joint velocities has to be chosen. Virtual Robot Experimenta-
tion Platform (V-REP) [1] is a robot simulator that fulfils the requirements of the
project. It possesses an inverse kinematics module that is able to calculate a list of
joint states, where following this list of joint states is equivalent to moving a point on
a robot arm to a target position along a straight path. This list of joint states can be
converted into corresponding joint velocities as labels. The platform also possesses
a remote API in various languages including Python.

12

Chapter 3. Generating Training Data

3.3 Simulation scene set-up

This section will describe the various components that are in the V-REP scene for the
3DOF arm. References to specific objects in the scene will be marked with quota-
tions, e.g. ‘3dof-arm’. A screenshot of the simulation scene can be found in Figure
3.1. For further details on how to properly set up a scene, V-REP provides their own
tutorials on its website which are much more comprehensive.

Firstly, a custom model of the arm is created. 4 simples shapes are needed to create
the arm: a cylinder ‘base’, followed by 3 cuboid ‘links’. These shapes can then be
linked together with ‘joints’. Next, a simple red ‘cube’ can be added to the scene.

To obtain images of the arm moving towards the cube, the inverse kinematics mod-
ule in V-REP can be used. This creates the behaviour of moving a designated tip
to target in a straight line. A tip-to-target pair has to be created. A dummy object,
‘target’, was created and placed under the ‘cube’ in the scene hierarchy. Similarly, a
dummy object, ‘tip’, was added at the end of the arm model, ‘link3’. At this point,
a tip-to-target relationship can be assigned between this pair of dummy objects, as
indicated by the red arrows linking them under the scene hierarchy. For the inverse
kinematics to start working, an inverse kinematics group has to be added under the
inverse kinematics calculation module.

Vision sensors which act as cameras are also available. They can be added and
positioned at various angles to capture different viewpoints of the scene. As seen
in the Figure 3.1, there are 4 vision sensors that indicate 4 different viewpoints of
the arm and the cube, namely front, side, top, and diagonal. The resolution of the
images can be controlled. Images in this paper are of 128x128x3 in dimension.

3.4 V-REP remote API

V-REP provides a remote API where other various languages can be used to commu-
nicate with V-REP’s simulation environment. The choice of language for this project
is Python. Help with setting up the remote API can be found in on V-REP’s tutorial
website!.

V-REP provides a large range of functions that enables communication for various
actions in the simulated environment. In general, objects in the simulated environ-
ment have handles and there are functions that allow the user the obtain handles of
the objects. Different objects have different properties which can be controlled. For
example, images from vision sensors can be obtained, joints have states that can be
obtained and changed, and objects have positions that can be obtained and changed.
A detailed list of the remote API functions can be found on the website as well?. For

Thttp://www.coppeliarobotics.com/helpFiles/en/remoteApiOverview.htm
2http://www.coppeliarobotics.com/helpFiles/en/remoteApiFunctionListAlphabetical.htm

13

Chapter 3. Generating Training Data

ﬂw 1@1_
L L 3 @ T

Scene hierarchy

wz/ (*W an_n. :@J._m

_vnu.umu. @ 3dof-arm ﬁwomsm.:.x uw.“
............ ..aw._
=" 2 |
="
T floort| L o
.ﬁ cube,.n
&5 target
= .ﬁ base @
= & joint!
B O inkt o
B 4 joini2
............ O e o
i B 4 ioin3
B @ ik -0
e &8 4 ¢
m_w & 1p

xL

Q Bullet278 ¢

Accurate (default) $ dt=50.0 ms, ppf=1 <

o0 o

vs_front X vs_side

vs_diag <! vs_top

=0.5614 eters

-]

Scene opened.
Simulation started.

Figure 3.1: V-REP scene of 3DOF arm and a red cube

14

Chapter 3. Generating Training Data

more advanced functions that are not available in this list, the simxCallScriptFunc-
tion provides the flexibility of allowing the user to implement any kind of remote
API function.

By utilizing these remote API functions, the simulated scene can be prepared and
manipulated completely in Python. For the training dataset, variability in the initial
cube positions and initial joint positions are desired. After some initial testing of the
performances of trained neural networks on various datasets, it is found that creat-
ing a dataset in a grid-like manner (e.g. initial cube x position ranges from [0, 1]
and taking 5 points between this range will include the points [0, 0.25, 0.5, 0.75,
1]) and mixing it with uniform random samples lead to the best results.

3.5 Training images

Using the remote API, the inverse kinematics module is able to provide a list of joint
states. This list of joint states can be followed iteratively to create the behaviour of
the robot arm moving towards a cube. The size of this list can be specified and this
size corresponds to the number of steps of moving the robot arm from the initial
position to the final position. At each step of following this list, the image can be
obtained in Python through the remote API. The joint states are also obtained and
recorded on a text file. Each image is then exported to be saved on disk. The choice
of export format is JPEG. Even though it is not a lossless compression, it is highly
space efficient and extremely high fidelity images are not necessary to train the robot
arm successfully.

.J_\l
.
ey
2 | 2

a
a
a
a
a
a
a
a
a
a
a
a
|
a
3
a

RAERZERAERE A2 A B Es BiEe R B I By B B

A

Figure 3.2: Training images. Each row represents a set of images comprised of 16 steps.
From left to right, the robot arm gradually moves towards the cube.

15

Chapter 3. Generating Training Data

3.6 Labelling images

Since the objective is to perform control of the robot as a regression problem, the
joint states have to be transformed to joint velocities. To appropriately achieve the
effect of moving the arm at each step, the joint velocities label should be the differ-
ence between the next joint state and the current joint state. For the final joint state,
since there is no next state, the joint velocities labels will be set to 0.

jointVelocityli] = jointState[i + 1] — jointState[i] if i # finalStep
jointVelocity[i] = [0, ..., 0] otherwise

Joint velocity labels are further processed by normalizing and multiplying by a damp-
ing factor. Normalization is done by the dividing the joint velocities with the absolute
norm. The damping factor used is the distance between the tip and target position,
which can be obtained at each step through the remote API. The motivation of using
a damping factor is to encode knowledge of distance in the labels and create the ef-
fect of taking bigger steps while the arm is further from the cube and slowing down
as it approaches the cube.

3.7 Domain transformation

To create distinct target domains, transformations can be done to the original image.
Simple transformations include gamma correction and multiplying the colour chan-
nels with a factor. An example of a more complex transformation is to put an image
through a edge detection algorithm such as canny edges and create an edge-version
of the original image. Other ways include directly adjust the colours, shapes, and
sizes of the objects in the scene and generating new images.

Figure 3.3: An image of 3DOF arm in various domains. Left: Original. Center: Tinted
image by multiplying the colour channels by [0.25, 0.5, 0.75] respectively after pre-
processing to values between a range of [-1, 1]. Right: Image created by putting each
colour channel through a canny edge detector and recombining the colour channels.

16

Chapter 4

Control of Robot Arm from Images

Convolutional neural networks have proven to be highly effective models in image
recognition and other image related tasks and related works such as [7, 19] showed
the viability of this model for application in transfer learning. Hence, convolutional
neural networks will be trained to predict joint velocities given an image of a robot
arm.

Under the transfer learning problem, we would like to study the performances of
neural networks in both source and target domains under different modes of train-
ing. Firstly, the fully supervised scenario where all labels and pairings are assumed
to be available will be studied. This will set the performance benchmarks. Then, we
will study methods of training that lead to better performances under the scenario
of target domain limited data.

4.1 Evaluation set-up and metrics

An appropriate evaluation setting has to be designed to test the effectiveness of the
trained neural networks. The same V-REP scene used for generating training data
will be used to evaluate the performances of the neural networks. During test time,
at every time step an image will be obtained from the vision sensor in the scene
and passed through the neural network. Then, the predicted joint velocities will be
applied to the robot arm. Each episode starts with a random cube position and joint
position and will be played over 100 time steps.

17

Chapter 4. Control of Robot Arm from Images

The following metrics will be used to evaluate the performance:

e Distance: Both minimum distance and final distance from the tip to target
point will be recorded. Since we want the arm to slow down and stop near the
object, the final distance is a better metric of performance since the arm can
reach a good minimum distance through random movements and eventually
move away from the cube. The overall mean and standard deviation of these
distances played over multiple episodes are recorded.

e Success rate: A distance threshold will be used to decide which episodes are
considered successful. If the minimum/final distance for an episode falls below
this threshold, that episode is considered successful.

To ensure fairness when evaluating different models, the same test set will be used.
The test set ensures that every episode is loaded from an identical list of starting
joint and cube states and is composed of 100 episodes.

4.2 Fully supervised learning

In the fully supervised learning scenario, we assume that all labels are available for
both source and target domains and all examples are paired.

4.2.1 Models
e Source only: Train on source domain images only.
e Target only: Train on target domain images only.
e Mixed: Train on both source and target domain images.

e Separate feature extractor: Train separate feature extractors on each domain
and use a shared regressor head. Target and source domain images are paired
and a L2 loss between the feature representations of the source and target
domains is minimized.

18

Chapter 4. Control of Robot Arm from Images

The first 3 models share the same neural network architecture and a figure of the
neural network architecture can be found in Figure 4.1. This is a relatively straight
forward convolutional neural network architecture. Given a source domain X with
images z; and labels ¢7, the neural network is trained to learn a mapping function
fx : X — ¢*. The training process involves minimizing the following cost function:

N
Ltask(X ¢X — %Z fX xz)2 (41)

Input Layer
128x128x 3

Convolutional Layer 1
64 x64x16

Convolutional Layer 2
32x32x32

Convolutional Layer 3
16 x 16 x 64

Convolutional Layer 4
8x8x128

Convolutional Layer 5
4x4x128

Fully Connected Layer
256

Output Layer
3

Figure 4.1: Neural network architecture for the first 3 models. Each convolutional layer
uses filter of 3x3 size and stride of 2.

