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Abstract

Humans’ advanced object manipulation abilities play an essential part in our everyday lives
and unmatched by other animals and machines as well.
Despite the fact that dexterous robot manipulation has been widely researched for decades,
results have been limited by computational complexity and the challenges of high-dimensional
state spaces of robot hands with many degrees of freedom (of which the human hand has
27).
Recent developments in machine learning algorithms such as deep learning and reinforce-
ment learning introduced new possibilities in robotics and grasping research. With rein-
forcement learning, robots can learn tasks with a minimal amount of human intervention,
motivated to execute the proposed task by a reward signal rewarding correct and penal-
ising undesired behaviour. A recent reinforcement learning algorithm, a variant of deep
Q-learning was successfully applied to learn playing and winning several Atari 2600 games,
occasionally even outperforming human level [1].
Although when grasping we rely on our tactile senses as much or even more as our vision,
modern research focuses less on tactile feedback and more on vision based grasping.

In this project we apply deep Q-learning to experiment with two and three finger precision
grasping tasks and lifting objects relying solely on tactile feedback.
We also introduce our own improvements to deep Q-learning speeding up training times by
more than 60%
We show how our agent can complete simple grasping tasks and explain why we had diffi-
culties with more complex problems. In our evaluation we discuss our results, its strengths
and weaknesses and compare it with other work in the field.
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Chapter 1

Introduction

In this project we research tactile feedback-driven robotic object manipulation, grasping in
particular, applying the technique of deep reinforcement learning. For our experimentation
we use simulation with a five-fingered hand model and simple objects such as spheres and
cubes. Unlike most existing solutions we solely rely on haptic feedback from touch sensors
placed on the fingers and joint positions data for our state-representation instead of vision
and vision based machine learning. We show that the Deep Q-Learning algorithm that has
been very successful recently can be applied to simple grasping problems in this setup.

1.1 Motivation

Robots are becoming more and more part of our everyday life and found in all sizes and
shapes performing tasks in the fields of military, medicine, agriculture, household, nanotech-
nology and many others. Latest applications include developing robots that clean blood ves-
sels [2], cars that can drive completely autonomously [3], and household robots capable of
cleaning the grill or mow the lawn.

(a) Boston Dynamics
Humanoid robot [4]

(b) Boston Dynamics BigDog
[5]

(c) Waymo self-driving car
[6]

Figure 1.1: Various robots

Even in the age of self-driving cars, grasping is a major challenge in robotics and robotic
object manipulation. Despite the fact that we are able to build and program robot hands
that perform tasks with superhuman precision, their movements and trajectories are usually
manually programmed. While they excel at that one certain sequence of movements, they

1



Chapter 1 1.1. Motivation

cannot be applied to any other kinds of tasks failing in the case of previously unseen sce-
narios. These types of robotic hands are usually blind in the sense that they do not use any
feedback from the environment. Robotic hands used in car factories is a good example of
this.

Autonomous object manipulation, on the other-hand, aims to be more general, capable of
automatically forming the necessary grasping pose and planning movements to complete
a given task or given set of tasks without having the trajectory and joint manipulations
pre-programmed. Some methods approach this challenge analytically, describing the pose,
geometry, and movement planning with equations, other solutions attempt to learn from
grasp experience data to choose the right grasp for the given problem. It is a promising
field of research still in its early stages mainly due to the large state-space of robots using
many degrees of freedom (the human hand has 27 of them), as well as the limitations of
the algorithms. Still we see rapid development from day-to-day, and new, more efficient
machine learning algorithms are proposed to overcome the above mentioned difficulties.
Humans and primates have very good grasping and fine motor skills, in high correlation with
the developed brains, superior to other animals. Playing the piano, sewing, or drawing all
require rather precise and well-coordinated controlling and large brain power. Researching
this field, therefore, is not only useful in the applied areas but can get us closer to under-
standing and mimicking human intelligence and behaviour as well.

When manipulating objects, we use our vision in the first place to locate the target object,
and, of course, visual feedback can also help to confirm that we hold it the way it is required
. Hand-eye coordination [7], the study of coordinated movements of the hand and eye,
describes how we depend on visual landmarks to plan our hand movements as well as the
importance of vision in object manipulation to other uses.
However it is not only vision, that we need when actually grasping and lifting an object, but
we use our very precise muscle movement capabilities or fine motor skills and kinaesthetic
and tactile sensory apparatus as well. Although vision gives us constant feedback while
moving our hands toward the target, we do not actually need it too much once we have
located target with the eyes and memorised it. We are able to move our hands to the location
and pick up objects with closed eyes and with astonishing accuracy. To get hold of the target
we use our haptic intelligence which helps us sense the weight of the object, our fingers can
read the texture, shape, and combine these and other properties to adjust our movements
accordingly.

Figure 1.2: Lifting a sphere

2



1.2. Objectives Chapter 1

Recent developments in Deep Learning [8, 9] and Deep Reinforcement Learning [1, 10]
made it possible to train large, multi-layer neural networks on normal computers and learn
from high-dimensional data efficiently. With these improvements deep neural networks can
be used for object recognition, predicting the right grasping position, or determining the
next movement of a robot hand based on the current state of its environment.

Despite the fact that the field of robotic object manipulation is well-researched, most modern
machine learning based research places greater emphasis on computer vision e.g. Convolu-
tional Neural Networks [8] for object manipulation than tactile sensory input.

The above mentioned facts motivate us to explore how tactile information i.e. touch sensor
feedback complemented with position data can be used to control a software agent trained
with deep reinforcement learning to plan and execute the right actions by moving the finger
joints to complete simple grasping tasks. We will teach a simulated robotic hand to learn
grasping and lifting small objects of different shapes and sizes.
We conduct our experiments using simulation, which makes it possible to train our software
agents at an accelerated rate and even in parallel.

1.2 Objectives

The primary objectives of this project are the following:

Review relevant research Research available literature, review similar implementations,
read relevant papers and research Deep Reinforcement learning and Deep Q-learning
in particular, and how it can be applied to multi-finger grasping, and tactile-based
grasping.

Investigate how Q-learning works with tactile-based state representations Although there
is research with setups and goals similar to this project [11], we investigate how
Q-learning can be applied to train a simulated, multi-fingered robotic hand to learn
grasping and lifting objects of different sizes and shapes, based on tactile and position
information alone, not relying on vision at all.

Compare performance and results with existing solutions Discuss how the object manip-
ulation capabilities of our implementation compares to implementations of other tech-
niques and algorithms.

Research different training algorithms Although in this project we focus on Q-learning,
it would be interesting to see how other, more recent Deep Reinforcement Learning
algorithms such as [12] and the asynchronous advantage actor-critic (A3C) algorithm
[10] could be applied for this task.

Explore the possibility of applying curriculum learning Our aim is to experiment with
curriculum learning, i.e. investigate whether and how the experience learnt by simpler
models can be extended and used by more complex models thereby gradually building
up solutions for more complex tasks.

Transfer model to real-life robot-hand We also consider experimenting with the option of
applying our model trained with simulation to real-life grasping tasks using a real-life
robot arm. Even if this is not possible, the simulator trained model can be used as an
initialised model to a real-life training setup.

3



Chapter 1 1.3. Challenges

1.3 Challenges

Open-ended Because of the numerous types of grasping tasks and setups, the large number
of possible experiments makes it hard to decide on what the focus should be.

State-of-the-art results are still at an early stage compared to human grasping Even though
multi-fingered robotic manipulation is a popular area of research, due to the curse of
dimensionality training large degrees-of-freedom (DOF) hand models is still quite lim-
ited.

Sensitivity to initial setup and hyperparameters There are a large number of hyperpa-
rameters and settings for the deep reinforcement learning framework and the simu-
lation which can hugely influence and determine the results. Although the goal is to
make the models as general as possible, finding hyperparameters is still one of the
major challenges of modern machine learning algorithms.

Initial finger positions and object placement are also crucial to increasing the chances
of getting good results.

Hardware and time requirements Despite becoming significantly more efficient in recent
years data-driven machine learning algorithms still take quite long to train, from a
few hours to sometimes more than a day in the case of this project. Generally the
best solution for this problem is to implement distributed versions of these algorithms
which is challenging, especially when the computational resources are limited.

1.4 Contributions

Object manipulation with Q-learning and haptic feedback In this project we show (Chap-
ter 6) that it is possible to train a software agent to learn simple object manipulation
tasks such as grasping and lifting using deep Q-learning with input states containing
only tactile and joint position data.

Curriculum learning with Deep Reinforcement Learning Our experiments prove that ap-
plying a simple form of curriculum learning to gradually increase complexity is a viable
option for tasks like this.

Optimising Q-learning with separate ε per joint We present a minor alteration of Q-learning
that – similarly to curriculum learning – can significantly speed up training time (see
Section 6.15).

Q-learning with simultaneous actions We also introduce another small change to the Q-
learning algorithm in order to be able to move all fingers simultaneously. Although this
modification has not improved the learning speed significantly, it is a viable and useful
option for controlling the joints in the fingers.

1.5 Structure of the report

Our report breaks down to six chapters. Chapter 2 describes the background for the ex-
perimentations, including deep reinforcement learning and the relevant algorithms, object
manipulation techniques and grasp taxonomy. In Chapter 3 we present and explain our de-
sign choices, e.g. software and the applied algorithms. Chapter 4 specifies the setup for

4



1.5. Structure of the report Chapter 1

our experimentation, including a 3D hand and object models used for grasping and the Pri-
oritised Q-learning algorithm applied to this specific task. In Chapter 5 we introduce the
technical details of our program that runs the experiments. The experimentation and the
results are detailed in Chapter 6, Chapter 7 gives an evaluation of the project while Chapter
8 consists of our conclusions and ideas about future work.

5



Chapter 2

Background

In this section we describe the background that is necessary to understand how to apply
deep reinforcement learning to solve the grasping task by a simulated robotic hand.
First we discuss different grasping techniques and place our technique into context. We also
present a grasp taxonomy so we can refer back to it later when talking about different types
of grasps.
Then we provide a short summary of deep learning (Section 2.2) and reinforcement learning
(Section 2.3) and then of how the two technologies are combined in deep reinforcement
learning (Section 2.4).
We briefly discuss curriculum leaning in Section 2.6.
Finally, we list a short summary of research papers related to this project and used for, or
referenced in the implementation.

2.1 Robotic Grasping

In this section we detail the history of, and different approaches to, robotic grasping through-
out the last decades. Robotic (multi-finger) grasping [13] and dexterous object manipulation
are popular and well-researched areas with a wide range of options to address their chal-
lenges.

What is a grasp? Shimoga [14] defines a grasp as a system whereby a desired object is
gripped by the fingers of a robot or human hand. Sometimes grasp refers to the manipulated
grasp as well.

Shimoga [14] also describes four mutually independent properties that should be possessed
by the grasp: dexterity, equilibrium, stability and some kind of dynamic behaviour to be able
to grasp and there are different algorithms focusing on achieving each.
There are two main approaches to grasping problems, namely, analytic and data-driven.
Bohg et al. [15] provide an overview of data-driven grasp synthesis 1, while also presenting
a summary of analytical approaches and the relationship of the two. A more general, but
thorough, analytical overview of robotic manipulation can be found in in the book by Murray
et al. [16].

1”grasp synthesis refers to the problem of finding a grasp configuration that satisfies a set of criteria relevant
to the grasping task” [15]

6



2.1. Robotic Grasping Chapter 2

Analytic approaches In the case of analytic methods [17, 18], grasp synthesis is defined as
a constrained optimisation problem requiring geometric, kinematic and/or dynamics
formulations. [19, 15].

To achieve successful grasping a large number of constraints need to be satisfied, hence
the complexity of analytic approaches. However most algorithms only focus on either
the hand model or the task constrains and referred to as force-closure [20] or task-
oriented [21, 22]. There are numerous solutions within these categories, for instance
a example of analytic approach described in [23] is based on a fast force optimisation
algorithm with the Lagrange Multiplier Method.

Errors in the models of the robot’s kinematics and dynamics and noise in the sensor
values can make analytic models inaccurate causing it more difficult to complete a
grasp.

Analytical methods dominated until the 2000-s, however with the raise of Modern
Artificial Intelligence data driven approaches became more widely applied.

Data-driven approaches Data-driven or empirical approaches, on the other hand, avoid
complex mathematical and physical formulations and rely on sampling grasp expe-
riences from a database generated by human demonstration or other methods and
ranking them according to some empirical metrics. They use perceptual information
such as feature extraction, semantics, classification, and others to solve a given grasp-
ing task. They can develop a grasping technique by learning and generalising from
data or by using some heuristic, shown in Figure 2.1. The database used for learning is
usually generated by human demonstration, trial and error, or assumed to be a labelled
data set.

Figure 2.1: Data driven grasp synthesis [15, Fig. 2.]

Data-driven methods are further categorised by Bohg et al. [15] to problems with
known objects, familiar object and unknown objects requiring different approaches.

To summaries, the main advantages of data-driven solutions are less computational
complexity, fewer assumptions, and less fragility, while it usually requires large amount
of data.

Hybrid approaches It is not rare to use both analytic and data-driven methods together,
for instance in [24] a hybrid methods is presented for task-specific dexterous in-hand
object manipulation.

In the last 15 years data-driven approaches gained more and more ground. Recent algo-
rithms begin to involve deep learning (Section 2.2), for instance for predicting successful
grasps, object recognition and pose estimation [25, 26, 27].
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Chapter 2 2.1. Robotic Grasping

Although there has been plenty of examples of grasping algorithms based on vision [28],
tactile information [29] or both [30], a recent variant of deep neural networks, Convolu-
tional neural networks [8], became the primary choice for many vision-based data-driven
solutions. For example in [31] the authors use Convolutional Neural Nets to estimate the
ideal grasping pose for a given task.
Another machine learning technique, reinforcement learning, which is widely used in robotics,
working well with a large range of robotic tasks, gained popularity for grasping tasks as well.
For instance it is often used together with human demonstration [32]. With reinforcement
learning we can define tasks by implementing a reward function rewarding the behaviour
we want to see and penalising unwanted actions.
Deep learning can be combined with reinforcement learning [25], [1]. Deep neural networks
can handle well the large state-space of a robot hand with many degrees of freedom, and
can be used to predict the next action to take by a robot to successfully complete a task. To
teach the network what actions are to be taken in what states of the hand, reinforcement
learning is an ideal choice.

2.1.1 Grasp taxonomy

There have been several attempts to classify human grasping types into categories from vari-
ous fields, however, probably the most consistent and complete taxonomy published in 2015
[33] under the title ”The GRASP Taxonomy” and – as the authors write – it is based on the
GRASP project funded by the European Commission. We will refer to this taxonomy when
we mention different types of grasps throughout this report.

In the paper they differentiate 33 different types of grasps along the following dimensions:

Opposition type Oppositions occur between hand surfaces and are further categorised based
on their direction.

• Pad opposition: along a direction parallel to the palm

• Palm opposition: along a direction perpendicular to the palm

• Side opposition: along a direction transverse to the palm

For illustration see the second-level columns of Figure 2.2

The virtual finger assignment The virtual finger (VF) refers to a subset of fingers when
they work together as a functional unit, applying similar forces to achieve a certain
task. See third-level columns of Figure 2.2

Power, precision, and intermediate grasp Categorising grasps based on how much power
or precision they utilise. See the main columns of Figure 2.2

The position of the thumb Either abducted or adducted. See rows of Figure 2.2

The authors also mention the increasing importance of haptic feedback in human-computer
interaction.
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Figure 2.2: GRASP taxonomy [33, Fig. 4.]

There are only 17 cells and thus distinguished grasp types on Figure 2.2. This is because the
main difference between grasps within the same cells are due to the shape of the manipu-
lated object and not the grasping technique.