19

Chapter 4. Control of Robot Arm from Images

Having separate feature extractors is inspired by the work in [13] and a figure of
the neural network architecture can be found in Figure 4.2. Neural networks can
be seen as a method of extracting image features as discussed in [10]. By treating
neural networks as feature extractors and adding a loss that penalizes the Euclidean
distance between the feature layers, it encourages the separate feature extractors for
distinct domains to map pairs of images to the same feature space. The layer before
the output layer is chosen as the feature layer in this implementation.

Given a source domain X with images z;, labels ¢? and feature layer representation
67, a target domain Y with images y;, labels ¢?, and feature layer representation 6?,
the loss between the feature layers can be expressed as follows:

1 N
= Z (4.2)

Overall, the neural network is trained to minimize the following cost function:

N

=1

= Ltask(5) + Ltask(yv; QbY) + AGLH(Xv Y)

(4.3)

where)\, is a constant that controls the importance of the loss between feature
layers. It is set to a value of 1 for experiments in this paper.

20

Chapter 4. Control of Robot Arm from Images

Separate
feature
extractors

Shared
regression
head

—_

Domain A Input Layer
128 x 128 x 3

|

Convolutional Layer 1
64 x 64 x 16

|

Convolutional Layer 2
32x32x32

|

Convolutional Layer 3
16 x 16 x 64

|

Convolutional Layer 4
8x8x128

|

Convolutional Layer 5
4x4x128

l

Feature Layer (Fully connected)

256

|

Domain B Input Layer
128 x 128 x 3

|

Convolutional Layer 1
64 x 64 x 16

|

Convolutional Layer 2
32x32x32

|

Convolutional Layer 3
16 x 16 x 64

|

Convolutional Layer 4
8x8x128

|

Convolutional Layer 5
4x4x128

|

Feature Layer (Fully connected)

256

|

Output Layer
3

Figure 4.2: Neural network architecture for method separate feature extractors. Input

images for separate domains are paired.

21

Chapter 4. Control of Robot Arm from Images

4.2.2 Results

These models are trained with the source-target domain pair as seen in Figure 4.3.
The target domain image is created by multiplying a constant value of [0.25, 0.5,
0.75] to the RGB channels of the source domain image respectively. The training
dataset consists of a total of 22656 images. This is created by saving images of 1416
episodes, 16 steps each episode, of the arm moving towards the cube using the in-
verse kinematics module in V-REP as described in Chapter 3.

The source only and target only models are trained for 15000 training steps with a
batch size of 16 images each. The mixed and separate feature extractor models are
trained for 15000 training steps with a batch size of 16 images each for both source
and target domains. The images are shuffled before being fed into the neural net-
work. The choice of optimizer is the Adam optimizer with a learning rate of 0.001.

Each of the 4 models are tested in both the source and target domains and the
full results can be found in Figure 4.4. An episode is considered a success if the
minimum/final distance falls below the chosen threshold value of 0.1.

(a) Source domain (b) Target domain

Figure 4.3: Sample image from source and target domain for training and testing.

22

Chapter 4. Control of Robot Arm from Images

Minimum distance Final distance
Success Success

Model Name Test domain Mean Stddev |rate Mean Stddev |rate
Source only Source 0.0594 0.169 94 0.0745 0.167 89

Target 0.283 0.1 5 0.353 0.0675 0
Target only Source 0.0808 0.228 93 0.0923 0.227 90

Target 0.0716 0.206 94 0.0851 0.206 90
Mixed Source 0.138 0.256 84 0.162 0.25 70

Target 0.0881 0.242 92 0.109 0.239 87
Separate feature |Source 0.0295 0.0995 98 0.0496 0.101 91
extractor Target 0.0639 0.191 92 0.073 0.19 92

Figure 4.4: Results of fully supervised models tested on both source and target domains.

As expected, the “Source only” model performs reasonably well in the source domain
with a final distance success rate of 89% and fails completely in the target domain
with a 0% final distance success rate.

On the other hand, the “Target only” model surprisingly works on both source and
target domains with final distance success rates of 90% in both domains. This is
highly likely due to the way the target domain was created, which was to multiply
the RGB channels of the source domain images with [0.25, 0.5, 0.75] respectively. A
simple visual relation is clearly not sufficient since the “Source only” model does not
work well in the target domain. It is a coincidence that the chosen transformation
led to good performance in the source domain despite training on target domain
images only.

The “Mixed” model is trained on both target and source domain images. It fails to
perform up to par in the respective domains which the source only and target only
models are trained on. Both final distance success rates of 70% in the source do-
main compared to the 89% of the source only model and 87% in the target domain
compared to 90% of target only model are lower. This suggests that training a single
neural network to perform a similar task across different domains leads to worse
performance, even if the target domain is very similar to the source domain visually
and numerically. This is due to the neural network being unable to learn a represen-
tation that works for both domains.

The “Separate feature extractor” model trains separate neural networks to extract a
similar set of features 6 and share a regression layer on top of the extracted feature
space. This model outperforms all other models with a final distance success rate
of 91% and 92% on both source and target domains respectively. Learning a shared
representation across different domains for a similar task improved the overall per-
formance. While these tests are done with complete knowledge of pairs and labels
in both domains, it suggests the potential of supplementing training for a target do-
main task (e.g. in reality) with rich and easily obtainable source domain data (e.g.
from a simulator). Another plausible reason for the improved performance is that

23

Chapter 4. Control of Robot Arm from Images

the training images are saved in jpg, which degrades the quality of the image being
saved. Hence, the image passed into the neural network during test time and train-
ing time is different. Having the L2 feature layer loss trains the neural network to
become more resistant to noisy images.

Overall, the “Separate feature extractor” model works the best and further tests and
further studies will be done on variations of this model in the following section.

4.3 Learning with limited data

Since obtaining pairings between real world examples and simulated environment
examples and labelling real world examples are expensive, we want to minimize the
amount of such work. Ideally, the training can be done in a completely unsuper-
vised manner. However, this remains extremely difficult. A more common approach
is to provide a small amount of labels in the target domain. Another approach is
semi-supervised learning, where unlabelled target domain data can be utilized. This
section will study various models and their effectiveness under the stresses of limited
target data.

4.3.1 Models

Each model described in the following will be trained on varying amounts of target
domain examples being available. The target only model uses the architecture as
shown in Figure 4.1. The other models that train on both source and target domain
examples use the architecture as shown in Figure 4.2. Some of the models described
here take inspiration from the work in [13], which utilizes the maximum mean dis-
crepancy (MMD) loss and initializing the neural network for the target domain with
pretrained weights from a neural network trained in the source domain. The cost
function for the MMD can be found in Section 2.4.

e Target: Train on target domain images only. All examples are labelled. This
model serves as the benchmark for comparison to other models.

e Paired + L2: Train from scratch on paired source-target examples and un-
paired source examples. All examples are labelled. Paired examples are trained
on both task loss and the L2 loss between feature layer. Unpaired source ex-
amples are trained on task loss only.

e Paired + L2 + MMD: Train from scratch on paired source-target examples
and unpaired source and target examples. Unpaired target examples are un-
labelled and all other examples are labelled. Paired examples are trained on
both task loss and the L2 loss between feature layer. Unpaired source and
target examples are trained on task loss and MMD loss between the feature
layer.

24

Chapter 4. Control of Robot Arm from Images

e Pre-train + Target: Pre-train the feature extractor for the source domain
and initialize the feature extractor for the target domain with the pre-trained
weights. All examples are labelled. Finetune on target examples only. Target
examples are trained on task loss only.

e Pre-train + Paired + L2: Pre-train the feature extractor for the source domain
and initialize the feature extractor for the target domain with the pre-trained
weights. All examples are labelled. Finetune on paired source-target examples
and unpaired source examples. Paired examples are trained on both task loss
and the L2 loss between feature layer. Unpaired source examples are trained
on task loss only.

e Pre-train + Paired + L2 + MMD: Pre-train the feature extractor for the source
domain and initialize the feature extractor for the target domain with the pre-
trained weights. Unpaired target examples are unlabelled and all other ex-
amples are labelled. Finetune on paired source-target examples and unpaired
source examples. Paired examples are trained on both task loss and the L2 loss
between feature layer. Unpaired source and target examples are trained on
task loss and MMD loss between the feature layer.

e Pre-train + MMD: Pre-train the feature extractor for the source domain and
initialize the feature extractor for the target domain with the pre-trained weights.
All target examples are unlabelled and all source examples are labelled. Fine-
tune on unpaired source and target examples only. Unpaired source and target
examples are trained with MMD loss between the feature layer. Source exam-
ples are trained on task loss.

25

Chapter 4. Control of Robot Arm from Images

4.3.2 Results

Two different source-target domain pairings will be tested in this section. The first
will be a visually similar source-target domain pairing while the latter will have a
more significant visual transformation from source to target domain.

The first source-target domain pairing is shown in Figure 4.3. The same source
dataset used in Section 4.2.2 is used here as well. The source:target dataset ra-
tios tested are 100:1 and 10:1, with the exception of the unsupervised “Pre-train +
MMD” model, which was tested with a source:target dataset ratio of 1:1.

The pre-trained model used is trained for 15000 steps with a batch size of 16 on
source domain images only. All models are trained or further trained for 15000
steps with a batch size of 16. The Adam optimizer with a learning rate of 0.001
is used here. Full results can be found in Figure 4.5. A summary of the results for
models trained with a source:target dataset ratio of 100:1 can be found in Figure 4.6.

Minimum distance Final distance
Source:target Success Success
Model Name dataset ratio Mean Stddev [rate Mean Stddev [rate
Target 100:1 0.161 0.128 38 0.206 0.136 29
10:1 0.0352 0.084 98 0.0651 0.093 86
Paired + L2 100:1 0.165 0.183 52 0.206 0.181 39
10:1 0.0351 0.0962 97 0.0491 0.0984 94
Paired + L2 + MMD |100:1 0.26 0.189 23 0.331 0.183 8
10:1 0.0608 0.099 91 0.0884 0.103 80
Pre-train + Target (100:1 0.0504 0.0763 93 0.0778 0.0789 81
10:1 0.0189 0.0182 99 0.0295 0.0232 99
Pre-train + Paired [100:1 0.0358 0.0447 95 0.0507 0.0485 93
+12 10:1 0.0197 0.0176 99 0.0281 0.0232 98
Pre-train + Paired [100:1 0.181 0.155 37 0.209 0.148 22
+12+ MMD 10:1 0.0497 0.111 93 0.0732 0.113 91
Pre-train + MMD [1:1 0.309 0.159 7 0.361 0.158 1

Figure 4.5: Results of semi-supervised models tested on test domains with varying
amounts of source:target dataset ratio.

Generally, the models performed pretty well when the source:target dataset ratio is
10:1. Final distance success rates range from 80% to 99% with little loss in perfor-
mance in most cases and surprisingly improvements in some. For example, the “Pre-
train + Target” model where 10:1 source:target dataset pairs is used to fine-tune
the pre-trained model led to a final distance success rate of 99%, outperforming the
results found in the fully supervised scenarios where all source:target dataset pairs
are available. A reason is that the dataset is noisy and the randomly sampled source-
target pairs were better for performance in the given test set. Also likely is that the
target domain is easier in general for the neural network to learn in.

26

Chapter 4. Control of Robot Arm from Images

Models trained with 100:1 Final distance
source:target dataset ratio success rate

Target 29
Paired + L2 39
Paired + L2 + MMD 8
Pre-train + Target 81
Pre-train + Paired + L2 93
Pre-train + Paired + L2 + MMD 22

Figure 4.6: Summary of semi-supervised models tested on test domains with 100:1
source:target dataset ratio.

Incorporating the maximum mean discrepancy (MMD) loss consistently led to worse
results. From the results summary in Figure 4.6, training with the MMD loss leads
to much worse results than just training the neural network with only the target
domain images and on the task loss only. This contradicts the results of [13], where
the addition of MMD loss during training led to improved results. Furthermore, in
the completely unsupervised test of the “Pre-train + MMD” model where a similar
target dataset to the source dataset is provided but unpaired, the neural network
fails to learn well. While the MMD loss was not expected to work work the unsuper-
vised setting, it remains unclear why the MMD loss fails to perform well even in the
semi-supervised setting but this problem will be left open for future works.

The more prevalent and interesting problem at hand is to test the effectiveness of
the models at bridging the lack of target domain data. The effect becomes more ob-
vious when the available target domain data is further reduced to a ratio of 100:1.
Initializing the target domain feature extractor with pre-trained weights led to con-
sistently better results. The improvements are especially significant when there is
lesser target domain data available. For example, when the source:target dataset
ratio is 10:1, the “Paired + L2” model achieved a final distance success rate of 94%
compared to the 98% of the “Pre-train + Paired + L2 model”, an improvement of
4%. When the source:target dataset ratio is 100:1, the “Paired + L2” model only
achieved a final distance success rate of 39% compared to the 93% of the “Pre-train
+ Paired + L2” model, a significantly larger improvement of 54%.

Also consistent with the results in the fully supervised learning section is that train-
ing with pairs and L2 loss outperforms just finetuning with target examples only. To
summarize, training with paired-examples and initializing with pre-trained weights
from the source domain leads to better overall performances when the source and
target domains are similar.

27

Chapter 4. Control of Robot Arm from Images

Intuitively, the less striking the change from source to target domain, the less the
pre-trained neural network on the source domain needs to change to adapt to the
target domain. The question arises whether pre-training is beneficial for visually
dissimilar domains. In the above experiments, the chosen target domain happens
to be both visually and numerically similar. On the other hand, we would also like
to test the effects of these models on an extreme form of source to target domain
transformation. The chosen target domain is created through a putting each colour
channel of the source domain image through a Canny edge detector and recombin-
ing the channels. A sample of the source-target domain pair can be seen in Figure
4.7. The models are trained with a source:target dataset ratio of 100:1.

Figure 4.7: Sample of the source and target domain image. Left: source domain image,
right: target domain image.

28

Chapter 4. Control of Robot Arm from Images

Minimum distance Final distance
Success Success
Model Name Test domain |Mean Stddev |rate Mean Std dev rate
Target Target 0.215 0.166 24 0.247 0.174 17
Paired + L2 Target 0.202 0.184 43 0.225 0.178 31
Pre-train + Paired + L2 Target 0.226 0.139 13 0.28 0.131 8

Figure 4.8: Results of selected semi-supervised models on the edge target domain. The
source:target dataset ratio for these models are 100:1.

From the results, we find that the effect of pre-training has a negative effect when
the source and target domains are highly dissimilar. In fact, initializing with pre-
trained weights led to worse results than training a neural network from scratch,
with a final distance success rate of 8% compared to 17%. Training with pairs and
the L2 loss between feature layers still led to improved performances even when the
domains are visually dissimilar. In the context of utilizing simulators as a source
domain to generate training images, this problem is not significant since we would
not expect such a large visual discrepancy between the source and target domains.
The simulator-reality domains should hold a relationship more alike the first set of
source-target domains used for testing, where pre-training led to much improved

results.

29

Chapter 5

Image Translation and Pairing across
Domains

Being able to automate the task of pairing of images between separate domains is
highly valuable. For example, if there is an algorithm that can transform a simulated
image to a corresponding real world image, a large amount of realistic training data
with annotations can be created. Pairing simulated images with real images is highly
expensive task, hence there is a large interest in wanting to automate pairing and
translation between domains. A successful pairing between two different image do-
mains maintains the semantics across domains. This concept is illustrated in Figure
5.1.

Domain A Domain B

Figure 5.1: Pairing of images between different visual domains.

30

Chapter 5. Image Translation and Pairing across Domains

Generative adversarial networks have been used to generate pictures of a particu-
lar domain from random vectors. Figure 5.2 depicts this process. However, for our
application, the input is an image from the source domain and the output is an im-
age from the target domain. Furthermore, we want the source and target domain
images to be semantically related. The works in [23, 2] present methods to train
GANS to translate a source domain image to a corresponding target domain image.
The model in [2] is of particular interest since the training process it is an unsuper-
vised method and fits in well with the motivation of this paper. This model is termed
CycleGAN by the authors and the application to training a robotic task will be dis-
cussed in greater detail in the later sections. Other methods include incorporating a
loss function [24] to guide the training of the generator.

Domain A

Generator

X1, Xg, ore Xp} I—‘

Random vector i

Figure 5.2: GAN as a generative model for images

This chapter will focus mainly on the study of GANs for image translation and pair-
ing across domains as seen in Figure 5.3. A novel model that utilizes the task loss of
the generated target domain image to guide the GAN training process will be pro-
posed and evaluated in Section 5.4.

Domain A Domain B

Q\ Generator

\,
N
/
/
/
7
/
/
/
/
-

Figure 5.3: Adapting GANs to achieve translation and pairing across domains

31

Chapter 5. Image Translation and Pairing across Domains

5.1 Training details and architectures

One flaw of using generative adversarial networks for image translation is the insta-
bility of the training process. This section covers general training details and tips
that help to stabilize the training process.

In [24], the authors proposed training the discriminator with a history of generated
images. A similar process is implemented for this project. The history of gener-
ate images is created as a first-in first-out (FIFO) queue with a limited capacity. At
each step where the generator creates new images, they are added to the queue.
When the number of images in the queue exceeds the capacity, the oldest images are
discarded. For each mini-batch training step for the discriminator, the new batch of
generated images is mixed with a randomly sampled batch of generated images from
the queue. The ratio of most recent batch of generated images to randomly sampled
batch of generated images can be varied, but the default ratio used in experiments
is 1:3.

Other ways of stabilizing the training process utilizes additional loss functions to
guide the generator. In [2], the authors propose a cycle consistency loss which re-
duces the space of possible mapping functions, hence encouraging the generators to
learn a mapping from a source input to a related target output. In [24], the authors
propose a feature transform loss by mapping the generated output and input to a
similar feature space and penalizing the L1 loss between the two feature vectors.
However, in the experiments of the paper, the authors use an identity map, which
implicitly assumes a visual relation between the source and target domain, which
may not necessarily always be the case.

We also found that the training of generative adversarial networks is highly sensitive
to initialization. A common problem faced by training generative adversarial net-
works is being stuck at poor local minima/maxima early in the training process and
usually re-initializing the training process helps.

The choice of discriminator and generator architectures in this paper follows those
described in the appendix CycleGAN paper [2]. Since we are dealing with 128x128
images, we use the 6 block generator architecture as described in the paper.