2.2 Deep Learning

Deep Learning [34] is a machine learning technique that uses multi-layer artificial neu-
ral networks capable of finding patterns in large datasets by approximating the underlying
structure of the data. The popular training algorithm, backpropagation (2.2.5), can iter-
atively adjust the parameters (often referred to as weights) of the network based on the
difference between the expected and actual results, until that difference is minimal.
There are different neural network architectures and algorithms, making it possible to be
trained in a supervised or unsupervised way, resulting in predictive and generative models.
Deep Neural Networks and its variants, such as Convolutional Neural Networks (CNN-s) [8]
– used for image input – General Adversarial Networks (GAN-s) [35] – for unsupervised
learning – and Long short-term memory (LSTM) [36] – a recurrent variant, capable of re-
membering and forgetting input for various time periods – are widely used for classification
and other problems such as voice, face and image recognition tasks, image generation from
text [37] and many others.

When we talk about deep learning we refer to a certain type of artificial neural network
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architecture that has multiple so-called hidden layers and the algorithms used to train it for
a given task, but let us see what neural networks really are!

2.2.1 Neurons and Neural Networks

The idea of artificial neural networks is inspired by biological neural networks of the brain,
which can be found in every mammal, avian and Cephalopoda. Both biological neural net-
works and artificial neural networks consist of a large number of neurons and the con-
nections between them. The working principle behind the two, however, is substantially
different. In the case of biological neural networks electric current flows through neurons.
Neurons receive current through their dendrites (there could be 10,000 of them for a single
neuron) and their firing potential in the nucleus increasing with the total amount of current
flowing in. Once it reaches a threshold potential the neuron fires sending its current through
its axon and the synapses – the points connecting the axon with other neurons’ dendrites and
communicating with them through complex chemical reactions. There are approximately
100 billion neurons in a human brain which can be categorised into groups based on their
functionality (or their connections). Groups communicate with each other through some
kind of synchronised oscillation [38]. Researchers do not quite agree on the way the infor-
mation is encoded in the brain. There are multiple possibilities such as rate coding, temporal
coding and population coding, further discussion, however, is out of the scope of this project.

Figure 2.3: Neuron, with its axon, dendrites, nucleus and synaptic terminals annotated [39]

2.2.2 Artificial Neurons

The model of artificial neurons and artificial neural networks (ANN) is not nearly as complex,
and actually quite different from its biological counterparts. The building blocks of ANN-s
are artificial neurons.
An artificial neuron is a mathematical unit which takes the weighted sum of its inputs, applies
a so called activation function to it and the neuron ’fires’ if this ’activation’ is larger than a
given threshold value. For instance

output =

fire if w>x > t
do not fire otherwise

(2.1)
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Figure 2.4: Artificial neuron [40]

Where

• x is the vector of input data

• w is the vector of weights

• t is the threshold value

This is the model of a binary neuron, since the output is either ’fire’ or ’do not fire’. In prac-
tice, the threshold is usually represented by a negative bias value i.e. t = −b and therefore
we can write

output =

fire if b+w>x > 0

do not fire otherwise
(2.2)

Also, instead of having a binary output, it proved useful just to apply a certain activation
function to b+w>x

h(x) = g(a(x)) = g(b+w>x) (2.3)

Where

• h represents the neuron as a function

• g is the activation function (detailed later) and its output is the activation of the neuron
(resembling biological neurons’ membrane potential)

• and a(x) = b+w>x is called the pre-activation

Activation functions The usual choices for value functions are generally one of the follow-
ing:

Linear A linear neuron or perceptron [41] simply takes the sum of its inputs, adds the bias
value and then outputs the resulting number.

g(a) = a (2.4)
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Sigmoid One of the most popular activation functions, squashing its input to be between 0
and 1.

g(a) =
1

1+ exp(−a)
(2.5)

where exp(x) = e−x

Figure 2.5: Sigmoid function [42]

Hyperbolic tangent (Tanh) This function also has a bounded range between −1 and 1

g(a) =
exp(2a)− 1
exp(2a) + 1

(2.6)

Rectified linear (ReLU) A simple, yet widely used activation function is the rectified linear
unit, it is only bounded from below, by 0.

g(a) = max(0, a) (2.7)

What can artificial neurons do? Artificial neurons can be used for simple decision making,
also known as classification. The dimensions of the input vector represent different aspects
of a problem or question, the weight parameters weight these aspects in accordance with
their importance and the output is a yes or no decision or a probability, however the user
decides to interpret it. A single neuron can classify problems where the data is linearly
separable, while organising multiple neurons in a network makes it possible to model more
complex underlying functions.

2.2.3 Artificial Neural Networks

One successful structure of neural network architecture is one whereby neurons are organ-
ised into layers with inter-layer connections only, without any intra-layer connections. That
is, there are no connections between neurons within the same layer. Also, neighbouring
layers are usually fully connected, there is a connection between every two neurons of two
neighbouring layers. This kinds of neural nets are called feed-forward networks.
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Input

Hidden

Output

Figure 2.6: Feed-forward neural network with single hidden layer.

Feed-forward Neural Network computation In multi-layer networks the activations of
the previous layers constitute the input for the hidden and output-layers. Intermediate layers
are called hidden layers because we do not ’see’ their inputs and outputs. Input is fed to the
input layer, with one neuron for each dimension of the input. It is then propagated through
the network by computing the activation of each neuron of each layer, which is then the
input of the next layer. Note that layers can have different activation functions within a
single network.
For classification tasks the number of output neurons is usually the number of classes which
the input is supposed to be categorised into. The output neuron with the highest activation
represents the predicted category. Output activities can be normalised across all output
neurons as well, so that they add up to one, thus one can interpret the output as a probability
distribution.

2.2.4 Representation capabilities of Neural Networks

It is known that a single neuron can classify linearly separable problems and neural networks
with a single hidden layer are capable of modelling any continuous function, while multi-
layer networks are powerful enough to represent any function by distorting the input space
so that it becomes linearly separable [34]. The weights of neural networks represent features
and in multi-layer networks, the nearer the layer is to the output, the higher dimensional
features it represents. That is how we arrive from a small curve in the left corner of an image
to identifying a face, taking face recognition as an example.

2.2.5 Training Neural Networks

Above, we saw the simplified description of how neural networks compute their output val-
ues. However, the main challenge in neural network programming is finding the proper
weight parameters of the connections. The algorithms used to do this are called training
algorithms. When we train a neural network in a supervised way, we feed it a large set
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of training examples consisting of input output pairs. During training we measure the dif-
ference between the network’s actual output and the expected output from the supervision
signal. This measurement is referred to as loss, error or cost function and our goal is to min-
imise it. The smaller the error, the better the network has learnt the features of the training
set.

Loss functions During training we optimise the loss functions (also called cost, error, or
objective function), representing the error between the predicted and actual values of the
network. There are several different types of them, usually chosen based on the type of the
problem.
For training with backpropagation we require that the loss is written as an average:

l =
1
n

∑
x

lx (2.8)

Some of the widely used loss functions are:

• The mean squared error (MSE) function

l(f (x),y) =
1
2

∑
j

(yj − f (xj ))2 (2.9)

=
∥∥∥y − f (x)∥∥∥2

2
(2.10)

where

– f (x) is the prediction of the network
– and y is the target

• The cross-entropy function

l(f (x),y) = −
∑
j

[yj lnf (xj ) + (1− yj ) ln(1− f (xj ))] (2.11)

Gradient descent A popular way to minimise the loss function is using the first-order op-
timisation method called gradient descent. Gradient descent works by taking the derivative
of the error/loss function at an initial point in the parameter space, then seeking out the di-
rection of the steepest descent to the next point, and adjust the weights along this direction
repeating this until the error gradually reaches a local minimum.
Below we see the equations for a single gradient descent update:

∆ = −∇θl(f (x(t);θ), y(t))−λΩ(θ) (2.12)

θ = θ +α∆ (2.13)

Where

• l is the loss function

• θ is the matrix of neural network weights

• α is the learning rate, a small constant

• −λΩ(θ) is a regularisation factor, called momentum, ensures that gradient descent
does not stuck in small local minima.
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Backpropagation As long as the loss function is not sufficiently small we need to keep
adjusting the weights. For networks with hidden layers the backpropagation algorithm is
used for this task. The idea is to update weights of the neurons in proportion with the amount
they contribute to the final error. The error or loss is computed for the output layer first and
by repeatedly applying the chain rule the error function gradients are propagated backwards
in the network, with respect to which the gradients of the weights can be computed and the
weights updated.
For a more detailed description of backpropagation see [34]

2.3 Reinforcement Learning

In this section we briefly describe reinforcement learning, and the background for Deep Q-
learning. This section is mostly based on the book by Sutton and Barto [43] and on the
Reinforcement course [44].

2.3.1 Description

Reinforcement Learning (RL) is a sequential decision making, machine learning technique
different from both unsupervised and supervised learning. The concept of reinforcement
learning comes from behavioural psychology, referencing the study of human and animal
learning that is controlled by rewarding right behaviour and penalising unwanted behaviour.

RL focuses on how it is possible to learn from interacting with the environment. If we assume
an initially unknown environment then we have to explore it and gain experience in order
to improve our knowledge of this world, our interaction with it and thus of our survival
chances. Throughout this exploration we obtain good and bad experiences (or anything in
between) and naturally we would like to relive the good ones and learn how to achieve
them, while we want to avoid the bad ones. When things get more complex, we might find
that some good experiences can only be obtained by first experiencing some bad ones. In
such cases we have to decide whether the that good experience is worth enough to suffer
through the bad ones.

To formulate the reinforcement problem we thus define a (software) agent which interacts
with an environment. This interaction is modelled as a sequence of observations and ac-
tions in time. At every time-step the environment is described by its current state which is
observed by the agent, assuming the environment is observable and the state of the environ-
ment is equivalent to the state of the agent.

Along with every state the agent also receives a reward from the environment representing
the ’goodness’ of this new state. The more reward an agent gets the more good experience
it has. It is no surprise then, that the goal of the reinforcement learning task it to maximise
the accumulated overall reward.
Figure 2.7 depicts how the agent interacts with the environment. It repeatedly observes the
environment by receiving a state s ∈ S, and a scalar reward r at every time-step t, 0 ≤ t ≤ T .
It then decides on the next action a ∈ A to take. The action can change the environment,
altering its state which is then observed by the agent again. Here S and A are the set of
all possible states and all possible actions respectively and T is the length of the given time
sequence. To choose actions, the agent uses a policy π, which maps states to actions, or
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Agent 

actionrewardstate

Environment 

Figure 2.7: Simple model of agent-environment interaction.

action probability distributions, and defines the agent’s behaviour.

RL is neither supervised nor unsupervised like most machine learning algorithms, because it
is not trained with labelled data as in supervised learning, it has to find the best solutions
by discovering through trial and error, but unlike unsupervised learning it does not have to
find the features in the training data without any clue in an unsupervised manner, instead it
is driven by a reward signal.

This model is extremely flexible and there are many different algorithms and implementa-
tions for various RL tasks. In order to understand more about them we first need to introduce
a few definitions.

2.3.2 Rewards and returns

Interacting with the environment the agent gains experience of the form:

s0, r0, a0, s1, r1, a1, s2, r2, a2, ... (2.14)

If it is possible to break down the task into separate sequences of episodes, it is called an
episodic task while a single sequence of interactions for t,0 ≤ t ≤ T is called an episode.

s0, r0, a0, s1, r1, a1, ..., st , rt , at , ..., sT , rT , aT (2.15)

We can sum rt for all t to get the total reward for a given episode, however in practice
we define the long-term or cumulated reward or return as the total discounted reward from
time-step t:

Rt = rt+1 +γrt+2 +γr
2
t+3 + · · · =

∞∑
k=0

γkrt+k+1 (2.16)

Where γ ∈ [0,1] is the discount factor, a hyperparameter of the RL task, it ensures that future
rewards are worth less than immediate rewards, preventing infinite loops and encouraging
short and efficient solutions. It also resembles human and animal behaviour preferring im-
mediate rewards.
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Rewards help the agent to adapt its strategy suggesting actions that will maximise the long-
term reward R. The fact that sometimes a complex sequence of actions is needed to obtain
a reward (delayed rewards) makes reinforcement learning quite challenging.

2.3.3 Formalising RL problems as Markov Decision Processes

If the reinforcement Learning task satisfies the Markov Property (see 2.17) and the environ-
ment is fully observable then it can be formulated as a Markov Decision Process (MDP), a
decision making model.
Markov Property: the probability of state in time-step t + 1 given the state of time-step t
equals to the probability of state at t + a given all states from 1 to t

P (st+1|st) = P (st+1|s1, . . . , st) (2.17)

that is, given the previous state, all preceding states are irrelevant or, in other words, given
the present we do not care about the past. The present state contains all the necessary infor-
mation from the history of events, so the history can be forgotten.

MDP-s are ideal to formally describe an environment for reinforcement learning and consist
of the following components (assuming finite MDP-s):

• States s ∈ S, where S is a finite set of states
describing the state of the environment in time-step t

• Actions a ∈ A, where A is a finite set of actions

• Transition probabilities P ass′ = p(st+1 | st , at)
Probability of transition from state s to state s′ when the agent takes action a

• Discount factor γ ∈ [0,1]

• Reward function Rass′ = r(s,a, s
′), or rt+1 = r(st+1, st , at)

Reward received when transitioning from state s to state s′ following action a

The reinforcement learning task can be either

model-based Cases where the MDP is known, also called planning. An MDP in known if we
know its transition probabilities P ass′ . An agent can improve its policy without interact-
ing with the environment.

model-free Cases without a known, or too large MDP. This is the more frequent scenario,
environment is initially unknown, the agent improves its policy by interacting with the
environment.

2.3.4 Policies

A policy, representing the agent’s behaviour, maps states to actions or action probability dis-
tributions (i. e. the probabilities for each action with which it should be followed).

That is a policy π can be
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Stochastic a ∼ pπ(a | s)
Returns the probability with which the given action should be executed in the given
state, or

Deterministic a = π(s)
Simply tells the next action for a given state

Policies can be

Evaluated Usually referred to as Prediction. It is about evaluating a given policy.

Optimised Usually referred to as Control. It is about finding the best policy.

Generally, the goal of the reinforcement learning task is to find an optimal policy π∗ that
helps the agent to choose the actions which will maximise its cumulative reward.

Not all types of reinforcement learnings are policy-based, however, there are policy-free
value-based algorithms as well.

2.3.5 Value function and Action Value function

Given a policy, we can estimate the values of states and state-actions pairs. This is one of the
main components of reinforcement learning.

We define the value function or state-value function for policy π as the expected future reward
in a given state telling the ’goodness’/’badness’ of that state. The formula is:

V π(s) = Eπ[Rt | St = s] = E[
∞∑
k=0

γ trt+k+1 | St = s] (2.18)

where Rt is the discounted total return and rt+a is the immediate reward.

Furthermore, let us also define the state-action or state-action value function, which tells us
how good it is to be in a given state and take a given action following a policy π.

Qπ(s,a) = E[Rt | St = s,At = a] = E[
∞∑
k=1

γ trt+k+1 | St = s,At = a] (2.19)

which is the expected return when in state s, taking action a and following policy π.

There are multiple types of algorithms to compute V π and Qπ, some of them estimates V π

and Qπ based on experience, others compute the real expected values assuming the MDP
model is known.