32

Chapter 5. Image Translation and Pairing across Domains

5.2 Typical GAN for image translation

Predicts
whether input
image is
generated or
not

Discriminator

Generated
target domain
Generator image (e.g.
Real-lookalike

images)

Source domain
image (e.g.
Simulated

images)

Target domain
images (e.g.
real images)

Figure 5.4: Typical GAN architecture for image translation

Given a source domain X and a target domain Y, we want train the generator
to learn a mapping function G : X — Y and a discriminator Dy to differentiate
between generated target domain images G(z) and real target domain images y.
The objective function can be expressed as:

Laan(G, Dy, X,Y) = Ey y[log(Dy (y))] + Esnx|[log(1 — Dy (G(x)))] (5.1

The adversarial training leads to a minimax game where the discriminator will try
to maximize the above loss function while the generator will try to minimize it. The
actual implementation differs from the above equation in that the negative log likeli-
hood objective is replaced with a least square loss. This follows the implementation
details from [2], where using the least square loss is reported to be more stable dur-
ing training and generates higher quality images. The least squares version of the
objective function is:

Lean(G, Dy, X,Y) = Eyoy [Dy (y)*] + Eonx|[(1 — Dy (G(2)))?] (5.2)

With this basic architecture, the generator will learn to transform an input source
image to a target domain image. However, this will likely not lead to a pairing
between domains since there is no function in the objective that encourages this
relation. This property will be explored and tested in Section 5.4.

33

Chapter 5. Image Translation and Pairing across Domains

5.3 CycleGAN

As discussed in Section 2.7 and in the introduction of this chapter, CycleGAN is
a method of training generative adversarial networks to perform image-to-image
translation without the need of source-target domain pairs x-y developed by the
authors in [2].

5.3.1 Model details

ey
e e

e e e e
|

\}’/ <

Figure 5.5: CycleGAN architecture

A figure of the CycleGAN architecture can be found in Figure 5.5. Instead of sim-
ply learning a mapping function G : X — Y only, the inverse mapping function
F :Y — X is learnt as well. Likewise, a separate discriminator Dy which learns
to differentiate between images from domain y and the generated images F'(y) is
necessary to train the inverse mapping function.

An additional loss is added to the objective function to utilize the inverse mapping
function. This loss is termed a cycle consistency loss. It penalizes the L1 loss be-
tween the original image and the reconstructed image after being put through the
generator and the inverse generator. This is to encourage the generators to learn to
map to a related output in a different domain. The cycle consistency loss and full
objective can be formulated as follows:

Leye(G, F) = Eorox [[|F(G(2)) —][1] + Eyuy [[|G(F(y)) = yll] (5.3)

Leyeecan (G, F,Dx, Dy, X,Y) = Lgan(G, Dy, X,Y)
+ Lean(F, Dx,Y, X) (5.4)
4 ALeye(G, F)

34

Chapter 5. Image Translation and Pairing across Domains

5.3.2 Results

The CycleGAN is trained with a learning rate of 0.0002 for 30000 training steps.
Two different source-target domain pairings are tested. Each pairing has 22656 im-
ages in the source domain and 8000 images in the target domain. The experiments
in the original paper are trained for much longer and due to lack of computational
resources and time, experiments in this paper are run over a relatively much shorter
period of time.

The first source-target domain pairing that was tested is shown in Figure 5.6. For
this simple transformation, the pairings are quite successful and generalized well.

ﬂﬂd-’d./.«ﬂ‘,‘!

Alalal 1l a| g a|n

ﬂ(rﬂ.’d./.-ﬂ'.'f

(a) From top to bottom: Source domain image z, generated target domain image G(z), reconstructed
source domain image F'(G(x))

al Y| Y|l o] A

m| Y| N al e| A

al Y| N al e| A

(b) From top to bottom: Target domain image y, generate source domain image F(y), reconstructed
target domain image G(F'(y))

Figure 5.6: Sample images from CycleGAN after 30000 training steps. Target domain
created by multiplying [0.25, 0.5, 0.75] to the RGB channels of the source domain image
respectively.

35

Chapter 5. Image Translation and Pairing across Domains

Further testing is done on a more difficult source-target domain pairing. The source
domain remains the same while the target domain is created by processing the origi-
nal image with a Canny edge detection algorithm. Each colour channel of the source
domain image is put through a Canny edge detection algorithm and recombined to
form the target domain image. Samples during the training process can be found in
Figures 5.7 and 5.8.

(a) From top to bottom: Source domain image x, generated target domain image G(z), reconstructed
source domain image F(G(x))

(b) From top to bottom: Target domain image y, generate source domain image F(y), reconstructed
target domain image G(F(y))

Figure 5.7: Sample images from CycleGAN after 8000 training steps. Target domain
created by putting each colour channel of the original image through a Canny edge
detection algorithm with a sigma value of 4 and recombining the channels afterwards.

36

Chapter 5. Image Translation and Pairing across Domains

(a) From top to bottom: Source domain image x, generated target domain image G(z), reconstructed
source domain image F'(G(x))

(b) From top to bottom: Target domain image y, generate source domain image F'(y), reconstructed
target domain image G(F(y))

Figure 5.8: Sample images from CycleGAN after 30000 training steps. Target domain
created by putting each colour channel of the original image through a Canny edge
detection algorithm with a sigma value of 4 and recombining the channels afterwards.

Interestingly, at training step 8000, a reasonably good image translation was achieved.
Upon further training, the image translation diverged from the desired pairings.
While the image translation at this point is far from perfect, other experiments were
ran and a better quality image translation for this source-target domain pairing was
never found. A possible explanation is that this particular source-target domain
translation was difficult to learn. From the sample images at step 8000, it definitely
shows the potential and possibility for it. However, achieving a stable training pro-
cess towards such an image translation remains rather difficult with this approach.

37

Chapter 5. Image Translation and Pairing across Domains

Another point to note about the CycleGAN is that while the cycle consistency loss en-
courage a pairing between source domain image = and reconstructed source domain
image F'(G(z)), it does not necessarily ensure a pairing between x and generated
target domain image G(z) and between G(z) and F(G(x)). This is best seen in Fig-
ure 5.8a, where a very strong pairing between = and F'(G(z)) can be seen while the
pairings to G(z) is with a visually completely black image. It is highly likely that
there are very small values in this black image that allows this pairing to exist and
it shows that the cycle consistency loss is unable to ensure a great and consistent
pairing will be found. A similar problem holds for the target domain translations
from y to F(y) and F(y) to G(F(y)).

As stated in the start of this section, these experiments were ran over 30000 training
steps only whereas those in the original paper were ran over a much longer period
of time. It is entirely possible that further training might lead to better results, but
this will not be further tested in this paper due to lack of computational resources
and time. Also worth noting that the failure to achieve a good image translation
in the latter domain pairing can also be due to limitations of the generator and
discriminator architectures.

5.4 TaskGAN

In the scenario where there are labels for some amount of data in the target domain,
we are able to train a neural network to perform a regression task with that label. For
example, in Section 4.3, we show that a small amount of labels in the target domain
can be supplemented by rich source domain data to achieve a good performance.
The neural network that is trained for the regression contains knowledge about how
a target domain image should look like given a label. Intuitively, this means that it
is also possible for this neural network to guide the generator in creating an image
in the target domain that is paired with the source domain image given a label of
the source domain image. Given a data rich source domain that has annotations,
it is possible to backpropagate gradients from the task loss on the generated target
domain image to the generator. The architecture for this model is similar that of the
typical GAN model described in Section 5.2. The key configuration is training the
generator with the task loss of the generated image.

38

Chapter 5. Image Translation and Pairing across Domains

5.4.1 Model details

The name TaskGAN comes from the addition of a trained neural network on a task
in the target domain and using the task loss of the generated target domain image
to guide the training of the generator.

Given a target domain Y with images y; and labels ¢!, we can train a neural network
to learn a mapping function fy : Y — ¢*. Furthermore, as shown in Chapter 4,
supplementing training with the data from a rich source domain X with images x;
and labels ¢? can lead to the neural network learning a more effective mapping
function fy. We want the labels across domains to be transferrable in order to create
a pairing effect when training. In other words, for each x;-y; pair, the labels ¢?-¢?
should be identical. This will allow the source domain label ¢ to be used as the
target domain label ¢! and the task loss of the generated target domain image can
be computed with (fy (G(z;)) — ¢7)?. Then, the TaskGAN can be trained without the
need of any explicit z-y pairs with the following objective function:

Lraskcan (G, Dy) = E,y[Dy (y)?]
+ Euox[(1 — Dy (G(2)))?] (5.5)
+ AEunx|[(fy(G(z)) — ¢7)?]

where)\, corresponds to the weight of the task loss of the generated image G(z).
The weight used in implementation is 0.01. We find that larger values tend to not
work as well. Through adversarial training, we aim to solve the following minimax
game:

G* = argmin max Lygskaan (G, Dy) (5.6)
G Dy

To further break it down, at each training step, the generator and discriminator are
trained to minimize the following functions respectively:

La(G, Dy, X, ¢™) = Eoux|(1 = Dy (G(2)))’] + Eanx[(fy (G(2)) = ¢°)°] (5.7)

LDY (Gv DY7 Xv Y) -]EyNY[(l - DY(y))z} + E:ENX[DY(G(J”))Q} (58)

Given a minibatch of size N, equations 5.7 and 5.8 can be rewritten in the following
manner:

La(G, Dy, X, ¢™) = Z [(1 = Dy (G(2:)))* + (fy(G(x:)) — ¢7)7] (5.9)

1 N
Lp, (G, Dy, X,Y) = + Z: [(1 = Dy (y;))? + (Dy(G(x:)))?] (5.10)

39

Chapter 5. Image Translation and Pairing across Domains

At this point, it is also worth pointing out that in earlier sections, the mapping func-
tion fy was trained with some z-y pairs provided while the above TaskGAN model
does not use explicit pairs during training. It is possible to train the TaskGAN with
explicit pairs with a small modification. An additional L1 loss between the generated
image GG(z) and target domain image y can be added and used to train the generator.
Equation 5.9 can be updated to the following when training with paired examples:

La(G, Dy, X,Y, %) = Z [(1 = Dy (G(2:)))* + (fy (G (2:) — 67)? + ||y — G(:)| 1]
- (5.11)

Another method of training with paired examples is described in [23], where a dis-
criminator is trained to distinguish between real z;-y; pairs and fake z;-G(z;) pairs. A
reason for not wanting to using x-y pairs in the training on TaskGAN is motivated by
the fact that the mapping function fy- can be trained without pairs at all. If there is a
target domain Y dataset that is already well annotated with labels that can be repli-
cated in the source domain, a neural network can be trained solely on that dataset
and used for the TaskGAN. Clearly, having some pairs during training would help
the learning process and we will evaluate the quality of the images generated using
a TaskGAN trained with and without pairs in the next section.