Bellman equations and self-consistency Many of the algorithms exploit a fundamental
property of the state and action-value functions, so that both of them can be decomposed into
two components: immediate reward and discounted value or action-value of the successor
state:

V π(S) = Eπ[rt+1 +γV
π(St+1) | St = s] (2.20)
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Qπ(s,a) = Eπ[rt+1 +γQ
π(St+1,At+1) | St = s,At = a] (2.21)

To see that this holds we have (for the state-value function):

V π(s) = Eπ[Rt | st = s] (2.22)

= Eπ[
∞∑
k=0

γkrt+k+1 | st = s] (2.23)

= Eπ[rt+1 +γ
∞∑
k=0

γkrt+k+2 | st = s] (2.24)

Then, applying the expectation we get:

V π(s) =
∑
a

π(s,a)
∑
s′
P ass′

[
Rass′ +γEπ[

∞∑
k=0

γkrt+k+2 | st+1=s′ ]
]

(2.25)

=
∑
a

π(s,a)
∑
s′
P ass′

[
Rass′ +γV

π(s′)
]

(2.26)

Also,

V π(s) =
∑
a

π(s,a)Qπ(s,a) (2.27)

s

a

r

s’

s,a

r

s’

a’

Figure 2.8: Backup diagram for V π and Qπ.
Circles represent states, shaded nodes actions, and arcs rewards

We can use backup diagrams such as on Figure 2.8 to trace the paths from states or state-
action pairs to the successor states. It represents the most important step of reinforcement,
that of learning to transfer information back from successor states to the current state. This
operation is also called update.

In matrix form:

vπ = Rπ +γP πvπ (2.28)

and it can be solved directly:

vπ = (I −γP π)−1Rπ (2.29)
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The Bellman equation is linear and self-consistent, therefore in theory it could be solved
directly. However, due to the large state space of most reinforcement learning problems,
in practice we usually rely on iterative algorithms to find the solution. We classify these
algorithms into three methodologies:

• Dynamic programming

• Monte-Carlo evaluation

• Temporal Difference learning

Optimal value and action value functions Now let us also define the optimal state-value
and optimal action-value functions as the maximum value and action-value functions over
all policies

V ∗(s) = max
π
V π(s) (2.30)

Q∗(s,a) = max
π
Qπ(s,a) (2.31)

We say that the MDP is solved when we have found the optimal value function. So how do
we find the optimal policy achieving an optimal value function?
One option is finding the optimal state-action values q∗(s,a) and then we can have a policy

π∗(a | s) =

1 if a = argmax
a∈A

q∗(s,a)

0 otherwise
(2.32)

Bellman optimality equations

V ∗(s) = max
a

∑
s′
P ass′ (R

a
ss′ +γV

∗(s′)) (2.33)

And the optimal state-action function:

Q∗(s,a) = E[rt+1 +γmax
a′
Q∗(st+1, a

′)|St = s,At = a] (2.34)

=
∑
s

P ass′ (R
a
ss′ +γmax

a′
Q∗(s′ , a′)) (2.35)

Unlike the Bellman Equations, the Bellman Optimality Equation is non-linear and there is no
general closed form solution for it, so here we need iterative solutions as well, such as

• Value Iteration

• Policy Iteration

• Q-learning

• Sarsa
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2.3.6 Planning and Dynamic programming

Let us first examine the scenario when the MDP in perfectly known and there is no need
for interacting with the environment. In this case we can use a certain type of algorithm,
Dynamic Programming (DP), for evaluating and finding optimal policies. Although DP algo-
rithms are computationally expensive and the perfect MDP model assumption also limits the
applicability of this methods, it is essential to understand it in order to understand other RL
methods.

Dynamic programming is an algorithm for solving complex problems by breaking them down
into simpler subproblems. It is only applicable if the problem satisfies the following two
properties:

• Optimal substructure: optimal solution can be decomposed into subproblems. In other
words we can find a solution by repeatedly solving subproblems and using these solu-
tions to get an overall result.

• Overlapping subproblems: sub-solutions can be reused. That is, besides breaking down
the original problem to sub-problems, the solutions can be reused by multiple sub-
problems higher up the recursion tree.

MDP-s satisfy these properties and therefore we can use DP for both

Prediction Find value function V π for a given MDP and policy π

Control Find optimal value function V ∗ and optimal policy π∗ for a given MDP

Let us see the DP algorithms for prediction and control assuming a known MDP.

Policy Evaluation This algorithm evaluates a given policy for a given MDP by repeatedly
applying the Bellman expectation equation (2.26) until V converges to V π that is V ≈ V π.
Iteratively updating V this way is guaranteed to converge, for proofs see [43].

Algorithm 1 Iterative policy evaluation [43, Ch. 4]

Input: π, the policy to be evaluated
1: Initialise an array v(s) = 0, for all s ∈ S+
2: repeat
3: ∆← 0
4: for each s ∈ S do
5: temp← v(s)
6: v(s)←

∑
aπ(a | s)

∑
s′ p(s

′ | s,a)[r(s,a, s′) +γv(s′)]
7: ∆←max(∆, |temp − v(s)|)
8: end for
9: until ∆ < θ . A small positive number

Output: v ≈ vπ

Policy Iteration Now, what happens when instead of evaluating an optimal policy we have
to find one? One solution is to use the policy iteration method. The idea is to repeatedly
evaluate and improve, then again evaluate and improve the policy until convergence to
optimal policy π∗. We saw above how to evaluate a policy, now we need a method to
improve it. Such is the greedy policy which always takes the action that puts the agent
in the neighbouring state with highest state-value.
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General Policy Iteration It is a good strategy to decompose RL tasks into two components:
policy evaluation and policy improvement (learning and control). This has the benefit that
we can use any two independent algorithms for evaluation and improvement.

• Policy evaluation: estimate V π

• Policy improvement Generate π′ ≥ π

Figure 2.9: Value and policy functions interact until they are optimal and thus consistent with
each other [43]

Value Iteration The idea behind value iteration, another method to find an optimal policy
π∗ given an MDP, is iteratively applying the Bellman Optimality Equation (2.33).

Algorithm 2 Value iteration [43, Ch. 4]

1: Initialise array v arbitrary
2: repeat
3: ∆← 0
4: for each s ∈ S do
5: temp← v(s)
6: v(s)←maxa

∑
s′ p(s

′ | s,a)[r(s,a, s′) +γv(s′)]
7: ∆←max(∆, |temp − v(s)|)
8: end for
9: until ∆ < θ . A small positive number

Output: A deterministic policy, π, such that
π(s) = argmaxa

∑
s′ p(s

′ | s,a)[r(s,a, s′) +γv(s′)]

Value iteration is policy free, an intermediate value function does not correspond to any pol-
icy. It combines policy evaluation and improving in each of its iterations.

Since dynamic programming assumes that we know the full model of MDP it is not suit-
able for most real-life problems. Model-free algorithms can learn by interacting with the
environment and estimate the state-value or action-value functions from experience.
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2.3.7 Model-free learning

In this section we will describe model-free reinforcement learning methods, which can esti-
mate the value function of unknown MDP-s as well.

Monte-Carlo methods Monte Carlo (MC) methods learn directly from episodes of expe-
rience by defining the value as the empirical mean return of complete episodes. There are
different MC algorithms such as

• First-Visit: we compute the empirical mean for every state starting from the first-time
it is visited in the given episode.

• Every-Visit: we compute the empirical mean for every state starting from every occur-
rence of that state in the given episode

• Incremental: We update the value function after each episode in the following way:

v(St) = V (St) +α(Rt −V (St)) (2.36)

where α determines the rate of forgetting past episodes. Rt: actual return

Temporal-Difference learning TD methods learn directly from episodes of experience as
well, however unlike MC methods they learn from incomplete episodes by bootstrapping
(i.e. they update their value estimates based on other value estimates).

V (St) = V (St) +α(rt+1 +γV (St+1)−V (St)) (2.37)

where

• rt+1 +γV (St+1) is referred to as estimated return, or TD target, and

• rt+1 +γV (St+1)−V (St) is called TD error

TD is an online algorithm, it can learn from experience after every step, MC on the other
hand has to wait until the end of each episode.

2.3.8 Model-free control

In model-free control we optimise the value function of a given MDP. It is useful when either
the MDP model is unknown, but experience can be sampled, or MDP model is known, but
it is too large to use and it makes more sense to take samples from it. Model-free control
algorithms can be classified into two categories:

• On-policy: methods, which attempt to evaluate or improve the policy that is used to
make decisions

• Off-policy: methods, that evaluate or improve a policy different from that used to
generate the data
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Policy improvement

• If have a greedy policy over V (s) (a policy that always chooses the action with maxi-
mum expected reward) then we require to know the model of the MDP:

π′(s) = argmax
a∈A

(Ras + P
a
ss′V (s′)) (2.38)

• A greedy policy over Q(s,a) however is model-free:

π′(s) = argmax
a∈A

Q(s,a) (2.39)

Therefore model-free methods usually work with the state-action value function instead of
the state value function. If the state-action values are known,

ε-greedy Exploration A popular policy is the ε-greedy policy where we greedily select the
maximum action with a high probability but there is also a small ε probability, equally for
every other action, to be chosen:

π(s,a) =


1− ε+ ε

|A(s)| if a∗ = argmax
a

Q(s,a)

ε
|A(s)| if a , a∗

(2.40)

Where ε ∈ [0,1] and |A(s)| is the number of available actions in state s.

The ε-greedy policy keeps exploring new actions while following a greedy policy most of the
time. This way it ensures that all actions are selected from time-to-time, which is essential
for convergence.

Q-Learning Q-learning [45] is an off-policy TD control algorithm that is guaranteed to
converge to the optimal Q function Q* independently of the policy being followed. In Q-
learning to find the optimal Q values we update the state action-value function iteratively
the following way:

Q(st , at) =Q(st , at) +α[rt+1 +γmax
a
Q(st+1, a)−Q(st , at)] (2.41)

Where α is the learning rate, it determines how quickly old episodes should be forgotten.

The pseudo-code for Q-learning:

Algorithm 3 Q-learning [43, Ch. 6.]

1: Initialise Q(s,a) arbitrarily
2: repeat . (for each episode)
3: Initialise s
4: Choose a from s using policy derived from Q (e.g., ε-greedy)
5: Take action a, observe r, s′

6: Q(s,a)←Q(s,a) +α[r +γmaxa′Q(s′ , a′)−Q(s,a)]
7: s← s′

8: until s is terminal
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Algorithm 4 shows the DQN algorithm as it appears in [43].

Each step of an episode consists of an experience of the form (s,a, r, s′), and an episode
contains a sequence of such tuples, representing the steps starting from an initial state up to
a terminal state.
Since Q-learning is an off-policy algorithm it has two policies: a behavioural and a target
policy. During policy improvement, given we are in state s we choose action a with the
behavioural policy which is greedy w.r.t. Q(s,a), for instance ε − greedy. The target policy
– the one being – improved is also greedy w.r.t. Q(s,a), as we can see above: π(St+1) =
argmaxQ(st+1, a). This way the algorithm learns about the greedy strategy (target policy)
while following the behavioural policy that ensures exploration.

Figure 2.10: Backup diagram for Q-learning [43] representing how the state-action value is
updated based on the next state and best action from that state

2.4 Deep Reinforcement Learning

For simple problems it is possible that we store all the state-values or state-action values in
a table, and compute them one-by-one. However, for more complex problems we have to
face the curse of dimensionality, the number of states can be far too large to process with
today’s computer platforms. For instance in the case of a robot hand with five fingers, each
with three joints, even if we assume that each joint takes only 90 discrete values instead of
the continuous space, we would have (903)5 = 9015 ≈ 2 ∗ 1029, and we have not even taken
into account that the hand itself needs to be moving. One solution to overcome this problem
is using linear or sometimes non-linear function approximation methods such as linear fea-
tures, decision trees, nearest neighbours, or deep neural networks (DNN). Artificial Neural
Networks (Section 2.2) are capable of generalising from training data to handle unseen data.
A neural network can be used to predict the state action values of unseen state action pairs,
if it is first trained on many examples.

For instance in the case of Q-learning we could train a network (a Deep Q-network) as a
function approximator that maps state-action pairs to their values (Q-values).

2.4.1 Stochastic gradient descent

In order to understand deep Q-learning described in the following sections, we need one
more concept to explain. In Section 2.2.5 we presented gradient descent, a method to opti-
mise the loss function of a neural network.

Now let us define the loss function for a given reinforcement learning problem as

l(θ) = Eπ[(Vπ(s)− V̂ (s,θ))2] (2.42)

where
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• θ is the neural network’s weight matrix

• Vπ(s) is our true state value function

• V̂ (s,θ) is the estimate state value function by the neural network

and its gradient ∇l as

∇l(θ) = 1
2
Eπ[(Vπ(s)− V̂ (s,θ))∇θV̂ (s,θ)] (2.43)

The goal is to find a parameter vector θ that minimises the mean-squared error between the
approximate value function V̂ (s,w) and true value function V π(s)
With gradient descent we adjust θ in the direction of the steepest descent

θ = θ −αEπ[(Vπ(s)− V̂ (s,θ))∇θV̂ (s,θ)] (2.44)

where α is the step-size parameter or learning rate.
Note that we ignored the 1

2 as it is irrelevant to the gradient update.

Stochastic gradient descent on the other hand samples the gradient instead of doing a full
update:

θ = θ −α(V π(s)− V̂ (s,θ))∇θV̂ (s,θ) (2.45)

which is – on the long run – equivalent to gradient descent with full updates. The advantage
of this solution is that the parameters can be updated without computing the expected value.

2.4.2 Deep Q-Learning with Experience replay

This variant of Q-learning is called Experience replay [46] and a popular choice for tasks
with huge state space. A more recent variant was introduced in [1] by Google DeepMind
[47], where it was used to learn and play Atari 2600 games with superhuman efficiency. The
authors have shown that the algorithm is general enough to play six of the games with the
same set of hyperparameters (except for a few minor exceptions) and architecture.

In standard Q-learning we update the neural network with targets computed from the ac-
tual (s,a, r, s′) tuples in every step. This has multiple disadvantages, for example it breaks the
assumption that the input data samples are independent and identically distributed, which
is usually the assumption for deep learning algorithms. Also the data distribution is not con-
stant as it should be, but transforms as the agent develops, not ideal for deep learning either.
These issues can be somewhat mitigated by introducing a so called replay memory, that
stores (s,a, r, s′) tuples as they are incoming, instead of learning from them immediately. The
memory has a fix size (e.g. 1,000,000) and once it is full, and new transitions keep being
added the oldest ones get removed. From time to time (for instance every fourth step) the
agent samples from this memory, choosing experiences randomly with uniform probability,
and uses this batch of samples of a predefined size (usually 32 or 64) to update the weights
of the network. This way experiences can be reused multiple times during training, reducing
the number of examples that need to be generated. Furthermore, the high correlation be-
tween consecutive transitions is no longer a problem since experiences get randomly chosen
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from a larger pool, reducing the variance of the updates.

Schaul et al. [48] mention furthermore, that experience replay has some biological moti-
vations as well. Neuroscientists observed evidence of sequences of prior experiences being
replayed in the hippocampus of rodents during their awake, resting and sleeping periods.

Summary of steps [44]:

• Take action at according to ε-greedy policy

• Store transition (st , at , rt+1, st+1) in replay memory D

• Sample random minibatch of transitions from D

• Compute Q-learning targets w.r.t. old, fixed parameters θi−1

• Optimise MSE between Q-network and Q-learning targets

Li(θi) = Es,a,r,s′ Di [(r +maxa′ Q(s′ , a′ ,θi−1)−Q(s,a,wi))
2] (2.46)

• Using stochastic variant of gradient descent

Algorithm 4 Deep Q-learning with Experience Replay [1, Alg. 1.]

1: Initialise replay memory D to capacity N
2: Initialise action-value function Q with random weights
3: for episode = 1,M do
4: Initialise sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)
5: for t = 1,T do
6: With probability ε select a random action at
7: otherwise select at =maxaQ∗(φ(st), a;θ)
8: Execute action at and observe reward rt and image xt+1
9: Set st+1 = st , at ,xt+1 and preprocess φt+1 = φ(st+1)

10: Store transition (φt , at , rt ,φt+1) in D
11: Sample random minibatch of transitions (φt , at , rt ,φt+1) from D

12: Set yj =

rj for terminal φj+1
rj +γmaxa′Q(φj+1, a′;θ) for non-terminalφj+1

13: Perform a gradient descent step on (yj −Q(φj , aj ;θ))2 according to equation 3
14: end for
15: end for

Algorithm 4 shows the DQN algorithm as it appears in [1].

∇θiLi(θi) = Es,a∼p(·);s′∼ε
[(
r +γmax

a′
Q(s′ , a′;θi−1)−Q(s,a;θi)

)
∇θiQ(s,a;θi)

]
(2.47)

2.5 Improving DQN

Although Deep Q-learning with Experience Replay proved to be an algorithm capable of
playing Atari 2600 games better than humans in some cases, it does have a few drawbacks
such as rather long training times, and also it suffers from certain instability issues. In the
following sections we will discuss a few methods to improve DQN.
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2.5.1 Using a target network

In the DQN algorithm the targets or updates for the network were computed as

Q(s,a)→ r +γmax
a
Q(s′ , a)

However, it was shown in [49, 50] that introducing a second, so called target network can
make the training more stable. This target network is used to generate the target Q-values,
and it is the copy of the original network, except for the fact that its weights are fixed for
a certain number of steps and only updated from time to time, copying the weights of the
other network. The reason this improves the training is because when we use only a single
network the estimated target will be constantly shifting at every training step, since Q(s′ , a)
and Q(s,a) are very close to each other. The update period of the training network should be
large enough to allow the original network to converge.

Q(s,a)→ r +γmax
a
Qtarget(s

′ , a)

.

2.5.2 Double Q-Learning

According to the authors of a paper introducing a variant of Q-learning called Double Q-
learning [50], the deep Q-learning algorithm presented in the 2013 paper [1] tends to over-
estimate action values in some cases. In their paper they show how this can influence the
results in a negative way and present a solution to the problem.
In addition to using a separate target network they propose a further adjustment. They argue
that the overestimation happens because of the max operator in

Q(s,a)→ r +γmax
a
Q(s′ , a) (2.48)

If Q(s’, a) is maximal for a certain a, but this is because the value is noisy and not precise, the
error will be propagated and influence other states. The authors say that regardless whether
the reason of the error in the estimation is because of environmental noise, function approx-
imation, non stationary or other origin, it introduces an upward bias. These overestimations
would not cause a problem if they were uniform, since then all states would be overesti-
mated equally. However, the authors show that this is not the case and suggest to overcome
this by using separate Q-functions for selection and evaluation. Luckily, we already have two
networks so we can utilise the target network and alter the updates in the following way:

Q(s,a)→ r +γQtarget(s
′ , a)argmax

a
Q(s′ , a)) (2.49)

We choose the action with maximal Q-value estimated by the original network, then compute
the Q-value of this action with the target network, which estimation then is applied in the
training step, moving the Q(s,a) towards r +γQtarget(s′ , a)argmaxaQ(s′ , a)).
The paper also states that the decoupling of the Q-functions selecting and evaluating the
action in the target is not completely independent, since we periodically copy the weights
of the original network to the target network. This solution is still sufficient to mitigate the
problem of overestimation, without introducing additional computational complexity.
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2.5.3 Prioritised Experience Replay

As described in [1], the standard DQN algorithm samples from the replay memory uniformly,
not taking into account how much can be learnt from the given sampled experiences. The
authors mention that this could be possibly improved by applying a more intelligent sampling
method.
In a 2016 paper, an improved version of experience replay was presented by Schaul et al.
[48], where experiences were sampled with their significance taken into consideration. This
is useful because the agent cannot learn from all the experiences with the same efficiency,
some are more important, still in the original DQN algorithm they are replayed the same
number of times as any other transition. The writers describe a stochastic prioritisation
technique determining which experiences to replay more frequently. It can improve learning
tasks where receiving positive rewards has a rather low chance and is often preceded by a
large number of negative or zero reward steps.
They say that the ideal criterion by which the importance of an experience could be measured
would be the amount that the agent can learn form a transition in its current state, and
suggest this can be approximated by giving priorities to transitions using the magnitude of
their temporal-difference (TD) error |δ|, which shows how ’surprising’ a certain transition is.
For Double DQN (DDQN) the TD error is defined as

|δ| = |Q(s,a)− [r +γQtarget(s′ , a)argmax
a
Q(s′ , a))]| (2.50)

One problem is that if transitions are sampled purely in proportion with their TD error,
then the ones with initially low errors will be likely never to be sampled, even if their TD
error would increase if they were replayed, furthermore approximation noise can also bias
the priorities and results. The proposed solution to this is to ensure that even low-priority
transitions are sampled at least once by interpolating between uniform random sampling
and greedy prioritisation. Thus the sampling probability of a transition, introduced by the
authors is

P (i) =
pαi∑
k p

α
k

(2.51)

where pi > 0 is the priority of transition i, and α influences the amount of prioritisation used,
that is, if α = 0 we have uniform sampling.
In the paper there are two variants for determining pi , proportional and rank based, here
we will only present the former one, since they were shown to produce similar results (even
though the rank based approach is more robust in theory).
Proportional prioritisation defines the priority of a transition, pi as

pi = |δi |+ ε (2.52)

where ε is a small positive value, so that the transition can be sampled even when its δ is
zero.
As described in the paper, one efficient implementation featuring proportional prioritisation
could utilise the ’sum-tree’ data-structure (a tree with every parent node’s value being the
sum of the values of its children), where priorities are in the leaf nodes, supporting efficient
sampling and updates.
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Figure 2.11: SumTree data-structure [51]

Importance Sampling Using priority sampling introduces a bias. Quoting from the paper:
”The estimation of the expected value with stochastic updates relies on those updates corre-
sponding to the same distribution as its expectation. Prioritized replay introduces bias because
it changes this distribution in an uncontrolled fashion, and therefore changes the solution that
the estimates will converge to (even if the policy and state distribution are fixed).”
The suggested solution for this problem is using (weighted) importance sampling (IS) weights.

wi =
(
1
N
· 1
P (i)

)β
(2.53)

In practise it is common to anneal β from a β0 to 1 as the training proceeds, with β reaching
1 by the end of the training, since unbiased weights are most important for convergence
towards the end of the training.

Algorithm 5 Double DQN with proportional prioritization [48, Alg. 1.]

Input: minibatch k, step-size η, replay period K and size N , exponents α and β, budget T.
1: Initialise replay memory H = ∅, ∆ = 0, p1 = 1
2: Observe S0 and choose A0 ∼ π∅(S0)
3: for t = 1 to T do
4: Observe St, Rt, γt
5: Store transition (St−1,At−1,Rt ,γt ,St) in H with maximal priority pt =maxi<t pi
6: if t ≡ 0 mod K then
7: for j = 1 to k do

8: Sample transition j ∼ P (j) =
pαj∑
i p
α
i

9: Compute importance-sampling weight wj =
(N ·P (j))−β
maxiwi

10: Compute TD-error δj = Rj +γjQtarget(Sj ,argmaxaQ(Sj−1, a))−Q(Sj−1,Aj−1)
11: Update transition priority pj ← |δj |
12: Accumulate weight-change ∆← ∆+wj · δj · ∇θQ(Sj−1,Aj−1)
13: end for
14: Update weights θ← θ + η ·∆, reset ∆ = 0
15: From time to time copy weights into target network θtarget← θ
16: end if
17: Choose action At ∼ πθ(St)
18: end for

Algorithm 5 shows the Double DQN algorithm as it appears in [48].
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2.6 Curriculum Learning

Curriculum learning [52, 53] is another machine learning technique inspired by biology –
human and animal learning, to be more precise. Bengio et al. [53] argue that humans and
animals can learn much more efficiently if the training material is organised in a meaningful
way, has a good structure and introduces complexity gradually. They also how this could
be used in machine learning. They then introduce curriculum learning as a global optimisa-
tion strategy for non-convex functions, showing that in some cases this technique can find
better local minima, and even converge to the global minimum faster than other methods.
They compare curriculum learning to the unsupervised initialisations or pre-training of deep
neural networks [54] which – although no longer necessary nowadays – is a similar way of
’starting small’ in order to find better local minima.

In a more recent paper [55] we see a variant of reinforcement learning where curriculum
learning is actually part of the parameters of the learning problem. Agents generally are
trained for a certain task specified by a single reward function, however Held et al. [55]
argue that if we want agents to be capable of learning more complex tasks – for example
lifting objects and taking them to the other end of the room – we need a more flexible way
of specifying goals. Their proposition is to use Goal Generative Adversarial Networks [56]
(Goal GAN) to generate goals to achieve in the current state of the environment and feed
these goals as part of the input state vector to the agent. The goal is to maximise the average
success rate of the agent over all possible goals. This way goals get gradually more difficult
as the agent learns as part of this automatic curriculum generating technique.

2.7 Summary of related work

Playing Atari with Deep Reinforcement Learning [1] In this paper by Google DeepMind
[47] the authors describe how they managed to build the first deep learning model that
could learn control policies directly from high-dimensional sensory input using reinforce-
ment learning. They implemented a framework that could successfully learn how to play
different Atari 2600 games on a human level. They used Deep Q-Learning with convolu-
tional neural networks, and trained the system with the Experience replay algorithm [46]
that is used in this project as well.

Deep Reinforcement Learning with Double Q-learning [50] An extension to DQN is
introduced in this paper to overcome a drawback of the original Q-learning algorithm (Algo-
rithm 3) namely that it tends to overestimate Q-values in some cases. As a solution a second
Q-network is introduced which is used to compute the targets and updated with the weight
of the other Q-network only from time to time. In this paper we can see how this solution
mitigates the problem of biased Q-values.

Prioritised Experience Replay [48] The experience replay algorithm [46, 1] samples from
the replay memory with uniform probability even though not all experiences are equally
valuable. Prioritised experience replay replays those experiences more often that have larger
TD-errors and therefore more important to learn from for the Q-network.

Curriculum learning [53] This paper introduces experiments with curriculum learning
and deep learning to show that it is possible to learn more complex problems when the
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training data is organised in a meaningful structure and presented to the learning algorithm
gradually with increasing difficulty.

Automatic Goal Generating for Reinforcement Learning Agents [55] A recent paper
showing how reward functions can be generated automatically by Goal Generative Adver-
sarial Networks and used as a parameter of the current state in order to learn more complex
tasks with reinforcement learning within a single training.

In-Hand Robotic Manipulation via Deep Reinforcement Learning [11] The authors of
this paper use the same technique, Deep-Q Networks, for teaching in-hand manipulation to a
simulated robotic hand, or Modular Prosthetic Limb (MPL). Both the task and the techniques
used are very similar to the task of this project, the main difference is that like in [1] the
Deep-Q network used image data as its input unlike our solution, which relies on position
and touch sensor data.
This paper is quite brief, but it provides a very good overview of the problem and the archi-
tecture of the framework that solves this challenge.

Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy
Updates [12] This paper features some other variants of Deep Reinforcement Learning
algorithms that are also based on off-policy training of deep Q-functions, namely Deep De-
terministic Policy Gradient and Normalised Advantage Function algorithms. They show that
these methods, unlike previous solutions, can be efficiently used without compromising the
autonomy of the learning process for robotic manipulation both in simulation and in real
life. They successfully teach real life robots to open doors.

Learning Dexterous Manipulation Policies from Experience and Imitation [57] In this
work, besides deep neural networks, some other methods such as nearest neighbours, imita-
tion are explored for object manipulation tasks both in simulation and in real life situations.
It is more relevant to this project in the sense that they also rely on tactile and proprioceptive
feedback when training and using the deep neural network.

Associating Grasping with Convolutional Neural Network Features [58]] This paper
describes a method of pre-shaping for a human like robotic-hand using convolutional neural
networks. Although this is quite different from the main objective of this project, since it
relies on visual information, while in this project we work with position data and haptic
feedback, the two technologies complement each other in a very nice way, and the technique
it uses could be interesting for the extensions part of this work.

Learning to Grasp Everyday Objects using Reinforcement-Learning with Automatic
Value Cut-Off [59] This is an older paper from 2007, and while they don’t use deep re-
inforcement learning (they keep track of Q-values dynamically), they do use a variant of
Q-learning. Their technical descriptions (for instance for the reward function, actions, eval-
uation) could also be helpful for this project.

Towards Learning Hierarchical Skills for Multi-Phase Manipulation Tasks [60] The au-
thors of this paper show how the manipulation task can be decomposed into a sequence
of phases. They use different methods for training the robot for the different phases, so
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they combine learning from human-demonstration with reinforcement learning. Their work
could be useful if we will experiment with curriculum learning.

Learning Robot In-Hand Manipulation with Tactile Features [29] In this paper rein-
forcement learning is applied to teach a robotic hand the repositioning of objects in the
robot’s hand, and they use tactile feedback to achieve this. Although the objective is quite
different from this project’s objective, it provides an interesting example of object manipula-
tion based on tactile/haptic sensing.
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Design choices

In this section we present our design decisions and briefly explain the reasons behind using
the software and tools we use.

3.1 Simulation

Simulations, although aim to mimic real-life, often require different strategies and algo-
rithms and have several advantages and disadvantages over real-life experiments.

Pros

• Simulations can run at an accelerated speed

• They can handle errors well, errors and accidents do not result in large expenses. For
instance teaching a robot to walk on two legs with reinforcement learning is more risky
in real life, since the robot can break because of repeated failures.

• Also, resetting the environment is easy to do with simulations, e.g. the manipulated
object can be placed back to its original place automatically, unlike in real life.

• Multiple simulations can be run simultaneously, resulting in even faster learning. This
– of course – is also possible in real-life but usually is more expensive.

• Finally it is possible to access and use the simulator any time of the day, which is
usually not the case with a real-life robot.

Cons

• Even the best simulations are simplified, cannot take all real-life like constraints into
account. To speed up simulations we often have to sacrifice even more of the accuracy.

• Following from the previous point, it is not guaranteed that a model working in a
simulation would work in real life.

In this project we conducted experiments relying exclusively on simulation because of the
limited time range, easier accessibility and other advantages of simulation.
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3.1.1 MuJoCo

MuJoCo (Multi-Joint dynamics with Contact) [61] is an advanced physics engine with a
simulator API widely used in research. MuJoCo was developed by Emo Todorov from Roboti
LLC and it outperforms many other simulators, especially in the fields of robotics and grasp-
ing simulation. Models for MuJoCo can be implemented in XML format. The user can define
bodies, give them different geometric shapes and specify the connections or joints between
them. Unlike game engines, in MuJoCo two bodies have 0 degrees of freedom between
them until we add joints manually (optionally ball, slide, hinge or free-shaped). We can also
attach different kinds of sensors onto objects. The model can be controlled via a C++API,
where we are allowed to specify the position/velocity/acceleration of the joints directly, or
define actuators.

Figure 3.1: MuJoCo interface and interacting bodies

[62] presents a performance comparison of MuJoCo and other physics engines such as PhysX
[63], ODE [64], DART [65], Bullet [66] and Havok [67] showing that MuJoCo is the fastest
among these for high DOF (35) grasping simulation.

Figure 3.2: MuJoCo’s performance compared to alternatives for grasping. Second figure shows
the raw speed of the engine, and the third one the speed-accuracy trade-off [62, Fig. 3.]

Although MuJoCo is a relatively new software it is widely adopted and used by software
companies like Google DeepMind [47]. It has a wide range of settings and has a good online
documentation [68], however, MuJoCo being a new simulator intended for professional use
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by researchers, there are no tutorials on the internet (with the exception of its official online
forum) that can offer fast solutions for all range of problems (like, for instance, in the case
of Gazebo [69]).