5.4.2 Results

For testing of the TaskGAN, we create several source to target transformations of
varying difficulties. We choose transformations that are typical of differences be-
tween simulators and reality. The target transformation is created by editing el-
ements V-REP scene. The mechanics of the robot arm are not modified (i.e. the
lengths of the links, the relative positions of tip and target). Other attributes such as
shape, colour, and width are changed. This is to test the effectiveness of transferring
knowledge for the same task over to different visual domains.

All datasets are created with 800 paired images between the source-target domain
made of 50 episodes of 16 steps each. This is used in conjunction with the source
domain dataset with 22656 images to train a neural network to learn the mapping
function fy. The neural network is initialized with pre-trained weights and trained
over 15000 steps with a learning rate of 0.001 with the task loss and L2 loss between
feature layers. Image translation models (i.e. the GAN models) are trained for 20000
steps with a learning rate of 0.0002.

40

Chapter 5. Image Translation and Pairing across Domains

(a) Source domain (b) Target domain

Figure 5.9: First source to target transformation. Links width are changed, with the
bottom link being wider, the middle link remaining the same, and last link being thinner.
Colours are slightly changed to a lighter shade.

The first transformation changes the widths of the links and the colours of the cube
and robot arm slightly. A sample source-target domain image pair can be found in
Figure 5.9. Some samples of the images generated by the TaskGAN can be found in
Figure 5.10.

N a9 N

| 1| 7|

Figure 5.10: Samples from TaskGAN model for first source to target transformation.
Top row represents samples from source domain. Bottom row represents the generated
target domain images from the source domain samples.

We find that the quality of generated images are of high quality. Generally, pose of
the arm is well matched and the position of the cube is correct. The sizes of the
links are also transformed to better represent the target domain, with a thicker link
at the bottom and a thinner final link. The cube is also correctly being resized to a
smaller one. Colours are also lightened to match the target domain. Overall, using
the TaskGAN for this transformation is rather successful.

41

Chapter 5. Image Translation and Pairing across Domains

Next, we want to try a more difficult source to target transformation. A sample of
the second source to target transformation can be found in Figure 5.11.

Vg N

(a) Source domain (b) Target domain

Figure 5.11: Second source to target transformation. In addition to the size changes
of the links and cube, the second transformation involves more colour changes, with
different colours for each link and inverting the colour of the cube.

For the second source to target transformation, we will evaluate 3 different models:
the typical GAN for image translation, TaskGAN trained without paired examples,
and TaskGAN trained with paired examples. The respective samples can be found in
Figures 5.12, 5.13, 5.14.

As expected, the models’ quality of translated images can be ranked in the following
ascending order: typical GAN, TaskGAN trained without paired examples, TaskGAN
trained with paired examples. From the figures, we can see that the generated im-
ages by the typical GAN captures the qualities of the target domain, but consistently
distorts the information such as position of the cube and pose of the robot arm. Both
TaskGAN models create better translations, with translations that correctly retain
arm pose and cube position information. From the paired samples, the TaskGAN
trained without paired samples has very slight errors as seen from the superimposed
images while the TaskGAN trained with paired samples are of higher quality. For
both TaskGANs, we can occasional large errors in the random unpaired samples
where the cube disappears after translation. This might be due to the TaskGANs
generalizing poorly since small amount of target domain samples (800 in this case)
is used to train both fy and GAN. Ways to improve it include using more x-y pairs in
the training of the fy or having more unpaired y examples to train the discriminator.

42

Chapter 5. Image Translation and Pairing across Domains

-
-
-
-—)
-)
-\

oy
-
-

A A

(a) Paired samples. From top to bottom: Source domain images x, generated target domain images
G(z), paired target domain images y, superimposed image from G(z) and y.

O I B Y N e B A

N {

(b) Random unpaired samples. From top to bottom: Source domain images z, generated target
domain images G(z).

Figure 5.12: Samples for second source to target transformation using typical GAN.

43

Chapter 5. Image Translation and Pairing across Domains

-
-\

-
-,
-—

'y 'y

(a) Paired samples. From top to bottom: Source domain images x, generated target domain images
G(z), paired target domain images y, superimposed image from G(z) and y.

| T | a

“"‘"ﬁ-—.
sy

(b) Random unpaired samples. From top to bottom: Source domain images z, generated target
domain images G(z).

Figure 5.13: Samples for second source to target transformation using TaskGAN trained
without paired examples.

44

Chapter 5. Image Translation and Pairing across Domains

A
A

-
-
-
-—)
-)
-\

Y
-\
-\

d '

(a) Paired samples. From top to bottom: Source domain images x, generated target domain images
G(z), paired target domain images y, superimposed image from G(z) and y.

R N N N N

ol
-
-

(b) Random unpaired samples. From top to bottom: Source domain images z, generated target
domain images G(z).

Figure 5.14: Samples for second source to target transformation using TaskGAN trained
with paired examples.

45

Chapter 5. Image Translation and Pairing across Domains

(a) Source domain (b) Target domain

Figure 5.15: Third source to target transformation. Cube size remains the same while
width of links are changed in a way similar to previous transformations. Lighting effects
are added and all colours including background are slightly changed.

For the third source to target transformation, we want to introduce realistic effects as
well as a different background. We chose to do this through adding light effects and
changing the background colour slightly. In the previous tests, we used 800 paired
examples to train the neural network fy. However, we found that it was insufficient
in guiding the generator in this particular transformation. We trained another fy
with 8000 paired examples to ensure good performance.

Minimum distance Final distance
Success Success
Model Name Test domain |Mean Stddev |rate Mean Std dev rate
Pre-train Target 0.127 0.0639 35 0.171 0.0663 12
Pre-train + 800 Paired + L2 Target 0.125 0.144 65 0.177 0.158 53
Pre-train + 8000 Paired + L2 Target 0.0523 0.168 95 0.0603 0.168 95

Figure 5.16: Performances of various models in the third target domain.

The results can be found in Figure 5.16. Training with 8000 paired examples led to
a final distance success rate of 95% compared to the 53% when trained with 800
paired examples. Intuitively, the better the performance of fy, the more effective
it will be in guiding the generator to learn to generate paired examples. 3 differ-
ent models will be evaluated: the typical GAN for image translation, TaskGAN with
fy trained on 800 paired examples, and TaskGAN with fy trained on 8000 paired
examples. To be clear, the TaskGAN itself is trained without paired examples. The
respective samples can be found in Figures 5.17, 5.18, 5.19.

46

Chapter 5. Image Translation and Pairing across Domains

For the typical GAN, we find that with more training, the generator learns to map
any given input source domain image to a similar target domain image. Since the
only loss given to the generator is to create a target domain lookalike image, there
is no incentive to create a related pairing between source and target domains. This
tends to encourage this behaviour of mapping all source domain images to a highly
similar target domain image as seen in Figure 5.17b and c. It is worth noting that
at earlier training steps, it is still able to generate a target domain image that some-
what matches the pose of the source domain image as seen in Figure 5.17a. It fails
to match the position of the cube and treats the cube as part of the background.

For the TaskGAN with fy trained with 800 paired examples, we find that the general
translation quality is quite poor. While it still manages the match the pose of the
arm, the arm itself is of low quality. It manages to recreate the general background
of the target domain, but treats the cube as part of the background. In every trans-
lated target domain image, the cube is at the exact same position, disregarding the
position of the cube in the source domain. This makes it a very poor image transla-
tion model for generating target domain data. Reasons for the difficulty of training
a good image translation model are the complex background changes, the weak pre-
dicting strength of fy, and a combination of both factors. As a point to note, the
fy used for the successful image translation in the second source to target domain
translation had a final distance success rate of 43% in that target domain, making it
even weaker than the current fy used in this example. This leads us to believe the
increased complexity of the source to target transformation played a larger role in
affecting the image translation quality.

For the TaskGAN with fy trained with 8000 paired examples, we find that the gener-
ated target domain images are of good quality. Most aspects of the target domain are
reconstructed, with shadows of the cube and the arm. The shadows of the arm are
not perfect as it is treated as part of the background and always reconstructed in the
same manner. However, the shadow are not significantly important to the task, so
this is an acceptable flaw. While some shapes of the arms are slightly distorted, both
arm pose and position of cube are accurately reconstructed, making these translated
images a highly desirable source of training data in the target domain.

47

Chapter 5. Image Translation and Pairing across Domains

e

1

N

)

(a) Samples at step 3000

N

«7

n

n

(b) Samples at step 19000

7

h

g0 N
al ol ol ol n

(c) Samples at step 20000

Figure 5.17: Samples at various training steps for the third source to target transfor-
mation using a typical GAN for image translation. For each set of samples, the top row
represents the source domain images = and the bottom row represents the generated
target domain images G(z).