3.2 Programming languages used

Figure 3.3: Most popular languages for machine learning job postings from 2016 [70]

Python 2.7 We decided to implement the deep reinforcement framework learning in Python
[71] as Python is one of the most popular languages amongst data scientists and ma-
chine learning researchers. It has extensive library support, with wide range of tools
that can be useful for machine learning problems, for instance NumPy [72] and Keras
(3.3).

C++ As MuJoCo’s API is written in C/C++, the simulation/environment side of the reinforce-
ment learning framework was also developed in C++.

XML Also, as mentioned earlier (3.1.1), MuJoCo models are generally specified in XML,
with the robothand models we use from MuJoCo’s website being no exceptions.

3.3 Deep Learning libraries

TensorFlow TensorFlow [73] is an open source machine learning library originally devel-
oped by the Google Brain team of Google in 2015. It uses data-flow graphs to efficiently
execute numerical computations. Its flexible graph-based API makes it possible to use
on all kinds of devices, desktop or server environments, laptops and smartphones, de-
vices with CPU or GPU. It is generally used for neural network computations with a
large range of options.

CNTK CNTK [74] or The Microsoft Cognitive Toolkit is a deep-learning toolkit by Microsoft.
Its first production release was in June 2017 and it is known to be performing generally
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much faster than its alternatives. Microsoft promises improvements both in speed and
accuracy compared to Tensorflow. In its Version 2.0 release Keras support was added
as well.

Keras Keras [75] is an open source, simplified and quite easy-to-use, high-level API (or
wrapper) for TensorFlow written in Python. It can be used to build deep neural net-
works in only a few lines of code. It is designed to be minimal and intuitive, the user
can put together the building blocks of a complex network without having to worry
about the complicated backend implementation. For most applications with simple
neural networks Keras is quite sufficient and provides all the necessary functionalities.
We decided to use Keras since the deep neural networks we have are quite simple (no
special tweaking, like customised loss functions were needed), furthermore, in this
project we focus on reinforcement learning and not on deep learning.

3.4 Deep Reinforcement Learning Algorithms

DDQN with Prioritised Experience Replay The deep reinforcement learning algorithm pri-
mary used in this project will be DDQN with Prioritised Experience Replay described
here (Algorithm 5). This is one of the most up-to-date (published in November, 2015),
and efficient function approximation based methods for reinforcement learning with
huge input state space. It is widely used for similar areas of research.

Asynchronous Advantage Actor Critic (A3C) Although DDQN with PER is indeed one of
the best RL methods, the most state-of-the-art, policy gradient based algorithm was
published by Google DeepMind in 2016 described in this paper [10]. It has slightly
better performance than DDQN with PER, and the algorithm itself is less complex.
It, however, requires to run multiple agents simultaneously. We do not discuss A3C
further in this report.

This project focuses on deep Q-learning, however, we implemented A3C as well but unfor-
tunately had no time for testing it.
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Chapter 4

Setting up the environment for
experimentation

In order to apply deep reinforcement learning on the problem of grasping we first need to
build an environment that can accommodate our experiments.
In this section we present the robothand models we used for the experimentation together
with their physical properties, as well as the models of the manipulated objects. Moreover,
we will describe how deep reinforcement learning can be applied to this specific problem by
showing how we implemented the components of the reinforcement learning algorithm.
Finally, we will present the hardware we used for the experimentation and compare typical
running times.

4.1 Models

4.1.1 Gripper

Throughout the experiments we used two different kinds of robot hand models, a gripper
and a five-finger hand. Although we focus on multi-finger grasping we use the gripper model
to test how our environment works, and we also conduct some simple lifting experiments
with it in Section 6.5.

Figure 4.1: Four finger gripper

Figure 4.1 shows our four-finger gripper. It has two fingers on both left and right sides of its
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wrist. The fingers on both sides are coupled, therefore they move together controlled by the
same joint and are totally interdependent.

(a) Joints (light blue)
(b) Joints (light blue) and actua-
tors (red)

Components This model consists of four parts: the arm, the wrist attached to the arm, two
claws attached to the wrist with both claws composed of two fingers.

Joints and DOF There are two hinge joints between the wrist and the forearm, flexion/ex-
tension and abduction/adduction, and two further hinge joints where the claws are
fixed to the wrist. See Figure 4.2a
Furthermore, the arm can be moved in all three dimensions of the space. Therefore the
model has four joints + three additional degrees of freedom, seven degrees of freedom
altogether.

Figure 4.3: Gripper with touch sensors (grey)

Sensors Two touch sensors are placed on each of the fingers, one at the tip of the finger and
one on the inner side of the lower part of the claws. (There are two additional touch
sensors on the claws’ upper part, however they remained unused), see Figure 4.3 Each
joint has a one position sensor as well to report its positions (or angle) as part of the
state vector which is then used by the agent.

Controls In order to move the joints we use position actuators, one for each, determining
the angle of the given joint, see Figure 4.2b.
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4.1.2 Hand

Figure 4.4: Hand

The other model is a five-finger hand resembling a real human hand, see Figure 4.4. This
model, called Modular Prosthetic Limb, originally designed by the John Hopkins Applied
Physics Laboratory [76], was downloaded from the resources page of the MuJoCo website
[57].

Components The model is composed of the following parts: forearm, wrist, palm and five
fingers (thumb, index, middle, ring, and pinky).

Figure 4.5: MPL with joints and actuators annotated [68, chap. 6]
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Joints and DOF Table 4.1 shows the number and list of joints that can be found in each
component.

Name Number Joints
Wrist 3 pronation/supination, ulnar/radial deviation, flexion/ extension

Thumb 4 abduction, MCP, PIP, DIP
Index finger 4 abduction, MCP, PIP, DIP

Middle finger 3 MCP, PIP, DIP
Ring finger 4 abduction, MCP, PIP, DIP

Pinky 4 abduction, MCP, PIP, DIP

Table 4.1: List of joints

where

• metacarpophalangeal joint (MCP): the joint at the base of the finger

• proximal interphalangeal joint (PIP): the joint in the middle of the finger

• distal interphalangeal joint (DIP): the joint closest to the fingertip [77]

Note: in our MPL model we have separate abduction and MCP joints instead of a single
MCP joint.

Therefore our model has 19 finger joints, and 3 joints in the wrist, moreover – just as
in the case of the gripper model – this arm can be moved in all three dimensions freely,
as well, therefore it has 25 degrees of freedom.

Figure 4.6: MPL with touch sensors annotated [68, chap. 6]

Sensors There are four touch sensors on the palm of this model, two on the front, one in the
back and one on the side. Also, each finger has three of them on their digital bones:
proximal, medial, and distal, see Figure 4.6
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Controls (MPL motors) Unlike in the case of gripper, not all of the joints of this model are
controlled by separate controllers. There are 13 position servos to move the 22 joints
of the hand, three for the wrist and ten for the fingers. As described in the HAPTIX
chapter of the MuJoCo documentation book, some of the joints have their own motors,
while others share one [68, chap. 6].
Similarly to the other model, this one can be freely moved in three-dimensions as well.

4.1.3 Shapes

We experimented with several object of different shapes and sizes (Figure 4.7). All of the
models are simple, convex objects, ideal for two, three and four finger prehension.

(a) Sphere (b) Cube

(c) Ellipsoid (d) Cuboid

Figure 4.7: Object candidates

4.2 Our Deep Reinforcement Learning Framework

In this section we describe how deep reinforcement learning and the algorithms presented
in Chapter 2 are applicable to simple grasping tasks by describing our agent, environment,
reward function, and other components of DRL.
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4.2.1 State space representation

It is the state based on what the agent chooses for its next action, therefore it is a crucial
component and its representation matters a lot. If the state does not contain enough infor-
mation of the environment, the agent might fail to learn the given task. For our experiments
the state vector includes each joint position value (i.e. the angle of each joint) and the touch
sensor values, however it does not contain the position of the manipulated object.

We will also experiment with excluding joint position data from the state vector relying only
on tactile information and compare what the agent could learn.

In practice, state values are often squashed between −1 and 1 because neural networks are
known to be more stable and learn better that way. In our case these values are already quite
small, definitely between −π and π for the joint data. And we cut off touch sensor data with
values above 20 therefore touch sensors have a range of [0,20], however most of the time it
is below 1 as well.

Important note: the state of the agent and of the environment are usually assumed to be the
same for most problems. In our case, however, they are slightly different. Our environment
state also includes the position vector of the object, while the agent’s state only contains the
joint angles and touch sensor values. We will be referring to the latter by state throughout
this report, except when we compute the reward r(s,a, s′) in which case s also includes the
object position since it is used to determine the reward. However, it is very important that
the agent only sees the state without the object position data.

Terminal states Terminal states are states with no transition to another state. If the agent
gets into a terminal state the current episode ends. For our experiments the terminal states
are mostly equivalent to goal states.

4.2.2 Action space representation

The robot hand is manipulated by actions chosen by the agent’s policy. Each joint, and the
arm itself have three corresponding actions altering their angles with a constant value c:

• increase angle: angle(jointn, t +1) = anlge(jointn, t) + c

• leave angle unchanged: angle(jointn, t +1) = anlge(jointn, t)

• decrease angle: angle(jointn, t +1) = anlge(jointn, t)− c
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Action Name Effect
a1 decrease angle of joint 1
a2 leave angle of joint 1 unchanged
a3 increase angle of joint 1
a4 decrease angle of joint 2
...

...
an increase angle of joint m, where m = (n/3) + (n mod 3))
...

...
aN−2 decrease arm height
aN−1 keep arm height unchanged
aN increase arm height

Table 4.2: Actions

We also conduct some experiments where we have only two actions per joint: increasing and
decreasing the angle, and compare the results to see if that extra action is necessary in our
original setup.
We set our neural network architecture in such a way, that there is one output neuron corre-
sponding to each action, or more precisely, each output neuron represents one state-action
or Q value, as described in [1].
The function this architecture represents differs from the original Q(s,a) function (Section
2.3.5) in the sense that it accepts states as inputs instead of state-action pairs, and it returns
the Q-value for all possible actions. This way we do not need to compute the Q-values
separately for each state-action pair, our neural network computes all of them in one go,
thereby saving expensive computation time. So instead of

Q(s,a)→ value

we have

Q(s)→ array of values (one for each action)

Furthermore, we will also experiment with altering this model in a way where instead of
selecting only one action at every time step (by choosing the action corresponding to the
highest Q-value), we take the argmax of each output neuron trio corresponding to the same
joint resulting in a vector of actions (with length equalling to the number of joints) at every
step. Then, we can execute all actions in the vector simultaneously and the fingers will be
able to move together.

4.2.3 Agent

Our goal is to teach our agent various object manipulation tasks. The agent’s function is to
observe the environment and to take actions: flex/extend the fingers, increase/decrease the
height of the arm. After every action it observes the new state of the environment, which is
a set of touch sensor and joint position values.
When learning our agent has two policies.
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• One is for exploring and gaining new experience of the form (st , at , r, st+1) (state, action
taken in that state, reward received, new state). It is the so called ε-greedy policy, see
Section 2.3.8.

• The other policy learns from the experience gained by the ε-greedy policy, and it simply
takes the action corresponding to the maximum Q-value in every step, see Algorithm
2.5.3.

Once training is finished the agent uses its learnt policy to choose the next action based on
the current state. For instance, if it can see from the state that none of the touch sensors are
on and the arm height is high it would take an action that lowers the arm (until touch sensor
values increase),

4.2.4 Environment

Our environment is the simulation, usually consisting of an object placed on a tabletop and
the robot hand floating above the table. A legitimate question would be: why does not the
arm belong to the agent? Is it truly a part of the environment? We could say that the arm
itself belongs to the agent, however, the observations it makes through its touch sensors and
joint position values are of the environment. Note that the agent can compute its own joint
angles (by keeping track of the changes made to them) as long they can move freely, but
once it meets an obstacle a joint angle will not change as much as the taken action would
require it to. This is also true when for instance the hand holds the object while gravity is
pulling it down.

4.2.5 Reward function

One of the most challenging part is to choose a sufficient reward function as efficient as
possible, since we define the task for the agent through the reward function, and it is the
only feedback to know whether the agent is doing the right actions or not. We could reward
for instance the agent for touching the object, and reward it even more when it starts lifting
it. Steps without any object manipulation, on the other hand, could be penalised and thus
discouraged. For more details see Section 6.4, where we detail how exactly we chose our
reward functions.

4.2.6 Function Approximator

Due to the huge state space – all joint position combinations multiplied by the 3D position
of the arm multiplied by all the touch sensor value combinations – it is impossible to map
states directly to actions (using a table), we need a function approximator, see Section 2.4.
In our case, our function approximator is non-linear, a deep neural network with multiple
hidden layers. It can learn to generalise from experience to previously unseen input. That
is, if we train our neural network with a large number of various experiences, it will learn to
map states it has not seen before to optimal actions.

4.2.7 Policy

As a reminder: a policy π(s) decides on the next action to take by the agent based on the
current state of the environment, for more details see Section 2.3.4. Q-learning, being an
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off-policy algorithm has two policies: one exploring, generating experiences, and one that
is being improved. We want the agent to learn a policy that makes it take the sequence of
actions that can successfully complete the given object manipulation task. While training it
follows a behaviour policy ε-greedy in this case.

4.2.8 Algorithm breakdown

As in every reinforcement task, we have an agent interacting with an environment, observ-
ing the states of this environment, and taking actions that can change this environment. The
goal is to learn a policy which, when followed by the agent, produces the largest possible
(or sufficiently high) cumulative reward. If the reward function and thus the problem is well
defined, then the agent should be able to learn to successfully execute the proposed task.
Below, we go trough the workflow presenting and explaining how the Prioritised Experience
Replay algorithm (Algorithm 5) works in practice.

In training mode

• Agent requests the state of the simulator, which is a set of joint position and touch
sensor values.

• The agent then uses its ε-greedy policy to find the next action.

– With 1 − ε probability the agent feeds the received state to its Q-network whose
output is the Q-values of the actions, and then the action with the largest Q-value
is taken. Or

– with ε probability a random action is chosen uniformly from all possible actions.

Each joint has three actions corresponding to them, increase/decrease/do not change
its angles.

• The agent sends this action to the simulator where it is executed and a new state is sent
back, furthermore a reward r(s,a, s′) (function of state, action, new state) is computed
and a flag signalling whether the given new state is terminal or not.

• The agent saves (s, a, r, t, s’) or (state, action, is state terminal, reward, new state)
tuples (called experiences or transitions) in its replay memory. In our implementation
the replay memory is based on a ’sum-tree’ data structure, when a new experience is
added to the memory it gets a priority assigned to it, which is initially the maximum
priority in the tree so far (assuring that every experience is replayed at least once).

• From time to time the agent samples a batch of experiences from the memory. The
sampling method is described in Section 2.5.3 in more detail. The batch will contain
experiences of the form (S,A,R,T ,S ′). In order to train the Q-network we have to feed
it an input and a target. The input will be S and the target will be Q(S) with Q(S,A)
changed to

– R+γQtarget(S ′ ,argmaxaQ(S ′ , a)) if S’ is terminal (i.e. T is true)

– R otherwise.
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That way, we improve Q(S,A), so that it will be more accurate.
We also compute the TD-error δ as

δ = R+γQtarget(S
′ ,argmax

a
Q(S ′ , a))−Q(S,A) (4.1)

= T arget −Q(S,A) (4.2)

Then we have

|δ| = |T arget −Q(S,A)| (4.3)

And use this error to update the priority p of this experience in the replay memory.

p = |δ|+ ε (4.4)

Furthermore we compute the weight w for experience j using Equation 2.53. After this
we update the Q-network with the above defined input, target and weights.

• Occasionally we merge theQ-network withQtarget by copying the weights of the formal
to the latter.

In testing mode

• Agent requests state of the simulator.