48

Chapter 5. Image Translation and Pairing across Domains

3
2
a
a2

A
A
A
A

A
=
3
|

(a) Paired samples. From top to bottom: Source domain images x, generated target domain images
G(z), paired target domain images y, superimposed image from G(z) and y.

1, A 1) 0"

(b) Random unpaired samples. From top to bottom: Source domain images z, generated target
domain images G(z).

Figure 5.18: Samples for third source to target transformation using TaskGAN with fy
trained with 800 paired examples.

49

Chapter 5. Image Translation and Pairing across Domains

D W W s S
N AN A

(a) Paired samples. From top to bottom: Source domain images x, generated target domain images
G(z), paired target domain images y, superimposed image from G(z) and y.

!l ol A

TER-HINTHENGE "

(b) Random unpaired samples. From top to bottom: Source domain images z, generated target
domain images G(z).

Figure 5.19: Samples for third source to target transformation using TaskGAN with fy
trained with 8000 paired examples.

50

Chapter 5. Image Translation and Pairing across Domains

(a) Source domain (b) Target domain

Figure 5.20: Fourth source to target transformation. Cube size remains the same while
width of links are changed in a way similar to previous transformations. Lighting effects
are added and the background is changed to a wood-like texture.

For the fourth source to target transformation, we introduce a more significant back-
ground change by adding a wood-like texture. The fy used to train the TaskGAN is
trained on 8000 paired examples and had a 91% final distance success rate when
tested in the target domain. Samples at various training steps can be found in Figure
5.21.

At step 5000, we find that the generator has learnt to recreate the background and
match the pose of the arm. However, the generator ignores the position of the cube
in the source domain and recreates it at the same position in the generated target
domain image.

At step 35000, we find that arm pose and cube position are generally well matched.
However, the quality of the image translation is poor. The generated background
is noisy and of poor quality. The generated arm is noisy and does not match the
smoother colours that are generated by translations in previous experiments. The
cube, while matching in position, has a highly faded appearance.

Upon further training at step 40000, we find that the overall quality of the gener-
ated image improves. However, it once again fails to match the position of the cube
and generates it at the same exact position in all generated target domain images.
It seems that the generator trades off being able to match the object information
in the source domain to creating a higher quality target domain characteristics. It
is unclear whether further training can lead to better results, but due to lack of
computational resources, this will not be attempted in this paper. Overall, the im-
age translation is not considered successful for this source-target domain pairing.
However, it shows promise and tweaks in various aspects such as the generator and
discriminator architecture might lead to much better results.

51

Chapter 5. Image Translation and Pairing across Domains

nl N A | a

(a) Samples at step 5000

(b) Samples at step 35000

(c) Samples at step 40000

Figure 5.21: Samples at various training steps for the fourth source to target transfor-
mation using a TaskGAN trained with 8000 paired examples. For each set of samples,
the top row represents the source domain images = and the bottom row represents the
generated target domain images G(x).

52

Chapter 5. Image Translation and Pairing across Domains

In summary, the simpler the source-target domain transformation, the easier it is
for the GAN to learn it. Utilizing the task loss of even a weakly trained fy tends to
lead to much better results than just using a typical GAN losses. Target domains with
complicated and noisy backgrounds tend to be hard to re-create without losing other
information and need a well trained fy for better results. For best results, source and
target domains are recommended to have clean and non-noisy backgrounds, similar
colours, shapes and sizes. For application purposes, we would tend towards such a
scenario where the source domain in a simulator is created to be visually similar to
the target domain in reality.

53

Chapter 6

Training with Generated
Source-Target Pairs

After discussing in depth the use of GANs for image translation in Chapter 5, we
will investigate the use of these translated images to train neural networks for a
robotic task in this chapter. Clearly, if there is a successful image translation from a
source domain to a target domain, the labels from the source domain can be used
for the paired generated target domain image. We will adapt the methods discussed
in Chapter 4 to utilize the translated target domain images.

Section 6.1 covers a completely unsupervised method of performing image transla-
tion and training on a regression task. Section 6.2 covers methods of performing
image translation with limited source-target domain pairs and training on a regres-
sion task. It will also include a more comprehensive study on the effects of utilizing
image translation models for transfer learning on source to target domain transfor-
mations of various difficulties.

6.1 Training with CycleGAN images

This section describes a few methodologies to utilize the generated images from
CycleGAN to train on a robotic task. Since the CycleGAN model can be trained in
an unsupervised fashion, source domain images are assumed to possess labels and
target domain images are unlabelled. This is to simulate the source-target domain
pairing between simulator-reality and the aim to not require expensive annotations
in reality.

54

Chapter 6. Training with Generated Source-Target Pairs

6.1.1 Models

The models revolve heavily around the concept of extracting a feature vector from
an image using a neural network. Figure 6.1 is a summary of the earlier discussion
in Chapter 4 of the feature extractor model.

6 256-dimension feature vector for domain X

Convolutional Layer 5
4x4x128

Feature extractor for domain X

Convolutional Layer 4
8x8x128

Convolutional Layer 3
16 x 16 x 64

(

FE

Convolutional Layer 2
32x32x32

Convolutional Layer 1
64 x64x16

Input image from domain X

Figure 6.1: Feature extractor example. Images of input size 128x128x3 are mapped to
a 256-dimension feature space.

e Source domain translation: Source domain images x, generated target do-
main image, G(x), and reconstructed source domain image F'(G(x)) are trained
on the task with labels of x. L2 loss between feature layers are minimized. Fig-
ure 6.2a depicts the architecture.

e Source + target domain translations: In addition to training on the source
domain translations, the L2 loss between the target domain translations are
minimized. Specifically, target domain images y, generated source domain
image F'(y), and reconstructed target domain image G(F(y) have their corre-
sponding feature layer L2 losses minimized. Figure 6.2b depicts the extensions
to the architecture.

e Transferring of labels from source to target domain: All source domain im-
ages xr are mapped to a feature space ,. Any nearest neighbours algorithm
can be chosen to construct a tree from this feature space. The ball tree al-
gorithm was chosen for this implementation. For each target domain image
y, its corresponding feature space vector 6, is used to query the tree. The
nearest neighbour in the feature space will transfer its label to the target do-
main images y. This idea is inspired by the work in [18], where a similar idea
of mapping source and target domain images to a shared feature space and
transferring of labels to the nearest neighbour is done.

55

Chapter 6. Training with Generated Source-Target Pairs

¥

Shared output layer

Br(6)

; FE, FE,

(a) Source domain translation.

FE FE FE

Y X Y

D@

(b) Target domain translation.

Figure 6.2: Training architectures for translated images with CycleGAN

56

Chapter 6. Training with Generated Source-Target Pairs

6.1.2 Results

The source-target domain pairing used can be found earlier in Figure 5.6. All gener-
ated and reconstructed images are pre-computed and saved on disk in jpg format for
quicker training. Models are trained for 10000 trainings steps of batch size 16 for
each type of image. For the transfer of labels, the “Source + target domain transla-
tion” model is used to construct and find the nearest neighbours in the feature space.
That model is further fine-tuned using the newly labelled target domain examples
with the target domain translation.

Minimum distance Final distance
Success Success

Model Name Test domain |Mean Std dev |rate Mean Std dev |rate
Source domain translation Source 0.0503 0.146 96 0.0686 0.145 90

Target 0.0767 0.183 92 0.0919 0.182 87
Source + target domain Source 0.0396 0.0968 97 0.059 0.0993 94
translation Target 0.0398 0.0538 96 0.0608 0.057 93
Source + target domain Source 0.0709 0.189 93 0.0805 0.188 93
translation + labels transfer |Target 0.0726 0.164 94 0.908 0.162 87

Figure 6.3: Results of training on translated images of CycleGAN.

Training on the source domain translation only leads to a final distance success rate
of 90% and 87% in the source and target domains respectively. With the addition
of minimizing the L2 loss on the target domain translation, both source and target
domain performances can be improved to a final distance success rate of 94% and
93% respectively. Both generated and reconstructed images can be considered as
noisy versions of the originals, but by training on such noisy images, it encourages
the neural networks to identify domain invariant features which are essential to the
task, leading to an overall improved performance.

The motivation for introducing labels transfer is to utilize the true target domain
images for training on the task loss since they are of high quality and it is a waste to
not use them for training. As seen in Figure 6.4, the majority of nearest neighbour
pairings are of good quality. However, training the source + target domain transla-
tion model with the newly transferred labels did not lead to improved results. Final
distance success rates fell slightly in the source domain from 94% to 93%, while
performance in the target domain fell from 93% to 87%. This could be attributed to
the fact that the pairings were not perfect and that the translated pairings were of
greater quality. However, these results should not lead to the conclusion of this ap-
proach being unviable. In this source-target pairing, the translations were relatively
easy to learn and of high quality. However, in other more complex scenarios, high
quality image translation models might not be learnt and supplementing the training
with labels transfer might lead to performance improvements in those scenarios.

57

Chapter 6. Training with Generated Source-Target Pairs

Z ||
AR SIS
7| |
2|

3

3

k-

4

=7
i
=7
—d
N | 7|
- W e |

N |7 |2
- e G|

S
Sl
Sl

A | J
2z A | Jd
| A | &

g | >
-4
TR R RS

g | 22N | d
7| - |1
7| - | T
7 | -

~J
3

3
3
it
A
-3
]
3
3

Figure 6.4: Nearest neighbour samples. Each set of samples represents 5 rows of ran-
domly chosen target domain images and its 3 nearest neighbour source domain images
superimposed onto itself. Left to right for each row: Original target domain image, su-
perimposed image with nearest neighbour, superimposed image with 2nd nearest neigh-
bour, superimposed image with 3rd nearest neighbour.