• Q-network computes next action based on the state.

• Agent executes this action.

• Repeated until a terminal state or the maximum number of steps is reached.

In Figure 4.8 we present a summary of the architecture of the Deep Reinforcement Frame-
work.
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Figure 4.8: The DQN computes all Q values for the current state, we take the best action, and
execute it. Following that we capture the new state of the simulation represented by the positions
of the joints, and the signal from the touch sensors placed on the fingers. We also compute the
reward from the new state based on the position of the object we manipulate. Design based on
[11, Fig. 1.b]

4.3 Hardware requirements

As machine learning projects generally do, this one relies on large computational power
as well, mostly because of training deep neural networks. However, the simulation also
requires good graphical resources. Tensorflow has versions optimised for both CPU and
GPU, MuJoCo is optimised for CPU, therefore the need for powerful CPU, and possibly GPU.
Experience replay stores large amount of data in memory, so large memory is a priority, too.
We do not do heavy disk reads and writes so for disk both ssd and hdd are suitable. Also,
as speeding up a single training can be limited by many aspects, the possibility of running
several experiments parallel is also a preferable option. Based on the above, it is clear that a
normal notebook is not the most suitable candidate for this task with trainings often taking
over a day. We chose to try the cloud resources of Amazon (Amazon Web Services) and
Microsoft (Microsoft Azure).
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Name Service CPU Cores RAM GPU Storage Seconds per epoch

Notebook -
Intel Core
i5-3210M @
2.50 GHz

2/4 8 GiB
NVIDIA
GeForce GT
630M

SSHD 16.2

Remote 1 AWS
Intel Xeon E5-
2670 4 15 GiB

NVIDIA
Grid (Kepler
GK104)

SSD -

Remote 2 Azure
Intel Xeon
E5-2673 v3 @
2.40 GHz

4 14 GiB - SSD 12.5

Remote 3 Azure
Intel Xeon
E5-2690 v3 @
2.60 GHz

6 56 GiB
NVIDIA Tesla
K80 HDD 8.4

Table 4.3: Hardware comparison

Where speed (seconds per epoch) is computed as the average time to run one epoch of
training (when the agent has not learnt anything yet), measured with the same experiment
for all computers. The result for Remote 1 is missing because we had no longer access to it
when this comparison was conducted.
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Program description and details

In this chapter we introduce some of the technical challenges and details of implementing
the program accommodating our experiments. We start by listing and describing its most
essential components.

5.1 Components

5.1.1 Python-side

Brain This component is the brain of the agent, a wrapper for the Q-network used to predict
the next action based on the current state of the environment. It can build a neural net-
work based on some given hyperparameters such as the number of layers and number
of neurons and activation functions for each layer. It can also save the current model
into a file or load any file containing a model into memory and use that as the current
model. Furthermore it is capable of adding additional input and output nodes to an
existing network. This is useful when we do curriculum learning and add complexity
to a previously trained networks.

Agent The agent interacts with the environment through the Robot Interface module and
relies on the Brain module to compute the next action. It keeps exploring the state
space until it learns the right policy. To learn from experience the agent uses the
Prioritised Experience Replay algorithm (Algorithm 2.5.3).

Robot Interface This component is a decorator for the environment on the Python side
by using and extending the functionality of the environment on the C++side. It is
responsible for translating and sending the current action (being taken by the agent
based on the decision of the brain) to the environment. It also reads the state of
the environment, extracts the relevant information which then the agent can process.
Moreover it computes the reward r(S,A,S ′) and decides whether a state is terminal or
not (for instance whether goal is reached).

Configuration files / Setups As we conduct experiments with tens of different settings and
configurations, it is logical to have separate files representing and describing these
specifications. The configuration of each experiment is made up of two files, a Python
and a C++, the former consisting of:

• Q-network parameters (layers, number of neurons, activation function, drop-out)
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• RL parameters (discount factor, memory size, initial/mininal ε, etc...)

• Robot parameters (turn on/off touch sensors/joints, reward function)

• Paths to save/load models and stats to/from

Controller The responsibility of the controller is to put together the whole setup and to
start the training of the agent. Furthermore it saves the current configuration and
settings and results in files so that it can be later compared with other configurations
and results.

Other components Further modules include

• An optimisation module to automatically find hyperparameters using grid search,
random search or Bayesian optimisation.

• A memory module, making it possible to use other data structures for replay
memory, such as a simple queue for traditional Experience Replay (Section 4)

• A module containing helper functions for logging, managing files, etc...

• A module for experimenting with other algorithms instead of Deep Q-learning.

5.1.2 C/C++ side

As mentioned in Chapter 3, our simulator, MuJoCo has a C++interface requiring to implement
some parts of our application in C++.

Simulator API This is the main program that makes the simulation work using the MuJoCo
API. It loads the given model into the program and runs the simulation loop. It also
has a function to reset the simulation and we also set up a callback function which is
called at every step of the simulation and can be used to control our robot hand.

Additional functions All the functionalities not elementary part of the simulation are in-
cluded in this component. This includes

• Functions to read and generate an array of joint position and touch sensor values
composing the state of the environment.

• Callback function that controls actuators on joint positions.

• Functions that communicate with Python side.

• Functions to run additional, dynamic initialisation of the loaded model.

Configuration files / Setups We already presented the Python configuration files and their
functionalities, here we list their C++counterparts. The C++configurations are responsi-
ble for the following:

• Initial arm positions (especially height) (can be random as well)

• Initial joint positions

• Initial object position and orientation (can be also random)

• Object size and type
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5.2 Communication between Python and C++

One great challenge of having written the simulator in C++and our agent in Python is that
the two sides need to communicate with each other somehow. When programs or processes
communicate with each other and manage shared data on the same platform it is called
Inter-Process communication and can be handled by the following solutions:

Shared memory Shared memory is a part of the memory that is shared between different
programs, that is, multiple programs can access it simultaneously and share data be-
tween each other. Its advantage is that it is the fastest solution for different processes
to communicate, with the disadvantage being that userss need to implement locking
for themselves.

Named pipes Another solution for inter-process communication is called pipes, an exten-
sion of the standard pipe concept on Unix like systems. A named pipe is like a standard
pipe but has a name and does not die with the process. It is ideal for transferring data
from one process to another without creating a temporary file. It is slower than shared
memory and provides one-way FIFO communication only.

Domain sockets Domain sockets are similar to Named pipes, except that they can be used
for communication both ways and are easier to use. They are also very similar to net-
work sockets except that they communicate exclusively within the operating system’s
kernel.

We decided to go with the domain socket option since it is easy to implement, can be used for
both way communication between the Python and C++ sides, and although it is slower than
using shared memory, it would not create a bottleneck in our case, since the transferring time
through sockets is dwarfed by the training time of the neural networks and the simulation.
In order to make the implementation even easier we used the ZeroMQ (or ZMQ) library
[78].
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Experimentation and Results

In this section we present the experiments we conducted by describing the configuration,
the goal as well as presenting and evaluating our results. Before introducing the actual
experiments, however, we will discuss a few general comments and settings.

6.1 Measuring progress

In order to be able to follow the progress of our trainings and measure the successfulness
of a given configuration, we need a good measure to reflect them meaningfully. The most
straightforward solution is to keep track of the total reward received for each episode. By
definition, the larger the total reward for an episode, the better that episode is, so plotting
the total reward represents the agent’s learning curve. Although we know that more reward
is better than less reward, the accumulated reward per episode can only show relative suc-
cess (unless we know the maximum achievable cumulative reward), showing how fast our
agent learns, but not whether it has completed the given task.

An even simpler solution is to keep track for each episode whether it was completed (task
achieved) or not. Then we can compute the moving average of completed episodes for a
given window size (e.g. 100). If it reaches 1 or 100% we know that our agent has perfectly
learnt the given task. A disadvantage of this measure is that if for some reason the agent
always fails to reach its goal, the percentage of completed episodes is 0 and we can not tell
whether our agent learns at all.
We can also plot the average maximal Q-value per episode, which converges as the training
is converging. As the maximal Q-value represents the value of action in the current state,
usually the average maximal Q-value graph will have a similar curve as the average reward
graph, that is (unless Q-values were initially rather overestimated), the average maximal
q-values grow as the training procedure proceeds.

6.2 Hyperparameter searching techniques

Hyperparameters are parameters that describe the model but are not learnt by the model,
such as the number of neural network layers, activation functions, discount factor, replay
memory size, etc. One shortcoming of most machine learning algorithms of our time is that
they depend on a huge number of hyperparameters, which, if not set carefully could make

53



Chapter 6 6.2. Hyperparameter searching techniques

the model fail to learn the underlying function of the data. For instance a complex task
cannot be learnt by an inflexible network, because the network simply does not have the
representation capabilities to properly fit the unknown function. Or, if we do not discount
our rewards in reinforcement learning, the agent would not be encouraged to find the big
reward as fast as possible, since it is enough to find it at any point in the episode.

Generally we prefer models that are less dependent on their hyperparameters and are flexi-
ble enough to learn with a wider range of settings.

One disadvantage of Prioritised Experience Replay is that it has a large amount of hyperpa-
rameters. In this section we describe how these can be found and set.

Grid search For each hyperparameter the user provides an array of possible values, then the
Cartesian product or combination of all these arrays is taken, i.e. in every iteration we
choose one value from each array until all combinations are tested. During testing the
main function which is subject to optimistion is executed and a score generated. The
maximum score and the corresponding hyperparameter array is returned at the end.

l1\l2 10 15 20
10 10; 10 10; 15 10; 20
20 20; 10 20; 15 20; 20
30 30; 10 30; 15 30; 20

Table 6.1: Simple grid search example: rows determining the number of neurons in layer 1, and
columns the number of neurons in layer 2, with initial candidate sets {10, 20, 30} and {10, 15,
20}

Random search Instead of systemically going through all the combinations, random search
chooses a value uniformly for each hyperparameter from a pre-defined array or range.
In practice random-search usually provides results similar to grid search and one of its
advantaged is that it can be stopped anytime.

Bayesian optimisation Unlike Grid search and Random search Bayesian optimisation [79,
80, 81, 82] examines the parameter space in a more intelligent manner. It tries to
fit a Gaussian Process [83] to predict the next hyperparameter vector to be tested.
Bayesian optimisation is usually applied when executing the objective function is very
expensive, and we can only afford it a limited number of times. If well-calibrated,
Bayesian optimisation can find an efficient set of hyperparameters much faster then
the alternatives, without the proper setting, however, it can prove completely useless.
It usually works better for smaller hyperparameter space.

Trial and Error Another common technique is when the users experiment with different
hyperparameters based on their intuitions, they try various settings keeping those that
produce better results and dropping the ones that fail to do so. Trusting intuitions
to choose the next set of hyperparameters can be both advantageous and disadvanta-
geous, we can rely on our general knowledge and beliefs helping us to guess the ’real’
solution, it can, however, make us miss good possible settings if we have distortion or
bad assumptions in our beliefs (which is usually the case).

Literature When applying the previous technique we can make our guesses more educated
if we utilise relevant, commonly cited literature such as research papers and books.
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One can look up resources dealing with similar topics and problems as their own
project and alter the hyperparameters from these sources to fit their own problem.

6.3 Finding the right hyperparameters

In the previous section (Section 6.2) we have shown techniques to find hyperparameters in
general. In this section we present how we have found and set the hyperparameters for our
experiments.

First we list (most of) the hyperparameters we need to set. Some of them are more important
and need to be chosen carefully, some can be easily set based on literature and common
knowledge.

List of hyperparameters for the Q-network

• Number of layers

• Number of neurons for each layer

• Activation function for each layer

• Loss function

• Learning rate

• Drop-out rate, validation split

List of hyperparameters for experience replay

• Discount factor γ ∈ [0,1]

• εmax ∈ (0,1] initial value of ε (used for the ε-greedy policy)

• εmin ∈ [0,1) minimum value

• reduction function for ε

• Replay memory size

• Replay period

• Episode maximum length

• Experience replay batch size

• Target network update frequency

• α ∈ [0,1]: how much prioritisation is used

• β ∈ [0,1]: how much importance sampling is used

Now we describe how some of these values are chosen.
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Neural network configuration Based on similar projects [11] and other deep Q-network
implementations like [1], it was clear that the network should have two or three hidden
layers with 100-5000 neurons each. We also know that larger networks take longer to
train, but are more flexible and can represent more complex functions, however they
are prone to overfitting, i.e. because of their flexibility they can fit the training data
’too well’, by also learning the noise in it thereby loosing their generality. On the other
hand, smaller networks are faster to train, they are less likely to overfit, however, they
can lack the capability of representing the given function resulting in underfitting. In
the early stages of the experimentation we used grid-search (Section 6.2) to determine
the ideal network size, assuming two hidden layers, and then refined them by manual
tuning. For more details see the concrete experiments.

Replay memory size The size of the replay memory determines how long old memories i.e.
experiences of the form (S,A,R,T ,S ′) should be remembered. Typical range of memory
size for problems like ours is between 100,000 and and 1,000,000.

Initial and minimum ε As described in the background section (Section 2.3.8) ε is the
probability of taking a random action instead of the action the Q-network suggests
when we follow the ε-greedy algorithm. When the training starts, ε is set to an initial
value (usually 1) and gradually reduced according to some function of the epochs until
it reaches εmin. With εmin > 0 there will remain a small chance for the agent to take
random actions and keep exploring until the training finishes.

We can decrease ε linearly by always deducting the same small amount from the cur-
rent value, or it can be reduced exponentially, by multiplying the initial value with the
same small amount.

(a) Linear epsilon reduction (b) Exponential epsilon reduction

Figure 6.1: Epsilon reduction

Discount factor γ Choosing the discount factor is easier than finding most of the other
hyperparameters, since essentially all relevant works set it to 0.99 for such experiments
[1, 11]. Nonetheless it is worth testing values between 0.95 and 0.99.

6.4 Finding the right reward function

The reward function is one of the most fundamental part of a reinforcement learning task. It
is the component that leads the agent to learn the desired task and find a policy that produces
a maximum cumulative reward. An ill-calibrated reward will likely produce unsought effects.
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In the original Atari paper [1] the authors suggest to normalise the reward function to a
range between -1 and 1, though they also say that it is not essential. The reward function,
based on the original definition (Section 2.3.3) has a form of r(S,A,S ′), that is, it is a function
of the current state, the action taken in this state and the new state the environment is
transformed to.
When designing the function it makes sense to give a high positive reward when a goal state
is reached, high negative reward when the agent ends up in an undesirable state and small,
real-valued rewards otherwise. In this last case, the reward for non-terminal steps, can be
somewhat problematic. If it is negative then it will motivate the agent to take as few steps as
possible before reaching the goal, however, at the same time it also discourages exploration,
and more complex operations will be less likely to be executed even if they give larger
rewards in the end. This is addressed by the ε-greedy approach to some extent, although it
requires careful calibration. On the other hand, if non-terminal rewards are small positive
values, the agent might have difficulties with finding the goal state (especially if that has low
chance to be found by accident), since the agent will not be discouraged from repeating the
same, non-terminal sequence of steps and accumulating rewards that way.
Also, during the experiments we encountered some undesired behaviour when altering the
reward function to penalise the robot hand with a large negative reward as it goes below a
certain height, while we made such states terminal. In some cases the absolute value of the
negative reward was not large enough to be less profitable than keeping exploring. I.e. the
accumulated negative rewards gathered while exploring were more than the one time big
negative value in this terminal state, even though if the agent had followed the right policy
this would have not been the case. To solve this issue, we could either give even bigger
negative rewards for such states, or stop by marking them as terminal.

6.5 Lifting a sphere with the gripper

Figure 6.2: Four finger gripper

In order to keep things simple and add complexity gradually we started with the simpler,
gripper model shown in Figure 6.2, instead of the MPL hand.