58

Chapter 6. Training with Generated Source-Target Pairs

6.2 Training with TaskGAN images

Under the scenario where a small number of paired source-target domain examples
are present, we can utilize these pairs to train a TaskGAN image translation model as
described in Chapter 5. This section describes approaches of using some combination
of unpaired source domain images x, paired source-target domain images z-y, and
paired source to generated domain images x-G(x) to improve performances in the
target domain.

6.2.1 Model details

There are 4 models being evaluated in the following section. The first model is
trained on source domain images only while the rest are trained in a manner similar
to the 2 separate feature extractor model with L2 loss between feature layers and
pre-training as described in Chapter 4. Models are trained for 15000 steps with a
learning rate of 0.001 and batch size of 16. More details on the 4 different methods
are as follows:

e Source: This model is trained on the source domain images x only. This serves
as a benchmark against the performances of other models with transfer learn-
ing.

e Source + Paired: This model is trained on unpaired source domain images
x and paired source-target domain images x-y. The aim is also to use only a
small number of x-y pairs and evaluate the performance improvements under
such conditions.

e Source + Translated: This model is trained on unpaired source domain im-
ages = and paired source to generated target domain images z-G(x). Since
source domain images and labels are assumed to be easily obtainable, we al-
low the use of a larger amount of z-G(z) pairs and test the potential benefits
of such an approach.

e Source + Paired + Translated: This model is trained on unpaired source
domain images =z, paired source-target domain images z-y, and paired source
to generated target domain images z-G(z). In a similar vein of thought to the
above methodologies, we limit x-y pairs to a small amount and allow a larger
amount of z-G(z) pairs. This model determines the effectiveness of training
with a combination of a small number of true paired examples and a large
number of generated paired examples.

59

Chapter 6. Training with Generated Source-Target Pairs

6.2.2 Results

In this section, an evaluation of performances from 4 different methods on various
target domains will be done. In particular, two sets of experiments will be done to
study the performance changes under different conditions. The first set of experi-
ments studies target domains with a wider range of changes while the second set of
experiments investigates the effect of varying only the cube size in the target domain.

Figure 6.5 shows the 3 target domains for the first set of experiments where the
models are trained and tested on. The changes from the source domain are detailed
as follows:

e Target A: Width links are modified with the base link becoming thicker and
the tip link becoming thinner. Colours of cube and arm are slightly changed.
Cube size is slightly reduced.

e Target B: Width links are modified with the base link becoming thicker and the
tip link becoming thinner. Colours of cube, arm, and background are slightly
changed. Lighting effects are added to simulate realism.

e Target C: Width links are modified with the base link becoming thicker and
the tip link becoming thinner. Colours are changed more significantly, with the
base link becoming red, the middle link becoming green, the tip link having a
slight colour change, and the cube’s colour is inverted from red to cyan.

The unpaired source domain x dataset used for this set of experiment contains 22656
images, the small z-y pairs dataset contains 800 pairs of images, and the large z-
G(x) pairs dataset contains 8000 pairs of images. The fy mapping function for the
TaskGANs for Target A and C were trained with the small z-y pairs dataset of 800
pairs of images. It was more difficult to achieve a success TaskGAN model for Target
B and the fy mapping function for the TaskGAN for Target B was trained with a
larger z-y pairs dataset of 8000 pairs of images. The TaskGAN training itself was
done without the use of the pairs (i.e. without the L1 loss). Further details for the
training of TaskGANs and image translation samples can be found in Chapter 5.

I IS B BN

(a) Source (b) Target A (c) Target B (d) Target C

Figure 6.5: Sample image from the source domain and the various target domains being
tested on.

60

Chapter 6. Training with Generated Source-Target Pairs

Minimum distance Final distance
Success Success
Model Test domain|Mean Std dev rate Mean Std dev rate
Source Source 0.0594 0.169 94 0.0745 0.167 89
Target A 0.149 0.106 42 0.198 0.118 29
Target B 0.127 0.0639 35 0.171 0.0663 12
Target C 0.285 0.104 3 0.33 0.0847 0
Source + Paired Target A 0.117 0.122 62 0.158 0.138 53
Target B 0.125 0.144 65 0.177 0.158 53
Target C 0.141 0.117 50 0.162 0.126 43
Source + Translated |Target A 0.12 0.195 76 0.143 0.191 62
Target B 0.131 0.198 71 0.175 0.201 51
Target C 0.138 0.205 67 0.166 0.2 52
Source + Paired + |Target A 0.0873 0.157 82 0.104 0.157 76
Translated Target B 0.0894 0.191 86 0.11 0.191 77
Target C 0.119 0.137 67 0.14 0.141 58

Figure 6.6: Full results of models trained and tested under different conditions.

MODEL PERFORMANCES IN DIFFERENT DOMAINS
100

90 89
80
70

60

Final distance
success rate

50
40

30 29

20 \
10 ; \

0 0
Source Target A Target B Target C
Test domain
- =Source Source + Paired Source + Translated Source + Paired + Translated ‘

Figure 6.7: Final distance success rates of models trained and tested under different
conditions.

The full results can be found in Figure 6.6 and a visual summary in the form of a
graph can be found in Figure 6.7. While it is difficult to quantify directly the gap be-
tween source-target transformations, the performance of the “Source” in the various
target domains can be used as a form of approximation. From this perspective, Tar-
get A represents the simplest or smallest source-target domain gap with the source
model achieving final distance success rate of 29% while Target C is the most com-

61

Chapter 6. Training with Generated Source-Target Pairs

plex or largest source-target domain gap as the “Source” model completely fails with
a final distance success rate of 0%.

While we are able to approximately rank the difficulty of the transformations in the
ascending order of Target domains A, B, and C, we find that training a TaskGAN
for Target B to be the most difficult to achieve. Complex background changes much
more difficult for an image translation model to achieve. As described earlier, it is
important to note that the TaskGANs for Target B uses a large number z-y pairs in its
training (8000 pairs to be exact, compared to the 800 pairs for the other TaskGANs)
in order to achieve a reasonable translation. It is possible that the number of pairs
can be reduced from 8000, but that was not attempted due to the lack of computa-
tional resources. It also goes against the motivation of this section which attempts
to build a model to perform in the target domain from a small number of z-y pairs.
However, we included it as a proof of concept to show the possible impact if an
image translation was successfully trained. To reiterate, the TaskGANs for Target A
and Target C were trained with a small number of pairs (800), and the TaskGAN for
Target B was trained with a large number of pairs (8000).

In general, we find the most performance gains from the “Source + Paired + Trans-
lated” method of training with both a small amount z-y pairs and a large amount
of z-G(z) pairs. The other two methods of “Source + Paired” and “Source + Trans-
lated” had performance gains over the “Source” method, which suggests that both
types of image pairs are helpful. In test domains Target A and C, we find that hav-
ing large number of translated z-G(z) pairs worked better than a small number of
x-y pairs, while the opposite was true in test domain Target B. A plausible reason is
the quality of the translated images G(x). Target B involved the reconstruction of a
complex background with shadows and lighting and these generated target domain
images tend to be noisy compared to the true samples y. Hence, generated target
domain images GG(x) in Target B are noisier and less effective in improving perfor-
mance when used alone.

However, the noisy reconstruction G(x) are not useless. By combining both z-y and
x-G(x) pairs in the “Source + Paired + Translated” method in domain Target B, a
respectable final distance success rate of 77% could still be achieved. By training on
both the noisy images and the true images, the neural network learns to ignore the
noise and the large number of G(z) becomes a valuable source of information.

62

Chapter 6. Training with Generated Source-Target Pairs

In the second set of experiments, we would like to test how the models will per-
form when varying only a single factor of the source domain. This is to test how
performance changes on target domains with small incremental changes from the
source domain. The variable chosen is the cube length. The original cube length in
the source domain is 7, and target domains with cube lengths of 5, 3, and 1 will be
tested on.

In all previous experiments and tests, the images have been saved in jpg format.
However, this led to some loss in information which affects the image quality much
more significantly when the cube size is small. Hence, some configurations to the
datasets were made for this set of experiments and all images were saved in png
format. The unpaired source domain z dataset used here contains 8000 images, the
small z-y pairs dataset contains 800 pairs of images, and the large z-G(z) uses the
same unpaired source domain = dataset, which makes 8000 pairs of images. We
train TaskGANs, G, G.3, G.1, to map from the source domain to the respective
target domains with a mapping function fy trained using the “Source + Paired”
method and L1 loss. Samples of source-target pairs can be found in Figure 6.8 and
samples of source to generated target pairs can be found in Figure 6.9. Generally,
we find that image translation quality is good.

o Y

Figure 6.8: Sample image from the source domain and the target domains with decreas-
ing cube length. Cube lengths from left to right: 7, 5, 3, 1.

a a a 4

(a) Source = (b) Ges(x) (¢) Ges(x) (d) Ga(z)

Figure 6.9: Sample image from the source domain and generated target domain images.
From left to right: Source domain image, generated target domain images with cube
length 5, 3, and 1.

63

Chapter 6. Training with Generated Source-Target Pairs

Minimum distance Final distance
Model Cube length |Mean Std dev Success rate (Mean Std dev Success rate
Source 7 0.0881 0.224 90 0.0962 0.225 90
5 0.118 0.249 89 0.125 0.251 88
3 0.191 0.24 51 0.211 0.237 43
1 0.24 0.208 25 0.301 0.203 12
Source + Paired 5 0.108 0.118 65 0.122 0.127 65
3 0.107 0.104 60 0.131 0.12 57
1 0.166 0.111 34 0.191 0.119 24
Source + Translated 5 0.0818 0.212 91 0.0937 0.213 88
3 0.11 0.257 89 0.119 0.256 88
1 0.114 0.221 80 0.126 0.219 75
Source + Paired + 5 0.0771 0.185 91 0.0968 0.185 83
Translated 3 0.0878 0.204 88 0.103 0.203 79
1 0.0765 0.163 84 0.0908 0.164 78

Figure 6.10: Full results of models trained and tested under varying cube lengths.

MODEL PERFORMANCES IN DIFFERENT DOMAINS
100

90 —
80

70

60
Final distance
50
success rate
a3
40
30

20

10

0 2 4 6
Cube length difference from source domain

- —Source Source + Paired Source + Translated Source + Paired + Translated

Figure 6.11: Final distance success rates of models trained and tested under varying
cube lengths.

Full results can be found in Figure 6.10 and a summary of the performances in the
form of a graph can be found in Figure 6.11. Interestingly, the results are not fully
consistent with what was found in the first set of experiments. In the first set of
experiments where target domains were much more different, the “Source + Paired
+ Translated” method outperformed all other methods. However, in these target
domains which are arguably much more similar to the source domain, the “Source
+ Paired + Translated” method does not always work best. There are a few possible

64

Chapter 6. Training with Generated Source-Target Pairs

reasons as to why the “Source + Translated” methodology performs better in the
cases where the cube length difference is 2 and 4.

Firstly, the “Source + Translated” methodology performs better in the cases where
the cube length difference is 2 and 4 is the overfitting caused by the small number
of x-y pairs. The decrease in performance of the “Source” model is relatively lesser
compared to the previous set of experiments, which can be interpreted as these two
target domains being highly similar to the source domain. Hence, training with a
small number of pairs can lead to overfitting and a decrease in performance. This
idea is further reinforced by the performance of the “Source + Paired” model when
the cube length difference from source domain is 2. In that scenario, the “Source
+ Paired” model had a final distance success rate of 67%, worse than the “Source”
model which had a final distance success rate of 88%. Furthermore, the quality of
translated images were good and just using the translated images as training for a
target domain task was sufficient in producing good performances of 88% in both
cases.

As the difference from the source domain increases, the results once again became
consistent to what was found in the first set of experiments. Training with some z-y
pairs with the “Source + Paired” method led to slightly improved results, training
with a larger number of z-G(z) pairs with the “Source + Translated” method led
to better results, and training with both types of pairs with the “Source + Paired +
Translated” method led to the best results. The overfitting argument does not hold
here since the target domain is far enough from the source domain that the small
number of z-y pairs proved to be valuable training data as opposed to causing over-
fitting.

Overall, we find that if the source and target domains are highly similar, training with
the small amount of z-y pairs tend to be detrimental to the overall performance.
Performance of the “Source + Translated” method of using z-G(x) pairs tends to
decrease as the source to target domain gap increases. At larger source to target
domain gaps, training with the small z-y pairs has a positive effect as it helps the
neural network learn to ignore the noise in generated target domain images G(x).
For most realistic applications, it is highly likely that the gap between simulated data
and real data falls under the category of being a large source to target domain gap,
where the “Source + Paired + Translated” model will work best.

65

Chapter 7

Conclusions and Future Work

In this paper, we presented a method of training generative adversarial networks for
image translation and pairing across domains, TaskGAN. This requires the training
of a neural network fy on a task in the target domain Y and we do it by using
some number of source-target domain pairs z-y. We showed the viability of us-
ing this model to generate target domain images G(x) that recreates target domain
characteristics such as background, shape deformations, and colour changes while
retaining source domain information such as arm pose and cube position. Results
show good image translation and pairing quality for simple to moderately complex
source to target domain transformations. The method’s potential in applications
where simulated source domain images can be enhanced to look more like target
domain images and used as training data was demonstrated in various target do-
mains as well. We also introduced a novel dataset that is easily configurable for the
training and testing of robot control for transfer learning purposes.

A limitation of TaskGAN is that complicated transformations can be unsuccessful
even with a well trained fy with many x-y pairs. There are a few areas that can
be worked on to improve this. Firstly, improvements in generator and discrimina-
tor architectures could lead to higher quality of translations. Also, the fy, mapping
trained in this paper was highly dependent on providing it some z-y pairs. Pairing
and manual annotations are expensive and we want to reduce the dependency on
x-y pairs or even remove the need of it. While we investigated some unsupervised
and semi-supervised methods in this paper, it was not helpful to performance. It
would be interesting to see future work that focuses on these branches of methods
to reduce the dependence on paired data between source and target domains.

Another point worth noting is that the GANs trained in this paper are trained over
a much shorter period of time compared to other similar works due to the lack of
computational resources. It is still yet to be seen if extended training periods can
lead to significantly better results in the more complicated transformations. Also,
training and tests were completely carried out in simulated environments. Further
experiments that utilize a real robot for target domain data generating and testing
would be highly interesting.

66

Bibliography

[1]

[2]

[3]

[4]

[5]

(6]

[7]

[8]

[9]

[10]

E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and scalable
robot simulation framework,” in Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on, pp. 1321-1326, IEEE, 2013.

J.Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” arXiv preprint
arXiv:1703.10593, 2017.

S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
knowledge and data engineering, vol. 22, no. 10, pp. 1345-1359, 2010.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing
systems, pp. 1097-1105, 2012.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level
control through deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529-533, 2015.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa,
“Natural language processing (almost) from scratch,” Journal of Machine
Learning Research, vol. 12, no. Aug, pp. 2493-2537, 2011.

F. Zhang, J. Leitner, B. Upcroft, and P. Corke, “Vision-based reaching using
modular deep networks: from simulation to the real world,” arXiv preprint
arXiv:1610.06781, 2016.

A. A. Rusu, M. Vecerik, T. Rothorl, N. Heess, R. Pascanu, and R. Hadsell,
“Sim-to-real robot learning from pixels with progressive nets,” arXiv preprint
arXiv:1610.04286, 2016.

A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-
the-shelf: an astounding baseline for recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pp. 806—
813, 2014.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in
deep neural networks?,” in Advances in neural information processing systems,
pp. 3320-3328, 2014.

67

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

R. Brooks, “A robust layered control system for a mobile robot,” IEEE journal
on robotics and automation, vol. 2, no. 1, pp. 14-23, 1986.

S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuo-
motor policies,” Journal of Machine Learning Research, vol. 17, no. 39, pp. 1-40,
2016.

A. Rozantsev, M. Salzmann, and P. Fua, “Beyond sharing weights for deep
domain adaptation,” arXiv preprint arXiv:1603.06432, 2016.

A. Gretton, K. M. Borgwardt, M. Rasch, B. Scholkopf, A. J. Smola, et al., ‘A
kernel method for the two-sample-problem,” Advances in neural information
processing systems, vol. 19, p. 513, 2007.

I. Steinwart, “On the influence of the kernel on the consistency of support
vector machines,” Journal of machine learning research, vol. 2, no. Nov, pp. 67—
93, 2001.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Scholkopf, and A. Smola, ‘A
kernel two-sample test,” Journal of Machine Learning Research, vol. 13, no. Mar,
pp. 723-773, 2012.

A. L. Gibbs and F. E. Su, “On choosing and bounding probability metrics,”
International statistical review, vol. 70, no. 3, pp. 419-435, 2002.

E. Tzeng, C. Devin, J. Hoffman, C. Finn, P. Abbeel, S. Levine, K. Saenko, and
T. Darrell, “Adapting deep visuomotor representations with weak pairwise con-
straints,” in Workshop on the Algorithmic Foundations of Robotics (WAFR), 2016.

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain
randomization for transferring deep neural networks from simulation to the
real world,” arXiv preprint arXiv:1703.06907, 2017.

L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style,”
arXiv preprint arXiv:1508.06576, 2015.

L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using convo-
lutional neural networks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2414-2423, 2016.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, pp. 2672-2680, 2014.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with
conditional adversarial networks,” arXiv preprint arXiv:1611.07004, 2016.

A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learn-
ing from simulated and unsupervised images through adversarial training,”
arXiv preprint arXiv:1612.07828, 2016.

68

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Introduction to transfer learning
	2.2 Neural networks
	2.3 Robot control systems
	2.4 Distance between distributions
	2.5 Domain shift
	2.6 Domain alignment
	2.7 Style transfer between image domains

	3 Generating Training Data
	3.1 Data sources for transfer learning
	3.2 V-REP
	3.3 Simulation scene set-up
	3.4 V-REP remote API
	3.5 Training images
	3.6 Labelling images
	3.7 Domain transformation

	4 Control of Robot Arm from Images
	4.1 Evaluation set-up and metrics
	4.2 Fully supervised learning
	4.2.1 Models
	4.2.2 Results

	4.3 Learning with limited data
	4.3.1 Models
	4.3.2 Results

	5 Image Translation and Pairing across Domains
	5.1 Training details and architectures
	5.2 Typical GAN for image translation
	5.3 CycleGAN
	5.3.1 Model details
	5.3.2 Results

	5.4 TaskGAN
	5.4.1 Model details
	5.4.2 Results

	6 Training with Generated Source-Target Pairs
	6.1 Training with CycleGAN images
	6.1.1 Models
	6.1.2 Results

	6.2 Training with TaskGAN images
	6.2.1 Model details
	6.2.2 Results

	7 Conclusions and Future Work