State dimensions 11
Number of actions 9

DOF 3

Table 6.2: Summary
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Neuron id Description
0 right claw increase angle
1 right claw keep unchanged
2 right claw decrease angle
3 left claw decrease angle
4 left claw keep unchanged
5 left claw increase angle
6 arm move upwards
7 arm keep unchanged
8 arm move downwards

Table 6.3: Action Descriptions

In this first experiment the goal was to lift a sphere by 0.03 unit sugar up to a height of 0.26
units. The arm was placed above the sphere at a height of 0.15 units. We let the arm move
only along the vertical axis and therefore the setup had altogether three degrees of freedom:
one-one to control the joints of the claws, and one for changing the arm’s vertical position.
The sate of the system was represented by the position of the three joints (two joints and
the arm’s height) and the eight touch sensor values (there are four fingers with two touch
sensors on each of them). There were nine actions (three for each joints), see Table 6.3.

6.5.1 Right setup

This being our first experiment, it took significantly longer to make the setup work than in
the case of following experiments. Finding the right hyperparameters, tuning the reward
function and the simulation settings proved quite challenging. We decided to use grid search
to find the ideal network size (assuming that it has two hidden layers) and the replay mem-
ory size. It turned out that initially we underestimated both with 128 neurons per layer and
a memory capacity 100,000.
After numerous attempts and weeks of experimentation we ended up with the following
hyperparameters:

Memory size 300,000
Discount factor 0.99

Neurons 1024, 512
Epochs 3000

Number of steps per episode 250
Initial ε 1

Minimum ε 0.01
Replay period every 4 episodes

Target network update frequency every 1000 training steps
Prioritisation exponent α 0.6

Initial importance sampling exponent β0 0.5

Table 6.4: Hyperparameters

We used a neural network with two hidden layers to map joint positions and touch sensor
data to Q-values.
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Table 6.5 provides a summary of the neural network architecture and details.

Layer Input Activation Output
1 11 ReLU 1024
2 1024 ReLU 512
3 512 Linear 9

Table 6.5: DQN Network Architecture.

Finding the ideal reward function was even more crucial and difficult at first, than choosing
the right hyperparameters. Our initial reward function was simply a linear function of the
object height:

Algorithm 6 Reward function

if height(object, t) > 0.26 then
return reward: 10, terminal: True, goal reached: True

else
return reward: height(object), terminal: False, goal reached: False

end if

However this proved to be unable to properly learn our proposed task. We decided to ap-
ply different functions such as exponential, quadratic, square root, and others to the object
height, but none of them could get the agent to perfectly learn to grip. This could be ex-
plained by our discussion in Section 6.4.
Finally we decided to try a different approach:

Algorithm 7 Reward function

if height(object, t) > 0.26 then
return reward: 10, terminal: True, goal reached: True

else if height(object, t) > height(object, t − 1) then
return reward: 0.1, terminal: False, goal reached: False

else
return reward: −0.11, terminal: False, goal reached: False

end if

This reward function (Algorithm 7) gives a positive reward (0.1) when the manipulated
object’s height in the current time step is greater than in the previous time step. Otherwise
it gives a negative reward at a slightly larger magnitude (−0.11). There are two major
differences between this solution and the previous reward function (Algorithm 6):

• The second solution more explicitly rewards the lifting action, instead of computing
the reward based on only the state the agent arrived at.

• Our second solution penalises every other actions and this way it discourages infinite
exploration.
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6.5.2 Results

Figure 6.3: Proportion of completed episodes of trainings with different hyperparametes

Figure 6.3 presents four plots of four different trainings, with different settings, showing
how our results improved over time.
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(b) Percentage of completed episodes

Figure 6.4: Results

Figure 6.4 shows how the values of average reward and completed episodes change with the
number of iterations in the case of optimal specification. Examining figure 6.4b we can see
quite a steep learning curve, and by epoch 2500 the agent has learnt the task perfectly.
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Figure 6.5: Average maximal q-value.

In Figure 6.5 it can be seen how the average maximum q-value converges with the number
of epochs.

Figure 6.6: Working gripper

6.5.3 Conclusions

Based on this result we can conclude that it is possible to learn to lift objects relying solely on
tactile and joint position data of the environment. We have also seen how the effectiveness
and success of the training depends on the right reward function and the importance of the
correct hyperparameter settings.

6.6 Claw with varying starting height

A somewhat more challenging task is to find and lift the same sphere if the initial position
of the arm is not constant but randomly set for every episode. This requires a bit more
intelligent behaviour on the part of the agent, because in the previous setup the agent could
have learnt that it needs to close its claws after a certain number of steps, instead of making
the decision to close the claws based on whether it can feel the sphere with its touch sensors
or not. Of course we cannot know what the Q-network exactly learnt, but we can test the
model from the previous experiment with this new setup to see whether it is general enough
to lift a sphere when we vary the starting height of the arm.
In this setup the initial arm height was uniformly chosen from a range between 0.10 and
0.20.
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6.6.1 Trying the model from the previous experiment

The model that was trained with constant initial height of the arm failed to lift the object in
this case, the model not being general enough. Therefore, we had to try other options.

6.6.2 Retrain the model

An obvious solution is to retrain the model from the previous experiment from scratch in
order to have it learn this new task. We were not focusing so much on this solution, however,
the few experiments we have conducted with the same or similar hyperparameters as for the
previous experiment have failed. We could have increased the number of training iterations,
or the size of the Q-network to get better results, yet we decided to focus more on the next
option.

6.6.3 Curriculum learning

Finally, another option is to use the model from the previous experiment, and continue
training it for a while (ideally for a shorter period than the original training time) so that it
further generalises our already existing model. This solution worked surprisingly well. We
could use the same neural network architecture and keep most of the settings. We reduced
the number of epochs, the size of the replay memory and the initial value of ε.

6.6.4 Right setup

Memory size 100,000
Epochs 2000
Initial ε 0.2

Table 6.6: Hyperparameters
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Figure 6.7: Random starting height with curriculum learning

On Figure 6.7 we see that by epoch 2000 the agent learns to lift the sphere with the initial
arm height set randomly.
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6.6.5 Conclusions

This was the first experiment in this project that proved that a simple version of Curriculum
Learning can be used to add complexity to an already working model. When we tried to
train the agent with setting taken from the previous experiment, or with the setting of the
curriculum learning setup but without the pre-trained model, it failed both times.

6.7 Binary vs. real-valued touch sensors

Touch sensors take real values, their range depends on the settings and physical properties
of the objects in the simulations. Based on our observations they are usually between 0
and 120 for the gripper and between 0 and 25 in the case of the hand. However, in some
circumstances during training (like pressing fingers too hard to the ground or to the object)
these values can become much larger and neural networks are known to be sensitive to large
values, therefore we decided to cut off touch sensor values above 20, which proved to be an
ideal threshold.
We also ran experiments with touch sensors set to binary, i. e. 0 when not touching and 1
when touching. One could argue that, for instance in the case of the gripper, it is enough to
know whether the claws touch something or not and binary values are known to be processed
easier by neural networks. However, we found that we get better results with real values,
and thus we came to the conclusion that the intensity of the sensors is important and utilised
by the Q-network.
Below we can see the difference in the training progress when binary touch sensors and
when touch sensors with cut-off at 20 are used. It is clear that – although both agents learn
quickly – the original, real-valued solution is more effective.
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with binary touch sensors
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(b) Percentage of completed episodes
with real-valued touch sensors

6.8 Simultaneous actions vs. single action

The original Q-learning algorithm (Algorithm 3), just like the versions featured in the Atari
paper [1] and other works as well, choose the next action to take to be the one with the
maximum Q-value, or a random action. This way only one action is executed at each step,
which is fine when actions are mutually exclusive (i.e. going left or right in a grid world). In
the case of a robotic hand, however, moving joints simultaneously would be desirable and
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more real-life like (although in our simulation actions are taken so quickly after one another
that it appears to be moving simultaneously even in the sequential case).
We propose a version of Q-learning where instead of choosing the action with the single
maximal Q-value, we select an action for each joint at every step by taking the one with
maximal Q-value for every three neurons corresponding to a given joint. This way we have
a vector of actions at every step that can be taken simultaneously.
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taking multiple actions simultaneously
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(b) Percentage of completed episodes
with single action per step

Figure 6.9

Interestingly, this proposition neither improves nor worsens the results, see Figure 6.9 i.e. we
get similar results when settings otherwise are mostly identical (in case of the simultaneous
actions experiment we decreased the number of steps in an episode from 250 to 200).

6.9 Two vs. three operations per actions

As described in Section 4.2.2, we have three actions for each joint position servo: decrease
angle, keep angle unchanged, increase angle. So why is this setting better than having only
two actions: increase angle and decrease angle? One could argue that this second option
would be more efficient since there should always be, at every step, a joint that changes
its angle (either in positive or negative directions), unless the task is completed, when the
episode is marked as terminal anyway.
In practice, however, having three actions per joint proved more efficient despite the fact
that it requires larger output space. We could think of two explanations:

1. With three actions per joint more sub-optimal action suggestions by the neural network
are tolerated.

2. There are forces such as gravity (and only gravity in this case) that affect the target
object even if it is not manipulated by the gripper. Having the option of not taking
actions in a time step could provide more flexible interaction with the environment.
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6.10 Relying on tactile information only

Another interesting setup is when the agent does not know about its joint position values
getting the touch sensor reads only, i.e. when we exclude joint position values from the state
fed to the Q-network. One could argue that this would be a more natural setting, although
we humans do have an inner concept of how much our finger joints are bent, even if we do
not know the exact angles.

Figure 6.10: Completed episodes with input state excluding joint position data

Figure 6.10 shows that the agent could learn grasping up to 40% success rate without joint
position data.

6.11 Robothand

After some experimentation with the gripper model, exploring different behaviours and op-
tions, we decided to switch to the hand model.

Figure 6.11: Hand with 5 fingers and 22 joints
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Joints DOF Touch sensors Position sensors Motors Controlled DOF
22 25 19 22 13 16

Table 6.7: MPL hand summary

6.12 Lifting with two fingers

In our experiments with the gripper we had three degrees of freedom, so switching to the
hand model with 16 DOF would have been a rather large jump in complexity. In order to
keep things simple, we decided to start experimenting using only two of the fingers (thumb
and index), and possibly adding more fingers depending on our results.

As we can see in Table 6.8, there are 22 joint in the MPL hand model, see Table 4.1 from
Chapter 4 for more details. We can also move the arm in 3D, adding three more degrees of
freedom. There are three touch sensors on each of the fingers and four on the other parts
of the hand. For each joint there is a position sensor, and our position data also includes the
3D position of the arm. The fingers and the wrist are controlled by 13 position servos and
again, there are three more controlled DOF for the arm.

The setup of this experiment was quite similar to the ones with the gripper. Our first goal
was to lift a small cube above the height of 0.25 units. The hand was placed above the cube
at a height of 0.17 units and was allowed to move along the vertical axis only.

Joints DOF Touch sensors Position sensors Motors Controlled DOF
8 11 6 8 6 7

Table 6.8: Summary

As it is presented in table 6.8, in this setup we have 8 joints, four and four for the thumb
and index finger each, with the vertical movement of the arm. That means seven controlled
degrees of freedom, since the thumb has four position servos, the index finger has two and
we also can also change the arm’s height. Both fingers have three touch sensors, and each
joint in the finger has a position sensor.

state space dimensions 15
output size 21

Table 6.9: State and action vector size

Based on the above, table 6.9 summarises the size of the state space (8 joints + arm height
+ 6 touch sensors), which will be the input for the neural network, and the size of the action
vector, the output of the neural network (6 motors + arm height control, 3 actions for each).

6.12.1 Setting the initial position

We also set the initial position of the thumb and index fingers for every episode, as can be
seen on Figure 6.12 in order to have a fingertip contact with the object. This is achieved by
increasing the wrist flexion joint and bending the thumb and index fingers.
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Figure 6.12: Initial position

6.12.2 Right setup

Neurons 1024, 1024
Epochs 8000

Step size 500

Table 6.10: Updated hyperparameters

6.12.3 Results

In this setup it took significantly longer for the agent to learn the right policy than in the case
of the gripper (about twice as many epochs, each with 500 steps instead of 250), however,
we can see a similar jump in the average received rewards as in Figure 6.13a between epochs
3500 and 4000. Figure 6.15 shows how the MPL hand lifts the cube once it has learnt the
optimal policy.

0 1000 2000 3000 4000 5000 6000 7000 8000
epochs

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

av
er

ag
e 

re
wa

rd

(a) Average rewards

0 1000 2000 3000 4000 5000 6000 7000 8000
epochs

0.0

0.2

0.4

0.6

0.8

1.0

co
m

pl
et

ed
 e

pi
so

de
s
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Figure 6.13: Results
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Figure 6.14: Q-values in a single episode once the agent has learnt the optimal policy

Figure 6.15: Precision grasping with two fingers

We can place this type of grasping in the category of precision grasps with thumb abducted
using pad opposition type and two virtual fingers using Figure 2.2 from Chapter 2.
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6.12.4 Conclusions

After training our 3 DOF gripper model we could also successfully train the MPL hand model
with 7 DOF to use precision grasping for grasping and lifting a cube, even if it required twice
as many and twice as long episodes.

6.13 Random initial height

Similarly to the case of the gripper, we altered this experiment with the starting height of
the arm randomly selected from a given range ([0.1,0.3]). Relying on the results of the
experiment in Section 6.6 and the fact that training from scratch would take even longer
than for the previous experiment, we decided to try curriculum learning again.

6.13.1 Right setup

The working configuration:

Memory size 100,000
Epochs 3000
Initial ε 0.2

Table 6.11: Hyperparameters for curriculum learning with the MPL model

6.13.2 Results
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Figure 6.16: Learning curve with curriculum learning in case of random initial arm heights

We can see rather quick convergence on figure 6.16, the neural network from the previous
experiment could be generalised easily to adapt to random initial heights.

6.13.3 Conclusions

With this experiment we saw again how we can teach a model that has been already trained,
to do more complicated tasks quite efficiently with curriculum learning.
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6.14 Varying the shape and size of the object

The agent could easily learn to pick up a cube, but what about a sphere? It is a somewhat
more challenging task since a sphere could roll away, furthermore, it has a smaller area ideal
for proper grasping. Can the same agent learn to grasp different objects?

Just like in the case of the previous experiment, we could easily teach the hand to lift objects
with different shapes including spheres, ellipsoids, cubes and cuboids of different sizes. The
agent had no trouble to learn these grasps from scratch with full training, however, with
curriculum learning we achieved similar, fast convergence just as in the case of the random
starting height experiment. In these experiments the shapes and sizes of the object were
randomly chosen each time the model was reset (and started a new episode). Note that
when we added different shapes to the cube-lifting model we only introduced one new
shape per training instead of adding all of them at once.

6.14.1 Results

Figure 6.17: Lifting different objects with two fingers

6.15 Different ε values per actuator

When we use the ε-greedy algorithm to decide on the next action, we choose a random
action with ε probability at each step of every episode and rely on the Q-network’s suggestion
otherwise. As the training proceeds we gradually reduce ε until it reaches a predefined final
value εmin. In our experiments the task is to grasp a given object and then to lift it above a
certain height. In this setup the movements different joints perform have different levels of
complexity. For instance lowering the arm until the fingers grasp the object then lifting it up
is a less challenging task than finding the right grasp with the fingers. This motivated us to
investigate how introducing separate ε values per position servo could alter the convergence
speed of the training. We defined an array of initial ε values, one ε for each actuator.
When choosing the next action the neural network would propose one, which then would
be altered with probability εi where i corresponds to the different position servos.
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Algorithm 8 ε-greedy with different ε values per motor

Input: array of ε values epsilons
1: a← argmaxQ(s,a)
2: if random() < epsilons[a/3] then
3: a← chooseRandomFrom(allActions)
4: end if

Output: a

6.15.1 Results

For instance we can set all ε0-s to 1 except for the one actuator that moves the arm up and
down, which could be set to 0.2. We show the result for this setting below.
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Figure 6.18: Results

Looking at figure 6.18a it is clear, that this is a huge improvement compared to the original
setting, getting almost 100% success rate by epoch 2500 instead of 6000-8000. It is also
interesting how sudden the curve jumps a little after epoch 2000. We rerun the experiment
and got a smoother curve for the second time.
Trying this variant with a sphere produced similarly good results:
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Figure 6.19: Learning to lift a sphere using different ε values per actuator
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6.16 Searching the plane for the object

We conducted some experiments where the object was placed randomly on the plane within
a certain radius of the arm. We wanted to see whether the agent could learn a policy where
it had to find the object by applying some kind of space-searching technique discovering
the space with its fingers. We rewarded the agent when it managed to move the object
in any direction, signalling that the object had been successfully found. This proved to be
an infeasible task, which is not very surprising since this would have required much more
significant generalisation of the neural network from the training data. Finding the object
with a constant position, on the other hand, was easily learn by our agent.

6.17 Extending the Q-network

Applying curriculum learning is not too difficult when we do not change the model settings
and use the same number of fingers for both experiments. However, in the case of introduc-
ing new fingers (or other joints) we have to deal with different input and output space sizes.
For instance turning on the middle finger additionally to the thumb and index fingers, we
will have four more joints, three more touch sensors in the case of the input space, and one
more actuator (since the MPL model has one position servo for the middle finger) in the case
of output space.
We overcame this issue by simple introducing new input and output neurons initialised either
with random weights or copying weight of other neurons with the most similar functionality.
For instance for the middle finger MCP motor neuron we can use the weights of the neuron
for the index finger MCP motor.

6.18 Three-finger lifting

After the success of the two finger precision grasping experiments we decided to introduce a
third finger, the middle finger.
One of our goals was with three-finger experiments to find a setup where the agent would
fail to lift an object with two fingers but manage to do so with an additional finger.

6.18.1 Setups and results

As before, we had two options to train our models: either from scratch or with the help of
curriculum learning, extending two-finger models.
First we experimented with the former option: we tried to train a new model for three finger
grasping.
For the initial experiments we kept the hyperparameters and reward function unchanged
and saw a quick convergence in training. However, the results were surprising at first glance.
Instead of utilising all three fingers, our agent still used only two fingers. In some cases the
thumb and the index finger and in other cases the thumb and middle finger combinations.
To solve this issue we modified our reward function so that it would only give positive
rewards when the distal sensors (the ones on the tips) on each of the three fingers are non-
zero. This way we forced the agent the grasp with three fingers. However, with this setup
we could not teach the agent to grasp. As it can be seen on Figure 6.22 the best success rate
the agent could achieve (with increased number of epochs) was around 7% at the peak.
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Figure 6.20: Objects for three-finger grasping

Figure 6.22: Success rate with three finger grasping

Also, examining Figure 6.22 we can see that the agent had some initial success which de-
creased with the number of epochs. One explanation could be that the ε values were re-
duced too quickly, not allowing sufficient exploration time for the agent. Longer training
might would have produced better results.

With manual testing, i.e. moving the joints with preprogrammed actions we also discovered
that the all three distal touch sensors are non-zero condition was rarely met even if all three
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Figure 6.21: Objects intended to be grasped by three fingers were grasped by two fingers instead

fingers were touching the object with their distal phalanx. From this we can conclude that
more or larger touch sensors could have improved the results.

Figure 6.23: Three finger grasping setup with different initial position

On Figure 6.23 we see a modified initial position of the hand and object trying to resemble
a more natural human grasping pose. However, we had no success with this setup, either.

Later we moved to curriculum learning hoping we would have more success with it. Al-
though we have not managed to thoroughly experiment with different hyperparameter set-
tings we have not managed to achieve better results.

6.18.2 Conclusions

Despite the success with two-finger lifting we had troubles when one more finger was added.
The agent either learnt a two-finger grasping as before, or did not manage to learn to grasp
at all. We believe that results could be possible improved by implementing one or more of
the possible options:

• longer training time
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• larger touch sensors

• more carefully constructed reward function

• more in-depth experimentation with curriculum learning

• increasing the weight or decreasing the friction properties of the object, so that it would
more easily slip when grasped with two fingers

6.19 Resistance to shaking effect

Another variant of the previous experiment is where the arm is exposed to a shaking effect
from the environment, and while we expect the arm to drop the manipulated object if it is
held by two fingers, we wanted to see if it manages to keep holding the object when three
fingers are used.
Shaking was implemented by introducing random noise in the robot arm’s horizontal posi-
tion once it had lifted the object above a certain height.
Applying this effect to models that had been already trained with two fingers achieved its
purpose: the arm dropped the manipulated object. However when we retrained the agent it
either managed to keep holding the object with two fingers or failed to learn grasping at all,
similarly to the previous experiment.
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Evaluation

In this chapter we attempt to evaluate this project by discussing its strengths and shortcom-
ings and comparing our results with related research. Moreover we discuss the novelty of
our results and argue that they are useful contributions to the field.

7.1 Strengths

Deep Q-learning works with tactile feedback for grasping Our experimentations have shown
that deep reinforcement learning, and the Deep Q-Learning algorithm in particular, is
capable of learning simple grasping tasks relying on tactile feedback. We have suc-
cessfully taught agents to grasp and lift objects of different sizes and shapes and to
complete the task even when we vary the starting height of the arm or expose it to
shaking during lifting.

Applied curriculum learning to gradually increase complexity We also successfully applied
a simple variant of curriculum learning to teach the agent more complex tasks gradu-
ally that it could not have learnt or would have learnt with longer training times with-
out splitting them up into simpler components. With curriculum learning our agent
could learn to grasp different objects, or work with random starting height of the arm
in often less than 2000 epochs.

Efficient implementation We used the most state-of-the-art variant of deep Q-learning avail-
able, with Double deep Q-network and prioritised experience replay [1, 50, 48]. This
way our agent could learn to complete a given task twice as fast as with simple deep
Q-learning with experience replay.

Useful comparisons In the case of our gripper model we compared how our agent learns
when joint position data is included and when it is excluded from the state what is fed
to the Q-network to determine the next action. Although without the position data our
agent failed to learn the task with full success, we saw evidence that it can still learn
and complete the task up-to 40% success rate.

We also tested Deep Q-learning with actions chosen for each joint simultaneously at
every time-step, instead of using a single action at a time. With this modification the
agents could learn equally well.
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Efficient extensions to Q-learning In Section 6.15 we presented a novel variant of the
Deep Q-learning algorithm which could speed up our training times by more than
65% in some cases. In our implementation we modified the ε-greedy policy in a way
where different actions are replaced by a random action with different probabilities in
order to keep actions that are less likely to be already correct changed more often.

Flexible environment We implemented a flexible deep reinforcement framework (Chapters
4, 5) which can accommodate all kinds of grasping experiments with a wide variety of
settings such as varying the model used for the simulation, turning joints, controllers
and touch sensors on and off, calibrating the reward function and the hyperparameters,
configuring logging and option to save and organise results automatically.

7.2 Weaknesses

Limited success with more complex tasks Despite our success with simple settings we also
saw that with additional complexity, the agent fails to learn in reasonable time. Despite
trying a large variety of configurations we have not succeeded with three or more fin-
ger grasping properly. Possible solutions for this issue could be longer training times,
better hyperparameter or reward function settings, more touch sensors placed on the
fingers, usage of other sensory input like vision or other kinds of haptic feedback, or
exploiting curriculum learning more (see next point).

A shortcoming of our experimentation framework is that because of the huge number
of configurable settings it is often difficult to know exactly which settings should be
changed in the first place.

Not enough research on curriculum learning Although we had success with curriculum
learning, due to time and resource limitations we failed to explore it more in depth
and conduct further experiments for example in the case of three-finger grasps. It could
have been also interesting to implement a variant of automatised curriculum learning
described in the recent paper [55] called automatic goal generation, which uses Goal
Generative Adversarial Networks to dynamically generate the reward function as the
complexity of the task increases (within a single training).

Limitations of the algorithms One possible reason for difficulties with more complex ex-
periments could be linked to the numerous hyperparameters of Deep Q-learning, it
would have been interesting to see how other, more recent algorithms such as A3C
[10] – a policy gradient method which is known to have less hyperparameters and less
complex implementation – could have been applied to this problem.

Also, large state and action spaces are difficult to handle by today’s machine learning
algorithms in general. To deal with huge dimensionalities, training such algorithms –
depending on the problem – can take days or weeks.

Sensitivity to initialisation Related to the previous point, our setups and algorithm are
quite sensitive to the initialisation of the fingers and position of the robot hand. Our
agent could learn only when it was initially placed rather close to the target object with
its fingers bent and failed to learn without this initialisation with otherwise matching
configuration. This is understandable to a certain extent since our agent is ’blind’ and
has to rely on its touch sensors to navigate in the environment. With better exploration
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strategy, however, this problem could have been overcome. It would have been inter-
esting to see a bit more ’creativity’ on the part of the agent i.e. finding solutions less
suggested by the initialisations.

Simulation only experiments Although we initially considered to try transferring our work-
ing models to real robotic hands at some point, our research went in other directions
such as exploring curriculum learning. Furthermore it would be useful to learn a wider
range of object manipulation tasks and three or more finger grasping as well before ap-
plying the models to real-life tasks.

7.3 Comparison with related work

Quantitatively evaluating our project and experiments is a difficult task since exact training
times are rarely available for related work. Moreover, the differences in settings, the tools
available, algorithms used and goal specifications make it impractical to do such comparisons
and draw quick conclusions.
Nonetheless, we present a short summary of the details here about one of our training setups.
When correctly calibrated and applying our ε per actuator extension (Section 6.15) to deep
Q-learning our agent could learn to grasp simple objects with two fingers within less than
four hours on a modern computer. We summarise our two-finger cube lifting experiment in
numbers below:

Episodes 4000
Training steps per episode 500

Training steps in total 2 million
Total training time 3-4 hrs

Average episode length 2.7 - 3.6 seconds

Table 7.1: Cube lifting experiment summary

Concerning related works, in [11] we see a rather similar solution both in terms of the
problem and in the techniques involved. This paper summarises an in-hand object manipu-
lation experiment using vision-based Deep Q-Learning with Convolutional Neural Networks.
They use the same MPL hand model as we do, and they use four degrees of freedom. Their
training consists of a total of 11 million training steps to teach their agent a simple in-hand
manipulation task.

Although our experiments focus on grasping and lifting different objects instead of in-hand
manipulation, and we rely on tactile feedback, not vision, requiring a different, simpler feed-
forward NN architecture, we believe that our work would be a useful complementation of
their results since the authors emphasise how they would leverage tactile sensory data as an
extension to their experiments, while involving vision would be a sensible extension to our
project.

We could also compare our experiments with the results of [22]. The authors use a Q-
learning based asynchronous method to train real robots to different object manipulations
tasks involving door opening and closing tasks. Their experiments involves seven DOF arms
trained with a novel variant of the Normalised Advantage Function and Deep Deterministic
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Policy Gradient algorithms 1 to train several robots in parallel speeding up the training times
significantly. They use episodes of 300 time steps and can teach a robot to pull and push
a door and execute simple object manipulation tasks with 100% success rate in 3000-4000
episodes.

1for more details see the paper
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Conclusions and Future work

In this project we explored how a recent deep reinforcement learning algorithm, deep Q-
learning with prioritised experience replay is applicable to the problem of multi-finger grasp-
ing with tactile sensory input.
We introduced the background of the deep Q-learning algorithm and reinforcement learn-
ing in general, briefly discussed other grasping techniques and presented our reinforcement
learning framework and experiments.
We successfully trained agents to grasp simple objects with two fingers utilising seven de-
grees of freedom. We also experimented and successfully applied curriculum learning to
learn more tasks with models already trained for simpler tasks.
Furthermore we introduced a minor modification to Q-learning speeding up training times
by more than 65% in some cases.
We faced difficulties with adding more degrees of freedom and failed to teach the agent to
properly grasp with three and more fingers.

There are numerous options to continue this research such as exploring curriculum learn-
ing more in depth, applying other, more recent algorithms, use automatic hyperparameter
searching techniques to find better settings and many others. In the following section we
discuss these options which could improve our results and show opportunity to continue the
research.

8.1 Future work

There is a great number of options to continue improving this project, it is definitely a rather
open-ended area of research, with plenty of room for new solutions, experiments and dis-
coveries. Below we list some of the options for extensions.

Adding more fingers and try other types of grasping We conducted experiments with two
fingers, and three fingers for some extent, however it would be interesting to continue
the research utilising three, four and all five of the fingers. Furthermore we managed
to cover only a small subset of grasp types, most of the grasping table on Figure 2.2 is
left to discover.

Larger variety of objects Experiments could be continued with wider range of objects, test
how much our existing models could be generalised and learn new tasks, and what
kinds of new models could be trained. We experimented with simple, convex shapes,
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learning to grasp more complex objects such as toys and everyday tools could be a next
step.

Bayesian optimisation Finding the right hyperparameters is one of the major challenges
and drawbacks of modern machine learning algorithms. We spent a significant amount
of our time with just getting the settings right. An alternative to manual tuning is using
machine learning to optimise the hyperparameters. Bayesian optimisation is a method
which uses Gaussian processes to find an ideal set of hyperparameters especially useful
when evaluating the objective function representing the problem is rather expensive in
terms of time and computation. Although we used this technique to explore our initial
hyperparameter space, we missed to apply it later for more thorough search.

Experimenting with other DRL algorithms such as A3C In the fast moving world of DRL
algorithms, one or two year-old algorithms are often replaced by newer, even more
efficient solutions. DeepMind’s [47] most recent Asynchronous Actor-Critic (A3C) al-
gorithm [10] is considered the best performing and most efficient RL algorithm so far
for similar problems. Although it was not yet widely tested with robotic grasping tasks,
it would be interesting to conduct some research with A3C.

More and more sensitive sensors In order to have more informative state space and thus
more accurate results we could add more, and more accurate tactile sensors. The MPL
model with its 19 touch sensors is far from the sensing capabilities of a human hand.
It would be also interesting to see what results can we get if we exclude joint position
data from states once more tactile sensors are used.

Other sensors Human finger tissues have a wide range of sensors, we can feel the texture,
humidity, temperature, sloppiness, and other properties of the manipulated object and
not just the strength of touching. The next step in mimicking human grasping would
definitely require adding other types of haptic feedback to our robot hand model.

Vision for localisation and hand-eye coordination Most robotic grasping research use vi-
sion and Convolutional Neural Networks for object manipulation, while some of them,
including this project relies on tactile (and joint position) data. The next step could be
combining the two in order to come closer to the real human grasping process.

Different state representation Mnih et al. [1] in the Atari 2600 DQN paper used states that
contained the last four frames of the game. We could alter our state representation too,
so that a single state would contain the touch sensor and joint position data reads from
the last few time steps instead of the last one only.

Also, completing joint position data we could utilise joint velocities and torques as well
in our state representation.

Explore curriculum learning more We saw evidence that curriculum learning [53] can
work with our reinforcement learning framework. [55] introduces an automatised
variant of curriculum learning with dynamic goal generation, altering the reward func-
tion during training. It is definitely an option that could be a useful extension to this
project.

Transfer it to real-life robot Transfer-learning is an area of research focusing on transfer-
ring models trained with simulation to real life robots or other application. Or in more
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general: transferring knowledge between different problems or between similar prob-
lems with different settings. It would be interesting to experiment with how trained
grasping agents could be used with real-life robot hands.
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